1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4 */
5
6/*
7 * This code implements the DMA subsystem. It provides a HW-neutral interface
8 * for other kernel code to use asynchronous memory copy capabilities,
9 * if present, and allows different HW DMA drivers to register as providing
10 * this capability.
11 *
12 * Due to the fact we are accelerating what is already a relatively fast
13 * operation, the code goes to great lengths to avoid additional overhead,
14 * such as locking.
15 *
16 * LOCKING:
17 *
18 * The subsystem keeps a global list of dma_device structs it is protected by a
19 * mutex, dma_list_mutex.
20 *
21 * A subsystem can get access to a channel by calling dmaengine_get() followed
22 * by dma_find_channel(), or if it has need for an exclusive channel it can call
23 * dma_request_channel().  Once a channel is allocated a reference is taken
24 * against its corresponding driver to disable removal.
25 *
26 * Each device has a channels list, which runs unlocked but is never modified
27 * once the device is registered, it's just setup by the driver.
28 *
29 * See Documentation/driver-api/dmaengine for more details
30 */
31
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34#include <linux/platform_device.h>
35#include <linux/dma-mapping.h>
36#include <linux/init.h>
37#include <linux/module.h>
38#include <linux/mm.h>
39#include <linux/device.h>
40#include <linux/dmaengine.h>
41#include <linux/hardirq.h>
42#include <linux/spinlock.h>
43#include <linux/percpu.h>
44#include <linux/rcupdate.h>
45#include <linux/mutex.h>
46#include <linux/jiffies.h>
47#include <linux/rculist.h>
48#include <linux/idr.h>
49#include <linux/slab.h>
50#include <linux/acpi.h>
51#include <linux/acpi_dma.h>
52#include <linux/of_dma.h>
53#include <linux/mempool.h>
54#include <linux/numa.h>
55
56#include "dmaengine.h"
57
58static DEFINE_MUTEX(dma_list_mutex);
59static DEFINE_IDA(dma_ida);
60static LIST_HEAD(dma_device_list);
61static long dmaengine_ref_count;
62
63/* --- debugfs implementation --- */
64#ifdef CONFIG_DEBUG_FS
65#include <linux/debugfs.h>
66
67static struct dentry *rootdir;
68
69static void dmaengine_debug_register(struct dma_device *dma_dev)
70{
71	dma_dev->dbg_dev_root = debugfs_create_dir(dev_name(dma_dev->dev),
72						   rootdir);
73	if (IS_ERR(dma_dev->dbg_dev_root))
74		dma_dev->dbg_dev_root = NULL;
75}
76
77static void dmaengine_debug_unregister(struct dma_device *dma_dev)
78{
79	debugfs_remove_recursive(dma_dev->dbg_dev_root);
80	dma_dev->dbg_dev_root = NULL;
81}
82
83static void dmaengine_dbg_summary_show(struct seq_file *s,
84				       struct dma_device *dma_dev)
85{
86	struct dma_chan *chan;
87
88	list_for_each_entry(chan, &dma_dev->channels, device_node) {
89		if (chan->client_count) {
90			seq_printf(s, " %-13s| %s", dma_chan_name(chan),
91				   chan->dbg_client_name ?: "in-use");
92
93			if (chan->router)
94				seq_printf(s, " (via router: %s)\n",
95					dev_name(chan->router->dev));
96			else
97				seq_puts(s, "\n");
98		}
99	}
100}
101
102static int dmaengine_summary_show(struct seq_file *s, void *data)
103{
104	struct dma_device *dma_dev = NULL;
105
106	mutex_lock(&dma_list_mutex);
107	list_for_each_entry(dma_dev, &dma_device_list, global_node) {
108		seq_printf(s, "dma%d (%s): number of channels: %u\n",
109			   dma_dev->dev_id, dev_name(dma_dev->dev),
110			   dma_dev->chancnt);
111
112		if (dma_dev->dbg_summary_show)
113			dma_dev->dbg_summary_show(s, dma_dev);
114		else
115			dmaengine_dbg_summary_show(s, dma_dev);
116
117		if (!list_is_last(&dma_dev->global_node, &dma_device_list))
118			seq_puts(s, "\n");
119	}
120	mutex_unlock(&dma_list_mutex);
121
122	return 0;
123}
124DEFINE_SHOW_ATTRIBUTE(dmaengine_summary);
125
126static void __init dmaengine_debugfs_init(void)
127{
128	rootdir = debugfs_create_dir("dmaengine", NULL);
129
130	/* /sys/kernel/debug/dmaengine/summary */
131	debugfs_create_file("summary", 0444, rootdir, NULL,
132			    &dmaengine_summary_fops);
133}
134#else
135static inline void dmaengine_debugfs_init(void) { }
136static inline int dmaengine_debug_register(struct dma_device *dma_dev)
137{
138	return 0;
139}
140
141static inline void dmaengine_debug_unregister(struct dma_device *dma_dev) { }
142#endif	/* DEBUG_FS */
143
144/* --- sysfs implementation --- */
145
146#define DMA_SLAVE_NAME	"slave"
147
148/**
149 * dev_to_dma_chan - convert a device pointer to its sysfs container object
150 * @dev:	device node
151 *
152 * Must be called under dma_list_mutex.
153 */
154static struct dma_chan *dev_to_dma_chan(struct device *dev)
155{
156	struct dma_chan_dev *chan_dev;
157
158	chan_dev = container_of(dev, typeof(*chan_dev), device);
159	return chan_dev->chan;
160}
161
162static ssize_t memcpy_count_show(struct device *dev,
163				 struct device_attribute *attr, char *buf)
164{
165	struct dma_chan *chan;
166	unsigned long count = 0;
167	int i;
168	int err;
169
170	mutex_lock(&dma_list_mutex);
171	chan = dev_to_dma_chan(dev);
172	if (chan) {
173		for_each_possible_cpu(i)
174			count += per_cpu_ptr(chan->local, i)->memcpy_count;
175		err = sprintf(buf, "%lu\n", count);
176	} else
177		err = -ENODEV;
178	mutex_unlock(&dma_list_mutex);
179
180	return err;
181}
182static DEVICE_ATTR_RO(memcpy_count);
183
184static ssize_t bytes_transferred_show(struct device *dev,
185				      struct device_attribute *attr, char *buf)
186{
187	struct dma_chan *chan;
188	unsigned long count = 0;
189	int i;
190	int err;
191
192	mutex_lock(&dma_list_mutex);
193	chan = dev_to_dma_chan(dev);
194	if (chan) {
195		for_each_possible_cpu(i)
196			count += per_cpu_ptr(chan->local, i)->bytes_transferred;
197		err = sprintf(buf, "%lu\n", count);
198	} else
199		err = -ENODEV;
200	mutex_unlock(&dma_list_mutex);
201
202	return err;
203}
204static DEVICE_ATTR_RO(bytes_transferred);
205
206static ssize_t in_use_show(struct device *dev, struct device_attribute *attr,
207			   char *buf)
208{
209	struct dma_chan *chan;
210	int err;
211
212	mutex_lock(&dma_list_mutex);
213	chan = dev_to_dma_chan(dev);
214	if (chan)
215		err = sprintf(buf, "%d\n", chan->client_count);
216	else
217		err = -ENODEV;
218	mutex_unlock(&dma_list_mutex);
219
220	return err;
221}
222static DEVICE_ATTR_RO(in_use);
223
224static struct attribute *dma_dev_attrs[] = {
225	&dev_attr_memcpy_count.attr,
226	&dev_attr_bytes_transferred.attr,
227	&dev_attr_in_use.attr,
228	NULL,
229};
230ATTRIBUTE_GROUPS(dma_dev);
231
232static void chan_dev_release(struct device *dev)
233{
234	struct dma_chan_dev *chan_dev;
235
236	chan_dev = container_of(dev, typeof(*chan_dev), device);
237	kfree(chan_dev);
238}
239
240static struct class dma_devclass = {
241	.name		= "dma",
242	.dev_groups	= dma_dev_groups,
243	.dev_release	= chan_dev_release,
244};
245
246/* --- client and device registration --- */
247
248/* enable iteration over all operation types */
249static dma_cap_mask_t dma_cap_mask_all;
250
251/**
252 * struct dma_chan_tbl_ent - tracks channel allocations per core/operation
253 * @chan:	associated channel for this entry
254 */
255struct dma_chan_tbl_ent {
256	struct dma_chan *chan;
257};
258
259/* percpu lookup table for memory-to-memory offload providers */
260static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
261
262static int __init dma_channel_table_init(void)
263{
264	enum dma_transaction_type cap;
265	int err = 0;
266
267	bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
268
269	/* 'interrupt', 'private', and 'slave' are channel capabilities,
270	 * but are not associated with an operation so they do not need
271	 * an entry in the channel_table
272	 */
273	clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
274	clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
275	clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
276
277	for_each_dma_cap_mask(cap, dma_cap_mask_all) {
278		channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
279		if (!channel_table[cap]) {
280			err = -ENOMEM;
281			break;
282		}
283	}
284
285	if (err) {
286		pr_err("dmaengine dma_channel_table_init failure: %d\n", err);
287		for_each_dma_cap_mask(cap, dma_cap_mask_all)
288			free_percpu(channel_table[cap]);
289	}
290
291	return err;
292}
293arch_initcall(dma_channel_table_init);
294
295/**
296 * dma_chan_is_local - checks if the channel is in the same NUMA-node as the CPU
297 * @chan:	DMA channel to test
298 * @cpu:	CPU index which the channel should be close to
299 *
300 * Returns true if the channel is in the same NUMA-node as the CPU.
301 */
302static bool dma_chan_is_local(struct dma_chan *chan, int cpu)
303{
304	int node = dev_to_node(chan->device->dev);
305	return node == NUMA_NO_NODE ||
306		cpumask_test_cpu(cpu, cpumask_of_node(node));
307}
308
309/**
310 * min_chan - finds the channel with min count and in the same NUMA-node as the CPU
311 * @cap:	capability to match
312 * @cpu:	CPU index which the channel should be close to
313 *
314 * If some channels are close to the given CPU, the one with the lowest
315 * reference count is returned. Otherwise, CPU is ignored and only the
316 * reference count is taken into account.
317 *
318 * Must be called under dma_list_mutex.
319 */
320static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu)
321{
322	struct dma_device *device;
323	struct dma_chan *chan;
324	struct dma_chan *min = NULL;
325	struct dma_chan *localmin = NULL;
326
327	list_for_each_entry(device, &dma_device_list, global_node) {
328		if (!dma_has_cap(cap, device->cap_mask) ||
329		    dma_has_cap(DMA_PRIVATE, device->cap_mask))
330			continue;
331		list_for_each_entry(chan, &device->channels, device_node) {
332			if (!chan->client_count)
333				continue;
334			if (!min || chan->table_count < min->table_count)
335				min = chan;
336
337			if (dma_chan_is_local(chan, cpu))
338				if (!localmin ||
339				    chan->table_count < localmin->table_count)
340					localmin = chan;
341		}
342	}
343
344	chan = localmin ? localmin : min;
345
346	if (chan)
347		chan->table_count++;
348
349	return chan;
350}
351
352/**
353 * dma_channel_rebalance - redistribute the available channels
354 *
355 * Optimize for CPU isolation (each CPU gets a dedicated channel for an
356 * operation type) in the SMP case, and operation isolation (avoid
357 * multi-tasking channels) in the non-SMP case.
358 *
359 * Must be called under dma_list_mutex.
360 */
361static void dma_channel_rebalance(void)
362{
363	struct dma_chan *chan;
364	struct dma_device *device;
365	int cpu;
366	int cap;
367
368	/* undo the last distribution */
369	for_each_dma_cap_mask(cap, dma_cap_mask_all)
370		for_each_possible_cpu(cpu)
371			per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
372
373	list_for_each_entry(device, &dma_device_list, global_node) {
374		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
375			continue;
376		list_for_each_entry(chan, &device->channels, device_node)
377			chan->table_count = 0;
378	}
379
380	/* don't populate the channel_table if no clients are available */
381	if (!dmaengine_ref_count)
382		return;
383
384	/* redistribute available channels */
385	for_each_dma_cap_mask(cap, dma_cap_mask_all)
386		for_each_online_cpu(cpu) {
387			chan = min_chan(cap, cpu);
388			per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
389		}
390}
391
392static int dma_device_satisfies_mask(struct dma_device *device,
393				     const dma_cap_mask_t *want)
394{
395	dma_cap_mask_t has;
396
397	bitmap_and(has.bits, want->bits, device->cap_mask.bits,
398		DMA_TX_TYPE_END);
399	return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
400}
401
402static struct module *dma_chan_to_owner(struct dma_chan *chan)
403{
404	return chan->device->owner;
405}
406
407/**
408 * balance_ref_count - catch up the channel reference count
409 * @chan:	channel to balance ->client_count versus dmaengine_ref_count
410 *
411 * Must be called under dma_list_mutex.
412 */
413static void balance_ref_count(struct dma_chan *chan)
414{
415	struct module *owner = dma_chan_to_owner(chan);
416
417	while (chan->client_count < dmaengine_ref_count) {
418		__module_get(owner);
419		chan->client_count++;
420	}
421}
422
423static void dma_device_release(struct kref *ref)
424{
425	struct dma_device *device = container_of(ref, struct dma_device, ref);
426
427	list_del_rcu(&device->global_node);
428	dma_channel_rebalance();
429
430	if (device->device_release)
431		device->device_release(device);
432}
433
434static void dma_device_put(struct dma_device *device)
435{
436	lockdep_assert_held(&dma_list_mutex);
437	kref_put(&device->ref, dma_device_release);
438}
439
440/**
441 * dma_chan_get - try to grab a DMA channel's parent driver module
442 * @chan:	channel to grab
443 *
444 * Must be called under dma_list_mutex.
445 */
446static int dma_chan_get(struct dma_chan *chan)
447{
448	struct module *owner = dma_chan_to_owner(chan);
449	int ret;
450
451	/* The channel is already in use, update client count */
452	if (chan->client_count) {
453		__module_get(owner);
454		chan->client_count++;
455		return 0;
456	}
457
458	if (!try_module_get(owner))
459		return -ENODEV;
460
461	ret = kref_get_unless_zero(&chan->device->ref);
462	if (!ret) {
463		ret = -ENODEV;
464		goto module_put_out;
465	}
466
467	/* allocate upon first client reference */
468	if (chan->device->device_alloc_chan_resources) {
469		ret = chan->device->device_alloc_chan_resources(chan);
470		if (ret < 0)
471			goto err_out;
472	}
473
474	chan->client_count++;
475
476	if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
477		balance_ref_count(chan);
478
479	return 0;
480
481err_out:
482	dma_device_put(chan->device);
483module_put_out:
484	module_put(owner);
485	return ret;
486}
487
488/**
489 * dma_chan_put - drop a reference to a DMA channel's parent driver module
490 * @chan:	channel to release
491 *
492 * Must be called under dma_list_mutex.
493 */
494static void dma_chan_put(struct dma_chan *chan)
495{
496	/* This channel is not in use, bail out */
497	if (!chan->client_count)
498		return;
499
500	chan->client_count--;
501
502	/* This channel is not in use anymore, free it */
503	if (!chan->client_count && chan->device->device_free_chan_resources) {
504		/* Make sure all operations have completed */
505		dmaengine_synchronize(chan);
506		chan->device->device_free_chan_resources(chan);
507	}
508
509	/* If the channel is used via a DMA request router, free the mapping */
510	if (chan->router && chan->router->route_free) {
511		chan->router->route_free(chan->router->dev, chan->route_data);
512		chan->router = NULL;
513		chan->route_data = NULL;
514	}
515
516	dma_device_put(chan->device);
517	module_put(dma_chan_to_owner(chan));
518}
519
520enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
521{
522	enum dma_status status;
523	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
524
525	dma_async_issue_pending(chan);
526	do {
527		status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
528		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
529			dev_err(chan->device->dev, "%s: timeout!\n", __func__);
530			return DMA_ERROR;
531		}
532		if (status != DMA_IN_PROGRESS)
533			break;
534		cpu_relax();
535	} while (1);
536
537	return status;
538}
539EXPORT_SYMBOL(dma_sync_wait);
540
541/**
542 * dma_find_channel - find a channel to carry out the operation
543 * @tx_type:	transaction type
544 */
545struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
546{
547	return this_cpu_read(channel_table[tx_type]->chan);
548}
549EXPORT_SYMBOL(dma_find_channel);
550
551/**
552 * dma_issue_pending_all - flush all pending operations across all channels
553 */
554void dma_issue_pending_all(void)
555{
556	struct dma_device *device;
557	struct dma_chan *chan;
558
559	rcu_read_lock();
560	list_for_each_entry_rcu(device, &dma_device_list, global_node) {
561		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
562			continue;
563		list_for_each_entry(chan, &device->channels, device_node)
564			if (chan->client_count)
565				device->device_issue_pending(chan);
566	}
567	rcu_read_unlock();
568}
569EXPORT_SYMBOL(dma_issue_pending_all);
570
571int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
572{
573	struct dma_device *device;
574
575	if (!chan || !caps)
576		return -EINVAL;
577
578	device = chan->device;
579
580	/* check if the channel supports slave transactions */
581	if (!(test_bit(DMA_SLAVE, device->cap_mask.bits) ||
582	      test_bit(DMA_CYCLIC, device->cap_mask.bits)))
583		return -ENXIO;
584
585	/*
586	 * Check whether it reports it uses the generic slave
587	 * capabilities, if not, that means it doesn't support any
588	 * kind of slave capabilities reporting.
589	 */
590	if (!device->directions)
591		return -ENXIO;
592
593	caps->src_addr_widths = device->src_addr_widths;
594	caps->dst_addr_widths = device->dst_addr_widths;
595	caps->directions = device->directions;
596	caps->min_burst = device->min_burst;
597	caps->max_burst = device->max_burst;
598	caps->max_sg_burst = device->max_sg_burst;
599	caps->residue_granularity = device->residue_granularity;
600	caps->descriptor_reuse = device->descriptor_reuse;
601	caps->cmd_pause = !!device->device_pause;
602	caps->cmd_resume = !!device->device_resume;
603	caps->cmd_terminate = !!device->device_terminate_all;
604
605	/*
606	 * DMA engine device might be configured with non-uniformly
607	 * distributed slave capabilities per device channels. In this
608	 * case the corresponding driver may provide the device_caps
609	 * callback to override the generic capabilities with
610	 * channel-specific ones.
611	 */
612	if (device->device_caps)
613		device->device_caps(chan, caps);
614
615	return 0;
616}
617EXPORT_SYMBOL_GPL(dma_get_slave_caps);
618
619static struct dma_chan *private_candidate(const dma_cap_mask_t *mask,
620					  struct dma_device *dev,
621					  dma_filter_fn fn, void *fn_param)
622{
623	struct dma_chan *chan;
624
625	if (mask && !dma_device_satisfies_mask(dev, mask)) {
626		dev_dbg(dev->dev, "%s: wrong capabilities\n", __func__);
627		return NULL;
628	}
629	/* devices with multiple channels need special handling as we need to
630	 * ensure that all channels are either private or public.
631	 */
632	if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
633		list_for_each_entry(chan, &dev->channels, device_node) {
634			/* some channels are already publicly allocated */
635			if (chan->client_count)
636				return NULL;
637		}
638
639	list_for_each_entry(chan, &dev->channels, device_node) {
640		if (chan->client_count) {
641			dev_dbg(dev->dev, "%s: %s busy\n",
642				 __func__, dma_chan_name(chan));
643			continue;
644		}
645		if (fn && !fn(chan, fn_param)) {
646			dev_dbg(dev->dev, "%s: %s filter said false\n",
647				 __func__, dma_chan_name(chan));
648			continue;
649		}
650		return chan;
651	}
652
653	return NULL;
654}
655
656static struct dma_chan *find_candidate(struct dma_device *device,
657				       const dma_cap_mask_t *mask,
658				       dma_filter_fn fn, void *fn_param)
659{
660	struct dma_chan *chan = private_candidate(mask, device, fn, fn_param);
661	int err;
662
663	if (chan) {
664		/* Found a suitable channel, try to grab, prep, and return it.
665		 * We first set DMA_PRIVATE to disable balance_ref_count as this
666		 * channel will not be published in the general-purpose
667		 * allocator
668		 */
669		dma_cap_set(DMA_PRIVATE, device->cap_mask);
670		device->privatecnt++;
671		err = dma_chan_get(chan);
672
673		if (err) {
674			if (err == -ENODEV) {
675				dev_dbg(device->dev, "%s: %s module removed\n",
676					__func__, dma_chan_name(chan));
677				list_del_rcu(&device->global_node);
678			} else
679				dev_dbg(device->dev,
680					"%s: failed to get %s: (%d)\n",
681					 __func__, dma_chan_name(chan), err);
682
683			if (--device->privatecnt == 0)
684				dma_cap_clear(DMA_PRIVATE, device->cap_mask);
685
686			chan = ERR_PTR(err);
687		}
688	}
689
690	return chan ? chan : ERR_PTR(-EPROBE_DEFER);
691}
692
693/**
694 * dma_get_slave_channel - try to get specific channel exclusively
695 * @chan:	target channel
696 */
697struct dma_chan *dma_get_slave_channel(struct dma_chan *chan)
698{
699	int err = -EBUSY;
700
701	/* lock against __dma_request_channel */
702	mutex_lock(&dma_list_mutex);
703
704	if (chan->client_count == 0) {
705		struct dma_device *device = chan->device;
706
707		dma_cap_set(DMA_PRIVATE, device->cap_mask);
708		device->privatecnt++;
709		err = dma_chan_get(chan);
710		if (err) {
711			dev_dbg(chan->device->dev,
712				"%s: failed to get %s: (%d)\n",
713				__func__, dma_chan_name(chan), err);
714			chan = NULL;
715			if (--device->privatecnt == 0)
716				dma_cap_clear(DMA_PRIVATE, device->cap_mask);
717		}
718	} else
719		chan = NULL;
720
721	mutex_unlock(&dma_list_mutex);
722
723
724	return chan;
725}
726EXPORT_SYMBOL_GPL(dma_get_slave_channel);
727
728struct dma_chan *dma_get_any_slave_channel(struct dma_device *device)
729{
730	dma_cap_mask_t mask;
731	struct dma_chan *chan;
732
733	dma_cap_zero(mask);
734	dma_cap_set(DMA_SLAVE, mask);
735
736	/* lock against __dma_request_channel */
737	mutex_lock(&dma_list_mutex);
738
739	chan = find_candidate(device, &mask, NULL, NULL);
740
741	mutex_unlock(&dma_list_mutex);
742
743	return IS_ERR(chan) ? NULL : chan;
744}
745EXPORT_SYMBOL_GPL(dma_get_any_slave_channel);
746
747/**
748 * __dma_request_channel - try to allocate an exclusive channel
749 * @mask:	capabilities that the channel must satisfy
750 * @fn:		optional callback to disposition available channels
751 * @fn_param:	opaque parameter to pass to dma_filter_fn()
752 * @np:		device node to look for DMA channels
753 *
754 * Returns pointer to appropriate DMA channel on success or NULL.
755 */
756struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
757				       dma_filter_fn fn, void *fn_param,
758				       struct device_node *np)
759{
760	struct dma_device *device, *_d;
761	struct dma_chan *chan = NULL;
762
763	/* Find a channel */
764	mutex_lock(&dma_list_mutex);
765	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
766		/* Finds a DMA controller with matching device node */
767		if (np && device->dev->of_node && np != device->dev->of_node)
768			continue;
769
770		chan = find_candidate(device, mask, fn, fn_param);
771		if (!IS_ERR(chan))
772			break;
773
774		chan = NULL;
775	}
776	mutex_unlock(&dma_list_mutex);
777
778	pr_debug("%s: %s (%s)\n",
779		 __func__,
780		 chan ? "success" : "fail",
781		 chan ? dma_chan_name(chan) : NULL);
782
783	return chan;
784}
785EXPORT_SYMBOL_GPL(__dma_request_channel);
786
787static const struct dma_slave_map *dma_filter_match(struct dma_device *device,
788						    const char *name,
789						    struct device *dev)
790{
791	int i;
792
793	if (!device->filter.mapcnt)
794		return NULL;
795
796	for (i = 0; i < device->filter.mapcnt; i++) {
797		const struct dma_slave_map *map = &device->filter.map[i];
798
799		if (!strcmp(map->devname, dev_name(dev)) &&
800		    !strcmp(map->slave, name))
801			return map;
802	}
803
804	return NULL;
805}
806
807/**
808 * dma_request_chan - try to allocate an exclusive slave channel
809 * @dev:	pointer to client device structure
810 * @name:	slave channel name
811 *
812 * Returns pointer to appropriate DMA channel on success or an error pointer.
813 */
814struct dma_chan *dma_request_chan(struct device *dev, const char *name)
815{
816	struct dma_device *d, *_d;
817	struct dma_chan *chan = NULL;
818
819	/* If device-tree is present get slave info from here */
820	if (dev->of_node)
821		chan = of_dma_request_slave_channel(dev->of_node, name);
822
823	/* If device was enumerated by ACPI get slave info from here */
824	if (has_acpi_companion(dev) && !chan)
825		chan = acpi_dma_request_slave_chan_by_name(dev, name);
826
827	if (PTR_ERR(chan) == -EPROBE_DEFER)
828		return chan;
829
830	if (!IS_ERR_OR_NULL(chan))
831		goto found;
832
833	/* Try to find the channel via the DMA filter map(s) */
834	mutex_lock(&dma_list_mutex);
835	list_for_each_entry_safe(d, _d, &dma_device_list, global_node) {
836		dma_cap_mask_t mask;
837		const struct dma_slave_map *map = dma_filter_match(d, name, dev);
838
839		if (!map)
840			continue;
841
842		dma_cap_zero(mask);
843		dma_cap_set(DMA_SLAVE, mask);
844
845		chan = find_candidate(d, &mask, d->filter.fn, map->param);
846		if (!IS_ERR(chan))
847			break;
848	}
849	mutex_unlock(&dma_list_mutex);
850
851	if (IS_ERR(chan))
852		return chan;
853	if (!chan)
854		return ERR_PTR(-EPROBE_DEFER);
855
856found:
857#ifdef CONFIG_DEBUG_FS
858	chan->dbg_client_name = kasprintf(GFP_KERNEL, "%s:%s", dev_name(dev),
859					  name);
860#endif
861
862	chan->name = kasprintf(GFP_KERNEL, "dma:%s", name);
863	if (!chan->name)
864		return chan;
865	chan->slave = dev;
866
867	if (sysfs_create_link(&chan->dev->device.kobj, &dev->kobj,
868			      DMA_SLAVE_NAME))
869		dev_warn(dev, "Cannot create DMA %s symlink\n", DMA_SLAVE_NAME);
870	if (sysfs_create_link(&dev->kobj, &chan->dev->device.kobj, chan->name))
871		dev_warn(dev, "Cannot create DMA %s symlink\n", chan->name);
872
873	return chan;
874}
875EXPORT_SYMBOL_GPL(dma_request_chan);
876
877/**
878 * dma_request_chan_by_mask - allocate a channel satisfying certain capabilities
879 * @mask:	capabilities that the channel must satisfy
880 *
881 * Returns pointer to appropriate DMA channel on success or an error pointer.
882 */
883struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask)
884{
885	struct dma_chan *chan;
886
887	if (!mask)
888		return ERR_PTR(-ENODEV);
889
890	chan = __dma_request_channel(mask, NULL, NULL, NULL);
891	if (!chan) {
892		mutex_lock(&dma_list_mutex);
893		if (list_empty(&dma_device_list))
894			chan = ERR_PTR(-EPROBE_DEFER);
895		else
896			chan = ERR_PTR(-ENODEV);
897		mutex_unlock(&dma_list_mutex);
898	}
899
900	return chan;
901}
902EXPORT_SYMBOL_GPL(dma_request_chan_by_mask);
903
904void dma_release_channel(struct dma_chan *chan)
905{
906	mutex_lock(&dma_list_mutex);
907	WARN_ONCE(chan->client_count != 1,
908		  "chan reference count %d != 1\n", chan->client_count);
909	dma_chan_put(chan);
910	/* drop PRIVATE cap enabled by __dma_request_channel() */
911	if (--chan->device->privatecnt == 0)
912		dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
913
914	if (chan->slave) {
915		sysfs_remove_link(&chan->dev->device.kobj, DMA_SLAVE_NAME);
916		sysfs_remove_link(&chan->slave->kobj, chan->name);
917		kfree(chan->name);
918		chan->name = NULL;
919		chan->slave = NULL;
920	}
921
922#ifdef CONFIG_DEBUG_FS
923	kfree(chan->dbg_client_name);
924	chan->dbg_client_name = NULL;
925#endif
926	mutex_unlock(&dma_list_mutex);
927}
928EXPORT_SYMBOL_GPL(dma_release_channel);
929
930/**
931 * dmaengine_get - register interest in dma_channels
932 */
933void dmaengine_get(void)
934{
935	struct dma_device *device, *_d;
936	struct dma_chan *chan;
937	int err;
938
939	mutex_lock(&dma_list_mutex);
940	dmaengine_ref_count++;
941
942	/* try to grab channels */
943	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
944		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
945			continue;
946		list_for_each_entry(chan, &device->channels, device_node) {
947			err = dma_chan_get(chan);
948			if (err == -ENODEV) {
949				/* module removed before we could use it */
950				list_del_rcu(&device->global_node);
951				break;
952			} else if (err)
953				dev_dbg(chan->device->dev,
954					"%s: failed to get %s: (%d)\n",
955					__func__, dma_chan_name(chan), err);
956		}
957	}
958
959	/* if this is the first reference and there were channels
960	 * waiting we need to rebalance to get those channels
961	 * incorporated into the channel table
962	 */
963	if (dmaengine_ref_count == 1)
964		dma_channel_rebalance();
965	mutex_unlock(&dma_list_mutex);
966}
967EXPORT_SYMBOL(dmaengine_get);
968
969/**
970 * dmaengine_put - let DMA drivers be removed when ref_count == 0
971 */
972void dmaengine_put(void)
973{
974	struct dma_device *device, *_d;
975	struct dma_chan *chan;
976
977	mutex_lock(&dma_list_mutex);
978	dmaengine_ref_count--;
979	BUG_ON(dmaengine_ref_count < 0);
980	/* drop channel references */
981	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
982		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
983			continue;
984		list_for_each_entry(chan, &device->channels, device_node)
985			dma_chan_put(chan);
986	}
987	mutex_unlock(&dma_list_mutex);
988}
989EXPORT_SYMBOL(dmaengine_put);
990
991static bool device_has_all_tx_types(struct dma_device *device)
992{
993	/* A device that satisfies this test has channels that will never cause
994	 * an async_tx channel switch event as all possible operation types can
995	 * be handled.
996	 */
997	#ifdef CONFIG_ASYNC_TX_DMA
998	if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
999		return false;
1000	#endif
1001
1002	#if IS_ENABLED(CONFIG_ASYNC_MEMCPY)
1003	if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
1004		return false;
1005	#endif
1006
1007	#if IS_ENABLED(CONFIG_ASYNC_XOR)
1008	if (!dma_has_cap(DMA_XOR, device->cap_mask))
1009		return false;
1010
1011	#ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
1012	if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
1013		return false;
1014	#endif
1015	#endif
1016
1017	#if IS_ENABLED(CONFIG_ASYNC_PQ)
1018	if (!dma_has_cap(DMA_PQ, device->cap_mask))
1019		return false;
1020
1021	#ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
1022	if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
1023		return false;
1024	#endif
1025	#endif
1026
1027	return true;
1028}
1029
1030static int get_dma_id(struct dma_device *device)
1031{
1032	int rc = ida_alloc(&dma_ida, GFP_KERNEL);
1033
1034	if (rc < 0)
1035		return rc;
1036	device->dev_id = rc;
1037	return 0;
1038}
1039
1040static int __dma_async_device_channel_register(struct dma_device *device,
1041					       struct dma_chan *chan)
1042{
1043	int rc;
1044
1045	chan->local = alloc_percpu(typeof(*chan->local));
1046	if (!chan->local)
1047		return -ENOMEM;
1048	chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
1049	if (!chan->dev) {
1050		rc = -ENOMEM;
1051		goto err_free_local;
1052	}
1053
1054	/*
1055	 * When the chan_id is a negative value, we are dynamically adding
1056	 * the channel. Otherwise we are static enumerating.
1057	 */
1058	mutex_lock(&device->chan_mutex);
1059	chan->chan_id = ida_alloc(&device->chan_ida, GFP_KERNEL);
1060	mutex_unlock(&device->chan_mutex);
1061	if (chan->chan_id < 0) {
1062		pr_err("%s: unable to alloc ida for chan: %d\n",
1063		       __func__, chan->chan_id);
1064		rc = chan->chan_id;
1065		goto err_free_dev;
1066	}
1067
1068	chan->dev->device.class = &dma_devclass;
1069	chan->dev->device.parent = device->dev;
1070	chan->dev->chan = chan;
1071	chan->dev->dev_id = device->dev_id;
1072	dev_set_name(&chan->dev->device, "dma%dchan%d",
1073		     device->dev_id, chan->chan_id);
1074	rc = device_register(&chan->dev->device);
1075	if (rc)
1076		goto err_out_ida;
1077	chan->client_count = 0;
1078	device->chancnt++;
1079
1080	return 0;
1081
1082 err_out_ida:
1083	mutex_lock(&device->chan_mutex);
1084	ida_free(&device->chan_ida, chan->chan_id);
1085	mutex_unlock(&device->chan_mutex);
1086 err_free_dev:
1087	kfree(chan->dev);
1088 err_free_local:
1089	free_percpu(chan->local);
1090	chan->local = NULL;
1091	return rc;
1092}
1093
1094int dma_async_device_channel_register(struct dma_device *device,
1095				      struct dma_chan *chan)
1096{
1097	int rc;
1098
1099	rc = __dma_async_device_channel_register(device, chan);
1100	if (rc < 0)
1101		return rc;
1102
1103	dma_channel_rebalance();
1104	return 0;
1105}
1106EXPORT_SYMBOL_GPL(dma_async_device_channel_register);
1107
1108static void __dma_async_device_channel_unregister(struct dma_device *device,
1109						  struct dma_chan *chan)
1110{
1111	if (chan->local == NULL)
1112		return;
1113
1114	WARN_ONCE(!device->device_release && chan->client_count,
1115		  "%s called while %d clients hold a reference\n",
1116		  __func__, chan->client_count);
1117	mutex_lock(&dma_list_mutex);
1118	device->chancnt--;
1119	chan->dev->chan = NULL;
1120	mutex_unlock(&dma_list_mutex);
1121	mutex_lock(&device->chan_mutex);
1122	ida_free(&device->chan_ida, chan->chan_id);
1123	mutex_unlock(&device->chan_mutex);
1124	device_unregister(&chan->dev->device);
1125	free_percpu(chan->local);
1126}
1127
1128void dma_async_device_channel_unregister(struct dma_device *device,
1129					 struct dma_chan *chan)
1130{
1131	__dma_async_device_channel_unregister(device, chan);
1132	dma_channel_rebalance();
1133}
1134EXPORT_SYMBOL_GPL(dma_async_device_channel_unregister);
1135
1136/**
1137 * dma_async_device_register - registers DMA devices found
1138 * @device:	pointer to &struct dma_device
1139 *
1140 * After calling this routine the structure should not be freed except in the
1141 * device_release() callback which will be called after
1142 * dma_async_device_unregister() is called and no further references are taken.
1143 */
1144int dma_async_device_register(struct dma_device *device)
1145{
1146	int rc;
1147	struct dma_chan* chan;
1148
1149	if (!device)
1150		return -ENODEV;
1151
1152	/* validate device routines */
1153	if (!device->dev) {
1154		pr_err("DMAdevice must have dev\n");
1155		return -EIO;
1156	}
1157
1158	device->owner = device->dev->driver->owner;
1159
1160	if (dma_has_cap(DMA_MEMCPY, device->cap_mask) && !device->device_prep_dma_memcpy) {
1161		dev_err(device->dev,
1162			"Device claims capability %s, but op is not defined\n",
1163			"DMA_MEMCPY");
1164		return -EIO;
1165	}
1166
1167	if (dma_has_cap(DMA_XOR, device->cap_mask) && !device->device_prep_dma_xor) {
1168		dev_err(device->dev,
1169			"Device claims capability %s, but op is not defined\n",
1170			"DMA_XOR");
1171		return -EIO;
1172	}
1173
1174	if (dma_has_cap(DMA_XOR_VAL, device->cap_mask) && !device->device_prep_dma_xor_val) {
1175		dev_err(device->dev,
1176			"Device claims capability %s, but op is not defined\n",
1177			"DMA_XOR_VAL");
1178		return -EIO;
1179	}
1180
1181	if (dma_has_cap(DMA_PQ, device->cap_mask) && !device->device_prep_dma_pq) {
1182		dev_err(device->dev,
1183			"Device claims capability %s, but op is not defined\n",
1184			"DMA_PQ");
1185		return -EIO;
1186	}
1187
1188	if (dma_has_cap(DMA_PQ_VAL, device->cap_mask) && !device->device_prep_dma_pq_val) {
1189		dev_err(device->dev,
1190			"Device claims capability %s, but op is not defined\n",
1191			"DMA_PQ_VAL");
1192		return -EIO;
1193	}
1194
1195	if (dma_has_cap(DMA_MEMSET, device->cap_mask) && !device->device_prep_dma_memset) {
1196		dev_err(device->dev,
1197			"Device claims capability %s, but op is not defined\n",
1198			"DMA_MEMSET");
1199		return -EIO;
1200	}
1201
1202	if (dma_has_cap(DMA_INTERRUPT, device->cap_mask) && !device->device_prep_dma_interrupt) {
1203		dev_err(device->dev,
1204			"Device claims capability %s, but op is not defined\n",
1205			"DMA_INTERRUPT");
1206		return -EIO;
1207	}
1208
1209	if (dma_has_cap(DMA_CYCLIC, device->cap_mask) && !device->device_prep_dma_cyclic) {
1210		dev_err(device->dev,
1211			"Device claims capability %s, but op is not defined\n",
1212			"DMA_CYCLIC");
1213		return -EIO;
1214	}
1215
1216	if (dma_has_cap(DMA_INTERLEAVE, device->cap_mask) && !device->device_prep_interleaved_dma) {
1217		dev_err(device->dev,
1218			"Device claims capability %s, but op is not defined\n",
1219			"DMA_INTERLEAVE");
1220		return -EIO;
1221	}
1222
1223
1224	if (!device->device_tx_status) {
1225		dev_err(device->dev, "Device tx_status is not defined\n");
1226		return -EIO;
1227	}
1228
1229
1230	if (!device->device_issue_pending) {
1231		dev_err(device->dev, "Device issue_pending is not defined\n");
1232		return -EIO;
1233	}
1234
1235	if (!device->device_release)
1236		dev_dbg(device->dev,
1237			 "WARN: Device release is not defined so it is not safe to unbind this driver while in use\n");
1238
1239	kref_init(&device->ref);
1240
1241	/* note: this only matters in the
1242	 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
1243	 */
1244	if (device_has_all_tx_types(device))
1245		dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
1246
1247	rc = get_dma_id(device);
1248	if (rc != 0)
1249		return rc;
1250
1251	mutex_init(&device->chan_mutex);
1252	ida_init(&device->chan_ida);
1253
1254	/* represent channels in sysfs. Probably want devs too */
1255	list_for_each_entry(chan, &device->channels, device_node) {
1256		rc = __dma_async_device_channel_register(device, chan);
1257		if (rc < 0)
1258			goto err_out;
1259	}
1260
1261	mutex_lock(&dma_list_mutex);
1262	/* take references on public channels */
1263	if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
1264		list_for_each_entry(chan, &device->channels, device_node) {
1265			/* if clients are already waiting for channels we need
1266			 * to take references on their behalf
1267			 */
1268			if (dma_chan_get(chan) == -ENODEV) {
1269				/* note we can only get here for the first
1270				 * channel as the remaining channels are
1271				 * guaranteed to get a reference
1272				 */
1273				rc = -ENODEV;
1274				mutex_unlock(&dma_list_mutex);
1275				goto err_out;
1276			}
1277		}
1278	list_add_tail_rcu(&device->global_node, &dma_device_list);
1279	if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
1280		device->privatecnt++;	/* Always private */
1281	dma_channel_rebalance();
1282	mutex_unlock(&dma_list_mutex);
1283
1284	dmaengine_debug_register(device);
1285
1286	return 0;
1287
1288err_out:
1289	/* if we never registered a channel just release the idr */
1290	if (!device->chancnt) {
1291		ida_free(&dma_ida, device->dev_id);
1292		return rc;
1293	}
1294
1295	list_for_each_entry(chan, &device->channels, device_node) {
1296		if (chan->local == NULL)
1297			continue;
1298		mutex_lock(&dma_list_mutex);
1299		chan->dev->chan = NULL;
1300		mutex_unlock(&dma_list_mutex);
1301		device_unregister(&chan->dev->device);
1302		free_percpu(chan->local);
1303	}
1304	return rc;
1305}
1306EXPORT_SYMBOL(dma_async_device_register);
1307
1308/**
1309 * dma_async_device_unregister - unregister a DMA device
1310 * @device:	pointer to &struct dma_device
1311 *
1312 * This routine is called by dma driver exit routines, dmaengine holds module
1313 * references to prevent it being called while channels are in use.
1314 */
1315void dma_async_device_unregister(struct dma_device *device)
1316{
1317	struct dma_chan *chan, *n;
1318
1319	dmaengine_debug_unregister(device);
1320
1321	list_for_each_entry_safe(chan, n, &device->channels, device_node)
1322		__dma_async_device_channel_unregister(device, chan);
1323
1324	mutex_lock(&dma_list_mutex);
1325	/*
1326	 * setting DMA_PRIVATE ensures the device being torn down will not
1327	 * be used in the channel_table
1328	 */
1329	dma_cap_set(DMA_PRIVATE, device->cap_mask);
1330	dma_channel_rebalance();
1331	ida_free(&dma_ida, device->dev_id);
1332	dma_device_put(device);
1333	mutex_unlock(&dma_list_mutex);
1334}
1335EXPORT_SYMBOL(dma_async_device_unregister);
1336
1337static void dmam_device_release(struct device *dev, void *res)
1338{
1339	struct dma_device *device;
1340
1341	device = *(struct dma_device **)res;
1342	dma_async_device_unregister(device);
1343}
1344
1345/**
1346 * dmaenginem_async_device_register - registers DMA devices found
1347 * @device:	pointer to &struct dma_device
1348 *
1349 * The operation is managed and will be undone on driver detach.
1350 */
1351int dmaenginem_async_device_register(struct dma_device *device)
1352{
1353	void *p;
1354	int ret;
1355
1356	p = devres_alloc(dmam_device_release, sizeof(void *), GFP_KERNEL);
1357	if (!p)
1358		return -ENOMEM;
1359
1360	ret = dma_async_device_register(device);
1361	if (!ret) {
1362		*(struct dma_device **)p = device;
1363		devres_add(device->dev, p);
1364	} else {
1365		devres_free(p);
1366	}
1367
1368	return ret;
1369}
1370EXPORT_SYMBOL(dmaenginem_async_device_register);
1371
1372struct dmaengine_unmap_pool {
1373	struct kmem_cache *cache;
1374	const char *name;
1375	mempool_t *pool;
1376	size_t size;
1377};
1378
1379#define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) }
1380static struct dmaengine_unmap_pool unmap_pool[] = {
1381	__UNMAP_POOL(2),
1382	#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1383	__UNMAP_POOL(16),
1384	__UNMAP_POOL(128),
1385	__UNMAP_POOL(256),
1386	#endif
1387};
1388
1389static struct dmaengine_unmap_pool *__get_unmap_pool(int nr)
1390{
1391	int order = get_count_order(nr);
1392
1393	switch (order) {
1394	case 0 ... 1:
1395		return &unmap_pool[0];
1396#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1397	case 2 ... 4:
1398		return &unmap_pool[1];
1399	case 5 ... 7:
1400		return &unmap_pool[2];
1401	case 8:
1402		return &unmap_pool[3];
1403#endif
1404	default:
1405		BUG();
1406		return NULL;
1407	}
1408}
1409
1410static void dmaengine_unmap(struct kref *kref)
1411{
1412	struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref);
1413	struct device *dev = unmap->dev;
1414	int cnt, i;
1415
1416	cnt = unmap->to_cnt;
1417	for (i = 0; i < cnt; i++)
1418		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1419			       DMA_TO_DEVICE);
1420	cnt += unmap->from_cnt;
1421	for (; i < cnt; i++)
1422		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1423			       DMA_FROM_DEVICE);
1424	cnt += unmap->bidi_cnt;
1425	for (; i < cnt; i++) {
1426		if (unmap->addr[i] == 0)
1427			continue;
1428		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1429			       DMA_BIDIRECTIONAL);
1430	}
1431	cnt = unmap->map_cnt;
1432	mempool_free(unmap, __get_unmap_pool(cnt)->pool);
1433}
1434
1435void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
1436{
1437	if (unmap)
1438		kref_put(&unmap->kref, dmaengine_unmap);
1439}
1440EXPORT_SYMBOL_GPL(dmaengine_unmap_put);
1441
1442static void dmaengine_destroy_unmap_pool(void)
1443{
1444	int i;
1445
1446	for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1447		struct dmaengine_unmap_pool *p = &unmap_pool[i];
1448
1449		mempool_destroy(p->pool);
1450		p->pool = NULL;
1451		kmem_cache_destroy(p->cache);
1452		p->cache = NULL;
1453	}
1454}
1455
1456static int __init dmaengine_init_unmap_pool(void)
1457{
1458	int i;
1459
1460	for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1461		struct dmaengine_unmap_pool *p = &unmap_pool[i];
1462		size_t size;
1463
1464		size = sizeof(struct dmaengine_unmap_data) +
1465		       sizeof(dma_addr_t) * p->size;
1466
1467		p->cache = kmem_cache_create(p->name, size, 0,
1468					     SLAB_HWCACHE_ALIGN, NULL);
1469		if (!p->cache)
1470			break;
1471		p->pool = mempool_create_slab_pool(1, p->cache);
1472		if (!p->pool)
1473			break;
1474	}
1475
1476	if (i == ARRAY_SIZE(unmap_pool))
1477		return 0;
1478
1479	dmaengine_destroy_unmap_pool();
1480	return -ENOMEM;
1481}
1482
1483struct dmaengine_unmap_data *
1484dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
1485{
1486	struct dmaengine_unmap_data *unmap;
1487
1488	unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags);
1489	if (!unmap)
1490		return NULL;
1491
1492	memset(unmap, 0, sizeof(*unmap));
1493	kref_init(&unmap->kref);
1494	unmap->dev = dev;
1495	unmap->map_cnt = nr;
1496
1497	return unmap;
1498}
1499EXPORT_SYMBOL(dmaengine_get_unmap_data);
1500
1501void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1502	struct dma_chan *chan)
1503{
1504	tx->chan = chan;
1505	#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1506	spin_lock_init(&tx->lock);
1507	#endif
1508}
1509EXPORT_SYMBOL(dma_async_tx_descriptor_init);
1510
1511static inline int desc_check_and_set_metadata_mode(
1512	struct dma_async_tx_descriptor *desc, enum dma_desc_metadata_mode mode)
1513{
1514	/* Make sure that the metadata mode is not mixed */
1515	if (!desc->desc_metadata_mode) {
1516		if (dmaengine_is_metadata_mode_supported(desc->chan, mode))
1517			desc->desc_metadata_mode = mode;
1518		else
1519			return -ENOTSUPP;
1520	} else if (desc->desc_metadata_mode != mode) {
1521		return -EINVAL;
1522	}
1523
1524	return 0;
1525}
1526
1527int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc,
1528				   void *data, size_t len)
1529{
1530	int ret;
1531
1532	if (!desc)
1533		return -EINVAL;
1534
1535	ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_CLIENT);
1536	if (ret)
1537		return ret;
1538
1539	if (!desc->metadata_ops || !desc->metadata_ops->attach)
1540		return -ENOTSUPP;
1541
1542	return desc->metadata_ops->attach(desc, data, len);
1543}
1544EXPORT_SYMBOL_GPL(dmaengine_desc_attach_metadata);
1545
1546void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc,
1547				      size_t *payload_len, size_t *max_len)
1548{
1549	int ret;
1550
1551	if (!desc)
1552		return ERR_PTR(-EINVAL);
1553
1554	ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_ENGINE);
1555	if (ret)
1556		return ERR_PTR(ret);
1557
1558	if (!desc->metadata_ops || !desc->metadata_ops->get_ptr)
1559		return ERR_PTR(-ENOTSUPP);
1560
1561	return desc->metadata_ops->get_ptr(desc, payload_len, max_len);
1562}
1563EXPORT_SYMBOL_GPL(dmaengine_desc_get_metadata_ptr);
1564
1565int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc,
1566				    size_t payload_len)
1567{
1568	int ret;
1569
1570	if (!desc)
1571		return -EINVAL;
1572
1573	ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_ENGINE);
1574	if (ret)
1575		return ret;
1576
1577	if (!desc->metadata_ops || !desc->metadata_ops->set_len)
1578		return -ENOTSUPP;
1579
1580	return desc->metadata_ops->set_len(desc, payload_len);
1581}
1582EXPORT_SYMBOL_GPL(dmaengine_desc_set_metadata_len);
1583
1584/**
1585 * dma_wait_for_async_tx - spin wait for a transaction to complete
1586 * @tx:		in-flight transaction to wait on
1587 */
1588enum dma_status
1589dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1590{
1591	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
1592
1593	if (!tx)
1594		return DMA_COMPLETE;
1595
1596	while (tx->cookie == -EBUSY) {
1597		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1598			dev_err(tx->chan->device->dev,
1599				"%s timeout waiting for descriptor submission\n",
1600				__func__);
1601			return DMA_ERROR;
1602		}
1603		cpu_relax();
1604	}
1605	return dma_sync_wait(tx->chan, tx->cookie);
1606}
1607EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1608
1609/**
1610 * dma_run_dependencies - process dependent operations on the target channel
1611 * @tx:		transaction with dependencies
1612 *
1613 * Helper routine for DMA drivers to process (start) dependent operations
1614 * on their target channel.
1615 */
1616void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1617{
1618	struct dma_async_tx_descriptor *dep = txd_next(tx);
1619	struct dma_async_tx_descriptor *dep_next;
1620	struct dma_chan *chan;
1621
1622	if (!dep)
1623		return;
1624
1625	/* we'll submit tx->next now, so clear the link */
1626	txd_clear_next(tx);
1627	chan = dep->chan;
1628
1629	/* keep submitting up until a channel switch is detected
1630	 * in that case we will be called again as a result of
1631	 * processing the interrupt from async_tx_channel_switch
1632	 */
1633	for (; dep; dep = dep_next) {
1634		txd_lock(dep);
1635		txd_clear_parent(dep);
1636		dep_next = txd_next(dep);
1637		if (dep_next && dep_next->chan == chan)
1638			txd_clear_next(dep); /* ->next will be submitted */
1639		else
1640			dep_next = NULL; /* submit current dep and terminate */
1641		txd_unlock(dep);
1642
1643		dep->tx_submit(dep);
1644	}
1645
1646	chan->device->device_issue_pending(chan);
1647}
1648EXPORT_SYMBOL_GPL(dma_run_dependencies);
1649
1650static int __init dma_bus_init(void)
1651{
1652	int err = dmaengine_init_unmap_pool();
1653
1654	if (err)
1655		return err;
1656
1657	err = class_register(&dma_devclass);
1658	if (!err)
1659		dmaengine_debugfs_init();
1660
1661	return err;
1662}
1663arch_initcall(dma_bus_init);
1664