1// SPDX-License-Identifier: GPL-2.0
2// Copyright (c) 2017-2018 MediaTek Inc.
3
4/*
5 * Driver for MediaTek High-Speed DMA Controller
6 *
7 * Author: Sean Wang <sean.wang@mediatek.com>
8 *
9 */
10
11#include <linux/bitops.h>
12#include <linux/clk.h>
13#include <linux/dmaengine.h>
14#include <linux/dma-mapping.h>
15#include <linux/err.h>
16#include <linux/iopoll.h>
17#include <linux/list.h>
18#include <linux/module.h>
19#include <linux/of.h>
20#include <linux/of_device.h>
21#include <linux/of_dma.h>
22#include <linux/platform_device.h>
23#include <linux/pm_runtime.h>
24#include <linux/refcount.h>
25#include <linux/slab.h>
26
27#include "../virt-dma.h"
28
29#define MTK_HSDMA_USEC_POLL		20
30#define MTK_HSDMA_TIMEOUT_POLL		200000
31#define MTK_HSDMA_DMA_BUSWIDTHS		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
32
33/* The default number of virtual channel */
34#define MTK_HSDMA_NR_VCHANS		3
35
36/* Only one physical channel supported */
37#define MTK_HSDMA_NR_MAX_PCHANS		1
38
39/* Macro for physical descriptor (PD) manipulation */
40/* The number of PD which must be 2 of power */
41#define MTK_DMA_SIZE			64
42#define MTK_HSDMA_NEXT_DESP_IDX(x, y)	(((x) + 1) & ((y) - 1))
43#define MTK_HSDMA_LAST_DESP_IDX(x, y)	(((x) - 1) & ((y) - 1))
44#define MTK_HSDMA_MAX_LEN		0x3f80
45#define MTK_HSDMA_ALIGN_SIZE		4
46#define MTK_HSDMA_PLEN_MASK		0x3fff
47#define MTK_HSDMA_DESC_PLEN(x)		(((x) & MTK_HSDMA_PLEN_MASK) << 16)
48#define MTK_HSDMA_DESC_PLEN_GET(x)	(((x) >> 16) & MTK_HSDMA_PLEN_MASK)
49
50/* Registers for underlying ring manipulation */
51#define MTK_HSDMA_TX_BASE		0x0
52#define MTK_HSDMA_TX_CNT		0x4
53#define MTK_HSDMA_TX_CPU		0x8
54#define MTK_HSDMA_TX_DMA		0xc
55#define MTK_HSDMA_RX_BASE		0x100
56#define MTK_HSDMA_RX_CNT		0x104
57#define MTK_HSDMA_RX_CPU		0x108
58#define MTK_HSDMA_RX_DMA		0x10c
59
60/* Registers for global setup */
61#define MTK_HSDMA_GLO			0x204
62#define MTK_HSDMA_GLO_MULTI_DMA		BIT(10)
63#define MTK_HSDMA_TX_WB_DDONE		BIT(6)
64#define MTK_HSDMA_BURST_64BYTES		(0x2 << 4)
65#define MTK_HSDMA_GLO_RX_BUSY		BIT(3)
66#define MTK_HSDMA_GLO_RX_DMA		BIT(2)
67#define MTK_HSDMA_GLO_TX_BUSY		BIT(1)
68#define MTK_HSDMA_GLO_TX_DMA		BIT(0)
69#define MTK_HSDMA_GLO_DMA		(MTK_HSDMA_GLO_TX_DMA |	\
70					 MTK_HSDMA_GLO_RX_DMA)
71#define MTK_HSDMA_GLO_BUSY		(MTK_HSDMA_GLO_RX_BUSY | \
72					 MTK_HSDMA_GLO_TX_BUSY)
73#define MTK_HSDMA_GLO_DEFAULT		(MTK_HSDMA_GLO_TX_DMA | \
74					 MTK_HSDMA_GLO_RX_DMA | \
75					 MTK_HSDMA_TX_WB_DDONE | \
76					 MTK_HSDMA_BURST_64BYTES | \
77					 MTK_HSDMA_GLO_MULTI_DMA)
78
79/* Registers for reset */
80#define MTK_HSDMA_RESET			0x208
81#define MTK_HSDMA_RST_TX		BIT(0)
82#define MTK_HSDMA_RST_RX		BIT(16)
83
84/* Registers for interrupt control */
85#define MTK_HSDMA_DLYINT		0x20c
86#define MTK_HSDMA_RXDLY_INT_EN		BIT(15)
87
88/* Interrupt fires when the pending number's more than the specified */
89#define MTK_HSDMA_RXMAX_PINT(x)		(((x) & 0x7f) << 8)
90
91/* Interrupt fires when the pending time's more than the specified in 20 us */
92#define MTK_HSDMA_RXMAX_PTIME(x)	((x) & 0x7f)
93#define MTK_HSDMA_DLYINT_DEFAULT	(MTK_HSDMA_RXDLY_INT_EN | \
94					 MTK_HSDMA_RXMAX_PINT(20) | \
95					 MTK_HSDMA_RXMAX_PTIME(20))
96#define MTK_HSDMA_INT_STATUS		0x220
97#define MTK_HSDMA_INT_ENABLE		0x228
98#define MTK_HSDMA_INT_RXDONE		BIT(16)
99
100enum mtk_hsdma_vdesc_flag {
101	MTK_HSDMA_VDESC_FINISHED	= 0x01,
102};
103
104#define IS_MTK_HSDMA_VDESC_FINISHED(x) ((x) == MTK_HSDMA_VDESC_FINISHED)
105
106/**
107 * struct mtk_hsdma_pdesc - This is the struct holding info describing physical
108 *			    descriptor (PD) and its placement must be kept at
109 *			    4-bytes alignment in little endian order.
110 * @desc1:		    | The control pad used to indicate hardware how to
111 * @desc2:		    | deal with the descriptor such as source and
112 * @desc3:		    | destination address and data length. The maximum
113 * @desc4:		    | data length each pdesc can handle is 0x3f80 bytes
114 */
115struct mtk_hsdma_pdesc {
116	__le32 desc1;
117	__le32 desc2;
118	__le32 desc3;
119	__le32 desc4;
120} __packed __aligned(4);
121
122/**
123 * struct mtk_hsdma_vdesc - This is the struct holding info describing virtual
124 *			    descriptor (VD)
125 * @vd:			    An instance for struct virt_dma_desc
126 * @len:		    The total data size device wants to move
127 * @residue:		    The remaining data size device will move
128 * @dest:		    The destination address device wants to move to
129 * @src:		    The source address device wants to move from
130 */
131struct mtk_hsdma_vdesc {
132	struct virt_dma_desc vd;
133	size_t len;
134	size_t residue;
135	dma_addr_t dest;
136	dma_addr_t src;
137};
138
139/**
140 * struct mtk_hsdma_cb - This is the struct holding extra info required for RX
141 *			 ring to know what relevant VD the the PD is being
142 *			 mapped to.
143 * @vd:			 Pointer to the relevant VD.
144 * @flag:		 Flag indicating what action should be taken when VD
145 *			 is completed.
146 */
147struct mtk_hsdma_cb {
148	struct virt_dma_desc *vd;
149	enum mtk_hsdma_vdesc_flag flag;
150};
151
152/**
153 * struct mtk_hsdma_ring - This struct holds info describing underlying ring
154 *			   space
155 * @txd:		   The descriptor TX ring which describes DMA source
156 *			   information
157 * @rxd:		   The descriptor RX ring which describes DMA
158 *			   destination information
159 * @cb:			   The extra information pointed at by RX ring
160 * @tphys:		   The physical addr of TX ring
161 * @rphys:		   The physical addr of RX ring
162 * @cur_tptr:		   Pointer to the next free descriptor used by the host
163 * @cur_rptr:		   Pointer to the last done descriptor by the device
164 */
165struct mtk_hsdma_ring {
166	struct mtk_hsdma_pdesc *txd;
167	struct mtk_hsdma_pdesc *rxd;
168	struct mtk_hsdma_cb *cb;
169	dma_addr_t tphys;
170	dma_addr_t rphys;
171	u16 cur_tptr;
172	u16 cur_rptr;
173};
174
175/**
176 * struct mtk_hsdma_pchan - This is the struct holding info describing physical
177 *			   channel (PC)
178 * @ring:		   An instance for the underlying ring
179 * @sz_ring:		   Total size allocated for the ring
180 * @nr_free:		   Total number of free rooms in the ring. It would
181 *			   be accessed and updated frequently between IRQ
182 *			   context and user context to reflect whether ring
183 *			   can accept requests from VD.
184 */
185struct mtk_hsdma_pchan {
186	struct mtk_hsdma_ring ring;
187	size_t sz_ring;
188	atomic_t nr_free;
189};
190
191/**
192 * struct mtk_hsdma_vchan - This is the struct holding info describing virtual
193 *			   channel (VC)
194 * @vc:			   An instance for struct virt_dma_chan
195 * @issue_completion:	   The wait for all issued descriptors completited
196 * @issue_synchronize:	   Bool indicating channel synchronization starts
197 * @desc_hw_processing:	   List those descriptors the hardware is processing,
198 *			   which is protected by vc.lock
199 */
200struct mtk_hsdma_vchan {
201	struct virt_dma_chan vc;
202	struct completion issue_completion;
203	bool issue_synchronize;
204	struct list_head desc_hw_processing;
205};
206
207/**
208 * struct mtk_hsdma_soc - This is the struct holding differences among SoCs
209 * @ddone:		  Bit mask for DDONE
210 * @ls0:		  Bit mask for LS0
211 */
212struct mtk_hsdma_soc {
213	__le32 ddone;
214	__le32 ls0;
215};
216
217/**
218 * struct mtk_hsdma_device - This is the struct holding info describing HSDMA
219 *			     device
220 * @ddev:		     An instance for struct dma_device
221 * @base:		     The mapped register I/O base
222 * @clk:		     The clock that device internal is using
223 * @irq:		     The IRQ that device are using
224 * @dma_requests:	     The number of VCs the device supports to
225 * @vc:			     The pointer to all available VCs
226 * @pc:			     The pointer to the underlying PC
227 * @pc_refcnt:		     Track how many VCs are using the PC
228 * @lock:		     Lock protect agaisting multiple VCs access PC
229 * @soc:		     The pointer to area holding differences among
230 *			     vaious platform
231 */
232struct mtk_hsdma_device {
233	struct dma_device ddev;
234	void __iomem *base;
235	struct clk *clk;
236	u32 irq;
237
238	u32 dma_requests;
239	struct mtk_hsdma_vchan *vc;
240	struct mtk_hsdma_pchan *pc;
241	refcount_t pc_refcnt;
242
243	/* Lock used to protect against multiple VCs access PC */
244	spinlock_t lock;
245
246	const struct mtk_hsdma_soc *soc;
247};
248
249static struct mtk_hsdma_device *to_hsdma_dev(struct dma_chan *chan)
250{
251	return container_of(chan->device, struct mtk_hsdma_device, ddev);
252}
253
254static inline struct mtk_hsdma_vchan *to_hsdma_vchan(struct dma_chan *chan)
255{
256	return container_of(chan, struct mtk_hsdma_vchan, vc.chan);
257}
258
259static struct mtk_hsdma_vdesc *to_hsdma_vdesc(struct virt_dma_desc *vd)
260{
261	return container_of(vd, struct mtk_hsdma_vdesc, vd);
262}
263
264static struct device *hsdma2dev(struct mtk_hsdma_device *hsdma)
265{
266	return hsdma->ddev.dev;
267}
268
269static u32 mtk_dma_read(struct mtk_hsdma_device *hsdma, u32 reg)
270{
271	return readl(hsdma->base + reg);
272}
273
274static void mtk_dma_write(struct mtk_hsdma_device *hsdma, u32 reg, u32 val)
275{
276	writel(val, hsdma->base + reg);
277}
278
279static void mtk_dma_rmw(struct mtk_hsdma_device *hsdma, u32 reg,
280			u32 mask, u32 set)
281{
282	u32 val;
283
284	val = mtk_dma_read(hsdma, reg);
285	val &= ~mask;
286	val |= set;
287	mtk_dma_write(hsdma, reg, val);
288}
289
290static void mtk_dma_set(struct mtk_hsdma_device *hsdma, u32 reg, u32 val)
291{
292	mtk_dma_rmw(hsdma, reg, 0, val);
293}
294
295static void mtk_dma_clr(struct mtk_hsdma_device *hsdma, u32 reg, u32 val)
296{
297	mtk_dma_rmw(hsdma, reg, val, 0);
298}
299
300static void mtk_hsdma_vdesc_free(struct virt_dma_desc *vd)
301{
302	kfree(container_of(vd, struct mtk_hsdma_vdesc, vd));
303}
304
305static int mtk_hsdma_busy_wait(struct mtk_hsdma_device *hsdma)
306{
307	u32 status = 0;
308
309	return readl_poll_timeout(hsdma->base + MTK_HSDMA_GLO, status,
310				  !(status & MTK_HSDMA_GLO_BUSY),
311				  MTK_HSDMA_USEC_POLL,
312				  MTK_HSDMA_TIMEOUT_POLL);
313}
314
315static int mtk_hsdma_alloc_pchan(struct mtk_hsdma_device *hsdma,
316				 struct mtk_hsdma_pchan *pc)
317{
318	struct mtk_hsdma_ring *ring = &pc->ring;
319	int err;
320
321	memset(pc, 0, sizeof(*pc));
322
323	/*
324	 * Allocate ring space where [0 ... MTK_DMA_SIZE - 1] is for TX ring
325	 * and [MTK_DMA_SIZE ... 2 * MTK_DMA_SIZE - 1] is for RX ring.
326	 */
327	pc->sz_ring = 2 * MTK_DMA_SIZE * sizeof(*ring->txd);
328	ring->txd = dma_alloc_coherent(hsdma2dev(hsdma), pc->sz_ring,
329				       &ring->tphys, GFP_NOWAIT);
330	if (!ring->txd)
331		return -ENOMEM;
332
333	ring->rxd = &ring->txd[MTK_DMA_SIZE];
334	ring->rphys = ring->tphys + MTK_DMA_SIZE * sizeof(*ring->txd);
335	ring->cur_tptr = 0;
336	ring->cur_rptr = MTK_DMA_SIZE - 1;
337
338	ring->cb = kcalloc(MTK_DMA_SIZE, sizeof(*ring->cb), GFP_NOWAIT);
339	if (!ring->cb) {
340		err = -ENOMEM;
341		goto err_free_dma;
342	}
343
344	atomic_set(&pc->nr_free, MTK_DMA_SIZE - 1);
345
346	/* Disable HSDMA and wait for the completion */
347	mtk_dma_clr(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA);
348	err = mtk_hsdma_busy_wait(hsdma);
349	if (err)
350		goto err_free_cb;
351
352	/* Reset */
353	mtk_dma_set(hsdma, MTK_HSDMA_RESET,
354		    MTK_HSDMA_RST_TX | MTK_HSDMA_RST_RX);
355	mtk_dma_clr(hsdma, MTK_HSDMA_RESET,
356		    MTK_HSDMA_RST_TX | MTK_HSDMA_RST_RX);
357
358	/* Setup HSDMA initial pointer in the ring */
359	mtk_dma_write(hsdma, MTK_HSDMA_TX_BASE, ring->tphys);
360	mtk_dma_write(hsdma, MTK_HSDMA_TX_CNT, MTK_DMA_SIZE);
361	mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, ring->cur_tptr);
362	mtk_dma_write(hsdma, MTK_HSDMA_TX_DMA, 0);
363	mtk_dma_write(hsdma, MTK_HSDMA_RX_BASE, ring->rphys);
364	mtk_dma_write(hsdma, MTK_HSDMA_RX_CNT, MTK_DMA_SIZE);
365	mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, ring->cur_rptr);
366	mtk_dma_write(hsdma, MTK_HSDMA_RX_DMA, 0);
367
368	/* Enable HSDMA */
369	mtk_dma_set(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA);
370
371	/* Setup delayed interrupt */
372	mtk_dma_write(hsdma, MTK_HSDMA_DLYINT, MTK_HSDMA_DLYINT_DEFAULT);
373
374	/* Enable interrupt */
375	mtk_dma_set(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
376
377	return 0;
378
379err_free_cb:
380	kfree(ring->cb);
381
382err_free_dma:
383	dma_free_coherent(hsdma2dev(hsdma),
384			  pc->sz_ring, ring->txd, ring->tphys);
385	return err;
386}
387
388static void mtk_hsdma_free_pchan(struct mtk_hsdma_device *hsdma,
389				 struct mtk_hsdma_pchan *pc)
390{
391	struct mtk_hsdma_ring *ring = &pc->ring;
392
393	/* Disable HSDMA and then wait for the completion */
394	mtk_dma_clr(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA);
395	mtk_hsdma_busy_wait(hsdma);
396
397	/* Reset pointer in the ring */
398	mtk_dma_clr(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
399	mtk_dma_write(hsdma, MTK_HSDMA_TX_BASE, 0);
400	mtk_dma_write(hsdma, MTK_HSDMA_TX_CNT, 0);
401	mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, 0);
402	mtk_dma_write(hsdma, MTK_HSDMA_RX_BASE, 0);
403	mtk_dma_write(hsdma, MTK_HSDMA_RX_CNT, 0);
404	mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, MTK_DMA_SIZE - 1);
405
406	kfree(ring->cb);
407
408	dma_free_coherent(hsdma2dev(hsdma),
409			  pc->sz_ring, ring->txd, ring->tphys);
410}
411
412static int mtk_hsdma_issue_pending_vdesc(struct mtk_hsdma_device *hsdma,
413					 struct mtk_hsdma_pchan *pc,
414					 struct mtk_hsdma_vdesc *hvd)
415{
416	struct mtk_hsdma_ring *ring = &pc->ring;
417	struct mtk_hsdma_pdesc *txd, *rxd;
418	u16 reserved, prev, tlen, num_sgs;
419	unsigned long flags;
420
421	/* Protect against PC is accessed by multiple VCs simultaneously */
422	spin_lock_irqsave(&hsdma->lock, flags);
423
424	/*
425	 * Reserve rooms, where pc->nr_free is used to track how many free
426	 * rooms in the ring being updated in user and IRQ context.
427	 */
428	num_sgs = DIV_ROUND_UP(hvd->len, MTK_HSDMA_MAX_LEN);
429	reserved = min_t(u16, num_sgs, atomic_read(&pc->nr_free));
430
431	if (!reserved) {
432		spin_unlock_irqrestore(&hsdma->lock, flags);
433		return -ENOSPC;
434	}
435
436	atomic_sub(reserved, &pc->nr_free);
437
438	while (reserved--) {
439		/* Limit size by PD capability for valid data moving */
440		tlen = (hvd->len > MTK_HSDMA_MAX_LEN) ?
441		       MTK_HSDMA_MAX_LEN : hvd->len;
442
443		/*
444		 * Setup PDs using the remaining VD info mapped on those
445		 * reserved rooms. And since RXD is shared memory between the
446		 * host and the device allocated by dma_alloc_coherent call,
447		 * the helper macro WRITE_ONCE can ensure the data written to
448		 * RAM would really happens.
449		 */
450		txd = &ring->txd[ring->cur_tptr];
451		WRITE_ONCE(txd->desc1, hvd->src);
452		WRITE_ONCE(txd->desc2,
453			   hsdma->soc->ls0 | MTK_HSDMA_DESC_PLEN(tlen));
454
455		rxd = &ring->rxd[ring->cur_tptr];
456		WRITE_ONCE(rxd->desc1, hvd->dest);
457		WRITE_ONCE(rxd->desc2, MTK_HSDMA_DESC_PLEN(tlen));
458
459		/* Associate VD, the PD belonged to */
460		ring->cb[ring->cur_tptr].vd = &hvd->vd;
461
462		/* Move forward the pointer of TX ring */
463		ring->cur_tptr = MTK_HSDMA_NEXT_DESP_IDX(ring->cur_tptr,
464							 MTK_DMA_SIZE);
465
466		/* Update VD with remaining data */
467		hvd->src  += tlen;
468		hvd->dest += tlen;
469		hvd->len  -= tlen;
470	}
471
472	/*
473	 * Tagging flag for the last PD for VD will be responsible for
474	 * completing VD.
475	 */
476	if (!hvd->len) {
477		prev = MTK_HSDMA_LAST_DESP_IDX(ring->cur_tptr, MTK_DMA_SIZE);
478		ring->cb[prev].flag = MTK_HSDMA_VDESC_FINISHED;
479	}
480
481	/* Ensure all changes indeed done before we're going on */
482	wmb();
483
484	/*
485	 * Updating into hardware the pointer of TX ring lets HSDMA to take
486	 * action for those pending PDs.
487	 */
488	mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, ring->cur_tptr);
489
490	spin_unlock_irqrestore(&hsdma->lock, flags);
491
492	return 0;
493}
494
495static void mtk_hsdma_issue_vchan_pending(struct mtk_hsdma_device *hsdma,
496					  struct mtk_hsdma_vchan *hvc)
497{
498	struct virt_dma_desc *vd, *vd2;
499	int err;
500
501	lockdep_assert_held(&hvc->vc.lock);
502
503	list_for_each_entry_safe(vd, vd2, &hvc->vc.desc_issued, node) {
504		struct mtk_hsdma_vdesc *hvd;
505
506		hvd = to_hsdma_vdesc(vd);
507
508		/* Map VD into PC and all VCs shares a single PC */
509		err = mtk_hsdma_issue_pending_vdesc(hsdma, hsdma->pc, hvd);
510
511		/*
512		 * Move VD from desc_issued to desc_hw_processing when entire
513		 * VD is fit into available PDs. Otherwise, the uncompleted
514		 * VDs would stay in list desc_issued and then restart the
515		 * processing as soon as possible once underlying ring space
516		 * got freed.
517		 */
518		if (err == -ENOSPC || hvd->len > 0)
519			break;
520
521		/*
522		 * The extra list desc_hw_processing is used because
523		 * hardware can't provide sufficient information allowing us
524		 * to know what VDs are still working on the underlying ring.
525		 * Through the additional list, it can help us to implement
526		 * terminate_all, residue calculation and such thing needed
527		 * to know detail descriptor status on the hardware.
528		 */
529		list_move_tail(&vd->node, &hvc->desc_hw_processing);
530	}
531}
532
533static void mtk_hsdma_free_rooms_in_ring(struct mtk_hsdma_device *hsdma)
534{
535	struct mtk_hsdma_vchan *hvc;
536	struct mtk_hsdma_pdesc *rxd;
537	struct mtk_hsdma_vdesc *hvd;
538	struct mtk_hsdma_pchan *pc;
539	struct mtk_hsdma_cb *cb;
540	int i = MTK_DMA_SIZE;
541	__le32 desc2;
542	u32 status;
543	u16 next;
544
545	/* Read IRQ status */
546	status = mtk_dma_read(hsdma, MTK_HSDMA_INT_STATUS);
547	if (unlikely(!(status & MTK_HSDMA_INT_RXDONE)))
548		goto rx_done;
549
550	pc = hsdma->pc;
551
552	/*
553	 * Using a fail-safe loop with iterations of up to MTK_DMA_SIZE to
554	 * reclaim these finished descriptors: The most number of PDs the ISR
555	 * can handle at one time shouldn't be more than MTK_DMA_SIZE so we
556	 * take it as limited count instead of just using a dangerous infinite
557	 * poll.
558	 */
559	while (i--) {
560		next = MTK_HSDMA_NEXT_DESP_IDX(pc->ring.cur_rptr,
561					       MTK_DMA_SIZE);
562		rxd = &pc->ring.rxd[next];
563
564		/*
565		 * If MTK_HSDMA_DESC_DDONE is no specified, that means data
566		 * moving for the PD is still under going.
567		 */
568		desc2 = READ_ONCE(rxd->desc2);
569		if (!(desc2 & hsdma->soc->ddone))
570			break;
571
572		cb = &pc->ring.cb[next];
573		if (unlikely(!cb->vd)) {
574			dev_err(hsdma2dev(hsdma), "cb->vd cannot be null\n");
575			break;
576		}
577
578		/* Update residue of VD the associated PD belonged to */
579		hvd = to_hsdma_vdesc(cb->vd);
580		hvd->residue -= MTK_HSDMA_DESC_PLEN_GET(rxd->desc2);
581
582		/* Complete VD until the relevant last PD is finished */
583		if (IS_MTK_HSDMA_VDESC_FINISHED(cb->flag)) {
584			hvc = to_hsdma_vchan(cb->vd->tx.chan);
585
586			spin_lock(&hvc->vc.lock);
587
588			/* Remove VD from list desc_hw_processing */
589			list_del(&cb->vd->node);
590
591			/* Add VD into list desc_completed */
592			vchan_cookie_complete(cb->vd);
593
594			if (hvc->issue_synchronize &&
595			    list_empty(&hvc->desc_hw_processing)) {
596				complete(&hvc->issue_completion);
597				hvc->issue_synchronize = false;
598			}
599			spin_unlock(&hvc->vc.lock);
600
601			cb->flag = 0;
602		}
603
604		cb->vd = 0;
605
606		/*
607		 * Recycle the RXD with the helper WRITE_ONCE that can ensure
608		 * data written into RAM would really happens.
609		 */
610		WRITE_ONCE(rxd->desc1, 0);
611		WRITE_ONCE(rxd->desc2, 0);
612		pc->ring.cur_rptr = next;
613
614		/* Release rooms */
615		atomic_inc(&pc->nr_free);
616	}
617
618	/* Ensure all changes indeed done before we're going on */
619	wmb();
620
621	/* Update CPU pointer for those completed PDs */
622	mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, pc->ring.cur_rptr);
623
624	/*
625	 * Acking the pending IRQ allows hardware no longer to keep the used
626	 * IRQ line in certain trigger state when software has completed all
627	 * the finished physical descriptors.
628	 */
629	if (atomic_read(&pc->nr_free) >= MTK_DMA_SIZE - 1)
630		mtk_dma_write(hsdma, MTK_HSDMA_INT_STATUS, status);
631
632	/* ASAP handles pending VDs in all VCs after freeing some rooms */
633	for (i = 0; i < hsdma->dma_requests; i++) {
634		hvc = &hsdma->vc[i];
635		spin_lock(&hvc->vc.lock);
636		mtk_hsdma_issue_vchan_pending(hsdma, hvc);
637		spin_unlock(&hvc->vc.lock);
638	}
639
640rx_done:
641	/* All completed PDs are cleaned up, so enable interrupt again */
642	mtk_dma_set(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
643}
644
645static irqreturn_t mtk_hsdma_irq(int irq, void *devid)
646{
647	struct mtk_hsdma_device *hsdma = devid;
648
649	/*
650	 * Disable interrupt until all completed PDs are cleaned up in
651	 * mtk_hsdma_free_rooms call.
652	 */
653	mtk_dma_clr(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
654
655	mtk_hsdma_free_rooms_in_ring(hsdma);
656
657	return IRQ_HANDLED;
658}
659
660static struct virt_dma_desc *mtk_hsdma_find_active_desc(struct dma_chan *c,
661							dma_cookie_t cookie)
662{
663	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
664	struct virt_dma_desc *vd;
665
666	list_for_each_entry(vd, &hvc->desc_hw_processing, node)
667		if (vd->tx.cookie == cookie)
668			return vd;
669
670	list_for_each_entry(vd, &hvc->vc.desc_issued, node)
671		if (vd->tx.cookie == cookie)
672			return vd;
673
674	return NULL;
675}
676
677static enum dma_status mtk_hsdma_tx_status(struct dma_chan *c,
678					   dma_cookie_t cookie,
679					   struct dma_tx_state *txstate)
680{
681	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
682	struct mtk_hsdma_vdesc *hvd;
683	struct virt_dma_desc *vd;
684	enum dma_status ret;
685	unsigned long flags;
686	size_t bytes = 0;
687
688	ret = dma_cookie_status(c, cookie, txstate);
689	if (ret == DMA_COMPLETE || !txstate)
690		return ret;
691
692	spin_lock_irqsave(&hvc->vc.lock, flags);
693	vd = mtk_hsdma_find_active_desc(c, cookie);
694	spin_unlock_irqrestore(&hvc->vc.lock, flags);
695
696	if (vd) {
697		hvd = to_hsdma_vdesc(vd);
698		bytes = hvd->residue;
699	}
700
701	dma_set_residue(txstate, bytes);
702
703	return ret;
704}
705
706static void mtk_hsdma_issue_pending(struct dma_chan *c)
707{
708	struct mtk_hsdma_device *hsdma = to_hsdma_dev(c);
709	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
710	unsigned long flags;
711
712	spin_lock_irqsave(&hvc->vc.lock, flags);
713
714	if (vchan_issue_pending(&hvc->vc))
715		mtk_hsdma_issue_vchan_pending(hsdma, hvc);
716
717	spin_unlock_irqrestore(&hvc->vc.lock, flags);
718}
719
720static struct dma_async_tx_descriptor *
721mtk_hsdma_prep_dma_memcpy(struct dma_chan *c, dma_addr_t dest,
722			  dma_addr_t src, size_t len, unsigned long flags)
723{
724	struct mtk_hsdma_vdesc *hvd;
725
726	hvd = kzalloc(sizeof(*hvd), GFP_NOWAIT);
727	if (!hvd)
728		return NULL;
729
730	hvd->len = len;
731	hvd->residue = len;
732	hvd->src = src;
733	hvd->dest = dest;
734
735	return vchan_tx_prep(to_virt_chan(c), &hvd->vd, flags);
736}
737
738static int mtk_hsdma_free_inactive_desc(struct dma_chan *c)
739{
740	struct virt_dma_chan *vc = to_virt_chan(c);
741	unsigned long flags;
742	LIST_HEAD(head);
743
744	spin_lock_irqsave(&vc->lock, flags);
745	list_splice_tail_init(&vc->desc_allocated, &head);
746	list_splice_tail_init(&vc->desc_submitted, &head);
747	list_splice_tail_init(&vc->desc_issued, &head);
748	spin_unlock_irqrestore(&vc->lock, flags);
749
750	/* At the point, we don't expect users put descriptor into VC again */
751	vchan_dma_desc_free_list(vc, &head);
752
753	return 0;
754}
755
756static void mtk_hsdma_free_active_desc(struct dma_chan *c)
757{
758	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
759	bool sync_needed = false;
760
761	/*
762	 * Once issue_synchronize is being set, which means once the hardware
763	 * consumes all descriptors for the channel in the ring, the
764	 * synchronization must be be notified immediately it is completed.
765	 */
766	spin_lock(&hvc->vc.lock);
767	if (!list_empty(&hvc->desc_hw_processing)) {
768		hvc->issue_synchronize = true;
769		sync_needed = true;
770	}
771	spin_unlock(&hvc->vc.lock);
772
773	if (sync_needed)
774		wait_for_completion(&hvc->issue_completion);
775	/*
776	 * At the point, we expect that all remaining descriptors in the ring
777	 * for the channel should be all processing done.
778	 */
779	WARN_ONCE(!list_empty(&hvc->desc_hw_processing),
780		  "Desc pending still in list desc_hw_processing\n");
781
782	/* Free all descriptors in list desc_completed */
783	vchan_synchronize(&hvc->vc);
784
785	WARN_ONCE(!list_empty(&hvc->vc.desc_completed),
786		  "Desc pending still in list desc_completed\n");
787}
788
789static int mtk_hsdma_terminate_all(struct dma_chan *c)
790{
791	/*
792	 * Free pending descriptors not processed yet by hardware that have
793	 * previously been submitted to the channel.
794	 */
795	mtk_hsdma_free_inactive_desc(c);
796
797	/*
798	 * However, the DMA engine doesn't provide any way to stop these
799	 * descriptors being processed currently by hardware. The only way is
800	 * to just waiting until these descriptors are all processed completely
801	 * through mtk_hsdma_free_active_desc call.
802	 */
803	mtk_hsdma_free_active_desc(c);
804
805	return 0;
806}
807
808static int mtk_hsdma_alloc_chan_resources(struct dma_chan *c)
809{
810	struct mtk_hsdma_device *hsdma = to_hsdma_dev(c);
811	int err;
812
813	/*
814	 * Since HSDMA has only one PC, the resource for PC is being allocated
815	 * when the first VC is being created and the other VCs would run on
816	 * the same PC.
817	 */
818	if (!refcount_read(&hsdma->pc_refcnt)) {
819		err = mtk_hsdma_alloc_pchan(hsdma, hsdma->pc);
820		if (err)
821			return err;
822		/*
823		 * refcount_inc would complain increment on 0; use-after-free.
824		 * Thus, we need to explicitly set it as 1 initially.
825		 */
826		refcount_set(&hsdma->pc_refcnt, 1);
827	} else {
828		refcount_inc(&hsdma->pc_refcnt);
829	}
830
831	return 0;
832}
833
834static void mtk_hsdma_free_chan_resources(struct dma_chan *c)
835{
836	struct mtk_hsdma_device *hsdma = to_hsdma_dev(c);
837
838	/* Free all descriptors in all lists on the VC */
839	mtk_hsdma_terminate_all(c);
840
841	/* The resource for PC is not freed until all the VCs are destroyed */
842	if (!refcount_dec_and_test(&hsdma->pc_refcnt))
843		return;
844
845	mtk_hsdma_free_pchan(hsdma, hsdma->pc);
846}
847
848static int mtk_hsdma_hw_init(struct mtk_hsdma_device *hsdma)
849{
850	int err;
851
852	pm_runtime_enable(hsdma2dev(hsdma));
853	pm_runtime_get_sync(hsdma2dev(hsdma));
854
855	err = clk_prepare_enable(hsdma->clk);
856	if (err)
857		return err;
858
859	mtk_dma_write(hsdma, MTK_HSDMA_INT_ENABLE, 0);
860	mtk_dma_write(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DEFAULT);
861
862	return 0;
863}
864
865static int mtk_hsdma_hw_deinit(struct mtk_hsdma_device *hsdma)
866{
867	mtk_dma_write(hsdma, MTK_HSDMA_GLO, 0);
868
869	clk_disable_unprepare(hsdma->clk);
870
871	pm_runtime_put_sync(hsdma2dev(hsdma));
872	pm_runtime_disable(hsdma2dev(hsdma));
873
874	return 0;
875}
876
877static const struct mtk_hsdma_soc mt7623_soc = {
878	.ddone = BIT(31),
879	.ls0 = BIT(30),
880};
881
882static const struct mtk_hsdma_soc mt7622_soc = {
883	.ddone = BIT(15),
884	.ls0 = BIT(14),
885};
886
887static const struct of_device_id mtk_hsdma_match[] = {
888	{ .compatible = "mediatek,mt7623-hsdma", .data = &mt7623_soc},
889	{ .compatible = "mediatek,mt7622-hsdma", .data = &mt7622_soc},
890	{ /* sentinel */ }
891};
892MODULE_DEVICE_TABLE(of, mtk_hsdma_match);
893
894static int mtk_hsdma_probe(struct platform_device *pdev)
895{
896	struct mtk_hsdma_device *hsdma;
897	struct mtk_hsdma_vchan *vc;
898	struct dma_device *dd;
899	struct resource *res;
900	int i, err;
901
902	hsdma = devm_kzalloc(&pdev->dev, sizeof(*hsdma), GFP_KERNEL);
903	if (!hsdma)
904		return -ENOMEM;
905
906	dd = &hsdma->ddev;
907
908	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
909	hsdma->base = devm_ioremap_resource(&pdev->dev, res);
910	if (IS_ERR(hsdma->base))
911		return PTR_ERR(hsdma->base);
912
913	hsdma->soc = of_device_get_match_data(&pdev->dev);
914	if (!hsdma->soc) {
915		dev_err(&pdev->dev, "No device match found\n");
916		return -ENODEV;
917	}
918
919	hsdma->clk = devm_clk_get(&pdev->dev, "hsdma");
920	if (IS_ERR(hsdma->clk)) {
921		dev_err(&pdev->dev, "No clock for %s\n",
922			dev_name(&pdev->dev));
923		return PTR_ERR(hsdma->clk);
924	}
925
926	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
927	if (!res) {
928		dev_err(&pdev->dev, "No irq resource for %s\n",
929			dev_name(&pdev->dev));
930		return -EINVAL;
931	}
932	hsdma->irq = res->start;
933
934	refcount_set(&hsdma->pc_refcnt, 0);
935	spin_lock_init(&hsdma->lock);
936
937	dma_cap_set(DMA_MEMCPY, dd->cap_mask);
938
939	dd->copy_align = MTK_HSDMA_ALIGN_SIZE;
940	dd->device_alloc_chan_resources = mtk_hsdma_alloc_chan_resources;
941	dd->device_free_chan_resources = mtk_hsdma_free_chan_resources;
942	dd->device_tx_status = mtk_hsdma_tx_status;
943	dd->device_issue_pending = mtk_hsdma_issue_pending;
944	dd->device_prep_dma_memcpy = mtk_hsdma_prep_dma_memcpy;
945	dd->device_terminate_all = mtk_hsdma_terminate_all;
946	dd->src_addr_widths = MTK_HSDMA_DMA_BUSWIDTHS;
947	dd->dst_addr_widths = MTK_HSDMA_DMA_BUSWIDTHS;
948	dd->directions = BIT(DMA_MEM_TO_MEM);
949	dd->residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
950	dd->dev = &pdev->dev;
951	INIT_LIST_HEAD(&dd->channels);
952
953	hsdma->dma_requests = MTK_HSDMA_NR_VCHANS;
954	if (pdev->dev.of_node && of_property_read_u32(pdev->dev.of_node,
955						      "dma-requests",
956						      &hsdma->dma_requests)) {
957		dev_info(&pdev->dev,
958			 "Using %u as missing dma-requests property\n",
959			 MTK_HSDMA_NR_VCHANS);
960	}
961
962	hsdma->pc = devm_kcalloc(&pdev->dev, MTK_HSDMA_NR_MAX_PCHANS,
963				 sizeof(*hsdma->pc), GFP_KERNEL);
964	if (!hsdma->pc)
965		return -ENOMEM;
966
967	hsdma->vc = devm_kcalloc(&pdev->dev, hsdma->dma_requests,
968				 sizeof(*hsdma->vc), GFP_KERNEL);
969	if (!hsdma->vc)
970		return -ENOMEM;
971
972	for (i = 0; i < hsdma->dma_requests; i++) {
973		vc = &hsdma->vc[i];
974		vc->vc.desc_free = mtk_hsdma_vdesc_free;
975		vchan_init(&vc->vc, dd);
976		init_completion(&vc->issue_completion);
977		INIT_LIST_HEAD(&vc->desc_hw_processing);
978	}
979
980	err = dma_async_device_register(dd);
981	if (err)
982		return err;
983
984	err = of_dma_controller_register(pdev->dev.of_node,
985					 of_dma_xlate_by_chan_id, hsdma);
986	if (err) {
987		dev_err(&pdev->dev,
988			"MediaTek HSDMA OF registration failed %d\n", err);
989		goto err_unregister;
990	}
991
992	mtk_hsdma_hw_init(hsdma);
993
994	err = devm_request_irq(&pdev->dev, hsdma->irq,
995			       mtk_hsdma_irq, 0,
996			       dev_name(&pdev->dev), hsdma);
997	if (err) {
998		dev_err(&pdev->dev,
999			"request_irq failed with err %d\n", err);
1000		goto err_free;
1001	}
1002
1003	platform_set_drvdata(pdev, hsdma);
1004
1005	dev_info(&pdev->dev, "MediaTek HSDMA driver registered\n");
1006
1007	return 0;
1008
1009err_free:
1010	mtk_hsdma_hw_deinit(hsdma);
1011	of_dma_controller_free(pdev->dev.of_node);
1012err_unregister:
1013	dma_async_device_unregister(dd);
1014
1015	return err;
1016}
1017
1018static int mtk_hsdma_remove(struct platform_device *pdev)
1019{
1020	struct mtk_hsdma_device *hsdma = platform_get_drvdata(pdev);
1021	struct mtk_hsdma_vchan *vc;
1022	int i;
1023
1024	/* Kill VC task */
1025	for (i = 0; i < hsdma->dma_requests; i++) {
1026		vc = &hsdma->vc[i];
1027
1028		list_del(&vc->vc.chan.device_node);
1029		tasklet_kill(&vc->vc.task);
1030	}
1031
1032	/* Disable DMA interrupt */
1033	mtk_dma_write(hsdma, MTK_HSDMA_INT_ENABLE, 0);
1034
1035	/* Waits for any pending IRQ handlers to complete */
1036	synchronize_irq(hsdma->irq);
1037
1038	/* Disable hardware */
1039	mtk_hsdma_hw_deinit(hsdma);
1040
1041	dma_async_device_unregister(&hsdma->ddev);
1042	of_dma_controller_free(pdev->dev.of_node);
1043
1044	return 0;
1045}
1046
1047static struct platform_driver mtk_hsdma_driver = {
1048	.probe		= mtk_hsdma_probe,
1049	.remove		= mtk_hsdma_remove,
1050	.driver = {
1051		.name		= KBUILD_MODNAME,
1052		.of_match_table	= mtk_hsdma_match,
1053	},
1054};
1055module_platform_driver(mtk_hsdma_driver);
1056
1057MODULE_DESCRIPTION("MediaTek High-Speed DMA Controller Driver");
1058MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
1059MODULE_LICENSE("GPL v2");
1060