xref: /kernel/linux/linux-5.10/drivers/dma/fsldma.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Freescale MPC85xx, MPC83xx DMA Engine support
4 *
5 * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
6 *
7 * Author:
8 *   Zhang Wei <wei.zhang@freescale.com>, Jul 2007
9 *   Ebony Zhu <ebony.zhu@freescale.com>, May 2007
10 *
11 * Description:
12 *   DMA engine driver for Freescale MPC8540 DMA controller, which is
13 *   also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
14 *   The support for MPC8349 DMA controller is also added.
15 *
16 * This driver instructs the DMA controller to issue the PCI Read Multiple
17 * command for PCI read operations, instead of using the default PCI Read Line
18 * command. Please be aware that this setting may result in read pre-fetching
19 * on some platforms.
20 */
21
22#include <linux/init.h>
23#include <linux/module.h>
24#include <linux/pci.h>
25#include <linux/slab.h>
26#include <linux/interrupt.h>
27#include <linux/dmaengine.h>
28#include <linux/delay.h>
29#include <linux/dma-mapping.h>
30#include <linux/dmapool.h>
31#include <linux/of_address.h>
32#include <linux/of_irq.h>
33#include <linux/of_platform.h>
34#include <linux/fsldma.h>
35#include "dmaengine.h"
36#include "fsldma.h"
37
38#define chan_dbg(chan, fmt, arg...)					\
39	dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
40#define chan_err(chan, fmt, arg...)					\
41	dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
42
43static const char msg_ld_oom[] = "No free memory for link descriptor";
44
45/*
46 * Register Helpers
47 */
48
49static void set_sr(struct fsldma_chan *chan, u32 val)
50{
51	FSL_DMA_OUT(chan, &chan->regs->sr, val, 32);
52}
53
54static u32 get_sr(struct fsldma_chan *chan)
55{
56	return FSL_DMA_IN(chan, &chan->regs->sr, 32);
57}
58
59static void set_mr(struct fsldma_chan *chan, u32 val)
60{
61	FSL_DMA_OUT(chan, &chan->regs->mr, val, 32);
62}
63
64static u32 get_mr(struct fsldma_chan *chan)
65{
66	return FSL_DMA_IN(chan, &chan->regs->mr, 32);
67}
68
69static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
70{
71	FSL_DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
72}
73
74static dma_addr_t get_cdar(struct fsldma_chan *chan)
75{
76	return FSL_DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
77}
78
79static void set_bcr(struct fsldma_chan *chan, u32 val)
80{
81	FSL_DMA_OUT(chan, &chan->regs->bcr, val, 32);
82}
83
84static u32 get_bcr(struct fsldma_chan *chan)
85{
86	return FSL_DMA_IN(chan, &chan->regs->bcr, 32);
87}
88
89/*
90 * Descriptor Helpers
91 */
92
93static void set_desc_cnt(struct fsldma_chan *chan,
94				struct fsl_dma_ld_hw *hw, u32 count)
95{
96	hw->count = CPU_TO_DMA(chan, count, 32);
97}
98
99static void set_desc_src(struct fsldma_chan *chan,
100			 struct fsl_dma_ld_hw *hw, dma_addr_t src)
101{
102	u64 snoop_bits;
103
104	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
105		? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
106	hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
107}
108
109static void set_desc_dst(struct fsldma_chan *chan,
110			 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
111{
112	u64 snoop_bits;
113
114	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
115		? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
116	hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
117}
118
119static void set_desc_next(struct fsldma_chan *chan,
120			  struct fsl_dma_ld_hw *hw, dma_addr_t next)
121{
122	u64 snoop_bits;
123
124	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
125		? FSL_DMA_SNEN : 0;
126	hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
127}
128
129static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
130{
131	u64 snoop_bits;
132
133	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
134		? FSL_DMA_SNEN : 0;
135
136	desc->hw.next_ln_addr = CPU_TO_DMA(chan,
137		DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
138			| snoop_bits, 64);
139}
140
141/*
142 * DMA Engine Hardware Control Helpers
143 */
144
145static void dma_init(struct fsldma_chan *chan)
146{
147	/* Reset the channel */
148	set_mr(chan, 0);
149
150	switch (chan->feature & FSL_DMA_IP_MASK) {
151	case FSL_DMA_IP_85XX:
152		/* Set the channel to below modes:
153		 * EIE - Error interrupt enable
154		 * EOLNIE - End of links interrupt enable
155		 * BWC - Bandwidth sharing among channels
156		 */
157		set_mr(chan, FSL_DMA_MR_BWC | FSL_DMA_MR_EIE
158			| FSL_DMA_MR_EOLNIE);
159		break;
160	case FSL_DMA_IP_83XX:
161		/* Set the channel to below modes:
162		 * EOTIE - End-of-transfer interrupt enable
163		 * PRC_RM - PCI read multiple
164		 */
165		set_mr(chan, FSL_DMA_MR_EOTIE | FSL_DMA_MR_PRC_RM);
166		break;
167	}
168}
169
170static int dma_is_idle(struct fsldma_chan *chan)
171{
172	u32 sr = get_sr(chan);
173	return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
174}
175
176/*
177 * Start the DMA controller
178 *
179 * Preconditions:
180 * - the CDAR register must point to the start descriptor
181 * - the MRn[CS] bit must be cleared
182 */
183static void dma_start(struct fsldma_chan *chan)
184{
185	u32 mode;
186
187	mode = get_mr(chan);
188
189	if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
190		set_bcr(chan, 0);
191		mode |= FSL_DMA_MR_EMP_EN;
192	} else {
193		mode &= ~FSL_DMA_MR_EMP_EN;
194	}
195
196	if (chan->feature & FSL_DMA_CHAN_START_EXT) {
197		mode |= FSL_DMA_MR_EMS_EN;
198	} else {
199		mode &= ~FSL_DMA_MR_EMS_EN;
200		mode |= FSL_DMA_MR_CS;
201	}
202
203	set_mr(chan, mode);
204}
205
206static void dma_halt(struct fsldma_chan *chan)
207{
208	u32 mode;
209	int i;
210
211	/* read the mode register */
212	mode = get_mr(chan);
213
214	/*
215	 * The 85xx controller supports channel abort, which will stop
216	 * the current transfer. On 83xx, this bit is the transfer error
217	 * mask bit, which should not be changed.
218	 */
219	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
220		mode |= FSL_DMA_MR_CA;
221		set_mr(chan, mode);
222
223		mode &= ~FSL_DMA_MR_CA;
224	}
225
226	/* stop the DMA controller */
227	mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
228	set_mr(chan, mode);
229
230	/* wait for the DMA controller to become idle */
231	for (i = 0; i < 100; i++) {
232		if (dma_is_idle(chan))
233			return;
234
235		udelay(10);
236	}
237
238	if (!dma_is_idle(chan))
239		chan_err(chan, "DMA halt timeout!\n");
240}
241
242/**
243 * fsl_chan_set_src_loop_size - Set source address hold transfer size
244 * @chan : Freescale DMA channel
245 * @size     : Address loop size, 0 for disable loop
246 *
247 * The set source address hold transfer size. The source
248 * address hold or loop transfer size is when the DMA transfer
249 * data from source address (SA), if the loop size is 4, the DMA will
250 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
251 * SA + 1 ... and so on.
252 */
253static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
254{
255	u32 mode;
256
257	mode = get_mr(chan);
258
259	switch (size) {
260	case 0:
261		mode &= ~FSL_DMA_MR_SAHE;
262		break;
263	case 1:
264	case 2:
265	case 4:
266	case 8:
267		mode &= ~FSL_DMA_MR_SAHTS_MASK;
268		mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
269		break;
270	}
271
272	set_mr(chan, mode);
273}
274
275/**
276 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
277 * @chan : Freescale DMA channel
278 * @size     : Address loop size, 0 for disable loop
279 *
280 * The set destination address hold transfer size. The destination
281 * address hold or loop transfer size is when the DMA transfer
282 * data to destination address (TA), if the loop size is 4, the DMA will
283 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
284 * TA + 1 ... and so on.
285 */
286static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
287{
288	u32 mode;
289
290	mode = get_mr(chan);
291
292	switch (size) {
293	case 0:
294		mode &= ~FSL_DMA_MR_DAHE;
295		break;
296	case 1:
297	case 2:
298	case 4:
299	case 8:
300		mode &= ~FSL_DMA_MR_DAHTS_MASK;
301		mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
302		break;
303	}
304
305	set_mr(chan, mode);
306}
307
308/**
309 * fsl_chan_set_request_count - Set DMA Request Count for external control
310 * @chan : Freescale DMA channel
311 * @size     : Number of bytes to transfer in a single request
312 *
313 * The Freescale DMA channel can be controlled by the external signal DREQ#.
314 * The DMA request count is how many bytes are allowed to transfer before
315 * pausing the channel, after which a new assertion of DREQ# resumes channel
316 * operation.
317 *
318 * A size of 0 disables external pause control. The maximum size is 1024.
319 */
320static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
321{
322	u32 mode;
323
324	BUG_ON(size > 1024);
325
326	mode = get_mr(chan);
327	mode &= ~FSL_DMA_MR_BWC_MASK;
328	mode |= (__ilog2(size) << 24) & FSL_DMA_MR_BWC_MASK;
329
330	set_mr(chan, mode);
331}
332
333/**
334 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
335 * @chan : Freescale DMA channel
336 * @enable   : 0 is disabled, 1 is enabled.
337 *
338 * The Freescale DMA channel can be controlled by the external signal DREQ#.
339 * The DMA Request Count feature should be used in addition to this feature
340 * to set the number of bytes to transfer before pausing the channel.
341 */
342static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
343{
344	if (enable)
345		chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
346	else
347		chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
348}
349
350/**
351 * fsl_chan_toggle_ext_start - Toggle channel external start status
352 * @chan : Freescale DMA channel
353 * @enable   : 0 is disabled, 1 is enabled.
354 *
355 * If enable the external start, the channel can be started by an
356 * external DMA start pin. So the dma_start() does not start the
357 * transfer immediately. The DMA channel will wait for the
358 * control pin asserted.
359 */
360static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
361{
362	if (enable)
363		chan->feature |= FSL_DMA_CHAN_START_EXT;
364	else
365		chan->feature &= ~FSL_DMA_CHAN_START_EXT;
366}
367
368int fsl_dma_external_start(struct dma_chan *dchan, int enable)
369{
370	struct fsldma_chan *chan;
371
372	if (!dchan)
373		return -EINVAL;
374
375	chan = to_fsl_chan(dchan);
376
377	fsl_chan_toggle_ext_start(chan, enable);
378	return 0;
379}
380EXPORT_SYMBOL_GPL(fsl_dma_external_start);
381
382static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
383{
384	struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
385
386	if (list_empty(&chan->ld_pending))
387		goto out_splice;
388
389	/*
390	 * Add the hardware descriptor to the chain of hardware descriptors
391	 * that already exists in memory.
392	 *
393	 * This will un-set the EOL bit of the existing transaction, and the
394	 * last link in this transaction will become the EOL descriptor.
395	 */
396	set_desc_next(chan, &tail->hw, desc->async_tx.phys);
397
398	/*
399	 * Add the software descriptor and all children to the list
400	 * of pending transactions
401	 */
402out_splice:
403	list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
404}
405
406static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
407{
408	struct fsldma_chan *chan = to_fsl_chan(tx->chan);
409	struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
410	struct fsl_desc_sw *child;
411	dma_cookie_t cookie = -EINVAL;
412
413	spin_lock_bh(&chan->desc_lock);
414
415#ifdef CONFIG_PM
416	if (unlikely(chan->pm_state != RUNNING)) {
417		chan_dbg(chan, "cannot submit due to suspend\n");
418		spin_unlock_bh(&chan->desc_lock);
419		return -1;
420	}
421#endif
422
423	/*
424	 * assign cookies to all of the software descriptors
425	 * that make up this transaction
426	 */
427	list_for_each_entry(child, &desc->tx_list, node) {
428		cookie = dma_cookie_assign(&child->async_tx);
429	}
430
431	/* put this transaction onto the tail of the pending queue */
432	append_ld_queue(chan, desc);
433
434	spin_unlock_bh(&chan->desc_lock);
435
436	return cookie;
437}
438
439/**
440 * fsl_dma_free_descriptor - Free descriptor from channel's DMA pool.
441 * @chan : Freescale DMA channel
442 * @desc: descriptor to be freed
443 */
444static void fsl_dma_free_descriptor(struct fsldma_chan *chan,
445		struct fsl_desc_sw *desc)
446{
447	list_del(&desc->node);
448	chan_dbg(chan, "LD %p free\n", desc);
449	dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
450}
451
452/**
453 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
454 * @chan : Freescale DMA channel
455 *
456 * Return - The descriptor allocated. NULL for failed.
457 */
458static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
459{
460	struct fsl_desc_sw *desc;
461	dma_addr_t pdesc;
462
463	desc = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
464	if (!desc) {
465		chan_dbg(chan, "out of memory for link descriptor\n");
466		return NULL;
467	}
468
469	INIT_LIST_HEAD(&desc->tx_list);
470	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
471	desc->async_tx.tx_submit = fsl_dma_tx_submit;
472	desc->async_tx.phys = pdesc;
473
474	chan_dbg(chan, "LD %p allocated\n", desc);
475
476	return desc;
477}
478
479/**
480 * fsldma_clean_completed_descriptor - free all descriptors which
481 * has been completed and acked
482 * @chan: Freescale DMA channel
483 *
484 * This function is used on all completed and acked descriptors.
485 * All descriptors should only be freed in this function.
486 */
487static void fsldma_clean_completed_descriptor(struct fsldma_chan *chan)
488{
489	struct fsl_desc_sw *desc, *_desc;
490
491	/* Run the callback for each descriptor, in order */
492	list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node)
493		if (async_tx_test_ack(&desc->async_tx))
494			fsl_dma_free_descriptor(chan, desc);
495}
496
497/**
498 * fsldma_run_tx_complete_actions - cleanup a single link descriptor
499 * @chan: Freescale DMA channel
500 * @desc: descriptor to cleanup and free
501 * @cookie: Freescale DMA transaction identifier
502 *
503 * This function is used on a descriptor which has been executed by the DMA
504 * controller. It will run any callbacks, submit any dependencies.
505 */
506static dma_cookie_t fsldma_run_tx_complete_actions(struct fsldma_chan *chan,
507		struct fsl_desc_sw *desc, dma_cookie_t cookie)
508{
509	struct dma_async_tx_descriptor *txd = &desc->async_tx;
510	dma_cookie_t ret = cookie;
511
512	BUG_ON(txd->cookie < 0);
513
514	if (txd->cookie > 0) {
515		ret = txd->cookie;
516
517		dma_descriptor_unmap(txd);
518		/* Run the link descriptor callback function */
519		dmaengine_desc_get_callback_invoke(txd, NULL);
520	}
521
522	/* Run any dependencies */
523	dma_run_dependencies(txd);
524
525	return ret;
526}
527
528/**
529 * fsldma_clean_running_descriptor - move the completed descriptor from
530 * ld_running to ld_completed
531 * @chan: Freescale DMA channel
532 * @desc: the descriptor which is completed
533 *
534 * Free the descriptor directly if acked by async_tx api, or move it to
535 * queue ld_completed.
536 */
537static void fsldma_clean_running_descriptor(struct fsldma_chan *chan,
538		struct fsl_desc_sw *desc)
539{
540	/* Remove from the list of transactions */
541	list_del(&desc->node);
542
543	/*
544	 * the client is allowed to attach dependent operations
545	 * until 'ack' is set
546	 */
547	if (!async_tx_test_ack(&desc->async_tx)) {
548		/*
549		 * Move this descriptor to the list of descriptors which is
550		 * completed, but still awaiting the 'ack' bit to be set.
551		 */
552		list_add_tail(&desc->node, &chan->ld_completed);
553		return;
554	}
555
556	dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
557}
558
559/**
560 * fsl_chan_xfer_ld_queue - transfer any pending transactions
561 * @chan : Freescale DMA channel
562 *
563 * HARDWARE STATE: idle
564 * LOCKING: must hold chan->desc_lock
565 */
566static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
567{
568	struct fsl_desc_sw *desc;
569
570	/*
571	 * If the list of pending descriptors is empty, then we
572	 * don't need to do any work at all
573	 */
574	if (list_empty(&chan->ld_pending)) {
575		chan_dbg(chan, "no pending LDs\n");
576		return;
577	}
578
579	/*
580	 * The DMA controller is not idle, which means that the interrupt
581	 * handler will start any queued transactions when it runs after
582	 * this transaction finishes
583	 */
584	if (!chan->idle) {
585		chan_dbg(chan, "DMA controller still busy\n");
586		return;
587	}
588
589	/*
590	 * If there are some link descriptors which have not been
591	 * transferred, we need to start the controller
592	 */
593
594	/*
595	 * Move all elements from the queue of pending transactions
596	 * onto the list of running transactions
597	 */
598	chan_dbg(chan, "idle, starting controller\n");
599	desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
600	list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
601
602	/*
603	 * The 85xx DMA controller doesn't clear the channel start bit
604	 * automatically at the end of a transfer. Therefore we must clear
605	 * it in software before starting the transfer.
606	 */
607	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
608		u32 mode;
609
610		mode = get_mr(chan);
611		mode &= ~FSL_DMA_MR_CS;
612		set_mr(chan, mode);
613	}
614
615	/*
616	 * Program the descriptor's address into the DMA controller,
617	 * then start the DMA transaction
618	 */
619	set_cdar(chan, desc->async_tx.phys);
620	get_cdar(chan);
621
622	dma_start(chan);
623	chan->idle = false;
624}
625
626/**
627 * fsldma_cleanup_descriptors - cleanup link descriptors which are completed
628 * and move them to ld_completed to free until flag 'ack' is set
629 * @chan: Freescale DMA channel
630 *
631 * This function is used on descriptors which have been executed by the DMA
632 * controller. It will run any callbacks, submit any dependencies, then
633 * free these descriptors if flag 'ack' is set.
634 */
635static void fsldma_cleanup_descriptors(struct fsldma_chan *chan)
636{
637	struct fsl_desc_sw *desc, *_desc;
638	dma_cookie_t cookie = 0;
639	dma_addr_t curr_phys = get_cdar(chan);
640	int seen_current = 0;
641
642	fsldma_clean_completed_descriptor(chan);
643
644	/* Run the callback for each descriptor, in order */
645	list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) {
646		/*
647		 * do not advance past the current descriptor loaded into the
648		 * hardware channel, subsequent descriptors are either in
649		 * process or have not been submitted
650		 */
651		if (seen_current)
652			break;
653
654		/*
655		 * stop the search if we reach the current descriptor and the
656		 * channel is busy
657		 */
658		if (desc->async_tx.phys == curr_phys) {
659			seen_current = 1;
660			if (!dma_is_idle(chan))
661				break;
662		}
663
664		cookie = fsldma_run_tx_complete_actions(chan, desc, cookie);
665
666		fsldma_clean_running_descriptor(chan, desc);
667	}
668
669	/*
670	 * Start any pending transactions automatically
671	 *
672	 * In the ideal case, we keep the DMA controller busy while we go
673	 * ahead and free the descriptors below.
674	 */
675	fsl_chan_xfer_ld_queue(chan);
676
677	if (cookie > 0)
678		chan->common.completed_cookie = cookie;
679}
680
681/**
682 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
683 * @chan : Freescale DMA channel
684 *
685 * This function will create a dma pool for descriptor allocation.
686 *
687 * Return - The number of descriptors allocated.
688 */
689static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
690{
691	struct fsldma_chan *chan = to_fsl_chan(dchan);
692
693	/* Has this channel already been allocated? */
694	if (chan->desc_pool)
695		return 1;
696
697	/*
698	 * We need the descriptor to be aligned to 32bytes
699	 * for meeting FSL DMA specification requirement.
700	 */
701	chan->desc_pool = dma_pool_create(chan->name, chan->dev,
702					  sizeof(struct fsl_desc_sw),
703					  __alignof__(struct fsl_desc_sw), 0);
704	if (!chan->desc_pool) {
705		chan_err(chan, "unable to allocate descriptor pool\n");
706		return -ENOMEM;
707	}
708
709	/* there is at least one descriptor free to be allocated */
710	return 1;
711}
712
713/**
714 * fsldma_free_desc_list - Free all descriptors in a queue
715 * @chan: Freescae DMA channel
716 * @list: the list to free
717 *
718 * LOCKING: must hold chan->desc_lock
719 */
720static void fsldma_free_desc_list(struct fsldma_chan *chan,
721				  struct list_head *list)
722{
723	struct fsl_desc_sw *desc, *_desc;
724
725	list_for_each_entry_safe(desc, _desc, list, node)
726		fsl_dma_free_descriptor(chan, desc);
727}
728
729static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
730					  struct list_head *list)
731{
732	struct fsl_desc_sw *desc, *_desc;
733
734	list_for_each_entry_safe_reverse(desc, _desc, list, node)
735		fsl_dma_free_descriptor(chan, desc);
736}
737
738/**
739 * fsl_dma_free_chan_resources - Free all resources of the channel.
740 * @chan : Freescale DMA channel
741 */
742static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
743{
744	struct fsldma_chan *chan = to_fsl_chan(dchan);
745
746	chan_dbg(chan, "free all channel resources\n");
747	spin_lock_bh(&chan->desc_lock);
748	fsldma_cleanup_descriptors(chan);
749	fsldma_free_desc_list(chan, &chan->ld_pending);
750	fsldma_free_desc_list(chan, &chan->ld_running);
751	fsldma_free_desc_list(chan, &chan->ld_completed);
752	spin_unlock_bh(&chan->desc_lock);
753
754	dma_pool_destroy(chan->desc_pool);
755	chan->desc_pool = NULL;
756}
757
758static struct dma_async_tx_descriptor *
759fsl_dma_prep_memcpy(struct dma_chan *dchan,
760	dma_addr_t dma_dst, dma_addr_t dma_src,
761	size_t len, unsigned long flags)
762{
763	struct fsldma_chan *chan;
764	struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
765	size_t copy;
766
767	if (!dchan)
768		return NULL;
769
770	if (!len)
771		return NULL;
772
773	chan = to_fsl_chan(dchan);
774
775	do {
776
777		/* Allocate the link descriptor from DMA pool */
778		new = fsl_dma_alloc_descriptor(chan);
779		if (!new) {
780			chan_err(chan, "%s\n", msg_ld_oom);
781			goto fail;
782		}
783
784		copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
785
786		set_desc_cnt(chan, &new->hw, copy);
787		set_desc_src(chan, &new->hw, dma_src);
788		set_desc_dst(chan, &new->hw, dma_dst);
789
790		if (!first)
791			first = new;
792		else
793			set_desc_next(chan, &prev->hw, new->async_tx.phys);
794
795		new->async_tx.cookie = 0;
796		async_tx_ack(&new->async_tx);
797
798		prev = new;
799		len -= copy;
800		dma_src += copy;
801		dma_dst += copy;
802
803		/* Insert the link descriptor to the LD ring */
804		list_add_tail(&new->node, &first->tx_list);
805	} while (len);
806
807	new->async_tx.flags = flags; /* client is in control of this ack */
808	new->async_tx.cookie = -EBUSY;
809
810	/* Set End-of-link to the last link descriptor of new list */
811	set_ld_eol(chan, new);
812
813	return &first->async_tx;
814
815fail:
816	if (!first)
817		return NULL;
818
819	fsldma_free_desc_list_reverse(chan, &first->tx_list);
820	return NULL;
821}
822
823static int fsl_dma_device_terminate_all(struct dma_chan *dchan)
824{
825	struct fsldma_chan *chan;
826
827	if (!dchan)
828		return -EINVAL;
829
830	chan = to_fsl_chan(dchan);
831
832	spin_lock_bh(&chan->desc_lock);
833
834	/* Halt the DMA engine */
835	dma_halt(chan);
836
837	/* Remove and free all of the descriptors in the LD queue */
838	fsldma_free_desc_list(chan, &chan->ld_pending);
839	fsldma_free_desc_list(chan, &chan->ld_running);
840	fsldma_free_desc_list(chan, &chan->ld_completed);
841	chan->idle = true;
842
843	spin_unlock_bh(&chan->desc_lock);
844	return 0;
845}
846
847static int fsl_dma_device_config(struct dma_chan *dchan,
848				 struct dma_slave_config *config)
849{
850	struct fsldma_chan *chan;
851	int size;
852
853	if (!dchan)
854		return -EINVAL;
855
856	chan = to_fsl_chan(dchan);
857
858	/* make sure the channel supports setting burst size */
859	if (!chan->set_request_count)
860		return -ENXIO;
861
862	/* we set the controller burst size depending on direction */
863	if (config->direction == DMA_MEM_TO_DEV)
864		size = config->dst_addr_width * config->dst_maxburst;
865	else
866		size = config->src_addr_width * config->src_maxburst;
867
868	chan->set_request_count(chan, size);
869	return 0;
870}
871
872
873/**
874 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
875 * @chan : Freescale DMA channel
876 */
877static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
878{
879	struct fsldma_chan *chan = to_fsl_chan(dchan);
880
881	spin_lock_bh(&chan->desc_lock);
882	fsl_chan_xfer_ld_queue(chan);
883	spin_unlock_bh(&chan->desc_lock);
884}
885
886/**
887 * fsl_tx_status - Determine the DMA status
888 * @chan : Freescale DMA channel
889 */
890static enum dma_status fsl_tx_status(struct dma_chan *dchan,
891					dma_cookie_t cookie,
892					struct dma_tx_state *txstate)
893{
894	struct fsldma_chan *chan = to_fsl_chan(dchan);
895	enum dma_status ret;
896
897	ret = dma_cookie_status(dchan, cookie, txstate);
898	if (ret == DMA_COMPLETE)
899		return ret;
900
901	spin_lock_bh(&chan->desc_lock);
902	fsldma_cleanup_descriptors(chan);
903	spin_unlock_bh(&chan->desc_lock);
904
905	return dma_cookie_status(dchan, cookie, txstate);
906}
907
908/*----------------------------------------------------------------------------*/
909/* Interrupt Handling                                                         */
910/*----------------------------------------------------------------------------*/
911
912static irqreturn_t fsldma_chan_irq(int irq, void *data)
913{
914	struct fsldma_chan *chan = data;
915	u32 stat;
916
917	/* save and clear the status register */
918	stat = get_sr(chan);
919	set_sr(chan, stat);
920	chan_dbg(chan, "irq: stat = 0x%x\n", stat);
921
922	/* check that this was really our device */
923	stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
924	if (!stat)
925		return IRQ_NONE;
926
927	if (stat & FSL_DMA_SR_TE)
928		chan_err(chan, "Transfer Error!\n");
929
930	/*
931	 * Programming Error
932	 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
933	 * trigger a PE interrupt.
934	 */
935	if (stat & FSL_DMA_SR_PE) {
936		chan_dbg(chan, "irq: Programming Error INT\n");
937		stat &= ~FSL_DMA_SR_PE;
938		if (get_bcr(chan) != 0)
939			chan_err(chan, "Programming Error!\n");
940	}
941
942	/*
943	 * For MPC8349, EOCDI event need to update cookie
944	 * and start the next transfer if it exist.
945	 */
946	if (stat & FSL_DMA_SR_EOCDI) {
947		chan_dbg(chan, "irq: End-of-Chain link INT\n");
948		stat &= ~FSL_DMA_SR_EOCDI;
949	}
950
951	/*
952	 * If it current transfer is the end-of-transfer,
953	 * we should clear the Channel Start bit for
954	 * prepare next transfer.
955	 */
956	if (stat & FSL_DMA_SR_EOLNI) {
957		chan_dbg(chan, "irq: End-of-link INT\n");
958		stat &= ~FSL_DMA_SR_EOLNI;
959	}
960
961	/* check that the DMA controller is really idle */
962	if (!dma_is_idle(chan))
963		chan_err(chan, "irq: controller not idle!\n");
964
965	/* check that we handled all of the bits */
966	if (stat)
967		chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
968
969	/*
970	 * Schedule the tasklet to handle all cleanup of the current
971	 * transaction. It will start a new transaction if there is
972	 * one pending.
973	 */
974	tasklet_schedule(&chan->tasklet);
975	chan_dbg(chan, "irq: Exit\n");
976	return IRQ_HANDLED;
977}
978
979static void dma_do_tasklet(struct tasklet_struct *t)
980{
981	struct fsldma_chan *chan = from_tasklet(chan, t, tasklet);
982
983	chan_dbg(chan, "tasklet entry\n");
984
985	spin_lock(&chan->desc_lock);
986
987	/* the hardware is now idle and ready for more */
988	chan->idle = true;
989
990	/* Run all cleanup for descriptors which have been completed */
991	fsldma_cleanup_descriptors(chan);
992
993	spin_unlock(&chan->desc_lock);
994
995	chan_dbg(chan, "tasklet exit\n");
996}
997
998static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
999{
1000	struct fsldma_device *fdev = data;
1001	struct fsldma_chan *chan;
1002	unsigned int handled = 0;
1003	u32 gsr, mask;
1004	int i;
1005
1006	gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1007						   : in_le32(fdev->regs);
1008	mask = 0xff000000;
1009	dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1010
1011	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1012		chan = fdev->chan[i];
1013		if (!chan)
1014			continue;
1015
1016		if (gsr & mask) {
1017			dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1018			fsldma_chan_irq(irq, chan);
1019			handled++;
1020		}
1021
1022		gsr &= ~mask;
1023		mask >>= 8;
1024	}
1025
1026	return IRQ_RETVAL(handled);
1027}
1028
1029static void fsldma_free_irqs(struct fsldma_device *fdev)
1030{
1031	struct fsldma_chan *chan;
1032	int i;
1033
1034	if (fdev->irq) {
1035		dev_dbg(fdev->dev, "free per-controller IRQ\n");
1036		free_irq(fdev->irq, fdev);
1037		return;
1038	}
1039
1040	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1041		chan = fdev->chan[i];
1042		if (chan && chan->irq) {
1043			chan_dbg(chan, "free per-channel IRQ\n");
1044			free_irq(chan->irq, chan);
1045		}
1046	}
1047}
1048
1049static int fsldma_request_irqs(struct fsldma_device *fdev)
1050{
1051	struct fsldma_chan *chan;
1052	int ret;
1053	int i;
1054
1055	/* if we have a per-controller IRQ, use that */
1056	if (fdev->irq) {
1057		dev_dbg(fdev->dev, "request per-controller IRQ\n");
1058		ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1059				  "fsldma-controller", fdev);
1060		return ret;
1061	}
1062
1063	/* no per-controller IRQ, use the per-channel IRQs */
1064	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1065		chan = fdev->chan[i];
1066		if (!chan)
1067			continue;
1068
1069		if (!chan->irq) {
1070			chan_err(chan, "interrupts property missing in device tree\n");
1071			ret = -ENODEV;
1072			goto out_unwind;
1073		}
1074
1075		chan_dbg(chan, "request per-channel IRQ\n");
1076		ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1077				  "fsldma-chan", chan);
1078		if (ret) {
1079			chan_err(chan, "unable to request per-channel IRQ\n");
1080			goto out_unwind;
1081		}
1082	}
1083
1084	return 0;
1085
1086out_unwind:
1087	for (/* none */; i >= 0; i--) {
1088		chan = fdev->chan[i];
1089		if (!chan)
1090			continue;
1091
1092		if (!chan->irq)
1093			continue;
1094
1095		free_irq(chan->irq, chan);
1096	}
1097
1098	return ret;
1099}
1100
1101/*----------------------------------------------------------------------------*/
1102/* OpenFirmware Subsystem                                                     */
1103/*----------------------------------------------------------------------------*/
1104
1105static int fsl_dma_chan_probe(struct fsldma_device *fdev,
1106	struct device_node *node, u32 feature, const char *compatible)
1107{
1108	struct fsldma_chan *chan;
1109	struct resource res;
1110	int err;
1111
1112	/* alloc channel */
1113	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1114	if (!chan) {
1115		err = -ENOMEM;
1116		goto out_return;
1117	}
1118
1119	/* ioremap registers for use */
1120	chan->regs = of_iomap(node, 0);
1121	if (!chan->regs) {
1122		dev_err(fdev->dev, "unable to ioremap registers\n");
1123		err = -ENOMEM;
1124		goto out_free_chan;
1125	}
1126
1127	err = of_address_to_resource(node, 0, &res);
1128	if (err) {
1129		dev_err(fdev->dev, "unable to find 'reg' property\n");
1130		goto out_iounmap_regs;
1131	}
1132
1133	chan->feature = feature;
1134	if (!fdev->feature)
1135		fdev->feature = chan->feature;
1136
1137	/*
1138	 * If the DMA device's feature is different than the feature
1139	 * of its channels, report the bug
1140	 */
1141	WARN_ON(fdev->feature != chan->feature);
1142
1143	chan->dev = fdev->dev;
1144	chan->id = (res.start & 0xfff) < 0x300 ?
1145		   ((res.start - 0x100) & 0xfff) >> 7 :
1146		   ((res.start - 0x200) & 0xfff) >> 7;
1147	if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1148		dev_err(fdev->dev, "too many channels for device\n");
1149		err = -EINVAL;
1150		goto out_iounmap_regs;
1151	}
1152
1153	fdev->chan[chan->id] = chan;
1154	tasklet_setup(&chan->tasklet, dma_do_tasklet);
1155	snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1156
1157	/* Initialize the channel */
1158	dma_init(chan);
1159
1160	/* Clear cdar registers */
1161	set_cdar(chan, 0);
1162
1163	switch (chan->feature & FSL_DMA_IP_MASK) {
1164	case FSL_DMA_IP_85XX:
1165		chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1166		fallthrough;
1167	case FSL_DMA_IP_83XX:
1168		chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1169		chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1170		chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1171		chan->set_request_count = fsl_chan_set_request_count;
1172	}
1173
1174	spin_lock_init(&chan->desc_lock);
1175	INIT_LIST_HEAD(&chan->ld_pending);
1176	INIT_LIST_HEAD(&chan->ld_running);
1177	INIT_LIST_HEAD(&chan->ld_completed);
1178	chan->idle = true;
1179#ifdef CONFIG_PM
1180	chan->pm_state = RUNNING;
1181#endif
1182
1183	chan->common.device = &fdev->common;
1184	dma_cookie_init(&chan->common);
1185
1186	/* find the IRQ line, if it exists in the device tree */
1187	chan->irq = irq_of_parse_and_map(node, 0);
1188
1189	/* Add the channel to DMA device channel list */
1190	list_add_tail(&chan->common.device_node, &fdev->common.channels);
1191
1192	dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1193		 chan->irq ? chan->irq : fdev->irq);
1194
1195	return 0;
1196
1197out_iounmap_regs:
1198	iounmap(chan->regs);
1199out_free_chan:
1200	kfree(chan);
1201out_return:
1202	return err;
1203}
1204
1205static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1206{
1207	irq_dispose_mapping(chan->irq);
1208	list_del(&chan->common.device_node);
1209	iounmap(chan->regs);
1210	kfree(chan);
1211}
1212
1213static int fsldma_of_probe(struct platform_device *op)
1214{
1215	struct fsldma_device *fdev;
1216	struct device_node *child;
1217	unsigned int i;
1218	int err;
1219
1220	fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1221	if (!fdev) {
1222		err = -ENOMEM;
1223		goto out_return;
1224	}
1225
1226	fdev->dev = &op->dev;
1227	INIT_LIST_HEAD(&fdev->common.channels);
1228
1229	/* ioremap the registers for use */
1230	fdev->regs = of_iomap(op->dev.of_node, 0);
1231	if (!fdev->regs) {
1232		dev_err(&op->dev, "unable to ioremap registers\n");
1233		err = -ENOMEM;
1234		goto out_free;
1235	}
1236
1237	/* map the channel IRQ if it exists, but don't hookup the handler yet */
1238	fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1239
1240	dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1241	dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1242	fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1243	fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1244	fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1245	fdev->common.device_tx_status = fsl_tx_status;
1246	fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1247	fdev->common.device_config = fsl_dma_device_config;
1248	fdev->common.device_terminate_all = fsl_dma_device_terminate_all;
1249	fdev->common.dev = &op->dev;
1250
1251	fdev->common.src_addr_widths = FSL_DMA_BUSWIDTHS;
1252	fdev->common.dst_addr_widths = FSL_DMA_BUSWIDTHS;
1253	fdev->common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1254	fdev->common.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1255
1256	dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1257
1258	platform_set_drvdata(op, fdev);
1259
1260	/*
1261	 * We cannot use of_platform_bus_probe() because there is no
1262	 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1263	 * channel object.
1264	 */
1265	for_each_child_of_node(op->dev.of_node, child) {
1266		if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1267			fsl_dma_chan_probe(fdev, child,
1268				FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1269				"fsl,eloplus-dma-channel");
1270		}
1271
1272		if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1273			fsl_dma_chan_probe(fdev, child,
1274				FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1275				"fsl,elo-dma-channel");
1276		}
1277	}
1278
1279	/*
1280	 * Hookup the IRQ handler(s)
1281	 *
1282	 * If we have a per-controller interrupt, we prefer that to the
1283	 * per-channel interrupts to reduce the number of shared interrupt
1284	 * handlers on the same IRQ line
1285	 */
1286	err = fsldma_request_irqs(fdev);
1287	if (err) {
1288		dev_err(fdev->dev, "unable to request IRQs\n");
1289		goto out_free_fdev;
1290	}
1291
1292	dma_async_device_register(&fdev->common);
1293	return 0;
1294
1295out_free_fdev:
1296	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1297		if (fdev->chan[i])
1298			fsl_dma_chan_remove(fdev->chan[i]);
1299	}
1300	irq_dispose_mapping(fdev->irq);
1301	iounmap(fdev->regs);
1302out_free:
1303	kfree(fdev);
1304out_return:
1305	return err;
1306}
1307
1308static int fsldma_of_remove(struct platform_device *op)
1309{
1310	struct fsldma_device *fdev;
1311	unsigned int i;
1312
1313	fdev = platform_get_drvdata(op);
1314	dma_async_device_unregister(&fdev->common);
1315
1316	fsldma_free_irqs(fdev);
1317
1318	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1319		if (fdev->chan[i])
1320			fsl_dma_chan_remove(fdev->chan[i]);
1321	}
1322	irq_dispose_mapping(fdev->irq);
1323
1324	iounmap(fdev->regs);
1325	kfree(fdev);
1326
1327	return 0;
1328}
1329
1330#ifdef CONFIG_PM
1331static int fsldma_suspend_late(struct device *dev)
1332{
1333	struct fsldma_device *fdev = dev_get_drvdata(dev);
1334	struct fsldma_chan *chan;
1335	int i;
1336
1337	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1338		chan = fdev->chan[i];
1339		if (!chan)
1340			continue;
1341
1342		spin_lock_bh(&chan->desc_lock);
1343		if (unlikely(!chan->idle))
1344			goto out;
1345		chan->regs_save.mr = get_mr(chan);
1346		chan->pm_state = SUSPENDED;
1347		spin_unlock_bh(&chan->desc_lock);
1348	}
1349	return 0;
1350
1351out:
1352	for (; i >= 0; i--) {
1353		chan = fdev->chan[i];
1354		if (!chan)
1355			continue;
1356		chan->pm_state = RUNNING;
1357		spin_unlock_bh(&chan->desc_lock);
1358	}
1359	return -EBUSY;
1360}
1361
1362static int fsldma_resume_early(struct device *dev)
1363{
1364	struct fsldma_device *fdev = dev_get_drvdata(dev);
1365	struct fsldma_chan *chan;
1366	u32 mode;
1367	int i;
1368
1369	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1370		chan = fdev->chan[i];
1371		if (!chan)
1372			continue;
1373
1374		spin_lock_bh(&chan->desc_lock);
1375		mode = chan->regs_save.mr
1376			& ~FSL_DMA_MR_CS & ~FSL_DMA_MR_CC & ~FSL_DMA_MR_CA;
1377		set_mr(chan, mode);
1378		chan->pm_state = RUNNING;
1379		spin_unlock_bh(&chan->desc_lock);
1380	}
1381
1382	return 0;
1383}
1384
1385static const struct dev_pm_ops fsldma_pm_ops = {
1386	.suspend_late	= fsldma_suspend_late,
1387	.resume_early	= fsldma_resume_early,
1388};
1389#endif
1390
1391static const struct of_device_id fsldma_of_ids[] = {
1392	{ .compatible = "fsl,elo3-dma", },
1393	{ .compatible = "fsl,eloplus-dma", },
1394	{ .compatible = "fsl,elo-dma", },
1395	{}
1396};
1397MODULE_DEVICE_TABLE(of, fsldma_of_ids);
1398
1399static struct platform_driver fsldma_of_driver = {
1400	.driver = {
1401		.name = "fsl-elo-dma",
1402		.of_match_table = fsldma_of_ids,
1403#ifdef CONFIG_PM
1404		.pm = &fsldma_pm_ops,
1405#endif
1406	},
1407	.probe = fsldma_of_probe,
1408	.remove = fsldma_of_remove,
1409};
1410
1411/*----------------------------------------------------------------------------*/
1412/* Module Init / Exit                                                         */
1413/*----------------------------------------------------------------------------*/
1414
1415static __init int fsldma_init(void)
1416{
1417	pr_info("Freescale Elo series DMA driver\n");
1418	return platform_driver_register(&fsldma_of_driver);
1419}
1420
1421static void __exit fsldma_exit(void)
1422{
1423	platform_driver_unregister(&fsldma_of_driver);
1424}
1425
1426subsys_initcall(fsldma_init);
1427module_exit(fsldma_exit);
1428
1429MODULE_DESCRIPTION("Freescale Elo series DMA driver");
1430MODULE_LICENSE("GPL");
1431