xref: /kernel/linux/linux-5.10/drivers/dma/imx-sdma.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0+
2//
3// drivers/dma/imx-sdma.c
4//
5// This file contains a driver for the Freescale Smart DMA engine
6//
7// Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
8//
9// Based on code from Freescale:
10//
11// Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
12
13#include <linux/init.h>
14#include <linux/iopoll.h>
15#include <linux/module.h>
16#include <linux/types.h>
17#include <linux/bitops.h>
18#include <linux/mm.h>
19#include <linux/interrupt.h>
20#include <linux/clk.h>
21#include <linux/delay.h>
22#include <linux/sched.h>
23#include <linux/semaphore.h>
24#include <linux/spinlock.h>
25#include <linux/device.h>
26#include <linux/dma-mapping.h>
27#include <linux/firmware.h>
28#include <linux/slab.h>
29#include <linux/platform_device.h>
30#include <linux/dmaengine.h>
31#include <linux/of.h>
32#include <linux/of_address.h>
33#include <linux/of_device.h>
34#include <linux/of_dma.h>
35#include <linux/workqueue.h>
36
37#include <asm/irq.h>
38#include <linux/platform_data/dma-imx-sdma.h>
39#include <linux/platform_data/dma-imx.h>
40#include <linux/regmap.h>
41#include <linux/mfd/syscon.h>
42#include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
43
44#include "dmaengine.h"
45#include "virt-dma.h"
46
47/* SDMA registers */
48#define SDMA_H_C0PTR		0x000
49#define SDMA_H_INTR		0x004
50#define SDMA_H_STATSTOP		0x008
51#define SDMA_H_START		0x00c
52#define SDMA_H_EVTOVR		0x010
53#define SDMA_H_DSPOVR		0x014
54#define SDMA_H_HOSTOVR		0x018
55#define SDMA_H_EVTPEND		0x01c
56#define SDMA_H_DSPENBL		0x020
57#define SDMA_H_RESET		0x024
58#define SDMA_H_EVTERR		0x028
59#define SDMA_H_INTRMSK		0x02c
60#define SDMA_H_PSW		0x030
61#define SDMA_H_EVTERRDBG	0x034
62#define SDMA_H_CONFIG		0x038
63#define SDMA_ONCE_ENB		0x040
64#define SDMA_ONCE_DATA		0x044
65#define SDMA_ONCE_INSTR		0x048
66#define SDMA_ONCE_STAT		0x04c
67#define SDMA_ONCE_CMD		0x050
68#define SDMA_EVT_MIRROR		0x054
69#define SDMA_ILLINSTADDR	0x058
70#define SDMA_CHN0ADDR		0x05c
71#define SDMA_ONCE_RTB		0x060
72#define SDMA_XTRIG_CONF1	0x070
73#define SDMA_XTRIG_CONF2	0x074
74#define SDMA_CHNENBL0_IMX35	0x200
75#define SDMA_CHNENBL0_IMX31	0x080
76#define SDMA_CHNPRI_0		0x100
77
78/*
79 * Buffer descriptor status values.
80 */
81#define BD_DONE  0x01
82#define BD_WRAP  0x02
83#define BD_CONT  0x04
84#define BD_INTR  0x08
85#define BD_RROR  0x10
86#define BD_LAST  0x20
87#define BD_EXTD  0x80
88
89/*
90 * Data Node descriptor status values.
91 */
92#define DND_END_OF_FRAME  0x80
93#define DND_END_OF_XFER   0x40
94#define DND_DONE          0x20
95#define DND_UNUSED        0x01
96
97/*
98 * IPCV2 descriptor status values.
99 */
100#define BD_IPCV2_END_OF_FRAME  0x40
101
102#define IPCV2_MAX_NODES        50
103/*
104 * Error bit set in the CCB status field by the SDMA,
105 * in setbd routine, in case of a transfer error
106 */
107#define DATA_ERROR  0x10000000
108
109/*
110 * Buffer descriptor commands.
111 */
112#define C0_ADDR             0x01
113#define C0_LOAD             0x02
114#define C0_DUMP             0x03
115#define C0_SETCTX           0x07
116#define C0_GETCTX           0x03
117#define C0_SETDM            0x01
118#define C0_SETPM            0x04
119#define C0_GETDM            0x02
120#define C0_GETPM            0x08
121/*
122 * Change endianness indicator in the BD command field
123 */
124#define CHANGE_ENDIANNESS   0x80
125
126/*
127 *  p_2_p watermark_level description
128 *	Bits		Name			Description
129 *	0-7		Lower WML		Lower watermark level
130 *	8		PS			1: Pad Swallowing
131 *						0: No Pad Swallowing
132 *	9		PA			1: Pad Adding
133 *						0: No Pad Adding
134 *	10		SPDIF			If this bit is set both source
135 *						and destination are on SPBA
136 *	11		Source Bit(SP)		1: Source on SPBA
137 *						0: Source on AIPS
138 *	12		Destination Bit(DP)	1: Destination on SPBA
139 *						0: Destination on AIPS
140 *	13-15		---------		MUST BE 0
141 *	16-23		Higher WML		HWML
142 *	24-27		N			Total number of samples after
143 *						which Pad adding/Swallowing
144 *						must be done. It must be odd.
145 *	28		Lower WML Event(LWE)	SDMA events reg to check for
146 *						LWML event mask
147 *						0: LWE in EVENTS register
148 *						1: LWE in EVENTS2 register
149 *	29		Higher WML Event(HWE)	SDMA events reg to check for
150 *						HWML event mask
151 *						0: HWE in EVENTS register
152 *						1: HWE in EVENTS2 register
153 *	30		---------		MUST BE 0
154 *	31		CONT			1: Amount of samples to be
155 *						transferred is unknown and
156 *						script will keep on
157 *						transferring samples as long as
158 *						both events are detected and
159 *						script must be manually stopped
160 *						by the application
161 *						0: The amount of samples to be
162 *						transferred is equal to the
163 *						count field of mode word
164 */
165#define SDMA_WATERMARK_LEVEL_LWML	0xFF
166#define SDMA_WATERMARK_LEVEL_PS		BIT(8)
167#define SDMA_WATERMARK_LEVEL_PA		BIT(9)
168#define SDMA_WATERMARK_LEVEL_SPDIF	BIT(10)
169#define SDMA_WATERMARK_LEVEL_SP		BIT(11)
170#define SDMA_WATERMARK_LEVEL_DP		BIT(12)
171#define SDMA_WATERMARK_LEVEL_HWML	(0xFF << 16)
172#define SDMA_WATERMARK_LEVEL_LWE	BIT(28)
173#define SDMA_WATERMARK_LEVEL_HWE	BIT(29)
174#define SDMA_WATERMARK_LEVEL_CONT	BIT(31)
175
176#define SDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
177				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
178				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
179
180#define SDMA_DMA_DIRECTIONS	(BIT(DMA_DEV_TO_MEM) | \
181				 BIT(DMA_MEM_TO_DEV) | \
182				 BIT(DMA_DEV_TO_DEV))
183
184/*
185 * Mode/Count of data node descriptors - IPCv2
186 */
187struct sdma_mode_count {
188#define SDMA_BD_MAX_CNT	0xffff
189	u32 count   : 16; /* size of the buffer pointed by this BD */
190	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
191	u32 command :  8; /* command mostly used for channel 0 */
192};
193
194/*
195 * Buffer descriptor
196 */
197struct sdma_buffer_descriptor {
198	struct sdma_mode_count  mode;
199	u32 buffer_addr;	/* address of the buffer described */
200	u32 ext_buffer_addr;	/* extended buffer address */
201} __attribute__ ((packed));
202
203/**
204 * struct sdma_channel_control - Channel control Block
205 *
206 * @current_bd_ptr:	current buffer descriptor processed
207 * @base_bd_ptr:	first element of buffer descriptor array
208 * @unused:		padding. The SDMA engine expects an array of 128 byte
209 *			control blocks
210 */
211struct sdma_channel_control {
212	u32 current_bd_ptr;
213	u32 base_bd_ptr;
214	u32 unused[2];
215} __attribute__ ((packed));
216
217/**
218 * struct sdma_state_registers - SDMA context for a channel
219 *
220 * @pc:		program counter
221 * @unused1:	unused
222 * @t:		test bit: status of arithmetic & test instruction
223 * @rpc:	return program counter
224 * @unused0:	unused
225 * @sf:		source fault while loading data
226 * @spc:	loop start program counter
227 * @unused2:	unused
228 * @df:		destination fault while storing data
229 * @epc:	loop end program counter
230 * @lm:		loop mode
231 */
232struct sdma_state_registers {
233	u32 pc     :14;
234	u32 unused1: 1;
235	u32 t      : 1;
236	u32 rpc    :14;
237	u32 unused0: 1;
238	u32 sf     : 1;
239	u32 spc    :14;
240	u32 unused2: 1;
241	u32 df     : 1;
242	u32 epc    :14;
243	u32 lm     : 2;
244} __attribute__ ((packed));
245
246/**
247 * struct sdma_context_data - sdma context specific to a channel
248 *
249 * @channel_state:	channel state bits
250 * @gReg:		general registers
251 * @mda:		burst dma destination address register
252 * @msa:		burst dma source address register
253 * @ms:			burst dma status register
254 * @md:			burst dma data register
255 * @pda:		peripheral dma destination address register
256 * @psa:		peripheral dma source address register
257 * @ps:			peripheral dma status register
258 * @pd:			peripheral dma data register
259 * @ca:			CRC polynomial register
260 * @cs:			CRC accumulator register
261 * @dda:		dedicated core destination address register
262 * @dsa:		dedicated core source address register
263 * @ds:			dedicated core status register
264 * @dd:			dedicated core data register
265 * @scratch0:		1st word of dedicated ram for context switch
266 * @scratch1:		2nd word of dedicated ram for context switch
267 * @scratch2:		3rd word of dedicated ram for context switch
268 * @scratch3:		4th word of dedicated ram for context switch
269 * @scratch4:		5th word of dedicated ram for context switch
270 * @scratch5:		6th word of dedicated ram for context switch
271 * @scratch6:		7th word of dedicated ram for context switch
272 * @scratch7:		8th word of dedicated ram for context switch
273 */
274struct sdma_context_data {
275	struct sdma_state_registers  channel_state;
276	u32  gReg[8];
277	u32  mda;
278	u32  msa;
279	u32  ms;
280	u32  md;
281	u32  pda;
282	u32  psa;
283	u32  ps;
284	u32  pd;
285	u32  ca;
286	u32  cs;
287	u32  dda;
288	u32  dsa;
289	u32  ds;
290	u32  dd;
291	u32  scratch0;
292	u32  scratch1;
293	u32  scratch2;
294	u32  scratch3;
295	u32  scratch4;
296	u32  scratch5;
297	u32  scratch6;
298	u32  scratch7;
299} __attribute__ ((packed));
300
301
302struct sdma_engine;
303
304/**
305 * struct sdma_desc - descriptor structor for one transfer
306 * @vd:			descriptor for virt dma
307 * @num_bd:		number of descriptors currently handling
308 * @bd_phys:		physical address of bd
309 * @buf_tail:		ID of the buffer that was processed
310 * @buf_ptail:		ID of the previous buffer that was processed
311 * @period_len:		period length, used in cyclic.
312 * @chn_real_count:	the real count updated from bd->mode.count
313 * @chn_count:		the transfer count set
314 * @sdmac:		sdma_channel pointer
315 * @bd:			pointer of allocate bd
316 */
317struct sdma_desc {
318	struct virt_dma_desc	vd;
319	unsigned int		num_bd;
320	dma_addr_t		bd_phys;
321	unsigned int		buf_tail;
322	unsigned int		buf_ptail;
323	unsigned int		period_len;
324	unsigned int		chn_real_count;
325	unsigned int		chn_count;
326	struct sdma_channel	*sdmac;
327	struct sdma_buffer_descriptor *bd;
328};
329
330/**
331 * struct sdma_channel - housekeeping for a SDMA channel
332 *
333 * @vc:			virt_dma base structure
334 * @desc:		sdma description including vd and other special member
335 * @sdma:		pointer to the SDMA engine for this channel
336 * @channel:		the channel number, matches dmaengine chan_id + 1
337 * @direction:		transfer type. Needed for setting SDMA script
338 * @slave_config:	Slave configuration
339 * @peripheral_type:	Peripheral type. Needed for setting SDMA script
340 * @event_id0:		aka dma request line
341 * @event_id1:		for channels that use 2 events
342 * @word_size:		peripheral access size
343 * @pc_from_device:	script address for those device_2_memory
344 * @pc_to_device:	script address for those memory_2_device
345 * @device_to_device:	script address for those device_2_device
346 * @pc_to_pc:		script address for those memory_2_memory
347 * @flags:		loop mode or not
348 * @per_address:	peripheral source or destination address in common case
349 *                      destination address in p_2_p case
350 * @per_address2:	peripheral source address in p_2_p case
351 * @event_mask:		event mask used in p_2_p script
352 * @watermark_level:	value for gReg[7], some script will extend it from
353 *			basic watermark such as p_2_p
354 * @shp_addr:		value for gReg[6]
355 * @per_addr:		value for gReg[2]
356 * @status:		status of dma channel
357 * @context_loaded:	ensure context is only loaded once
358 * @data:		specific sdma interface structure
359 * @bd_pool:		dma_pool for bd
360 * @terminate_worker:	used to call back into terminate work function
361 */
362struct sdma_channel {
363	struct virt_dma_chan		vc;
364	struct sdma_desc		*desc;
365	struct sdma_engine		*sdma;
366	unsigned int			channel;
367	enum dma_transfer_direction		direction;
368	struct dma_slave_config		slave_config;
369	enum sdma_peripheral_type	peripheral_type;
370	unsigned int			event_id0;
371	unsigned int			event_id1;
372	enum dma_slave_buswidth		word_size;
373	unsigned int			pc_from_device, pc_to_device;
374	unsigned int			device_to_device;
375	unsigned int                    pc_to_pc;
376	unsigned long			flags;
377	dma_addr_t			per_address, per_address2;
378	unsigned long			event_mask[2];
379	unsigned long			watermark_level;
380	u32				shp_addr, per_addr;
381	enum dma_status			status;
382	struct imx_dma_data		data;
383	struct work_struct		terminate_worker;
384};
385
386#define IMX_DMA_SG_LOOP		BIT(0)
387
388#define MAX_DMA_CHANNELS 32
389#define MXC_SDMA_DEFAULT_PRIORITY 1
390#define MXC_SDMA_MIN_PRIORITY 1
391#define MXC_SDMA_MAX_PRIORITY 7
392
393#define SDMA_FIRMWARE_MAGIC 0x414d4453
394
395/**
396 * struct sdma_firmware_header - Layout of the firmware image
397 *
398 * @magic:		"SDMA"
399 * @version_major:	increased whenever layout of struct
400 *			sdma_script_start_addrs changes.
401 * @version_minor:	firmware minor version (for binary compatible changes)
402 * @script_addrs_start:	offset of struct sdma_script_start_addrs in this image
403 * @num_script_addrs:	Number of script addresses in this image
404 * @ram_code_start:	offset of SDMA ram image in this firmware image
405 * @ram_code_size:	size of SDMA ram image
406 * @script_addrs:	Stores the start address of the SDMA scripts
407 *			(in SDMA memory space)
408 */
409struct sdma_firmware_header {
410	u32	magic;
411	u32	version_major;
412	u32	version_minor;
413	u32	script_addrs_start;
414	u32	num_script_addrs;
415	u32	ram_code_start;
416	u32	ram_code_size;
417};
418
419struct sdma_driver_data {
420	int chnenbl0;
421	int num_events;
422	struct sdma_script_start_addrs	*script_addrs;
423	bool check_ratio;
424};
425
426struct sdma_engine {
427	struct device			*dev;
428	struct sdma_channel		channel[MAX_DMA_CHANNELS];
429	struct sdma_channel_control	*channel_control;
430	void __iomem			*regs;
431	struct sdma_context_data	*context;
432	dma_addr_t			context_phys;
433	struct dma_device		dma_device;
434	struct clk			*clk_ipg;
435	struct clk			*clk_ahb;
436	spinlock_t			channel_0_lock;
437	u32				script_number;
438	struct sdma_script_start_addrs	*script_addrs;
439	const struct sdma_driver_data	*drvdata;
440	u32				spba_start_addr;
441	u32				spba_end_addr;
442	unsigned int			irq;
443	dma_addr_t			bd0_phys;
444	struct sdma_buffer_descriptor	*bd0;
445	/* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
446	bool				clk_ratio;
447};
448
449static int sdma_config_write(struct dma_chan *chan,
450		       struct dma_slave_config *dmaengine_cfg,
451		       enum dma_transfer_direction direction);
452
453static struct sdma_driver_data sdma_imx31 = {
454	.chnenbl0 = SDMA_CHNENBL0_IMX31,
455	.num_events = 32,
456};
457
458static struct sdma_script_start_addrs sdma_script_imx25 = {
459	.ap_2_ap_addr = 729,
460	.uart_2_mcu_addr = 904,
461	.per_2_app_addr = 1255,
462	.mcu_2_app_addr = 834,
463	.uartsh_2_mcu_addr = 1120,
464	.per_2_shp_addr = 1329,
465	.mcu_2_shp_addr = 1048,
466	.ata_2_mcu_addr = 1560,
467	.mcu_2_ata_addr = 1479,
468	.app_2_per_addr = 1189,
469	.app_2_mcu_addr = 770,
470	.shp_2_per_addr = 1407,
471	.shp_2_mcu_addr = 979,
472};
473
474static struct sdma_driver_data sdma_imx25 = {
475	.chnenbl0 = SDMA_CHNENBL0_IMX35,
476	.num_events = 48,
477	.script_addrs = &sdma_script_imx25,
478};
479
480static struct sdma_driver_data sdma_imx35 = {
481	.chnenbl0 = SDMA_CHNENBL0_IMX35,
482	.num_events = 48,
483};
484
485static struct sdma_script_start_addrs sdma_script_imx51 = {
486	.ap_2_ap_addr = 642,
487	.uart_2_mcu_addr = 817,
488	.mcu_2_app_addr = 747,
489	.mcu_2_shp_addr = 961,
490	.ata_2_mcu_addr = 1473,
491	.mcu_2_ata_addr = 1392,
492	.app_2_per_addr = 1033,
493	.app_2_mcu_addr = 683,
494	.shp_2_per_addr = 1251,
495	.shp_2_mcu_addr = 892,
496};
497
498static struct sdma_driver_data sdma_imx51 = {
499	.chnenbl0 = SDMA_CHNENBL0_IMX35,
500	.num_events = 48,
501	.script_addrs = &sdma_script_imx51,
502};
503
504static struct sdma_script_start_addrs sdma_script_imx53 = {
505	.ap_2_ap_addr = 642,
506	.app_2_mcu_addr = 683,
507	.mcu_2_app_addr = 747,
508	.uart_2_mcu_addr = 817,
509	.shp_2_mcu_addr = 891,
510	.mcu_2_shp_addr = 960,
511	.uartsh_2_mcu_addr = 1032,
512	.spdif_2_mcu_addr = 1100,
513	.mcu_2_spdif_addr = 1134,
514	.firi_2_mcu_addr = 1193,
515	.mcu_2_firi_addr = 1290,
516};
517
518static struct sdma_driver_data sdma_imx53 = {
519	.chnenbl0 = SDMA_CHNENBL0_IMX35,
520	.num_events = 48,
521	.script_addrs = &sdma_script_imx53,
522};
523
524static struct sdma_script_start_addrs sdma_script_imx6q = {
525	.ap_2_ap_addr = 642,
526	.uart_2_mcu_addr = 817,
527	.mcu_2_app_addr = 747,
528	.per_2_per_addr = 6331,
529	.uartsh_2_mcu_addr = 1032,
530	.mcu_2_shp_addr = 960,
531	.app_2_mcu_addr = 683,
532	.shp_2_mcu_addr = 891,
533	.spdif_2_mcu_addr = 1100,
534	.mcu_2_spdif_addr = 1134,
535};
536
537static struct sdma_driver_data sdma_imx6q = {
538	.chnenbl0 = SDMA_CHNENBL0_IMX35,
539	.num_events = 48,
540	.script_addrs = &sdma_script_imx6q,
541};
542
543static struct sdma_script_start_addrs sdma_script_imx7d = {
544	.ap_2_ap_addr = 644,
545	.uart_2_mcu_addr = 819,
546	.mcu_2_app_addr = 749,
547	.uartsh_2_mcu_addr = 1034,
548	.mcu_2_shp_addr = 962,
549	.app_2_mcu_addr = 685,
550	.shp_2_mcu_addr = 893,
551	.spdif_2_mcu_addr = 1102,
552	.mcu_2_spdif_addr = 1136,
553};
554
555static struct sdma_driver_data sdma_imx7d = {
556	.chnenbl0 = SDMA_CHNENBL0_IMX35,
557	.num_events = 48,
558	.script_addrs = &sdma_script_imx7d,
559};
560
561static struct sdma_driver_data sdma_imx8mq = {
562	.chnenbl0 = SDMA_CHNENBL0_IMX35,
563	.num_events = 48,
564	.script_addrs = &sdma_script_imx7d,
565	.check_ratio = 1,
566};
567
568static const struct platform_device_id sdma_devtypes[] = {
569	{
570		.name = "imx25-sdma",
571		.driver_data = (unsigned long)&sdma_imx25,
572	}, {
573		.name = "imx31-sdma",
574		.driver_data = (unsigned long)&sdma_imx31,
575	}, {
576		.name = "imx35-sdma",
577		.driver_data = (unsigned long)&sdma_imx35,
578	}, {
579		.name = "imx51-sdma",
580		.driver_data = (unsigned long)&sdma_imx51,
581	}, {
582		.name = "imx53-sdma",
583		.driver_data = (unsigned long)&sdma_imx53,
584	}, {
585		.name = "imx6q-sdma",
586		.driver_data = (unsigned long)&sdma_imx6q,
587	}, {
588		.name = "imx7d-sdma",
589		.driver_data = (unsigned long)&sdma_imx7d,
590	}, {
591		.name = "imx8mq-sdma",
592		.driver_data = (unsigned long)&sdma_imx8mq,
593	}, {
594		/* sentinel */
595	}
596};
597MODULE_DEVICE_TABLE(platform, sdma_devtypes);
598
599static const struct of_device_id sdma_dt_ids[] = {
600	{ .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
601	{ .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
602	{ .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
603	{ .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
604	{ .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
605	{ .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
606	{ .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
607	{ .compatible = "fsl,imx8mq-sdma", .data = &sdma_imx8mq, },
608	{ /* sentinel */ }
609};
610MODULE_DEVICE_TABLE(of, sdma_dt_ids);
611
612#define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
613#define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
614#define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
615#define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/
616
617static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
618{
619	u32 chnenbl0 = sdma->drvdata->chnenbl0;
620	return chnenbl0 + event * 4;
621}
622
623static int sdma_config_ownership(struct sdma_channel *sdmac,
624		bool event_override, bool mcu_override, bool dsp_override)
625{
626	struct sdma_engine *sdma = sdmac->sdma;
627	int channel = sdmac->channel;
628	unsigned long evt, mcu, dsp;
629
630	if (event_override && mcu_override && dsp_override)
631		return -EINVAL;
632
633	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
634	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
635	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
636
637	if (dsp_override)
638		__clear_bit(channel, &dsp);
639	else
640		__set_bit(channel, &dsp);
641
642	if (event_override)
643		__clear_bit(channel, &evt);
644	else
645		__set_bit(channel, &evt);
646
647	if (mcu_override)
648		__clear_bit(channel, &mcu);
649	else
650		__set_bit(channel, &mcu);
651
652	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
653	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
654	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
655
656	return 0;
657}
658
659static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
660{
661	writel(BIT(channel), sdma->regs + SDMA_H_START);
662}
663
664/*
665 * sdma_run_channel0 - run a channel and wait till it's done
666 */
667static int sdma_run_channel0(struct sdma_engine *sdma)
668{
669	int ret;
670	u32 reg;
671
672	sdma_enable_channel(sdma, 0);
673
674	ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
675						reg, !(reg & 1), 1, 500);
676	if (ret)
677		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
678
679	/* Set bits of CONFIG register with dynamic context switching */
680	reg = readl(sdma->regs + SDMA_H_CONFIG);
681	if ((reg & SDMA_H_CONFIG_CSM) == 0) {
682		reg |= SDMA_H_CONFIG_CSM;
683		writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG);
684	}
685
686	return ret;
687}
688
689static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
690		u32 address)
691{
692	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
693	void *buf_virt;
694	dma_addr_t buf_phys;
695	int ret;
696	unsigned long flags;
697
698	buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL);
699	if (!buf_virt) {
700		return -ENOMEM;
701	}
702
703	spin_lock_irqsave(&sdma->channel_0_lock, flags);
704
705	bd0->mode.command = C0_SETPM;
706	bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
707	bd0->mode.count = size / 2;
708	bd0->buffer_addr = buf_phys;
709	bd0->ext_buffer_addr = address;
710
711	memcpy(buf_virt, buf, size);
712
713	ret = sdma_run_channel0(sdma);
714
715	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
716
717	dma_free_coherent(sdma->dev, size, buf_virt, buf_phys);
718
719	return ret;
720}
721
722static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
723{
724	struct sdma_engine *sdma = sdmac->sdma;
725	int channel = sdmac->channel;
726	unsigned long val;
727	u32 chnenbl = chnenbl_ofs(sdma, event);
728
729	val = readl_relaxed(sdma->regs + chnenbl);
730	__set_bit(channel, &val);
731	writel_relaxed(val, sdma->regs + chnenbl);
732}
733
734static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
735{
736	struct sdma_engine *sdma = sdmac->sdma;
737	int channel = sdmac->channel;
738	u32 chnenbl = chnenbl_ofs(sdma, event);
739	unsigned long val;
740
741	val = readl_relaxed(sdma->regs + chnenbl);
742	__clear_bit(channel, &val);
743	writel_relaxed(val, sdma->regs + chnenbl);
744}
745
746static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
747{
748	return container_of(t, struct sdma_desc, vd.tx);
749}
750
751static void sdma_start_desc(struct sdma_channel *sdmac)
752{
753	struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
754	struct sdma_desc *desc;
755	struct sdma_engine *sdma = sdmac->sdma;
756	int channel = sdmac->channel;
757
758	if (!vd) {
759		sdmac->desc = NULL;
760		return;
761	}
762	sdmac->desc = desc = to_sdma_desc(&vd->tx);
763
764	list_del(&vd->node);
765
766	sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
767	sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
768	sdma_enable_channel(sdma, sdmac->channel);
769}
770
771static void sdma_update_channel_loop(struct sdma_channel *sdmac)
772{
773	struct sdma_buffer_descriptor *bd;
774	int error = 0;
775	enum dma_status	old_status = sdmac->status;
776
777	/*
778	 * loop mode. Iterate over descriptors, re-setup them and
779	 * call callback function.
780	 */
781	while (sdmac->desc) {
782		struct sdma_desc *desc = sdmac->desc;
783
784		bd = &desc->bd[desc->buf_tail];
785
786		if (bd->mode.status & BD_DONE)
787			break;
788
789		if (bd->mode.status & BD_RROR) {
790			bd->mode.status &= ~BD_RROR;
791			sdmac->status = DMA_ERROR;
792			error = -EIO;
793		}
794
795	       /*
796		* We use bd->mode.count to calculate the residue, since contains
797		* the number of bytes present in the current buffer descriptor.
798		*/
799
800		desc->chn_real_count = bd->mode.count;
801		bd->mode.status |= BD_DONE;
802		bd->mode.count = desc->period_len;
803		desc->buf_ptail = desc->buf_tail;
804		desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
805
806		/*
807		 * The callback is called from the interrupt context in order
808		 * to reduce latency and to avoid the risk of altering the
809		 * SDMA transaction status by the time the client tasklet is
810		 * executed.
811		 */
812		spin_unlock(&sdmac->vc.lock);
813		dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
814		spin_lock(&sdmac->vc.lock);
815
816		if (error)
817			sdmac->status = old_status;
818	}
819}
820
821static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
822{
823	struct sdma_channel *sdmac = (struct sdma_channel *) data;
824	struct sdma_buffer_descriptor *bd;
825	int i, error = 0;
826
827	sdmac->desc->chn_real_count = 0;
828	/*
829	 * non loop mode. Iterate over all descriptors, collect
830	 * errors and call callback function
831	 */
832	for (i = 0; i < sdmac->desc->num_bd; i++) {
833		bd = &sdmac->desc->bd[i];
834
835		 if (bd->mode.status & (BD_DONE | BD_RROR))
836			error = -EIO;
837		 sdmac->desc->chn_real_count += bd->mode.count;
838	}
839
840	if (error)
841		sdmac->status = DMA_ERROR;
842	else
843		sdmac->status = DMA_COMPLETE;
844}
845
846static irqreturn_t sdma_int_handler(int irq, void *dev_id)
847{
848	struct sdma_engine *sdma = dev_id;
849	unsigned long stat;
850
851	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
852	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
853	/* channel 0 is special and not handled here, see run_channel0() */
854	stat &= ~1;
855
856	while (stat) {
857		int channel = fls(stat) - 1;
858		struct sdma_channel *sdmac = &sdma->channel[channel];
859		struct sdma_desc *desc;
860
861		spin_lock(&sdmac->vc.lock);
862		desc = sdmac->desc;
863		if (desc) {
864			if (sdmac->flags & IMX_DMA_SG_LOOP) {
865				sdma_update_channel_loop(sdmac);
866			} else {
867				mxc_sdma_handle_channel_normal(sdmac);
868				vchan_cookie_complete(&desc->vd);
869				sdma_start_desc(sdmac);
870			}
871		}
872
873		spin_unlock(&sdmac->vc.lock);
874		__clear_bit(channel, &stat);
875	}
876
877	return IRQ_HANDLED;
878}
879
880/*
881 * sets the pc of SDMA script according to the peripheral type
882 */
883static void sdma_get_pc(struct sdma_channel *sdmac,
884		enum sdma_peripheral_type peripheral_type)
885{
886	struct sdma_engine *sdma = sdmac->sdma;
887	int per_2_emi = 0, emi_2_per = 0;
888	/*
889	 * These are needed once we start to support transfers between
890	 * two peripherals or memory-to-memory transfers
891	 */
892	int per_2_per = 0, emi_2_emi = 0;
893
894	sdmac->pc_from_device = 0;
895	sdmac->pc_to_device = 0;
896	sdmac->device_to_device = 0;
897	sdmac->pc_to_pc = 0;
898
899	switch (peripheral_type) {
900	case IMX_DMATYPE_MEMORY:
901		emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
902		break;
903	case IMX_DMATYPE_DSP:
904		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
905		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
906		break;
907	case IMX_DMATYPE_FIRI:
908		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
909		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
910		break;
911	case IMX_DMATYPE_UART:
912		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
913		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
914		break;
915	case IMX_DMATYPE_UART_SP:
916		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
917		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
918		break;
919	case IMX_DMATYPE_ATA:
920		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
921		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
922		break;
923	case IMX_DMATYPE_CSPI:
924	case IMX_DMATYPE_EXT:
925	case IMX_DMATYPE_SSI:
926	case IMX_DMATYPE_SAI:
927		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
928		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
929		break;
930	case IMX_DMATYPE_SSI_DUAL:
931		per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
932		emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
933		break;
934	case IMX_DMATYPE_SSI_SP:
935	case IMX_DMATYPE_MMC:
936	case IMX_DMATYPE_SDHC:
937	case IMX_DMATYPE_CSPI_SP:
938	case IMX_DMATYPE_ESAI:
939	case IMX_DMATYPE_MSHC_SP:
940		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
941		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
942		break;
943	case IMX_DMATYPE_ASRC:
944		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
945		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
946		per_2_per = sdma->script_addrs->per_2_per_addr;
947		break;
948	case IMX_DMATYPE_ASRC_SP:
949		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
950		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
951		per_2_per = sdma->script_addrs->per_2_per_addr;
952		break;
953	case IMX_DMATYPE_MSHC:
954		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
955		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
956		break;
957	case IMX_DMATYPE_CCM:
958		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
959		break;
960	case IMX_DMATYPE_SPDIF:
961		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
962		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
963		break;
964	case IMX_DMATYPE_IPU_MEMORY:
965		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
966		break;
967	default:
968		break;
969	}
970
971	sdmac->pc_from_device = per_2_emi;
972	sdmac->pc_to_device = emi_2_per;
973	sdmac->device_to_device = per_2_per;
974	sdmac->pc_to_pc = emi_2_emi;
975}
976
977static int sdma_load_context(struct sdma_channel *sdmac)
978{
979	struct sdma_engine *sdma = sdmac->sdma;
980	int channel = sdmac->channel;
981	int load_address;
982	struct sdma_context_data *context = sdma->context;
983	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
984	int ret;
985	unsigned long flags;
986
987	if (sdmac->direction == DMA_DEV_TO_MEM)
988		load_address = sdmac->pc_from_device;
989	else if (sdmac->direction == DMA_DEV_TO_DEV)
990		load_address = sdmac->device_to_device;
991	else if (sdmac->direction == DMA_MEM_TO_MEM)
992		load_address = sdmac->pc_to_pc;
993	else
994		load_address = sdmac->pc_to_device;
995
996	if (load_address < 0)
997		return load_address;
998
999	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
1000	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
1001	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
1002	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
1003	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
1004	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
1005
1006	spin_lock_irqsave(&sdma->channel_0_lock, flags);
1007
1008	memset(context, 0, sizeof(*context));
1009	context->channel_state.pc = load_address;
1010
1011	/* Send by context the event mask,base address for peripheral
1012	 * and watermark level
1013	 */
1014	context->gReg[0] = sdmac->event_mask[1];
1015	context->gReg[1] = sdmac->event_mask[0];
1016	context->gReg[2] = sdmac->per_addr;
1017	context->gReg[6] = sdmac->shp_addr;
1018	context->gReg[7] = sdmac->watermark_level;
1019
1020	bd0->mode.command = C0_SETDM;
1021	bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
1022	bd0->mode.count = sizeof(*context) / 4;
1023	bd0->buffer_addr = sdma->context_phys;
1024	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
1025	ret = sdma_run_channel0(sdma);
1026
1027	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
1028
1029	return ret;
1030}
1031
1032static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
1033{
1034	return container_of(chan, struct sdma_channel, vc.chan);
1035}
1036
1037static int sdma_disable_channel(struct dma_chan *chan)
1038{
1039	struct sdma_channel *sdmac = to_sdma_chan(chan);
1040	struct sdma_engine *sdma = sdmac->sdma;
1041	int channel = sdmac->channel;
1042
1043	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
1044	sdmac->status = DMA_ERROR;
1045
1046	return 0;
1047}
1048static void sdma_channel_terminate_work(struct work_struct *work)
1049{
1050	struct sdma_channel *sdmac = container_of(work, struct sdma_channel,
1051						  terminate_worker);
1052	unsigned long flags;
1053	LIST_HEAD(head);
1054
1055	/*
1056	 * According to NXP R&D team a delay of one BD SDMA cost time
1057	 * (maximum is 1ms) should be added after disable of the channel
1058	 * bit, to ensure SDMA core has really been stopped after SDMA
1059	 * clients call .device_terminate_all.
1060	 */
1061	usleep_range(1000, 2000);
1062
1063	spin_lock_irqsave(&sdmac->vc.lock, flags);
1064	vchan_get_all_descriptors(&sdmac->vc, &head);
1065	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1066	vchan_dma_desc_free_list(&sdmac->vc, &head);
1067}
1068
1069static int sdma_terminate_all(struct dma_chan *chan)
1070{
1071	struct sdma_channel *sdmac = to_sdma_chan(chan);
1072	unsigned long flags;
1073
1074	spin_lock_irqsave(&sdmac->vc.lock, flags);
1075
1076	sdma_disable_channel(chan);
1077
1078	if (sdmac->desc) {
1079		vchan_terminate_vdesc(&sdmac->desc->vd);
1080		sdmac->desc = NULL;
1081		schedule_work(&sdmac->terminate_worker);
1082	}
1083
1084	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1085
1086	return 0;
1087}
1088
1089static void sdma_channel_synchronize(struct dma_chan *chan)
1090{
1091	struct sdma_channel *sdmac = to_sdma_chan(chan);
1092
1093	vchan_synchronize(&sdmac->vc);
1094
1095	flush_work(&sdmac->terminate_worker);
1096}
1097
1098static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
1099{
1100	struct sdma_engine *sdma = sdmac->sdma;
1101
1102	int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
1103	int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
1104
1105	set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
1106	set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
1107
1108	if (sdmac->event_id0 > 31)
1109		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
1110
1111	if (sdmac->event_id1 > 31)
1112		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
1113
1114	/*
1115	 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1116	 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1117	 * r0(event_mask[1]) and r1(event_mask[0]).
1118	 */
1119	if (lwml > hwml) {
1120		sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1121						SDMA_WATERMARK_LEVEL_HWML);
1122		sdmac->watermark_level |= hwml;
1123		sdmac->watermark_level |= lwml << 16;
1124		swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1125	}
1126
1127	if (sdmac->per_address2 >= sdma->spba_start_addr &&
1128			sdmac->per_address2 <= sdma->spba_end_addr)
1129		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1130
1131	if (sdmac->per_address >= sdma->spba_start_addr &&
1132			sdmac->per_address <= sdma->spba_end_addr)
1133		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1134
1135	sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1136}
1137
1138static int sdma_config_channel(struct dma_chan *chan)
1139{
1140	struct sdma_channel *sdmac = to_sdma_chan(chan);
1141
1142	sdma_disable_channel(chan);
1143
1144	sdmac->event_mask[0] = 0;
1145	sdmac->event_mask[1] = 0;
1146	sdmac->shp_addr = 0;
1147	sdmac->per_addr = 0;
1148
1149	switch (sdmac->peripheral_type) {
1150	case IMX_DMATYPE_DSP:
1151		sdma_config_ownership(sdmac, false, true, true);
1152		break;
1153	case IMX_DMATYPE_MEMORY:
1154		sdma_config_ownership(sdmac, false, true, false);
1155		break;
1156	default:
1157		sdma_config_ownership(sdmac, true, true, false);
1158		break;
1159	}
1160
1161	sdma_get_pc(sdmac, sdmac->peripheral_type);
1162
1163	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1164			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1165		/* Handle multiple event channels differently */
1166		if (sdmac->event_id1) {
1167			if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1168			    sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1169				sdma_set_watermarklevel_for_p2p(sdmac);
1170		} else
1171			__set_bit(sdmac->event_id0, sdmac->event_mask);
1172
1173		/* Address */
1174		sdmac->shp_addr = sdmac->per_address;
1175		sdmac->per_addr = sdmac->per_address2;
1176	} else {
1177		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1178	}
1179
1180	return 0;
1181}
1182
1183static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1184		unsigned int priority)
1185{
1186	struct sdma_engine *sdma = sdmac->sdma;
1187	int channel = sdmac->channel;
1188
1189	if (priority < MXC_SDMA_MIN_PRIORITY
1190	    || priority > MXC_SDMA_MAX_PRIORITY) {
1191		return -EINVAL;
1192	}
1193
1194	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1195
1196	return 0;
1197}
1198
1199static int sdma_request_channel0(struct sdma_engine *sdma)
1200{
1201	int ret = -EBUSY;
1202
1203	sdma->bd0 = dma_alloc_coherent(sdma->dev, PAGE_SIZE, &sdma->bd0_phys,
1204					GFP_NOWAIT);
1205	if (!sdma->bd0) {
1206		ret = -ENOMEM;
1207		goto out;
1208	}
1209
1210	sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
1211	sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
1212
1213	sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
1214	return 0;
1215out:
1216
1217	return ret;
1218}
1219
1220
1221static int sdma_alloc_bd(struct sdma_desc *desc)
1222{
1223	u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1224	int ret = 0;
1225
1226	desc->bd = dma_alloc_coherent(desc->sdmac->sdma->dev, bd_size,
1227				       &desc->bd_phys, GFP_NOWAIT);
1228	if (!desc->bd) {
1229		ret = -ENOMEM;
1230		goto out;
1231	}
1232out:
1233	return ret;
1234}
1235
1236static void sdma_free_bd(struct sdma_desc *desc)
1237{
1238	u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1239
1240	dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd,
1241			  desc->bd_phys);
1242}
1243
1244static void sdma_desc_free(struct virt_dma_desc *vd)
1245{
1246	struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);
1247
1248	sdma_free_bd(desc);
1249	kfree(desc);
1250}
1251
1252static int sdma_alloc_chan_resources(struct dma_chan *chan)
1253{
1254	struct sdma_channel *sdmac = to_sdma_chan(chan);
1255	struct imx_dma_data *data = chan->private;
1256	struct imx_dma_data mem_data;
1257	int prio, ret;
1258
1259	/*
1260	 * MEMCPY may never setup chan->private by filter function such as
1261	 * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
1262	 * Please note in any other slave case, you have to setup chan->private
1263	 * with 'struct imx_dma_data' in your own filter function if you want to
1264	 * request dma channel by dma_request_channel() rather than
1265	 * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
1266	 * to warn you to correct your filter function.
1267	 */
1268	if (!data) {
1269		dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
1270		mem_data.priority = 2;
1271		mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
1272		mem_data.dma_request = 0;
1273		mem_data.dma_request2 = 0;
1274		data = &mem_data;
1275
1276		sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
1277	}
1278
1279	switch (data->priority) {
1280	case DMA_PRIO_HIGH:
1281		prio = 3;
1282		break;
1283	case DMA_PRIO_MEDIUM:
1284		prio = 2;
1285		break;
1286	case DMA_PRIO_LOW:
1287	default:
1288		prio = 1;
1289		break;
1290	}
1291
1292	sdmac->peripheral_type = data->peripheral_type;
1293	sdmac->event_id0 = data->dma_request;
1294	sdmac->event_id1 = data->dma_request2;
1295
1296	ret = clk_enable(sdmac->sdma->clk_ipg);
1297	if (ret)
1298		return ret;
1299	ret = clk_enable(sdmac->sdma->clk_ahb);
1300	if (ret)
1301		goto disable_clk_ipg;
1302
1303	ret = sdma_set_channel_priority(sdmac, prio);
1304	if (ret)
1305		goto disable_clk_ahb;
1306
1307	return 0;
1308
1309disable_clk_ahb:
1310	clk_disable(sdmac->sdma->clk_ahb);
1311disable_clk_ipg:
1312	clk_disable(sdmac->sdma->clk_ipg);
1313	return ret;
1314}
1315
1316static void sdma_free_chan_resources(struct dma_chan *chan)
1317{
1318	struct sdma_channel *sdmac = to_sdma_chan(chan);
1319	struct sdma_engine *sdma = sdmac->sdma;
1320
1321	sdma_terminate_all(chan);
1322
1323	sdma_channel_synchronize(chan);
1324
1325	sdma_event_disable(sdmac, sdmac->event_id0);
1326	if (sdmac->event_id1)
1327		sdma_event_disable(sdmac, sdmac->event_id1);
1328
1329	sdmac->event_id0 = 0;
1330	sdmac->event_id1 = 0;
1331
1332	sdma_set_channel_priority(sdmac, 0);
1333
1334	clk_disable(sdma->clk_ipg);
1335	clk_disable(sdma->clk_ahb);
1336}
1337
1338static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
1339				enum dma_transfer_direction direction, u32 bds)
1340{
1341	struct sdma_desc *desc;
1342
1343	desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
1344	if (!desc)
1345		goto err_out;
1346
1347	sdmac->status = DMA_IN_PROGRESS;
1348	sdmac->direction = direction;
1349	sdmac->flags = 0;
1350
1351	desc->chn_count = 0;
1352	desc->chn_real_count = 0;
1353	desc->buf_tail = 0;
1354	desc->buf_ptail = 0;
1355	desc->sdmac = sdmac;
1356	desc->num_bd = bds;
1357
1358	if (sdma_alloc_bd(desc))
1359		goto err_desc_out;
1360
1361	/* No slave_config called in MEMCPY case, so do here */
1362	if (direction == DMA_MEM_TO_MEM)
1363		sdma_config_ownership(sdmac, false, true, false);
1364
1365	if (sdma_load_context(sdmac))
1366		goto err_bd_out;
1367
1368	return desc;
1369
1370err_bd_out:
1371	sdma_free_bd(desc);
1372err_desc_out:
1373	kfree(desc);
1374err_out:
1375	return NULL;
1376}
1377
1378static struct dma_async_tx_descriptor *sdma_prep_memcpy(
1379		struct dma_chan *chan, dma_addr_t dma_dst,
1380		dma_addr_t dma_src, size_t len, unsigned long flags)
1381{
1382	struct sdma_channel *sdmac = to_sdma_chan(chan);
1383	struct sdma_engine *sdma = sdmac->sdma;
1384	int channel = sdmac->channel;
1385	size_t count;
1386	int i = 0, param;
1387	struct sdma_buffer_descriptor *bd;
1388	struct sdma_desc *desc;
1389
1390	if (!chan || !len)
1391		return NULL;
1392
1393	dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
1394		&dma_src, &dma_dst, len, channel);
1395
1396	desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
1397					len / SDMA_BD_MAX_CNT + 1);
1398	if (!desc)
1399		return NULL;
1400
1401	do {
1402		count = min_t(size_t, len, SDMA_BD_MAX_CNT);
1403		bd = &desc->bd[i];
1404		bd->buffer_addr = dma_src;
1405		bd->ext_buffer_addr = dma_dst;
1406		bd->mode.count = count;
1407		desc->chn_count += count;
1408		bd->mode.command = 0;
1409
1410		dma_src += count;
1411		dma_dst += count;
1412		len -= count;
1413		i++;
1414
1415		param = BD_DONE | BD_EXTD | BD_CONT;
1416		/* last bd */
1417		if (!len) {
1418			param |= BD_INTR;
1419			param |= BD_LAST;
1420			param &= ~BD_CONT;
1421		}
1422
1423		dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
1424				i, count, bd->buffer_addr,
1425				param & BD_WRAP ? "wrap" : "",
1426				param & BD_INTR ? " intr" : "");
1427
1428		bd->mode.status = param;
1429	} while (len);
1430
1431	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1432}
1433
1434static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1435		struct dma_chan *chan, struct scatterlist *sgl,
1436		unsigned int sg_len, enum dma_transfer_direction direction,
1437		unsigned long flags, void *context)
1438{
1439	struct sdma_channel *sdmac = to_sdma_chan(chan);
1440	struct sdma_engine *sdma = sdmac->sdma;
1441	int i, count;
1442	int channel = sdmac->channel;
1443	struct scatterlist *sg;
1444	struct sdma_desc *desc;
1445
1446	sdma_config_write(chan, &sdmac->slave_config, direction);
1447
1448	desc = sdma_transfer_init(sdmac, direction, sg_len);
1449	if (!desc)
1450		goto err_out;
1451
1452	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1453			sg_len, channel);
1454
1455	for_each_sg(sgl, sg, sg_len, i) {
1456		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1457		int param;
1458
1459		bd->buffer_addr = sg->dma_address;
1460
1461		count = sg_dma_len(sg);
1462
1463		if (count > SDMA_BD_MAX_CNT) {
1464			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1465					channel, count, SDMA_BD_MAX_CNT);
1466			goto err_bd_out;
1467		}
1468
1469		bd->mode.count = count;
1470		desc->chn_count += count;
1471
1472		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1473			goto err_bd_out;
1474
1475		switch (sdmac->word_size) {
1476		case DMA_SLAVE_BUSWIDTH_4_BYTES:
1477			bd->mode.command = 0;
1478			if (count & 3 || sg->dma_address & 3)
1479				goto err_bd_out;
1480			break;
1481		case DMA_SLAVE_BUSWIDTH_2_BYTES:
1482			bd->mode.command = 2;
1483			if (count & 1 || sg->dma_address & 1)
1484				goto err_bd_out;
1485			break;
1486		case DMA_SLAVE_BUSWIDTH_1_BYTE:
1487			bd->mode.command = 1;
1488			break;
1489		default:
1490			goto err_bd_out;
1491		}
1492
1493		param = BD_DONE | BD_EXTD | BD_CONT;
1494
1495		if (i + 1 == sg_len) {
1496			param |= BD_INTR;
1497			param |= BD_LAST;
1498			param &= ~BD_CONT;
1499		}
1500
1501		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1502				i, count, (u64)sg->dma_address,
1503				param & BD_WRAP ? "wrap" : "",
1504				param & BD_INTR ? " intr" : "");
1505
1506		bd->mode.status = param;
1507	}
1508
1509	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1510err_bd_out:
1511	sdma_free_bd(desc);
1512	kfree(desc);
1513err_out:
1514	sdmac->status = DMA_ERROR;
1515	return NULL;
1516}
1517
1518static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1519		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1520		size_t period_len, enum dma_transfer_direction direction,
1521		unsigned long flags)
1522{
1523	struct sdma_channel *sdmac = to_sdma_chan(chan);
1524	struct sdma_engine *sdma = sdmac->sdma;
1525	int num_periods = buf_len / period_len;
1526	int channel = sdmac->channel;
1527	int i = 0, buf = 0;
1528	struct sdma_desc *desc;
1529
1530	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1531
1532	sdma_config_write(chan, &sdmac->slave_config, direction);
1533
1534	desc = sdma_transfer_init(sdmac, direction, num_periods);
1535	if (!desc)
1536		goto err_out;
1537
1538	desc->period_len = period_len;
1539
1540	sdmac->flags |= IMX_DMA_SG_LOOP;
1541
1542	if (period_len > SDMA_BD_MAX_CNT) {
1543		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1544				channel, period_len, SDMA_BD_MAX_CNT);
1545		goto err_bd_out;
1546	}
1547
1548	while (buf < buf_len) {
1549		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1550		int param;
1551
1552		bd->buffer_addr = dma_addr;
1553
1554		bd->mode.count = period_len;
1555
1556		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1557			goto err_bd_out;
1558		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1559			bd->mode.command = 0;
1560		else
1561			bd->mode.command = sdmac->word_size;
1562
1563		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1564		if (i + 1 == num_periods)
1565			param |= BD_WRAP;
1566
1567		dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1568				i, period_len, (u64)dma_addr,
1569				param & BD_WRAP ? "wrap" : "",
1570				param & BD_INTR ? " intr" : "");
1571
1572		bd->mode.status = param;
1573
1574		dma_addr += period_len;
1575		buf += period_len;
1576
1577		i++;
1578	}
1579
1580	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1581err_bd_out:
1582	sdma_free_bd(desc);
1583	kfree(desc);
1584err_out:
1585	sdmac->status = DMA_ERROR;
1586	return NULL;
1587}
1588
1589static int sdma_config_write(struct dma_chan *chan,
1590		       struct dma_slave_config *dmaengine_cfg,
1591		       enum dma_transfer_direction direction)
1592{
1593	struct sdma_channel *sdmac = to_sdma_chan(chan);
1594
1595	if (direction == DMA_DEV_TO_MEM) {
1596		sdmac->per_address = dmaengine_cfg->src_addr;
1597		sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1598			dmaengine_cfg->src_addr_width;
1599		sdmac->word_size = dmaengine_cfg->src_addr_width;
1600	} else if (direction == DMA_DEV_TO_DEV) {
1601		sdmac->per_address2 = dmaengine_cfg->src_addr;
1602		sdmac->per_address = dmaengine_cfg->dst_addr;
1603		sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1604			SDMA_WATERMARK_LEVEL_LWML;
1605		sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1606			SDMA_WATERMARK_LEVEL_HWML;
1607		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1608	} else {
1609		sdmac->per_address = dmaengine_cfg->dst_addr;
1610		sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1611			dmaengine_cfg->dst_addr_width;
1612		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1613	}
1614	sdmac->direction = direction;
1615	return sdma_config_channel(chan);
1616}
1617
1618static int sdma_config(struct dma_chan *chan,
1619		       struct dma_slave_config *dmaengine_cfg)
1620{
1621	struct sdma_channel *sdmac = to_sdma_chan(chan);
1622
1623	memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg));
1624
1625	/* Set ENBLn earlier to make sure dma request triggered after that */
1626	if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1627		return -EINVAL;
1628	sdma_event_enable(sdmac, sdmac->event_id0);
1629
1630	if (sdmac->event_id1) {
1631		if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1632			return -EINVAL;
1633		sdma_event_enable(sdmac, sdmac->event_id1);
1634	}
1635
1636	return 0;
1637}
1638
1639static enum dma_status sdma_tx_status(struct dma_chan *chan,
1640				      dma_cookie_t cookie,
1641				      struct dma_tx_state *txstate)
1642{
1643	struct sdma_channel *sdmac = to_sdma_chan(chan);
1644	struct sdma_desc *desc = NULL;
1645	u32 residue;
1646	struct virt_dma_desc *vd;
1647	enum dma_status ret;
1648	unsigned long flags;
1649
1650	ret = dma_cookie_status(chan, cookie, txstate);
1651	if (ret == DMA_COMPLETE || !txstate)
1652		return ret;
1653
1654	spin_lock_irqsave(&sdmac->vc.lock, flags);
1655
1656	vd = vchan_find_desc(&sdmac->vc, cookie);
1657	if (vd)
1658		desc = to_sdma_desc(&vd->tx);
1659	else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie)
1660		desc = sdmac->desc;
1661
1662	if (desc) {
1663		if (sdmac->flags & IMX_DMA_SG_LOOP)
1664			residue = (desc->num_bd - desc->buf_ptail) *
1665				desc->period_len - desc->chn_real_count;
1666		else
1667			residue = desc->chn_count - desc->chn_real_count;
1668	} else {
1669		residue = 0;
1670	}
1671
1672	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1673
1674	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1675			 residue);
1676
1677	return sdmac->status;
1678}
1679
1680static void sdma_issue_pending(struct dma_chan *chan)
1681{
1682	struct sdma_channel *sdmac = to_sdma_chan(chan);
1683	unsigned long flags;
1684
1685	spin_lock_irqsave(&sdmac->vc.lock, flags);
1686	if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
1687		sdma_start_desc(sdmac);
1688	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1689}
1690
1691#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1692#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2	38
1693#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3	41
1694#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4	42
1695
1696static void sdma_add_scripts(struct sdma_engine *sdma,
1697		const struct sdma_script_start_addrs *addr)
1698{
1699	s32 *addr_arr = (u32 *)addr;
1700	s32 *saddr_arr = (u32 *)sdma->script_addrs;
1701	int i;
1702
1703	/* use the default firmware in ROM if missing external firmware */
1704	if (!sdma->script_number)
1705		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1706
1707	if (sdma->script_number > sizeof(struct sdma_script_start_addrs)
1708				  / sizeof(s32)) {
1709		dev_err(sdma->dev,
1710			"SDMA script number %d not match with firmware.\n",
1711			sdma->script_number);
1712		return;
1713	}
1714
1715	for (i = 0; i < sdma->script_number; i++)
1716		if (addr_arr[i] > 0)
1717			saddr_arr[i] = addr_arr[i];
1718}
1719
1720static void sdma_load_firmware(const struct firmware *fw, void *context)
1721{
1722	struct sdma_engine *sdma = context;
1723	const struct sdma_firmware_header *header;
1724	const struct sdma_script_start_addrs *addr;
1725	unsigned short *ram_code;
1726
1727	if (!fw) {
1728		dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1729		/* In this case we just use the ROM firmware. */
1730		return;
1731	}
1732
1733	if (fw->size < sizeof(*header))
1734		goto err_firmware;
1735
1736	header = (struct sdma_firmware_header *)fw->data;
1737
1738	if (header->magic != SDMA_FIRMWARE_MAGIC)
1739		goto err_firmware;
1740	if (header->ram_code_start + header->ram_code_size > fw->size)
1741		goto err_firmware;
1742	switch (header->version_major) {
1743	case 1:
1744		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1745		break;
1746	case 2:
1747		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1748		break;
1749	case 3:
1750		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1751		break;
1752	case 4:
1753		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1754		break;
1755	default:
1756		dev_err(sdma->dev, "unknown firmware version\n");
1757		goto err_firmware;
1758	}
1759
1760	addr = (void *)header + header->script_addrs_start;
1761	ram_code = (void *)header + header->ram_code_start;
1762
1763	clk_enable(sdma->clk_ipg);
1764	clk_enable(sdma->clk_ahb);
1765	/* download the RAM image for SDMA */
1766	sdma_load_script(sdma, ram_code,
1767			header->ram_code_size,
1768			addr->ram_code_start_addr);
1769	clk_disable(sdma->clk_ipg);
1770	clk_disable(sdma->clk_ahb);
1771
1772	sdma_add_scripts(sdma, addr);
1773
1774	dev_info(sdma->dev, "loaded firmware %d.%d\n",
1775			header->version_major,
1776			header->version_minor);
1777
1778err_firmware:
1779	release_firmware(fw);
1780}
1781
1782#define EVENT_REMAP_CELLS 3
1783
1784static int sdma_event_remap(struct sdma_engine *sdma)
1785{
1786	struct device_node *np = sdma->dev->of_node;
1787	struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1788	struct property *event_remap;
1789	struct regmap *gpr;
1790	char propname[] = "fsl,sdma-event-remap";
1791	u32 reg, val, shift, num_map, i;
1792	int ret = 0;
1793
1794	if (IS_ERR(np) || !gpr_np)
1795		goto out;
1796
1797	event_remap = of_find_property(np, propname, NULL);
1798	num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1799	if (!num_map) {
1800		dev_dbg(sdma->dev, "no event needs to be remapped\n");
1801		goto out;
1802	} else if (num_map % EVENT_REMAP_CELLS) {
1803		dev_err(sdma->dev, "the property %s must modulo %d\n",
1804				propname, EVENT_REMAP_CELLS);
1805		ret = -EINVAL;
1806		goto out;
1807	}
1808
1809	gpr = syscon_node_to_regmap(gpr_np);
1810	if (IS_ERR(gpr)) {
1811		dev_err(sdma->dev, "failed to get gpr regmap\n");
1812		ret = PTR_ERR(gpr);
1813		goto out;
1814	}
1815
1816	for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1817		ret = of_property_read_u32_index(np, propname, i, &reg);
1818		if (ret) {
1819			dev_err(sdma->dev, "failed to read property %s index %d\n",
1820					propname, i);
1821			goto out;
1822		}
1823
1824		ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1825		if (ret) {
1826			dev_err(sdma->dev, "failed to read property %s index %d\n",
1827					propname, i + 1);
1828			goto out;
1829		}
1830
1831		ret = of_property_read_u32_index(np, propname, i + 2, &val);
1832		if (ret) {
1833			dev_err(sdma->dev, "failed to read property %s index %d\n",
1834					propname, i + 2);
1835			goto out;
1836		}
1837
1838		regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1839	}
1840
1841out:
1842	if (gpr_np)
1843		of_node_put(gpr_np);
1844
1845	return ret;
1846}
1847
1848static int sdma_get_firmware(struct sdma_engine *sdma,
1849		const char *fw_name)
1850{
1851	int ret;
1852
1853	ret = request_firmware_nowait(THIS_MODULE,
1854			FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1855			GFP_KERNEL, sdma, sdma_load_firmware);
1856
1857	return ret;
1858}
1859
1860static int sdma_init(struct sdma_engine *sdma)
1861{
1862	int i, ret;
1863	dma_addr_t ccb_phys;
1864
1865	ret = clk_enable(sdma->clk_ipg);
1866	if (ret)
1867		return ret;
1868	ret = clk_enable(sdma->clk_ahb);
1869	if (ret)
1870		goto disable_clk_ipg;
1871
1872	if (sdma->drvdata->check_ratio &&
1873	    (clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg)))
1874		sdma->clk_ratio = 1;
1875
1876	/* Be sure SDMA has not started yet */
1877	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1878
1879	sdma->channel_control = dma_alloc_coherent(sdma->dev,
1880			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1881			sizeof(struct sdma_context_data),
1882			&ccb_phys, GFP_KERNEL);
1883
1884	if (!sdma->channel_control) {
1885		ret = -ENOMEM;
1886		goto err_dma_alloc;
1887	}
1888
1889	sdma->context = (void *)sdma->channel_control +
1890		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1891	sdma->context_phys = ccb_phys +
1892		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1893
1894	/* disable all channels */
1895	for (i = 0; i < sdma->drvdata->num_events; i++)
1896		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1897
1898	/* All channels have priority 0 */
1899	for (i = 0; i < MAX_DMA_CHANNELS; i++)
1900		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1901
1902	ret = sdma_request_channel0(sdma);
1903	if (ret)
1904		goto err_dma_alloc;
1905
1906	sdma_config_ownership(&sdma->channel[0], false, true, false);
1907
1908	/* Set Command Channel (Channel Zero) */
1909	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1910
1911	/* Set bits of CONFIG register but with static context switching */
1912	if (sdma->clk_ratio)
1913		writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG);
1914	else
1915		writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1916
1917	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1918
1919	/* Initializes channel's priorities */
1920	sdma_set_channel_priority(&sdma->channel[0], 7);
1921
1922	clk_disable(sdma->clk_ipg);
1923	clk_disable(sdma->clk_ahb);
1924
1925	return 0;
1926
1927err_dma_alloc:
1928	clk_disable(sdma->clk_ahb);
1929disable_clk_ipg:
1930	clk_disable(sdma->clk_ipg);
1931	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1932	return ret;
1933}
1934
1935static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1936{
1937	struct sdma_channel *sdmac = to_sdma_chan(chan);
1938	struct imx_dma_data *data = fn_param;
1939
1940	if (!imx_dma_is_general_purpose(chan))
1941		return false;
1942
1943	sdmac->data = *data;
1944	chan->private = &sdmac->data;
1945
1946	return true;
1947}
1948
1949static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1950				   struct of_dma *ofdma)
1951{
1952	struct sdma_engine *sdma = ofdma->of_dma_data;
1953	dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1954	struct imx_dma_data data;
1955
1956	if (dma_spec->args_count != 3)
1957		return NULL;
1958
1959	data.dma_request = dma_spec->args[0];
1960	data.peripheral_type = dma_spec->args[1];
1961	data.priority = dma_spec->args[2];
1962	/*
1963	 * init dma_request2 to zero, which is not used by the dts.
1964	 * For P2P, dma_request2 is init from dma_request_channel(),
1965	 * chan->private will point to the imx_dma_data, and in
1966	 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1967	 * be set to sdmac->event_id1.
1968	 */
1969	data.dma_request2 = 0;
1970
1971	return __dma_request_channel(&mask, sdma_filter_fn, &data,
1972				     ofdma->of_node);
1973}
1974
1975static int sdma_probe(struct platform_device *pdev)
1976{
1977	const struct of_device_id *of_id =
1978			of_match_device(sdma_dt_ids, &pdev->dev);
1979	struct device_node *np = pdev->dev.of_node;
1980	struct device_node *spba_bus;
1981	const char *fw_name;
1982	int ret;
1983	int irq;
1984	struct resource *iores;
1985	struct resource spba_res;
1986	struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1987	int i;
1988	struct sdma_engine *sdma;
1989	s32 *saddr_arr;
1990	const struct sdma_driver_data *drvdata = NULL;
1991
1992	if (of_id)
1993		drvdata = of_id->data;
1994	else if (pdev->id_entry)
1995		drvdata = (void *)pdev->id_entry->driver_data;
1996
1997	if (!drvdata) {
1998		dev_err(&pdev->dev, "unable to find driver data\n");
1999		return -EINVAL;
2000	}
2001
2002	ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2003	if (ret)
2004		return ret;
2005
2006	sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
2007	if (!sdma)
2008		return -ENOMEM;
2009
2010	spin_lock_init(&sdma->channel_0_lock);
2011
2012	sdma->dev = &pdev->dev;
2013	sdma->drvdata = drvdata;
2014
2015	irq = platform_get_irq(pdev, 0);
2016	if (irq < 0)
2017		return irq;
2018
2019	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2020	sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
2021	if (IS_ERR(sdma->regs))
2022		return PTR_ERR(sdma->regs);
2023
2024	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2025	if (IS_ERR(sdma->clk_ipg))
2026		return PTR_ERR(sdma->clk_ipg);
2027
2028	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2029	if (IS_ERR(sdma->clk_ahb))
2030		return PTR_ERR(sdma->clk_ahb);
2031
2032	ret = clk_prepare(sdma->clk_ipg);
2033	if (ret)
2034		return ret;
2035
2036	ret = clk_prepare(sdma->clk_ahb);
2037	if (ret)
2038		goto err_clk;
2039
2040	ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
2041			       sdma);
2042	if (ret)
2043		goto err_irq;
2044
2045	sdma->irq = irq;
2046
2047	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
2048	if (!sdma->script_addrs) {
2049		ret = -ENOMEM;
2050		goto err_irq;
2051	}
2052
2053	/* initially no scripts available */
2054	saddr_arr = (s32 *)sdma->script_addrs;
2055	for (i = 0; i < sizeof(*sdma->script_addrs) / sizeof(s32); i++)
2056		saddr_arr[i] = -EINVAL;
2057
2058	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
2059	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
2060	dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
2061
2062	INIT_LIST_HEAD(&sdma->dma_device.channels);
2063	/* Initialize channel parameters */
2064	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2065		struct sdma_channel *sdmac = &sdma->channel[i];
2066
2067		sdmac->sdma = sdma;
2068
2069		sdmac->channel = i;
2070		sdmac->vc.desc_free = sdma_desc_free;
2071		INIT_WORK(&sdmac->terminate_worker,
2072				sdma_channel_terminate_work);
2073		/*
2074		 * Add the channel to the DMAC list. Do not add channel 0 though
2075		 * because we need it internally in the SDMA driver. This also means
2076		 * that channel 0 in dmaengine counting matches sdma channel 1.
2077		 */
2078		if (i)
2079			vchan_init(&sdmac->vc, &sdma->dma_device);
2080	}
2081
2082	ret = sdma_init(sdma);
2083	if (ret)
2084		goto err_init;
2085
2086	ret = sdma_event_remap(sdma);
2087	if (ret)
2088		goto err_init;
2089
2090	if (sdma->drvdata->script_addrs)
2091		sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
2092	if (pdata && pdata->script_addrs)
2093		sdma_add_scripts(sdma, pdata->script_addrs);
2094
2095	sdma->dma_device.dev = &pdev->dev;
2096
2097	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
2098	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
2099	sdma->dma_device.device_tx_status = sdma_tx_status;
2100	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
2101	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
2102	sdma->dma_device.device_config = sdma_config;
2103	sdma->dma_device.device_terminate_all = sdma_terminate_all;
2104	sdma->dma_device.device_synchronize = sdma_channel_synchronize;
2105	sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
2106	sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
2107	sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
2108	sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2109	sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
2110	sdma->dma_device.device_issue_pending = sdma_issue_pending;
2111	sdma->dma_device.copy_align = 2;
2112	dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
2113
2114	platform_set_drvdata(pdev, sdma);
2115
2116	ret = dma_async_device_register(&sdma->dma_device);
2117	if (ret) {
2118		dev_err(&pdev->dev, "unable to register\n");
2119		goto err_init;
2120	}
2121
2122	if (np) {
2123		ret = of_dma_controller_register(np, sdma_xlate, sdma);
2124		if (ret) {
2125			dev_err(&pdev->dev, "failed to register controller\n");
2126			goto err_register;
2127		}
2128
2129		spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
2130		ret = of_address_to_resource(spba_bus, 0, &spba_res);
2131		if (!ret) {
2132			sdma->spba_start_addr = spba_res.start;
2133			sdma->spba_end_addr = spba_res.end;
2134		}
2135		of_node_put(spba_bus);
2136	}
2137
2138	/*
2139	 * Kick off firmware loading as the very last step:
2140	 * attempt to load firmware only if we're not on the error path, because
2141	 * the firmware callback requires a fully functional and allocated sdma
2142	 * instance.
2143	 */
2144	if (pdata) {
2145		ret = sdma_get_firmware(sdma, pdata->fw_name);
2146		if (ret)
2147			dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
2148	} else {
2149		/*
2150		 * Because that device tree does not encode ROM script address,
2151		 * the RAM script in firmware is mandatory for device tree
2152		 * probe, otherwise it fails.
2153		 */
2154		ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
2155					      &fw_name);
2156		if (ret) {
2157			dev_warn(&pdev->dev, "failed to get firmware name\n");
2158		} else {
2159			ret = sdma_get_firmware(sdma, fw_name);
2160			if (ret)
2161				dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
2162		}
2163	}
2164
2165	return 0;
2166
2167err_register:
2168	dma_async_device_unregister(&sdma->dma_device);
2169err_init:
2170	kfree(sdma->script_addrs);
2171err_irq:
2172	clk_unprepare(sdma->clk_ahb);
2173err_clk:
2174	clk_unprepare(sdma->clk_ipg);
2175	return ret;
2176}
2177
2178static int sdma_remove(struct platform_device *pdev)
2179{
2180	struct sdma_engine *sdma = platform_get_drvdata(pdev);
2181	int i;
2182
2183	devm_free_irq(&pdev->dev, sdma->irq, sdma);
2184	dma_async_device_unregister(&sdma->dma_device);
2185	kfree(sdma->script_addrs);
2186	clk_unprepare(sdma->clk_ahb);
2187	clk_unprepare(sdma->clk_ipg);
2188	/* Kill the tasklet */
2189	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2190		struct sdma_channel *sdmac = &sdma->channel[i];
2191
2192		tasklet_kill(&sdmac->vc.task);
2193		sdma_free_chan_resources(&sdmac->vc.chan);
2194	}
2195
2196	platform_set_drvdata(pdev, NULL);
2197	return 0;
2198}
2199
2200static struct platform_driver sdma_driver = {
2201	.driver		= {
2202		.name	= "imx-sdma",
2203		.of_match_table = sdma_dt_ids,
2204	},
2205	.id_table	= sdma_devtypes,
2206	.remove		= sdma_remove,
2207	.probe		= sdma_probe,
2208};
2209
2210module_platform_driver(sdma_driver);
2211
2212MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
2213MODULE_DESCRIPTION("i.MX SDMA driver");
2214#if IS_ENABLED(CONFIG_SOC_IMX6Q)
2215MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
2216#endif
2217#if IS_ENABLED(CONFIG_SOC_IMX7D) || IS_ENABLED(CONFIG_SOC_IMX8M)
2218MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
2219#endif
2220MODULE_LICENSE("GPL");
2221