xref: /kernel/linux/linux-5.10/drivers/dma/at_hdmac.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
4 *
5 * Copyright (C) 2008 Atmel Corporation
6 *
7 * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
8 * The only Atmel DMA Controller that is not covered by this driver is the one
9 * found on AT91SAM9263.
10 */
11
12#include <dt-bindings/dma/at91.h>
13#include <linux/clk.h>
14#include <linux/dmaengine.h>
15#include <linux/dma-mapping.h>
16#include <linux/dmapool.h>
17#include <linux/interrupt.h>
18#include <linux/module.h>
19#include <linux/platform_device.h>
20#include <linux/slab.h>
21#include <linux/of.h>
22#include <linux/of_device.h>
23#include <linux/of_dma.h>
24
25#include "at_hdmac_regs.h"
26#include "dmaengine.h"
27
28/*
29 * Glossary
30 * --------
31 *
32 * at_hdmac		: Name of the ATmel AHB DMA Controller
33 * at_dma_ / atdma	: ATmel DMA controller entity related
34 * atc_	/ atchan	: ATmel DMA Channel entity related
35 */
36
37#define	ATC_DEFAULT_CFG		(ATC_FIFOCFG_HALFFIFO)
38#define	ATC_DEFAULT_CTRLB	(ATC_SIF(AT_DMA_MEM_IF) \
39				|ATC_DIF(AT_DMA_MEM_IF))
40#define ATC_DMA_BUSWIDTHS\
41	(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
42	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
43	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
44	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
45
46#define ATC_MAX_DSCR_TRIALS	10
47
48/*
49 * Initial number of descriptors to allocate for each channel. This could
50 * be increased during dma usage.
51 */
52static unsigned int init_nr_desc_per_channel = 64;
53module_param(init_nr_desc_per_channel, uint, 0644);
54MODULE_PARM_DESC(init_nr_desc_per_channel,
55		 "initial descriptors per channel (default: 64)");
56
57
58/* prototypes */
59static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx);
60static void atc_issue_pending(struct dma_chan *chan);
61
62
63/*----------------------------------------------------------------------*/
64
65static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
66						size_t len)
67{
68	unsigned int width;
69
70	if (!((src | dst  | len) & 3))
71		width = 2;
72	else if (!((src | dst | len) & 1))
73		width = 1;
74	else
75		width = 0;
76
77	return width;
78}
79
80static struct at_desc *atc_first_active(struct at_dma_chan *atchan)
81{
82	return list_first_entry(&atchan->active_list,
83				struct at_desc, desc_node);
84}
85
86static struct at_desc *atc_first_queued(struct at_dma_chan *atchan)
87{
88	return list_first_entry(&atchan->queue,
89				struct at_desc, desc_node);
90}
91
92/**
93 * atc_alloc_descriptor - allocate and return an initialized descriptor
94 * @chan: the channel to allocate descriptors for
95 * @gfp_flags: GFP allocation flags
96 *
97 * Note: The ack-bit is positioned in the descriptor flag at creation time
98 *       to make initial allocation more convenient. This bit will be cleared
99 *       and control will be given to client at usage time (during
100 *       preparation functions).
101 */
102static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan,
103					    gfp_t gfp_flags)
104{
105	struct at_desc	*desc = NULL;
106	struct at_dma	*atdma = to_at_dma(chan->device);
107	dma_addr_t phys;
108
109	desc = dma_pool_zalloc(atdma->dma_desc_pool, gfp_flags, &phys);
110	if (desc) {
111		INIT_LIST_HEAD(&desc->tx_list);
112		dma_async_tx_descriptor_init(&desc->txd, chan);
113		/* txd.flags will be overwritten in prep functions */
114		desc->txd.flags = DMA_CTRL_ACK;
115		desc->txd.tx_submit = atc_tx_submit;
116		desc->txd.phys = phys;
117	}
118
119	return desc;
120}
121
122/**
123 * atc_desc_get - get an unused descriptor from free_list
124 * @atchan: channel we want a new descriptor for
125 */
126static struct at_desc *atc_desc_get(struct at_dma_chan *atchan)
127{
128	struct at_desc *desc, *_desc;
129	struct at_desc *ret = NULL;
130	unsigned long flags;
131	unsigned int i = 0;
132
133	spin_lock_irqsave(&atchan->lock, flags);
134	list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
135		i++;
136		if (async_tx_test_ack(&desc->txd)) {
137			list_del(&desc->desc_node);
138			ret = desc;
139			break;
140		}
141		dev_dbg(chan2dev(&atchan->chan_common),
142				"desc %p not ACKed\n", desc);
143	}
144	spin_unlock_irqrestore(&atchan->lock, flags);
145	dev_vdbg(chan2dev(&atchan->chan_common),
146		"scanned %u descriptors on freelist\n", i);
147
148	/* no more descriptor available in initial pool: create one more */
149	if (!ret)
150		ret = atc_alloc_descriptor(&atchan->chan_common, GFP_NOWAIT);
151
152	return ret;
153}
154
155/**
156 * atc_desc_put - move a descriptor, including any children, to the free list
157 * @atchan: channel we work on
158 * @desc: descriptor, at the head of a chain, to move to free list
159 */
160static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc)
161{
162	if (desc) {
163		struct at_desc *child;
164		unsigned long flags;
165
166		spin_lock_irqsave(&atchan->lock, flags);
167		list_for_each_entry(child, &desc->tx_list, desc_node)
168			dev_vdbg(chan2dev(&atchan->chan_common),
169					"moving child desc %p to freelist\n",
170					child);
171		list_splice_init(&desc->tx_list, &atchan->free_list);
172		dev_vdbg(chan2dev(&atchan->chan_common),
173			 "moving desc %p to freelist\n", desc);
174		list_add(&desc->desc_node, &atchan->free_list);
175		spin_unlock_irqrestore(&atchan->lock, flags);
176	}
177}
178
179/**
180 * atc_desc_chain - build chain adding a descriptor
181 * @first: address of first descriptor of the chain
182 * @prev: address of previous descriptor of the chain
183 * @desc: descriptor to queue
184 *
185 * Called from prep_* functions
186 */
187static void atc_desc_chain(struct at_desc **first, struct at_desc **prev,
188			   struct at_desc *desc)
189{
190	if (!(*first)) {
191		*first = desc;
192	} else {
193		/* inform the HW lli about chaining */
194		(*prev)->lli.dscr = desc->txd.phys;
195		/* insert the link descriptor to the LD ring */
196		list_add_tail(&desc->desc_node,
197				&(*first)->tx_list);
198	}
199	*prev = desc;
200}
201
202/**
203 * atc_dostart - starts the DMA engine for real
204 * @atchan: the channel we want to start
205 * @first: first descriptor in the list we want to begin with
206 *
207 * Called with atchan->lock held and bh disabled
208 */
209static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first)
210{
211	struct at_dma	*atdma = to_at_dma(atchan->chan_common.device);
212
213	/* ASSERT:  channel is idle */
214	if (atc_chan_is_enabled(atchan)) {
215		dev_err(chan2dev(&atchan->chan_common),
216			"BUG: Attempted to start non-idle channel\n");
217		dev_err(chan2dev(&atchan->chan_common),
218			"  channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n",
219			channel_readl(atchan, SADDR),
220			channel_readl(atchan, DADDR),
221			channel_readl(atchan, CTRLA),
222			channel_readl(atchan, CTRLB),
223			channel_readl(atchan, DSCR));
224
225		/* The tasklet will hopefully advance the queue... */
226		return;
227	}
228
229	vdbg_dump_regs(atchan);
230
231	channel_writel(atchan, SADDR, 0);
232	channel_writel(atchan, DADDR, 0);
233	channel_writel(atchan, CTRLA, 0);
234	channel_writel(atchan, CTRLB, 0);
235	channel_writel(atchan, DSCR, first->txd.phys);
236	channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) |
237		       ATC_SPIP_BOUNDARY(first->boundary));
238	channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) |
239		       ATC_DPIP_BOUNDARY(first->boundary));
240	/* Don't allow CPU to reorder channel enable. */
241	wmb();
242	dma_writel(atdma, CHER, atchan->mask);
243
244	vdbg_dump_regs(atchan);
245}
246
247/*
248 * atc_get_desc_by_cookie - get the descriptor of a cookie
249 * @atchan: the DMA channel
250 * @cookie: the cookie to get the descriptor for
251 */
252static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan,
253						dma_cookie_t cookie)
254{
255	struct at_desc *desc, *_desc;
256
257	list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) {
258		if (desc->txd.cookie == cookie)
259			return desc;
260	}
261
262	list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) {
263		if (desc->txd.cookie == cookie)
264			return desc;
265	}
266
267	return NULL;
268}
269
270/**
271 * atc_calc_bytes_left - calculates the number of bytes left according to the
272 * value read from CTRLA.
273 *
274 * @current_len: the number of bytes left before reading CTRLA
275 * @ctrla: the value of CTRLA
276 */
277static inline int atc_calc_bytes_left(int current_len, u32 ctrla)
278{
279	u32 btsize = (ctrla & ATC_BTSIZE_MAX);
280	u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla);
281
282	/*
283	 * According to the datasheet, when reading the Control A Register
284	 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
285	 * number of transfers completed on the Source Interface.
286	 * So btsize is always a number of source width transfers.
287	 */
288	return current_len - (btsize << src_width);
289}
290
291/**
292 * atc_get_bytes_left - get the number of bytes residue for a cookie
293 * @chan: DMA channel
294 * @cookie: transaction identifier to check status of
295 */
296static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie)
297{
298	struct at_dma_chan      *atchan = to_at_dma_chan(chan);
299	struct at_desc *desc_first = atc_first_active(atchan);
300	struct at_desc *desc;
301	int ret;
302	u32 ctrla, dscr;
303	unsigned int i;
304
305	/*
306	 * If the cookie doesn't match to the currently running transfer then
307	 * we can return the total length of the associated DMA transfer,
308	 * because it is still queued.
309	 */
310	desc = atc_get_desc_by_cookie(atchan, cookie);
311	if (desc == NULL)
312		return -EINVAL;
313	else if (desc != desc_first)
314		return desc->total_len;
315
316	/* cookie matches to the currently running transfer */
317	ret = desc_first->total_len;
318
319	if (desc_first->lli.dscr) {
320		/* hardware linked list transfer */
321
322		/*
323		 * Calculate the residue by removing the length of the child
324		 * descriptors already transferred from the total length.
325		 * To get the current child descriptor we can use the value of
326		 * the channel's DSCR register and compare it against the value
327		 * of the hardware linked list structure of each child
328		 * descriptor.
329		 *
330		 * The CTRLA register provides us with the amount of data
331		 * already read from the source for the current child
332		 * descriptor. So we can compute a more accurate residue by also
333		 * removing the number of bytes corresponding to this amount of
334		 * data.
335		 *
336		 * However, the DSCR and CTRLA registers cannot be read both
337		 * atomically. Hence a race condition may occur: the first read
338		 * register may refer to one child descriptor whereas the second
339		 * read may refer to a later child descriptor in the list
340		 * because of the DMA transfer progression inbetween the two
341		 * reads.
342		 *
343		 * One solution could have been to pause the DMA transfer, read
344		 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless,
345		 * this approach presents some drawbacks:
346		 * - If the DMA transfer is paused, RX overruns or TX underruns
347		 *   are more likey to occur depending on the system latency.
348		 *   Taking the USART driver as an example, it uses a cyclic DMA
349		 *   transfer to read data from the Receive Holding Register
350		 *   (RHR) to avoid RX overruns since the RHR is not protected
351		 *   by any FIFO on most Atmel SoCs. So pausing the DMA transfer
352		 *   to compute the residue would break the USART driver design.
353		 * - The atc_pause() function masks interrupts but we'd rather
354		 *   avoid to do so for system latency purpose.
355		 *
356		 * Then we'd rather use another solution: the DSCR is read a
357		 * first time, the CTRLA is read in turn, next the DSCR is read
358		 * a second time. If the two consecutive read values of the DSCR
359		 * are the same then we assume both refers to the very same
360		 * child descriptor as well as the CTRLA value read inbetween
361		 * does. For cyclic tranfers, the assumption is that a full loop
362		 * is "not so fast".
363		 * If the two DSCR values are different, we read again the CTRLA
364		 * then the DSCR till two consecutive read values from DSCR are
365		 * equal or till the maxium trials is reach.
366		 * This algorithm is very unlikely not to find a stable value for
367		 * DSCR.
368		 */
369
370		dscr = channel_readl(atchan, DSCR);
371		rmb(); /* ensure DSCR is read before CTRLA */
372		ctrla = channel_readl(atchan, CTRLA);
373		for (i = 0; i < ATC_MAX_DSCR_TRIALS; ++i) {
374			u32 new_dscr;
375
376			rmb(); /* ensure DSCR is read after CTRLA */
377			new_dscr = channel_readl(atchan, DSCR);
378
379			/*
380			 * If the DSCR register value has not changed inside the
381			 * DMA controller since the previous read, we assume
382			 * that both the dscr and ctrla values refers to the
383			 * very same descriptor.
384			 */
385			if (likely(new_dscr == dscr))
386				break;
387
388			/*
389			 * DSCR has changed inside the DMA controller, so the
390			 * previouly read value of CTRLA may refer to an already
391			 * processed descriptor hence could be outdated.
392			 * We need to update ctrla to match the current
393			 * descriptor.
394			 */
395			dscr = new_dscr;
396			rmb(); /* ensure DSCR is read before CTRLA */
397			ctrla = channel_readl(atchan, CTRLA);
398		}
399		if (unlikely(i == ATC_MAX_DSCR_TRIALS))
400			return -ETIMEDOUT;
401
402		/* for the first descriptor we can be more accurate */
403		if (desc_first->lli.dscr == dscr)
404			return atc_calc_bytes_left(ret, ctrla);
405
406		ret -= desc_first->len;
407		list_for_each_entry(desc, &desc_first->tx_list, desc_node) {
408			if (desc->lli.dscr == dscr)
409				break;
410
411			ret -= desc->len;
412		}
413
414		/*
415		 * For the current descriptor in the chain we can calculate
416		 * the remaining bytes using the channel's register.
417		 */
418		ret = atc_calc_bytes_left(ret, ctrla);
419	} else {
420		/* single transfer */
421		ctrla = channel_readl(atchan, CTRLA);
422		ret = atc_calc_bytes_left(ret, ctrla);
423	}
424
425	return ret;
426}
427
428/**
429 * atc_chain_complete - finish work for one transaction chain
430 * @atchan: channel we work on
431 * @desc: descriptor at the head of the chain we want do complete
432 */
433static void
434atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc)
435{
436	struct dma_async_tx_descriptor	*txd = &desc->txd;
437	struct at_dma			*atdma = to_at_dma(atchan->chan_common.device);
438	unsigned long flags;
439
440	dev_vdbg(chan2dev(&atchan->chan_common),
441		"descriptor %u complete\n", txd->cookie);
442
443	spin_lock_irqsave(&atchan->lock, flags);
444
445	/* mark the descriptor as complete for non cyclic cases only */
446	if (!atc_chan_is_cyclic(atchan))
447		dma_cookie_complete(txd);
448
449	spin_unlock_irqrestore(&atchan->lock, flags);
450
451	dma_descriptor_unmap(txd);
452	/* for cyclic transfers,
453	 * no need to replay callback function while stopping */
454	if (!atc_chan_is_cyclic(atchan))
455		dmaengine_desc_get_callback_invoke(txd, NULL);
456
457	dma_run_dependencies(txd);
458
459	spin_lock_irqsave(&atchan->lock, flags);
460	/* move children to free_list */
461	list_splice_init(&desc->tx_list, &atchan->free_list);
462	/* add myself to free_list */
463	list_add(&desc->desc_node, &atchan->free_list);
464	spin_unlock_irqrestore(&atchan->lock, flags);
465
466	/* If the transfer was a memset, free our temporary buffer */
467	if (desc->memset_buffer) {
468		dma_pool_free(atdma->memset_pool, desc->memset_vaddr,
469			      desc->memset_paddr);
470		desc->memset_buffer = false;
471	}
472}
473
474/**
475 * atc_advance_work - at the end of a transaction, move forward
476 * @atchan: channel where the transaction ended
477 */
478static void atc_advance_work(struct at_dma_chan *atchan)
479{
480	struct at_desc *desc;
481	unsigned long flags;
482
483	dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n");
484
485	spin_lock_irqsave(&atchan->lock, flags);
486	if (atc_chan_is_enabled(atchan) || list_empty(&atchan->active_list))
487		return spin_unlock_irqrestore(&atchan->lock, flags);
488
489	desc = atc_first_active(atchan);
490	/* Remove the transfer node from the active list. */
491	list_del_init(&desc->desc_node);
492	spin_unlock_irqrestore(&atchan->lock, flags);
493	atc_chain_complete(atchan, desc);
494
495	/* advance work */
496	spin_lock_irqsave(&atchan->lock, flags);
497	if (!list_empty(&atchan->active_list)) {
498		desc = atc_first_queued(atchan);
499		list_move_tail(&desc->desc_node, &atchan->active_list);
500		atc_dostart(atchan, desc);
501	}
502	spin_unlock_irqrestore(&atchan->lock, flags);
503}
504
505
506/**
507 * atc_handle_error - handle errors reported by DMA controller
508 * @atchan: channel where error occurs
509 */
510static void atc_handle_error(struct at_dma_chan *atchan)
511{
512	struct at_desc *bad_desc;
513	struct at_desc *desc;
514	struct at_desc *child;
515	unsigned long flags;
516
517	spin_lock_irqsave(&atchan->lock, flags);
518	/*
519	 * The descriptor currently at the head of the active list is
520	 * broked. Since we don't have any way to report errors, we'll
521	 * just have to scream loudly and try to carry on.
522	 */
523	bad_desc = atc_first_active(atchan);
524	list_del_init(&bad_desc->desc_node);
525
526	/* Try to restart the controller */
527	if (!list_empty(&atchan->active_list)) {
528		desc = atc_first_queued(atchan);
529		list_move_tail(&desc->desc_node, &atchan->active_list);
530		atc_dostart(atchan, desc);
531	}
532
533	/*
534	 * KERN_CRITICAL may seem harsh, but since this only happens
535	 * when someone submits a bad physical address in a
536	 * descriptor, we should consider ourselves lucky that the
537	 * controller flagged an error instead of scribbling over
538	 * random memory locations.
539	 */
540	dev_crit(chan2dev(&atchan->chan_common),
541			"Bad descriptor submitted for DMA!\n");
542	dev_crit(chan2dev(&atchan->chan_common),
543			"  cookie: %d\n", bad_desc->txd.cookie);
544	atc_dump_lli(atchan, &bad_desc->lli);
545	list_for_each_entry(child, &bad_desc->tx_list, desc_node)
546		atc_dump_lli(atchan, &child->lli);
547
548	spin_unlock_irqrestore(&atchan->lock, flags);
549
550	/* Pretend the descriptor completed successfully */
551	atc_chain_complete(atchan, bad_desc);
552}
553
554/**
555 * atc_handle_cyclic - at the end of a period, run callback function
556 * @atchan: channel used for cyclic operations
557 */
558static void atc_handle_cyclic(struct at_dma_chan *atchan)
559{
560	struct at_desc			*first = atc_first_active(atchan);
561	struct dma_async_tx_descriptor	*txd = &first->txd;
562
563	dev_vdbg(chan2dev(&atchan->chan_common),
564			"new cyclic period llp 0x%08x\n",
565			channel_readl(atchan, DSCR));
566
567	dmaengine_desc_get_callback_invoke(txd, NULL);
568}
569
570/*--  IRQ & Tasklet  ---------------------------------------------------*/
571
572static void atc_tasklet(struct tasklet_struct *t)
573{
574	struct at_dma_chan *atchan = from_tasklet(atchan, t, tasklet);
575
576	if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status))
577		return atc_handle_error(atchan);
578
579	if (atc_chan_is_cyclic(atchan))
580		return atc_handle_cyclic(atchan);
581
582	atc_advance_work(atchan);
583}
584
585static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
586{
587	struct at_dma		*atdma = (struct at_dma *)dev_id;
588	struct at_dma_chan	*atchan;
589	int			i;
590	u32			status, pending, imr;
591	int			ret = IRQ_NONE;
592
593	do {
594		imr = dma_readl(atdma, EBCIMR);
595		status = dma_readl(atdma, EBCISR);
596		pending = status & imr;
597
598		if (!pending)
599			break;
600
601		dev_vdbg(atdma->dma_common.dev,
602			"interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
603			 status, imr, pending);
604
605		for (i = 0; i < atdma->dma_common.chancnt; i++) {
606			atchan = &atdma->chan[i];
607			if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) {
608				if (pending & AT_DMA_ERR(i)) {
609					/* Disable channel on AHB error */
610					dma_writel(atdma, CHDR,
611						AT_DMA_RES(i) | atchan->mask);
612					/* Give information to tasklet */
613					set_bit(ATC_IS_ERROR, &atchan->status);
614				}
615				tasklet_schedule(&atchan->tasklet);
616				ret = IRQ_HANDLED;
617			}
618		}
619
620	} while (pending);
621
622	return ret;
623}
624
625
626/*--  DMA Engine API  --------------------------------------------------*/
627
628/**
629 * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine
630 * @tx: descriptor at the head of the transaction chain
631 *
632 * Queue chain if DMA engine is working already
633 *
634 * Cookie increment and adding to active_list or queue must be atomic
635 */
636static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx)
637{
638	struct at_desc		*desc = txd_to_at_desc(tx);
639	struct at_dma_chan	*atchan = to_at_dma_chan(tx->chan);
640	dma_cookie_t		cookie;
641	unsigned long		flags;
642
643	spin_lock_irqsave(&atchan->lock, flags);
644	cookie = dma_cookie_assign(tx);
645
646	list_add_tail(&desc->desc_node, &atchan->queue);
647	spin_unlock_irqrestore(&atchan->lock, flags);
648
649	dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n",
650		 desc->txd.cookie);
651	return cookie;
652}
653
654/**
655 * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
656 * @chan: the channel to prepare operation on
657 * @xt: Interleaved transfer template
658 * @flags: tx descriptor status flags
659 */
660static struct dma_async_tx_descriptor *
661atc_prep_dma_interleaved(struct dma_chan *chan,
662			 struct dma_interleaved_template *xt,
663			 unsigned long flags)
664{
665	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
666	struct data_chunk	*first;
667	struct at_desc		*desc = NULL;
668	size_t			xfer_count;
669	unsigned int		dwidth;
670	u32			ctrla;
671	u32			ctrlb;
672	size_t			len = 0;
673	int			i;
674
675	if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
676		return NULL;
677
678	first = xt->sgl;
679
680	dev_info(chan2dev(chan),
681		 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n",
682		__func__, &xt->src_start, &xt->dst_start, xt->numf,
683		xt->frame_size, flags);
684
685	/*
686	 * The controller can only "skip" X bytes every Y bytes, so we
687	 * need to make sure we are given a template that fit that
688	 * description, ie a template with chunks that always have the
689	 * same size, with the same ICGs.
690	 */
691	for (i = 0; i < xt->frame_size; i++) {
692		struct data_chunk *chunk = xt->sgl + i;
693
694		if ((chunk->size != xt->sgl->size) ||
695		    (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
696		    (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
697			dev_err(chan2dev(chan),
698				"%s: the controller can transfer only identical chunks\n",
699				__func__);
700			return NULL;
701		}
702
703		len += chunk->size;
704	}
705
706	dwidth = atc_get_xfer_width(xt->src_start,
707				    xt->dst_start, len);
708
709	xfer_count = len >> dwidth;
710	if (xfer_count > ATC_BTSIZE_MAX) {
711		dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
712		return NULL;
713	}
714
715	ctrla = ATC_SRC_WIDTH(dwidth) |
716		ATC_DST_WIDTH(dwidth);
717
718	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
719		| ATC_SRC_ADDR_MODE_INCR
720		| ATC_DST_ADDR_MODE_INCR
721		| ATC_SRC_PIP
722		| ATC_DST_PIP
723		| ATC_FC_MEM2MEM;
724
725	/* create the transfer */
726	desc = atc_desc_get(atchan);
727	if (!desc) {
728		dev_err(chan2dev(chan),
729			"%s: couldn't allocate our descriptor\n", __func__);
730		return NULL;
731	}
732
733	desc->lli.saddr = xt->src_start;
734	desc->lli.daddr = xt->dst_start;
735	desc->lli.ctrla = ctrla | xfer_count;
736	desc->lli.ctrlb = ctrlb;
737
738	desc->boundary = first->size >> dwidth;
739	desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
740	desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
741
742	desc->txd.cookie = -EBUSY;
743	desc->total_len = desc->len = len;
744
745	/* set end-of-link to the last link descriptor of list*/
746	set_desc_eol(desc);
747
748	desc->txd.flags = flags; /* client is in control of this ack */
749
750	return &desc->txd;
751}
752
753/**
754 * atc_prep_dma_memcpy - prepare a memcpy operation
755 * @chan: the channel to prepare operation on
756 * @dest: operation virtual destination address
757 * @src: operation virtual source address
758 * @len: operation length
759 * @flags: tx descriptor status flags
760 */
761static struct dma_async_tx_descriptor *
762atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
763		size_t len, unsigned long flags)
764{
765	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
766	struct at_desc		*desc = NULL;
767	struct at_desc		*first = NULL;
768	struct at_desc		*prev = NULL;
769	size_t			xfer_count;
770	size_t			offset;
771	unsigned int		src_width;
772	unsigned int		dst_width;
773	u32			ctrla;
774	u32			ctrlb;
775
776	dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n",
777			&dest, &src, len, flags);
778
779	if (unlikely(!len)) {
780		dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
781		return NULL;
782	}
783
784	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
785		| ATC_SRC_ADDR_MODE_INCR
786		| ATC_DST_ADDR_MODE_INCR
787		| ATC_FC_MEM2MEM;
788
789	/*
790	 * We can be a lot more clever here, but this should take care
791	 * of the most common optimization.
792	 */
793	src_width = dst_width = atc_get_xfer_width(src, dest, len);
794
795	ctrla = ATC_SRC_WIDTH(src_width) |
796		ATC_DST_WIDTH(dst_width);
797
798	for (offset = 0; offset < len; offset += xfer_count << src_width) {
799		xfer_count = min_t(size_t, (len - offset) >> src_width,
800				ATC_BTSIZE_MAX);
801
802		desc = atc_desc_get(atchan);
803		if (!desc)
804			goto err_desc_get;
805
806		desc->lli.saddr = src + offset;
807		desc->lli.daddr = dest + offset;
808		desc->lli.ctrla = ctrla | xfer_count;
809		desc->lli.ctrlb = ctrlb;
810
811		desc->txd.cookie = 0;
812		desc->len = xfer_count << src_width;
813
814		atc_desc_chain(&first, &prev, desc);
815	}
816
817	/* First descriptor of the chain embedds additional information */
818	first->txd.cookie = -EBUSY;
819	first->total_len = len;
820
821	/* set end-of-link to the last link descriptor of list*/
822	set_desc_eol(desc);
823
824	first->txd.flags = flags; /* client is in control of this ack */
825
826	return &first->txd;
827
828err_desc_get:
829	atc_desc_put(atchan, first);
830	return NULL;
831}
832
833static struct at_desc *atc_create_memset_desc(struct dma_chan *chan,
834					      dma_addr_t psrc,
835					      dma_addr_t pdst,
836					      size_t len)
837{
838	struct at_dma_chan *atchan = to_at_dma_chan(chan);
839	struct at_desc *desc;
840	size_t xfer_count;
841
842	u32 ctrla = ATC_SRC_WIDTH(2) | ATC_DST_WIDTH(2);
843	u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
844		ATC_SRC_ADDR_MODE_FIXED |
845		ATC_DST_ADDR_MODE_INCR |
846		ATC_FC_MEM2MEM;
847
848	xfer_count = len >> 2;
849	if (xfer_count > ATC_BTSIZE_MAX) {
850		dev_err(chan2dev(chan), "%s: buffer is too big\n",
851			__func__);
852		return NULL;
853	}
854
855	desc = atc_desc_get(atchan);
856	if (!desc) {
857		dev_err(chan2dev(chan), "%s: can't get a descriptor\n",
858			__func__);
859		return NULL;
860	}
861
862	desc->lli.saddr = psrc;
863	desc->lli.daddr = pdst;
864	desc->lli.ctrla = ctrla | xfer_count;
865	desc->lli.ctrlb = ctrlb;
866
867	desc->txd.cookie = 0;
868	desc->len = len;
869
870	return desc;
871}
872
873/**
874 * atc_prep_dma_memset - prepare a memcpy operation
875 * @chan: the channel to prepare operation on
876 * @dest: operation virtual destination address
877 * @value: value to set memory buffer to
878 * @len: operation length
879 * @flags: tx descriptor status flags
880 */
881static struct dma_async_tx_descriptor *
882atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
883		    size_t len, unsigned long flags)
884{
885	struct at_dma		*atdma = to_at_dma(chan->device);
886	struct at_desc		*desc;
887	void __iomem		*vaddr;
888	dma_addr_t		paddr;
889
890	dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__,
891		&dest, value, len, flags);
892
893	if (unlikely(!len)) {
894		dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
895		return NULL;
896	}
897
898	if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
899		dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n",
900			__func__);
901		return NULL;
902	}
903
904	vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr);
905	if (!vaddr) {
906		dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
907			__func__);
908		return NULL;
909	}
910	*(u32*)vaddr = value;
911
912	desc = atc_create_memset_desc(chan, paddr, dest, len);
913	if (!desc) {
914		dev_err(chan2dev(chan), "%s: couldn't get a descriptor\n",
915			__func__);
916		goto err_free_buffer;
917	}
918
919	desc->memset_paddr = paddr;
920	desc->memset_vaddr = vaddr;
921	desc->memset_buffer = true;
922
923	desc->txd.cookie = -EBUSY;
924	desc->total_len = len;
925
926	/* set end-of-link on the descriptor */
927	set_desc_eol(desc);
928
929	desc->txd.flags = flags;
930
931	return &desc->txd;
932
933err_free_buffer:
934	dma_pool_free(atdma->memset_pool, vaddr, paddr);
935	return NULL;
936}
937
938static struct dma_async_tx_descriptor *
939atc_prep_dma_memset_sg(struct dma_chan *chan,
940		       struct scatterlist *sgl,
941		       unsigned int sg_len, int value,
942		       unsigned long flags)
943{
944	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
945	struct at_dma		*atdma = to_at_dma(chan->device);
946	struct at_desc		*desc = NULL, *first = NULL, *prev = NULL;
947	struct scatterlist	*sg;
948	void __iomem		*vaddr;
949	dma_addr_t		paddr;
950	size_t			total_len = 0;
951	int			i;
952
953	dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__,
954		 value, sg_len, flags);
955
956	if (unlikely(!sgl || !sg_len)) {
957		dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n",
958			__func__);
959		return NULL;
960	}
961
962	vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr);
963	if (!vaddr) {
964		dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
965			__func__);
966		return NULL;
967	}
968	*(u32*)vaddr = value;
969
970	for_each_sg(sgl, sg, sg_len, i) {
971		dma_addr_t dest = sg_dma_address(sg);
972		size_t len = sg_dma_len(sg);
973
974		dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n",
975			 __func__, &dest, len);
976
977		if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
978			dev_err(chan2dev(chan), "%s: buffer is not aligned\n",
979				__func__);
980			goto err_put_desc;
981		}
982
983		desc = atc_create_memset_desc(chan, paddr, dest, len);
984		if (!desc)
985			goto err_put_desc;
986
987		atc_desc_chain(&first, &prev, desc);
988
989		total_len += len;
990	}
991
992	/*
993	 * Only set the buffer pointers on the last descriptor to
994	 * avoid free'ing while we have our transfer still going
995	 */
996	desc->memset_paddr = paddr;
997	desc->memset_vaddr = vaddr;
998	desc->memset_buffer = true;
999
1000	first->txd.cookie = -EBUSY;
1001	first->total_len = total_len;
1002
1003	/* set end-of-link on the descriptor */
1004	set_desc_eol(desc);
1005
1006	first->txd.flags = flags;
1007
1008	return &first->txd;
1009
1010err_put_desc:
1011	atc_desc_put(atchan, first);
1012	return NULL;
1013}
1014
1015/**
1016 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
1017 * @chan: DMA channel
1018 * @sgl: scatterlist to transfer to/from
1019 * @sg_len: number of entries in @scatterlist
1020 * @direction: DMA direction
1021 * @flags: tx descriptor status flags
1022 * @context: transaction context (ignored)
1023 */
1024static struct dma_async_tx_descriptor *
1025atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1026		unsigned int sg_len, enum dma_transfer_direction direction,
1027		unsigned long flags, void *context)
1028{
1029	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1030	struct at_dma_slave	*atslave = chan->private;
1031	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1032	struct at_desc		*first = NULL;
1033	struct at_desc		*prev = NULL;
1034	u32			ctrla;
1035	u32			ctrlb;
1036	dma_addr_t		reg;
1037	unsigned int		reg_width;
1038	unsigned int		mem_width;
1039	unsigned int		i;
1040	struct scatterlist	*sg;
1041	size_t			total_len = 0;
1042
1043	dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
1044			sg_len,
1045			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1046			flags);
1047
1048	if (unlikely(!atslave || !sg_len)) {
1049		dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
1050		return NULL;
1051	}
1052
1053	ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
1054		| ATC_DCSIZE(sconfig->dst_maxburst);
1055	ctrlb = ATC_IEN;
1056
1057	switch (direction) {
1058	case DMA_MEM_TO_DEV:
1059		reg_width = convert_buswidth(sconfig->dst_addr_width);
1060		ctrla |=  ATC_DST_WIDTH(reg_width);
1061		ctrlb |=  ATC_DST_ADDR_MODE_FIXED
1062			| ATC_SRC_ADDR_MODE_INCR
1063			| ATC_FC_MEM2PER
1064			| ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if);
1065		reg = sconfig->dst_addr;
1066		for_each_sg(sgl, sg, sg_len, i) {
1067			struct at_desc	*desc;
1068			u32		len;
1069			u32		mem;
1070
1071			desc = atc_desc_get(atchan);
1072			if (!desc)
1073				goto err_desc_get;
1074
1075			mem = sg_dma_address(sg);
1076			len = sg_dma_len(sg);
1077			if (unlikely(!len)) {
1078				dev_dbg(chan2dev(chan),
1079					"prep_slave_sg: sg(%d) data length is zero\n", i);
1080				goto err;
1081			}
1082			mem_width = 2;
1083			if (unlikely(mem & 3 || len & 3))
1084				mem_width = 0;
1085
1086			desc->lli.saddr = mem;
1087			desc->lli.daddr = reg;
1088			desc->lli.ctrla = ctrla
1089					| ATC_SRC_WIDTH(mem_width)
1090					| len >> mem_width;
1091			desc->lli.ctrlb = ctrlb;
1092			desc->len = len;
1093
1094			atc_desc_chain(&first, &prev, desc);
1095			total_len += len;
1096		}
1097		break;
1098	case DMA_DEV_TO_MEM:
1099		reg_width = convert_buswidth(sconfig->src_addr_width);
1100		ctrla |=  ATC_SRC_WIDTH(reg_width);
1101		ctrlb |=  ATC_DST_ADDR_MODE_INCR
1102			| ATC_SRC_ADDR_MODE_FIXED
1103			| ATC_FC_PER2MEM
1104			| ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if);
1105
1106		reg = sconfig->src_addr;
1107		for_each_sg(sgl, sg, sg_len, i) {
1108			struct at_desc	*desc;
1109			u32		len;
1110			u32		mem;
1111
1112			desc = atc_desc_get(atchan);
1113			if (!desc)
1114				goto err_desc_get;
1115
1116			mem = sg_dma_address(sg);
1117			len = sg_dma_len(sg);
1118			if (unlikely(!len)) {
1119				dev_dbg(chan2dev(chan),
1120					"prep_slave_sg: sg(%d) data length is zero\n", i);
1121				goto err;
1122			}
1123			mem_width = 2;
1124			if (unlikely(mem & 3 || len & 3))
1125				mem_width = 0;
1126
1127			desc->lli.saddr = reg;
1128			desc->lli.daddr = mem;
1129			desc->lli.ctrla = ctrla
1130					| ATC_DST_WIDTH(mem_width)
1131					| len >> reg_width;
1132			desc->lli.ctrlb = ctrlb;
1133			desc->len = len;
1134
1135			atc_desc_chain(&first, &prev, desc);
1136			total_len += len;
1137		}
1138		break;
1139	default:
1140		return NULL;
1141	}
1142
1143	/* set end-of-link to the last link descriptor of list*/
1144	set_desc_eol(prev);
1145
1146	/* First descriptor of the chain embedds additional information */
1147	first->txd.cookie = -EBUSY;
1148	first->total_len = total_len;
1149
1150	/* first link descriptor of list is responsible of flags */
1151	first->txd.flags = flags; /* client is in control of this ack */
1152
1153	return &first->txd;
1154
1155err_desc_get:
1156	dev_err(chan2dev(chan), "not enough descriptors available\n");
1157err:
1158	atc_desc_put(atchan, first);
1159	return NULL;
1160}
1161
1162/*
1163 * atc_dma_cyclic_check_values
1164 * Check for too big/unaligned periods and unaligned DMA buffer
1165 */
1166static int
1167atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
1168		size_t period_len)
1169{
1170	if (period_len > (ATC_BTSIZE_MAX << reg_width))
1171		goto err_out;
1172	if (unlikely(period_len & ((1 << reg_width) - 1)))
1173		goto err_out;
1174	if (unlikely(buf_addr & ((1 << reg_width) - 1)))
1175		goto err_out;
1176
1177	return 0;
1178
1179err_out:
1180	return -EINVAL;
1181}
1182
1183/*
1184 * atc_dma_cyclic_fill_desc - Fill one period descriptor
1185 */
1186static int
1187atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
1188		unsigned int period_index, dma_addr_t buf_addr,
1189		unsigned int reg_width, size_t period_len,
1190		enum dma_transfer_direction direction)
1191{
1192	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1193	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1194	u32			ctrla;
1195
1196	/* prepare common CRTLA value */
1197	ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
1198		| ATC_DCSIZE(sconfig->dst_maxburst)
1199		| ATC_DST_WIDTH(reg_width)
1200		| ATC_SRC_WIDTH(reg_width)
1201		| period_len >> reg_width;
1202
1203	switch (direction) {
1204	case DMA_MEM_TO_DEV:
1205		desc->lli.saddr = buf_addr + (period_len * period_index);
1206		desc->lli.daddr = sconfig->dst_addr;
1207		desc->lli.ctrla = ctrla;
1208		desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED
1209				| ATC_SRC_ADDR_MODE_INCR
1210				| ATC_FC_MEM2PER
1211				| ATC_SIF(atchan->mem_if)
1212				| ATC_DIF(atchan->per_if);
1213		desc->len = period_len;
1214		break;
1215
1216	case DMA_DEV_TO_MEM:
1217		desc->lli.saddr = sconfig->src_addr;
1218		desc->lli.daddr = buf_addr + (period_len * period_index);
1219		desc->lli.ctrla = ctrla;
1220		desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR
1221				| ATC_SRC_ADDR_MODE_FIXED
1222				| ATC_FC_PER2MEM
1223				| ATC_SIF(atchan->per_if)
1224				| ATC_DIF(atchan->mem_if);
1225		desc->len = period_len;
1226		break;
1227
1228	default:
1229		return -EINVAL;
1230	}
1231
1232	return 0;
1233}
1234
1235/**
1236 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
1237 * @chan: the DMA channel to prepare
1238 * @buf_addr: physical DMA address where the buffer starts
1239 * @buf_len: total number of bytes for the entire buffer
1240 * @period_len: number of bytes for each period
1241 * @direction: transfer direction, to or from device
1242 * @flags: tx descriptor status flags
1243 */
1244static struct dma_async_tx_descriptor *
1245atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1246		size_t period_len, enum dma_transfer_direction direction,
1247		unsigned long flags)
1248{
1249	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1250	struct at_dma_slave	*atslave = chan->private;
1251	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1252	struct at_desc		*first = NULL;
1253	struct at_desc		*prev = NULL;
1254	unsigned long		was_cyclic;
1255	unsigned int		reg_width;
1256	unsigned int		periods = buf_len / period_len;
1257	unsigned int		i;
1258
1259	dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n",
1260			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1261			&buf_addr,
1262			periods, buf_len, period_len);
1263
1264	if (unlikely(!atslave || !buf_len || !period_len)) {
1265		dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
1266		return NULL;
1267	}
1268
1269	was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
1270	if (was_cyclic) {
1271		dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
1272		return NULL;
1273	}
1274
1275	if (unlikely(!is_slave_direction(direction)))
1276		goto err_out;
1277
1278	if (direction == DMA_MEM_TO_DEV)
1279		reg_width = convert_buswidth(sconfig->dst_addr_width);
1280	else
1281		reg_width = convert_buswidth(sconfig->src_addr_width);
1282
1283	/* Check for too big/unaligned periods and unaligned DMA buffer */
1284	if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
1285		goto err_out;
1286
1287	/* build cyclic linked list */
1288	for (i = 0; i < periods; i++) {
1289		struct at_desc	*desc;
1290
1291		desc = atc_desc_get(atchan);
1292		if (!desc)
1293			goto err_desc_get;
1294
1295		if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
1296					     reg_width, period_len, direction))
1297			goto err_desc_get;
1298
1299		atc_desc_chain(&first, &prev, desc);
1300	}
1301
1302	/* lets make a cyclic list */
1303	prev->lli.dscr = first->txd.phys;
1304
1305	/* First descriptor of the chain embedds additional information */
1306	first->txd.cookie = -EBUSY;
1307	first->total_len = buf_len;
1308
1309	return &first->txd;
1310
1311err_desc_get:
1312	dev_err(chan2dev(chan), "not enough descriptors available\n");
1313	atc_desc_put(atchan, first);
1314err_out:
1315	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1316	return NULL;
1317}
1318
1319static int atc_config(struct dma_chan *chan,
1320		      struct dma_slave_config *sconfig)
1321{
1322	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1323
1324	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1325
1326	/* Check if it is chan is configured for slave transfers */
1327	if (!chan->private)
1328		return -EINVAL;
1329
1330	memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
1331
1332	convert_burst(&atchan->dma_sconfig.src_maxburst);
1333	convert_burst(&atchan->dma_sconfig.dst_maxburst);
1334
1335	return 0;
1336}
1337
1338static int atc_pause(struct dma_chan *chan)
1339{
1340	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1341	struct at_dma		*atdma = to_at_dma(chan->device);
1342	int			chan_id = atchan->chan_common.chan_id;
1343	unsigned long		flags;
1344
1345	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1346
1347	spin_lock_irqsave(&atchan->lock, flags);
1348
1349	dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
1350	set_bit(ATC_IS_PAUSED, &atchan->status);
1351
1352	spin_unlock_irqrestore(&atchan->lock, flags);
1353
1354	return 0;
1355}
1356
1357static int atc_resume(struct dma_chan *chan)
1358{
1359	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1360	struct at_dma		*atdma = to_at_dma(chan->device);
1361	int			chan_id = atchan->chan_common.chan_id;
1362	unsigned long		flags;
1363
1364	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1365
1366	if (!atc_chan_is_paused(atchan))
1367		return 0;
1368
1369	spin_lock_irqsave(&atchan->lock, flags);
1370
1371	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
1372	clear_bit(ATC_IS_PAUSED, &atchan->status);
1373
1374	spin_unlock_irqrestore(&atchan->lock, flags);
1375
1376	return 0;
1377}
1378
1379static int atc_terminate_all(struct dma_chan *chan)
1380{
1381	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1382	struct at_dma		*atdma = to_at_dma(chan->device);
1383	int			chan_id = atchan->chan_common.chan_id;
1384	unsigned long		flags;
1385
1386	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1387
1388	/*
1389	 * This is only called when something went wrong elsewhere, so
1390	 * we don't really care about the data. Just disable the
1391	 * channel. We still have to poll the channel enable bit due
1392	 * to AHB/HSB limitations.
1393	 */
1394	spin_lock_irqsave(&atchan->lock, flags);
1395
1396	/* disabling channel: must also remove suspend state */
1397	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
1398
1399	/* confirm that this channel is disabled */
1400	while (dma_readl(atdma, CHSR) & atchan->mask)
1401		cpu_relax();
1402
1403	/* active_list entries will end up before queued entries */
1404	list_splice_tail_init(&atchan->queue, &atchan->free_list);
1405	list_splice_tail_init(&atchan->active_list, &atchan->free_list);
1406
1407	spin_unlock_irqrestore(&atchan->lock, flags);
1408
1409	clear_bit(ATC_IS_PAUSED, &atchan->status);
1410	/* if channel dedicated to cyclic operations, free it */
1411	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1412
1413	return 0;
1414}
1415
1416/**
1417 * atc_tx_status - poll for transaction completion
1418 * @chan: DMA channel
1419 * @cookie: transaction identifier to check status of
1420 * @txstate: if not %NULL updated with transaction state
1421 *
1422 * If @txstate is passed in, upon return it reflect the driver
1423 * internal state and can be used with dma_async_is_complete() to check
1424 * the status of multiple cookies without re-checking hardware state.
1425 */
1426static enum dma_status
1427atc_tx_status(struct dma_chan *chan,
1428		dma_cookie_t cookie,
1429		struct dma_tx_state *txstate)
1430{
1431	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1432	unsigned long		flags;
1433	enum dma_status		ret;
1434	int bytes = 0;
1435
1436	ret = dma_cookie_status(chan, cookie, txstate);
1437	if (ret == DMA_COMPLETE)
1438		return ret;
1439	/*
1440	 * There's no point calculating the residue if there's
1441	 * no txstate to store the value.
1442	 */
1443	if (!txstate)
1444		return DMA_ERROR;
1445
1446	spin_lock_irqsave(&atchan->lock, flags);
1447
1448	/*  Get number of bytes left in the active transactions */
1449	bytes = atc_get_bytes_left(chan, cookie);
1450
1451	spin_unlock_irqrestore(&atchan->lock, flags);
1452
1453	if (unlikely(bytes < 0)) {
1454		dev_vdbg(chan2dev(chan), "get residual bytes error\n");
1455		return DMA_ERROR;
1456	} else {
1457		dma_set_residue(txstate, bytes);
1458	}
1459
1460	dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n",
1461		 ret, cookie, bytes);
1462
1463	return ret;
1464}
1465
1466/**
1467 * atc_issue_pending - takes the first transaction descriptor in the pending
1468 * queue and starts the transfer.
1469 * @chan: target DMA channel
1470 */
1471static void atc_issue_pending(struct dma_chan *chan)
1472{
1473	struct at_dma_chan *atchan = to_at_dma_chan(chan);
1474	struct at_desc *desc;
1475	unsigned long flags;
1476
1477	dev_vdbg(chan2dev(chan), "issue_pending\n");
1478
1479	spin_lock_irqsave(&atchan->lock, flags);
1480	if (atc_chan_is_enabled(atchan) || list_empty(&atchan->queue))
1481		return spin_unlock_irqrestore(&atchan->lock, flags);
1482
1483	desc = atc_first_queued(atchan);
1484	list_move_tail(&desc->desc_node, &atchan->active_list);
1485	atc_dostart(atchan, desc);
1486	spin_unlock_irqrestore(&atchan->lock, flags);
1487}
1488
1489/**
1490 * atc_alloc_chan_resources - allocate resources for DMA channel
1491 * @chan: allocate descriptor resources for this channel
1492 *
1493 * return - the number of allocated descriptors
1494 */
1495static int atc_alloc_chan_resources(struct dma_chan *chan)
1496{
1497	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1498	struct at_dma		*atdma = to_at_dma(chan->device);
1499	struct at_desc		*desc;
1500	struct at_dma_slave	*atslave;
1501	int			i;
1502	u32			cfg;
1503
1504	dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1505
1506	/* ASSERT:  channel is idle */
1507	if (atc_chan_is_enabled(atchan)) {
1508		dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1509		return -EIO;
1510	}
1511
1512	if (!list_empty(&atchan->free_list)) {
1513		dev_dbg(chan2dev(chan), "can't allocate channel resources (channel not freed from a previous use)\n");
1514		return -EIO;
1515	}
1516
1517	cfg = ATC_DEFAULT_CFG;
1518
1519	atslave = chan->private;
1520	if (atslave) {
1521		/*
1522		 * We need controller-specific data to set up slave
1523		 * transfers.
1524		 */
1525		BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev);
1526
1527		/* if cfg configuration specified take it instead of default */
1528		if (atslave->cfg)
1529			cfg = atslave->cfg;
1530	}
1531
1532	/* Allocate initial pool of descriptors */
1533	for (i = 0; i < init_nr_desc_per_channel; i++) {
1534		desc = atc_alloc_descriptor(chan, GFP_KERNEL);
1535		if (!desc) {
1536			dev_err(atdma->dma_common.dev,
1537				"Only %d initial descriptors\n", i);
1538			break;
1539		}
1540		list_add_tail(&desc->desc_node, &atchan->free_list);
1541	}
1542
1543	dma_cookie_init(chan);
1544
1545	/* channel parameters */
1546	channel_writel(atchan, CFG, cfg);
1547
1548	dev_dbg(chan2dev(chan),
1549		"alloc_chan_resources: allocated %d descriptors\n", i);
1550
1551	return i;
1552}
1553
1554/**
1555 * atc_free_chan_resources - free all channel resources
1556 * @chan: DMA channel
1557 */
1558static void atc_free_chan_resources(struct dma_chan *chan)
1559{
1560	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1561	struct at_dma		*atdma = to_at_dma(chan->device);
1562	struct at_desc		*desc, *_desc;
1563	LIST_HEAD(list);
1564
1565	/* ASSERT:  channel is idle */
1566	BUG_ON(!list_empty(&atchan->active_list));
1567	BUG_ON(!list_empty(&atchan->queue));
1568	BUG_ON(atc_chan_is_enabled(atchan));
1569
1570	list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
1571		dev_vdbg(chan2dev(chan), "  freeing descriptor %p\n", desc);
1572		list_del(&desc->desc_node);
1573		/* free link descriptor */
1574		dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys);
1575	}
1576	list_splice_init(&atchan->free_list, &list);
1577	atchan->status = 0;
1578
1579	/*
1580	 * Free atslave allocated in at_dma_xlate()
1581	 */
1582	kfree(chan->private);
1583	chan->private = NULL;
1584
1585	dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1586}
1587
1588#ifdef CONFIG_OF
1589static bool at_dma_filter(struct dma_chan *chan, void *slave)
1590{
1591	struct at_dma_slave *atslave = slave;
1592
1593	if (atslave->dma_dev == chan->device->dev) {
1594		chan->private = atslave;
1595		return true;
1596	} else {
1597		return false;
1598	}
1599}
1600
1601static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1602				     struct of_dma *of_dma)
1603{
1604	struct dma_chan *chan;
1605	struct at_dma_chan *atchan;
1606	struct at_dma_slave *atslave;
1607	dma_cap_mask_t mask;
1608	unsigned int per_id;
1609	struct platform_device *dmac_pdev;
1610
1611	if (dma_spec->args_count != 2)
1612		return NULL;
1613
1614	dmac_pdev = of_find_device_by_node(dma_spec->np);
1615	if (!dmac_pdev)
1616		return NULL;
1617
1618	dma_cap_zero(mask);
1619	dma_cap_set(DMA_SLAVE, mask);
1620
1621	atslave = kmalloc(sizeof(*atslave), GFP_KERNEL);
1622	if (!atslave) {
1623		put_device(&dmac_pdev->dev);
1624		return NULL;
1625	}
1626
1627	atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW;
1628	/*
1629	 * We can fill both SRC_PER and DST_PER, one of these fields will be
1630	 * ignored depending on DMA transfer direction.
1631	 */
1632	per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
1633	atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id)
1634		     | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id);
1635	/*
1636	 * We have to translate the value we get from the device tree since
1637	 * the half FIFO configuration value had to be 0 to keep backward
1638	 * compatibility.
1639	 */
1640	switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
1641	case AT91_DMA_CFG_FIFOCFG_ALAP:
1642		atslave->cfg |= ATC_FIFOCFG_LARGESTBURST;
1643		break;
1644	case AT91_DMA_CFG_FIFOCFG_ASAP:
1645		atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE;
1646		break;
1647	case AT91_DMA_CFG_FIFOCFG_HALF:
1648	default:
1649		atslave->cfg |= ATC_FIFOCFG_HALFFIFO;
1650	}
1651	atslave->dma_dev = &dmac_pdev->dev;
1652
1653	chan = dma_request_channel(mask, at_dma_filter, atslave);
1654	if (!chan) {
1655		put_device(&dmac_pdev->dev);
1656		kfree(atslave);
1657		return NULL;
1658	}
1659
1660	atchan = to_at_dma_chan(chan);
1661	atchan->per_if = dma_spec->args[0] & 0xff;
1662	atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
1663
1664	return chan;
1665}
1666#else
1667static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1668				     struct of_dma *of_dma)
1669{
1670	return NULL;
1671}
1672#endif
1673
1674/*--  Module Management  -----------------------------------------------*/
1675
1676/* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1677static struct at_dma_platform_data at91sam9rl_config = {
1678	.nr_channels = 2,
1679};
1680static struct at_dma_platform_data at91sam9g45_config = {
1681	.nr_channels = 8,
1682};
1683
1684#if defined(CONFIG_OF)
1685static const struct of_device_id atmel_dma_dt_ids[] = {
1686	{
1687		.compatible = "atmel,at91sam9rl-dma",
1688		.data = &at91sam9rl_config,
1689	}, {
1690		.compatible = "atmel,at91sam9g45-dma",
1691		.data = &at91sam9g45_config,
1692	}, {
1693		/* sentinel */
1694	}
1695};
1696
1697MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1698#endif
1699
1700static const struct platform_device_id atdma_devtypes[] = {
1701	{
1702		.name = "at91sam9rl_dma",
1703		.driver_data = (unsigned long) &at91sam9rl_config,
1704	}, {
1705		.name = "at91sam9g45_dma",
1706		.driver_data = (unsigned long) &at91sam9g45_config,
1707	}, {
1708		/* sentinel */
1709	}
1710};
1711
1712static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
1713						struct platform_device *pdev)
1714{
1715	if (pdev->dev.of_node) {
1716		const struct of_device_id *match;
1717		match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1718		if (match == NULL)
1719			return NULL;
1720		return match->data;
1721	}
1722	return (struct at_dma_platform_data *)
1723			platform_get_device_id(pdev)->driver_data;
1724}
1725
1726/**
1727 * at_dma_off - disable DMA controller
1728 * @atdma: the Atmel HDAMC device
1729 */
1730static void at_dma_off(struct at_dma *atdma)
1731{
1732	dma_writel(atdma, EN, 0);
1733
1734	/* disable all interrupts */
1735	dma_writel(atdma, EBCIDR, -1L);
1736
1737	/* confirm that all channels are disabled */
1738	while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1739		cpu_relax();
1740}
1741
1742static int __init at_dma_probe(struct platform_device *pdev)
1743{
1744	struct resource		*io;
1745	struct at_dma		*atdma;
1746	size_t			size;
1747	int			irq;
1748	int			err;
1749	int			i;
1750	const struct at_dma_platform_data *plat_dat;
1751
1752	/* setup platform data for each SoC */
1753	dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
1754	dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
1755	dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
1756	dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask);
1757	dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask);
1758	dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask);
1759	dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
1760
1761	/* get DMA parameters from controller type */
1762	plat_dat = at_dma_get_driver_data(pdev);
1763	if (!plat_dat)
1764		return -ENODEV;
1765
1766	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1767	if (!io)
1768		return -EINVAL;
1769
1770	irq = platform_get_irq(pdev, 0);
1771	if (irq < 0)
1772		return irq;
1773
1774	size = sizeof(struct at_dma);
1775	size += plat_dat->nr_channels * sizeof(struct at_dma_chan);
1776	atdma = kzalloc(size, GFP_KERNEL);
1777	if (!atdma)
1778		return -ENOMEM;
1779
1780	/* discover transaction capabilities */
1781	atdma->dma_common.cap_mask = plat_dat->cap_mask;
1782	atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1783
1784	size = resource_size(io);
1785	if (!request_mem_region(io->start, size, pdev->dev.driver->name)) {
1786		err = -EBUSY;
1787		goto err_kfree;
1788	}
1789
1790	atdma->regs = ioremap(io->start, size);
1791	if (!atdma->regs) {
1792		err = -ENOMEM;
1793		goto err_release_r;
1794	}
1795
1796	atdma->clk = clk_get(&pdev->dev, "dma_clk");
1797	if (IS_ERR(atdma->clk)) {
1798		err = PTR_ERR(atdma->clk);
1799		goto err_clk;
1800	}
1801	err = clk_prepare_enable(atdma->clk);
1802	if (err)
1803		goto err_clk_prepare;
1804
1805	/* force dma off, just in case */
1806	at_dma_off(atdma);
1807
1808	err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
1809	if (err)
1810		goto err_irq;
1811
1812	platform_set_drvdata(pdev, atdma);
1813
1814	/* create a pool of consistent memory blocks for hardware descriptors */
1815	atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool",
1816			&pdev->dev, sizeof(struct at_desc),
1817			4 /* word alignment */, 0);
1818	if (!atdma->dma_desc_pool) {
1819		dev_err(&pdev->dev, "No memory for descriptors dma pool\n");
1820		err = -ENOMEM;
1821		goto err_desc_pool_create;
1822	}
1823
1824	/* create a pool of consistent memory blocks for memset blocks */
1825	atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool",
1826					     &pdev->dev, sizeof(int), 4, 0);
1827	if (!atdma->memset_pool) {
1828		dev_err(&pdev->dev, "No memory for memset dma pool\n");
1829		err = -ENOMEM;
1830		goto err_memset_pool_create;
1831	}
1832
1833	/* clear any pending interrupt */
1834	while (dma_readl(atdma, EBCISR))
1835		cpu_relax();
1836
1837	/* initialize channels related values */
1838	INIT_LIST_HEAD(&atdma->dma_common.channels);
1839	for (i = 0; i < plat_dat->nr_channels; i++) {
1840		struct at_dma_chan	*atchan = &atdma->chan[i];
1841
1842		atchan->mem_if = AT_DMA_MEM_IF;
1843		atchan->per_if = AT_DMA_PER_IF;
1844		atchan->chan_common.device = &atdma->dma_common;
1845		dma_cookie_init(&atchan->chan_common);
1846		list_add_tail(&atchan->chan_common.device_node,
1847				&atdma->dma_common.channels);
1848
1849		atchan->ch_regs = atdma->regs + ch_regs(i);
1850		spin_lock_init(&atchan->lock);
1851		atchan->mask = 1 << i;
1852
1853		INIT_LIST_HEAD(&atchan->active_list);
1854		INIT_LIST_HEAD(&atchan->queue);
1855		INIT_LIST_HEAD(&atchan->free_list);
1856
1857		tasklet_setup(&atchan->tasklet, atc_tasklet);
1858		atc_enable_chan_irq(atdma, i);
1859	}
1860
1861	/* set base routines */
1862	atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources;
1863	atdma->dma_common.device_free_chan_resources = atc_free_chan_resources;
1864	atdma->dma_common.device_tx_status = atc_tx_status;
1865	atdma->dma_common.device_issue_pending = atc_issue_pending;
1866	atdma->dma_common.dev = &pdev->dev;
1867
1868	/* set prep routines based on capability */
1869	if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask))
1870		atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved;
1871
1872	if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask))
1873		atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy;
1874
1875	if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) {
1876		atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset;
1877		atdma->dma_common.device_prep_dma_memset_sg = atc_prep_dma_memset_sg;
1878		atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES;
1879	}
1880
1881	if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) {
1882		atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg;
1883		/* controller can do slave DMA: can trigger cyclic transfers */
1884		dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask);
1885		atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic;
1886		atdma->dma_common.device_config = atc_config;
1887		atdma->dma_common.device_pause = atc_pause;
1888		atdma->dma_common.device_resume = atc_resume;
1889		atdma->dma_common.device_terminate_all = atc_terminate_all;
1890		atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS;
1891		atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS;
1892		atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1893		atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1894	}
1895
1896	dma_writel(atdma, EN, AT_DMA_ENABLE);
1897
1898	dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n",
1899	  dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "",
1900	  dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "",
1901	  dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)  ? "slave " : "",
1902	  plat_dat->nr_channels);
1903
1904	err = dma_async_device_register(&atdma->dma_common);
1905	if (err) {
1906		dev_err(&pdev->dev, "Unable to register: %d.\n", err);
1907		goto err_dma_async_device_register;
1908	}
1909
1910	/*
1911	 * Do not return an error if the dmac node is not present in order to
1912	 * not break the existing way of requesting channel with
1913	 * dma_request_channel().
1914	 */
1915	if (pdev->dev.of_node) {
1916		err = of_dma_controller_register(pdev->dev.of_node,
1917						 at_dma_xlate, atdma);
1918		if (err) {
1919			dev_err(&pdev->dev, "could not register of_dma_controller\n");
1920			goto err_of_dma_controller_register;
1921		}
1922	}
1923
1924	return 0;
1925
1926err_of_dma_controller_register:
1927	dma_async_device_unregister(&atdma->dma_common);
1928err_dma_async_device_register:
1929	dma_pool_destroy(atdma->memset_pool);
1930err_memset_pool_create:
1931	dma_pool_destroy(atdma->dma_desc_pool);
1932err_desc_pool_create:
1933	free_irq(platform_get_irq(pdev, 0), atdma);
1934err_irq:
1935	clk_disable_unprepare(atdma->clk);
1936err_clk_prepare:
1937	clk_put(atdma->clk);
1938err_clk:
1939	iounmap(atdma->regs);
1940	atdma->regs = NULL;
1941err_release_r:
1942	release_mem_region(io->start, size);
1943err_kfree:
1944	kfree(atdma);
1945	return err;
1946}
1947
1948static int at_dma_remove(struct platform_device *pdev)
1949{
1950	struct at_dma		*atdma = platform_get_drvdata(pdev);
1951	struct dma_chan		*chan, *_chan;
1952	struct resource		*io;
1953
1954	at_dma_off(atdma);
1955	if (pdev->dev.of_node)
1956		of_dma_controller_free(pdev->dev.of_node);
1957	dma_async_device_unregister(&atdma->dma_common);
1958
1959	dma_pool_destroy(atdma->memset_pool);
1960	dma_pool_destroy(atdma->dma_desc_pool);
1961	free_irq(platform_get_irq(pdev, 0), atdma);
1962
1963	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
1964			device_node) {
1965		struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1966
1967		/* Disable interrupts */
1968		atc_disable_chan_irq(atdma, chan->chan_id);
1969
1970		tasklet_kill(&atchan->tasklet);
1971		list_del(&chan->device_node);
1972	}
1973
1974	clk_disable_unprepare(atdma->clk);
1975	clk_put(atdma->clk);
1976
1977	iounmap(atdma->regs);
1978	atdma->regs = NULL;
1979
1980	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1981	release_mem_region(io->start, resource_size(io));
1982
1983	kfree(atdma);
1984
1985	return 0;
1986}
1987
1988static void at_dma_shutdown(struct platform_device *pdev)
1989{
1990	struct at_dma	*atdma = platform_get_drvdata(pdev);
1991
1992	at_dma_off(platform_get_drvdata(pdev));
1993	clk_disable_unprepare(atdma->clk);
1994}
1995
1996static int at_dma_prepare(struct device *dev)
1997{
1998	struct at_dma *atdma = dev_get_drvdata(dev);
1999	struct dma_chan *chan, *_chan;
2000
2001	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2002			device_node) {
2003		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2004		/* wait for transaction completion (except in cyclic case) */
2005		if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
2006			return -EAGAIN;
2007	}
2008	return 0;
2009}
2010
2011static void atc_suspend_cyclic(struct at_dma_chan *atchan)
2012{
2013	struct dma_chan	*chan = &atchan->chan_common;
2014
2015	/* Channel should be paused by user
2016	 * do it anyway even if it is not done already */
2017	if (!atc_chan_is_paused(atchan)) {
2018		dev_warn(chan2dev(chan),
2019		"cyclic channel not paused, should be done by channel user\n");
2020		atc_pause(chan);
2021	}
2022
2023	/* now preserve additional data for cyclic operations */
2024	/* next descriptor address in the cyclic list */
2025	atchan->save_dscr = channel_readl(atchan, DSCR);
2026
2027	vdbg_dump_regs(atchan);
2028}
2029
2030static int at_dma_suspend_noirq(struct device *dev)
2031{
2032	struct at_dma *atdma = dev_get_drvdata(dev);
2033	struct dma_chan *chan, *_chan;
2034
2035	/* preserve data */
2036	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2037			device_node) {
2038		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2039
2040		if (atc_chan_is_cyclic(atchan))
2041			atc_suspend_cyclic(atchan);
2042		atchan->save_cfg = channel_readl(atchan, CFG);
2043	}
2044	atdma->save_imr = dma_readl(atdma, EBCIMR);
2045
2046	/* disable DMA controller */
2047	at_dma_off(atdma);
2048	clk_disable_unprepare(atdma->clk);
2049	return 0;
2050}
2051
2052static void atc_resume_cyclic(struct at_dma_chan *atchan)
2053{
2054	struct at_dma	*atdma = to_at_dma(atchan->chan_common.device);
2055
2056	/* restore channel status for cyclic descriptors list:
2057	 * next descriptor in the cyclic list at the time of suspend */
2058	channel_writel(atchan, SADDR, 0);
2059	channel_writel(atchan, DADDR, 0);
2060	channel_writel(atchan, CTRLA, 0);
2061	channel_writel(atchan, CTRLB, 0);
2062	channel_writel(atchan, DSCR, atchan->save_dscr);
2063	dma_writel(atdma, CHER, atchan->mask);
2064
2065	/* channel pause status should be removed by channel user
2066	 * We cannot take the initiative to do it here */
2067
2068	vdbg_dump_regs(atchan);
2069}
2070
2071static int at_dma_resume_noirq(struct device *dev)
2072{
2073	struct at_dma *atdma = dev_get_drvdata(dev);
2074	struct dma_chan *chan, *_chan;
2075
2076	/* bring back DMA controller */
2077	clk_prepare_enable(atdma->clk);
2078	dma_writel(atdma, EN, AT_DMA_ENABLE);
2079
2080	/* clear any pending interrupt */
2081	while (dma_readl(atdma, EBCISR))
2082		cpu_relax();
2083
2084	/* restore saved data */
2085	dma_writel(atdma, EBCIER, atdma->save_imr);
2086	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2087			device_node) {
2088		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2089
2090		channel_writel(atchan, CFG, atchan->save_cfg);
2091		if (atc_chan_is_cyclic(atchan))
2092			atc_resume_cyclic(atchan);
2093	}
2094	return 0;
2095}
2096
2097static const struct dev_pm_ops at_dma_dev_pm_ops = {
2098	.prepare = at_dma_prepare,
2099	.suspend_noirq = at_dma_suspend_noirq,
2100	.resume_noirq = at_dma_resume_noirq,
2101};
2102
2103static struct platform_driver at_dma_driver = {
2104	.remove		= at_dma_remove,
2105	.shutdown	= at_dma_shutdown,
2106	.id_table	= atdma_devtypes,
2107	.driver = {
2108		.name	= "at_hdmac",
2109		.pm	= &at_dma_dev_pm_ops,
2110		.of_match_table	= of_match_ptr(atmel_dma_dt_ids),
2111	},
2112};
2113
2114static int __init at_dma_init(void)
2115{
2116	return platform_driver_probe(&at_dma_driver, at_dma_probe);
2117}
2118subsys_initcall(at_dma_init);
2119
2120static void __exit at_dma_exit(void)
2121{
2122	platform_driver_unregister(&at_dma_driver);
2123}
2124module_exit(at_dma_exit);
2125
2126MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
2127MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
2128MODULE_LICENSE("GPL");
2129MODULE_ALIAS("platform:at_hdmac");
2130