1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Framework for buffer objects that can be shared across devices/subsystems.
4 *
5 * Copyright(C) 2011 Linaro Limited. All rights reserved.
6 * Author: Sumit Semwal <sumit.semwal@ti.com>
7 *
8 * Many thanks to linaro-mm-sig list, and specially
9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11 * refining of this idea.
12 */
13
14#include <linux/fs.h>
15#include <linux/slab.h>
16#include <linux/dma-buf.h>
17#include <linux/dma-fence.h>
18#include <linux/anon_inodes.h>
19#include <linux/export.h>
20#include <linux/debugfs.h>
21#include <linux/module.h>
22#include <linux/seq_file.h>
23#include <linux/poll.h>
24#include <linux/dma-resv.h>
25#include <linux/mm.h>
26#include <linux/mount.h>
27#include <linux/pseudo_fs.h>
28
29#include <uapi/linux/dma-buf.h>
30#include <uapi/linux/magic.h>
31
32#include "dma-buf-sysfs-stats.h"
33#include "dma-buf-process-info.h"
34
35static inline int is_dma_buf_file(struct file *);
36
37struct dma_buf_list {
38	struct list_head head;
39	struct mutex lock;
40};
41
42static struct dma_buf_list db_list;
43
44static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
45{
46	struct dma_buf *dmabuf;
47	char name[DMA_BUF_NAME_LEN];
48	size_t ret = 0;
49
50	dmabuf = dentry->d_fsdata;
51	spin_lock(&dmabuf->name_lock);
52	if (dmabuf->name)
53		ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN);
54	spin_unlock(&dmabuf->name_lock);
55
56	return dynamic_dname(dentry, buffer, buflen, "/%s:%s",
57			     dentry->d_name.name, ret > 0 ? name : "");
58}
59
60static void dma_buf_release(struct dentry *dentry)
61{
62	struct dma_buf *dmabuf;
63
64	dmabuf = dentry->d_fsdata;
65	if (unlikely(!dmabuf))
66		return;
67
68	BUG_ON(dmabuf->vmapping_counter);
69
70	/*
71	 * Any fences that a dma-buf poll can wait on should be signaled
72	 * before releasing dma-buf. This is the responsibility of each
73	 * driver that uses the reservation objects.
74	 *
75	 * If you hit this BUG() it means someone dropped their ref to the
76	 * dma-buf while still having pending operation to the buffer.
77	 */
78	BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active);
79
80	dmabuf->ops->release(dmabuf);
81
82	if (dmabuf->resv == (struct dma_resv *)&dmabuf[1])
83		dma_resv_fini(dmabuf->resv);
84
85	WARN_ON(!list_empty(&dmabuf->attachments));
86	dma_buf_stats_teardown(dmabuf);
87	module_put(dmabuf->owner);
88	kfree(dmabuf->name);
89	kfree(dmabuf);
90}
91
92static int dma_buf_file_release(struct inode *inode, struct file *file)
93{
94	struct dma_buf *dmabuf;
95
96	if (!is_dma_buf_file(file))
97		return -EINVAL;
98
99	dmabuf = file->private_data;
100
101	mutex_lock(&db_list.lock);
102	list_del(&dmabuf->list_node);
103	mutex_unlock(&db_list.lock);
104
105	return 0;
106}
107
108static const struct dentry_operations dma_buf_dentry_ops = {
109	.d_dname = dmabuffs_dname,
110	.d_release = dma_buf_release,
111};
112
113static struct vfsmount *dma_buf_mnt;
114
115static int dma_buf_fs_init_context(struct fs_context *fc)
116{
117	struct pseudo_fs_context *ctx;
118
119	ctx = init_pseudo(fc, DMA_BUF_MAGIC);
120	if (!ctx)
121		return -ENOMEM;
122	ctx->dops = &dma_buf_dentry_ops;
123	return 0;
124}
125
126static struct file_system_type dma_buf_fs_type = {
127	.name = "dmabuf",
128	.init_fs_context = dma_buf_fs_init_context,
129	.kill_sb = kill_anon_super,
130};
131
132static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
133{
134	struct dma_buf *dmabuf;
135
136	if (!is_dma_buf_file(file))
137		return -EINVAL;
138
139	dmabuf = file->private_data;
140
141	/* check if buffer supports mmap */
142	if (!dmabuf->ops->mmap)
143		return -EINVAL;
144
145	/* check for overflowing the buffer's size */
146	if (vma->vm_pgoff + vma_pages(vma) >
147	    dmabuf->size >> PAGE_SHIFT)
148		return -EINVAL;
149
150	return dmabuf->ops->mmap(dmabuf, vma);
151}
152
153static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
154{
155	struct dma_buf *dmabuf;
156	loff_t base;
157
158	if (!is_dma_buf_file(file))
159		return -EBADF;
160
161	dmabuf = file->private_data;
162
163	/* only support discovering the end of the buffer,
164	   but also allow SEEK_SET to maintain the idiomatic
165	   SEEK_END(0), SEEK_CUR(0) pattern */
166	if (whence == SEEK_END)
167		base = dmabuf->size;
168	else if (whence == SEEK_SET)
169		base = 0;
170	else
171		return -EINVAL;
172
173	if (offset != 0)
174		return -EINVAL;
175
176	return base + offset;
177}
178
179/**
180 * DOC: implicit fence polling
181 *
182 * To support cross-device and cross-driver synchronization of buffer access
183 * implicit fences (represented internally in the kernel with &struct dma_fence)
184 * can be attached to a &dma_buf. The glue for that and a few related things are
185 * provided in the &dma_resv structure.
186 *
187 * Userspace can query the state of these implicitly tracked fences using poll()
188 * and related system calls:
189 *
190 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
191 *   most recent write or exclusive fence.
192 *
193 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
194 *   all attached fences, shared and exclusive ones.
195 *
196 * Note that this only signals the completion of the respective fences, i.e. the
197 * DMA transfers are complete. Cache flushing and any other necessary
198 * preparations before CPU access can begin still need to happen.
199 */
200
201static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
202{
203	struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
204	unsigned long flags;
205
206	spin_lock_irqsave(&dcb->poll->lock, flags);
207	wake_up_locked_poll(dcb->poll, dcb->active);
208	dcb->active = 0;
209	spin_unlock_irqrestore(&dcb->poll->lock, flags);
210}
211
212static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
213{
214	struct dma_buf *dmabuf;
215	struct dma_resv *resv;
216	struct dma_resv_list *fobj;
217	struct dma_fence *fence_excl;
218	__poll_t events;
219	unsigned shared_count, seq;
220
221	dmabuf = file->private_data;
222	if (!dmabuf || !dmabuf->resv)
223		return EPOLLERR;
224
225	resv = dmabuf->resv;
226
227	poll_wait(file, &dmabuf->poll, poll);
228
229	events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
230	if (!events)
231		return 0;
232
233retry:
234	seq = read_seqcount_begin(&resv->seq);
235	rcu_read_lock();
236
237	fobj = rcu_dereference(resv->fence);
238	if (fobj)
239		shared_count = fobj->shared_count;
240	else
241		shared_count = 0;
242	fence_excl = rcu_dereference(resv->fence_excl);
243	if (read_seqcount_retry(&resv->seq, seq)) {
244		rcu_read_unlock();
245		goto retry;
246	}
247
248	if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) {
249		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl;
250		__poll_t pevents = EPOLLIN;
251
252		if (shared_count == 0)
253			pevents |= EPOLLOUT;
254
255		spin_lock_irq(&dmabuf->poll.lock);
256		if (dcb->active) {
257			dcb->active |= pevents;
258			events &= ~pevents;
259		} else
260			dcb->active = pevents;
261		spin_unlock_irq(&dmabuf->poll.lock);
262
263		if (events & pevents) {
264			if (!dma_fence_get_rcu(fence_excl)) {
265				/* force a recheck */
266				events &= ~pevents;
267				dma_buf_poll_cb(NULL, &dcb->cb);
268			} else if (!dma_fence_add_callback(fence_excl, &dcb->cb,
269							   dma_buf_poll_cb)) {
270				events &= ~pevents;
271				dma_fence_put(fence_excl);
272			} else {
273				/*
274				 * No callback queued, wake up any additional
275				 * waiters.
276				 */
277				dma_fence_put(fence_excl);
278				dma_buf_poll_cb(NULL, &dcb->cb);
279			}
280		}
281	}
282
283	if ((events & EPOLLOUT) && shared_count > 0) {
284		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared;
285		int i;
286
287		/* Only queue a new callback if no event has fired yet */
288		spin_lock_irq(&dmabuf->poll.lock);
289		if (dcb->active)
290			events &= ~EPOLLOUT;
291		else
292			dcb->active = EPOLLOUT;
293		spin_unlock_irq(&dmabuf->poll.lock);
294
295		if (!(events & EPOLLOUT))
296			goto out;
297
298		for (i = 0; i < shared_count; ++i) {
299			struct dma_fence *fence = rcu_dereference(fobj->shared[i]);
300
301			if (!dma_fence_get_rcu(fence)) {
302				/*
303				 * fence refcount dropped to zero, this means
304				 * that fobj has been freed
305				 *
306				 * call dma_buf_poll_cb and force a recheck!
307				 */
308				events &= ~EPOLLOUT;
309				dma_buf_poll_cb(NULL, &dcb->cb);
310				break;
311			}
312			if (!dma_fence_add_callback(fence, &dcb->cb,
313						    dma_buf_poll_cb)) {
314				dma_fence_put(fence);
315				events &= ~EPOLLOUT;
316				break;
317			}
318			dma_fence_put(fence);
319		}
320
321		/* No callback queued, wake up any additional waiters. */
322		if (i == shared_count)
323			dma_buf_poll_cb(NULL, &dcb->cb);
324	}
325
326out:
327	rcu_read_unlock();
328	return events;
329}
330
331/**
332 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
333 * The name of the dma-buf buffer can only be set when the dma-buf is not
334 * attached to any devices. It could theoritically support changing the
335 * name of the dma-buf if the same piece of memory is used for multiple
336 * purpose between different devices.
337 *
338 * @dmabuf: [in]     dmabuf buffer that will be renamed.
339 * @buf:    [in]     A piece of userspace memory that contains the name of
340 *                   the dma-buf.
341 *
342 * Returns 0 on success. If the dma-buf buffer is already attached to
343 * devices, return -EBUSY.
344 *
345 */
346static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
347{
348	char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
349	long ret = 0;
350
351	if (IS_ERR(name))
352		return PTR_ERR(name);
353
354	dma_resv_lock(dmabuf->resv, NULL);
355	if (!list_empty(&dmabuf->attachments)) {
356		ret = -EBUSY;
357		kfree(name);
358		goto out_unlock;
359	}
360	spin_lock(&dmabuf->name_lock);
361	kfree(dmabuf->name);
362	dmabuf->name = name;
363	spin_unlock(&dmabuf->name_lock);
364
365out_unlock:
366	dma_resv_unlock(dmabuf->resv);
367	return ret;
368}
369
370static long dma_buf_ioctl(struct file *file,
371			  unsigned int cmd, unsigned long arg)
372{
373	struct dma_buf *dmabuf;
374	struct dma_buf_sync sync;
375	enum dma_data_direction direction;
376	int ret;
377
378	dmabuf = file->private_data;
379
380	switch (cmd) {
381	case DMA_BUF_IOCTL_SYNC:
382		if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
383			return -EFAULT;
384
385		if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
386			return -EINVAL;
387
388		switch (sync.flags & DMA_BUF_SYNC_RW) {
389		case DMA_BUF_SYNC_READ:
390			direction = DMA_FROM_DEVICE;
391			break;
392		case DMA_BUF_SYNC_WRITE:
393			direction = DMA_TO_DEVICE;
394			break;
395		case DMA_BUF_SYNC_RW:
396			direction = DMA_BIDIRECTIONAL;
397			break;
398		default:
399			return -EINVAL;
400		}
401
402		if (sync.flags & DMA_BUF_SYNC_END)
403			ret = dma_buf_end_cpu_access(dmabuf, direction);
404		else
405			ret = dma_buf_begin_cpu_access(dmabuf, direction);
406
407		return ret;
408
409	case DMA_BUF_SET_NAME_A:
410	case DMA_BUF_SET_NAME_B:
411		return dma_buf_set_name(dmabuf, (const char __user *)arg);
412
413	default:
414		return -ENOTTY;
415	}
416}
417
418static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
419{
420	struct dma_buf *dmabuf = file->private_data;
421
422	seq_printf(m, "size:\t%zu\n", dmabuf->size);
423	/* Don't count the temporary reference taken inside procfs seq_show */
424	seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
425	seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
426	spin_lock(&dmabuf->name_lock);
427	if (dmabuf->name)
428		seq_printf(m, "name:\t%s\n", dmabuf->name);
429	spin_unlock(&dmabuf->name_lock);
430}
431
432static const struct file_operations dma_buf_fops = {
433	.release	= dma_buf_file_release,
434	.mmap		= dma_buf_mmap_internal,
435	.llseek		= dma_buf_llseek,
436	.poll		= dma_buf_poll,
437	.unlocked_ioctl	= dma_buf_ioctl,
438	.compat_ioctl	= compat_ptr_ioctl,
439	.show_fdinfo	= dma_buf_show_fdinfo,
440};
441
442/*
443 * is_dma_buf_file - Check if struct file* is associated with dma_buf
444 */
445static inline int is_dma_buf_file(struct file *file)
446{
447	return file->f_op == &dma_buf_fops;
448}
449
450static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags)
451{
452	struct file *file;
453	struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
454
455	if (IS_ERR(inode))
456		return ERR_CAST(inode);
457
458	inode->i_size = dmabuf->size;
459	inode_set_bytes(inode, dmabuf->size);
460
461	file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
462				 flags, &dma_buf_fops);
463	if (IS_ERR(file))
464		goto err_alloc_file;
465	file->f_flags = flags & (O_ACCMODE | O_NONBLOCK);
466	file->private_data = dmabuf;
467	file->f_path.dentry->d_fsdata = dmabuf;
468
469	return file;
470
471err_alloc_file:
472	iput(inode);
473	return file;
474}
475
476/**
477 * DOC: dma buf device access
478 *
479 * For device DMA access to a shared DMA buffer the usual sequence of operations
480 * is fairly simple:
481 *
482 * 1. The exporter defines his exporter instance using
483 *    DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
484 *    buffer object into a &dma_buf. It then exports that &dma_buf to userspace
485 *    as a file descriptor by calling dma_buf_fd().
486 *
487 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
488 *    to share with: First the filedescriptor is converted to a &dma_buf using
489 *    dma_buf_get(). Then the buffer is attached to the device using
490 *    dma_buf_attach().
491 *
492 *    Up to this stage the exporter is still free to migrate or reallocate the
493 *    backing storage.
494 *
495 * 3. Once the buffer is attached to all devices userspace can initiate DMA
496 *    access to the shared buffer. In the kernel this is done by calling
497 *    dma_buf_map_attachment() and dma_buf_unmap_attachment().
498 *
499 * 4. Once a driver is done with a shared buffer it needs to call
500 *    dma_buf_detach() (after cleaning up any mappings) and then release the
501 *    reference acquired with dma_buf_get by calling dma_buf_put().
502 *
503 * For the detailed semantics exporters are expected to implement see
504 * &dma_buf_ops.
505 */
506
507/**
508 * dma_buf_export - Creates a new dma_buf, and associates an anon file
509 * with this buffer, so it can be exported.
510 * Also connect the allocator specific data and ops to the buffer.
511 * Additionally, provide a name string for exporter; useful in debugging.
512 *
513 * @exp_info:	[in]	holds all the export related information provided
514 *			by the exporter. see &struct dma_buf_export_info
515 *			for further details.
516 *
517 * Returns, on success, a newly created dma_buf object, which wraps the
518 * supplied private data and operations for dma_buf_ops. On either missing
519 * ops, or error in allocating struct dma_buf, will return negative error.
520 *
521 * For most cases the easiest way to create @exp_info is through the
522 * %DEFINE_DMA_BUF_EXPORT_INFO macro.
523 */
524struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
525{
526	struct dma_buf *dmabuf;
527	struct dma_resv *resv = exp_info->resv;
528	struct file *file;
529	size_t alloc_size = sizeof(struct dma_buf);
530	int ret;
531
532	if (!exp_info->resv)
533		alloc_size += sizeof(struct dma_resv);
534	else
535		/* prevent &dma_buf[1] == dma_buf->resv */
536		alloc_size += 1;
537
538	if (WARN_ON(!exp_info->priv
539			  || !exp_info->ops
540			  || !exp_info->ops->map_dma_buf
541			  || !exp_info->ops->unmap_dma_buf
542			  || !exp_info->ops->release)) {
543		return ERR_PTR(-EINVAL);
544	}
545
546	if (WARN_ON(exp_info->ops->cache_sgt_mapping &&
547		    (exp_info->ops->pin || exp_info->ops->unpin)))
548		return ERR_PTR(-EINVAL);
549
550	if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin))
551		return ERR_PTR(-EINVAL);
552
553	if (!try_module_get(exp_info->owner))
554		return ERR_PTR(-ENOENT);
555
556	dmabuf = kzalloc(alloc_size, GFP_KERNEL);
557	if (!dmabuf) {
558		ret = -ENOMEM;
559		goto err_module;
560	}
561
562	dmabuf->priv = exp_info->priv;
563	dmabuf->ops = exp_info->ops;
564	dmabuf->size = exp_info->size;
565	dmabuf->exp_name = exp_info->exp_name;
566	dmabuf->owner = exp_info->owner;
567	spin_lock_init(&dmabuf->name_lock);
568	init_waitqueue_head(&dmabuf->poll);
569	dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll;
570	dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0;
571
572	if (!resv) {
573		resv = (struct dma_resv *)&dmabuf[1];
574		dma_resv_init(resv);
575	}
576	dmabuf->resv = resv;
577
578	file = dma_buf_getfile(dmabuf, exp_info->flags);
579	if (IS_ERR(file)) {
580		ret = PTR_ERR(file);
581		goto err_dmabuf;
582	}
583
584	file->f_mode |= FMODE_LSEEK;
585	dmabuf->file = file;
586
587	ret = dma_buf_stats_setup(dmabuf);
588	if (ret)
589		goto err_sysfs;
590
591	mutex_init(&dmabuf->lock);
592	INIT_LIST_HEAD(&dmabuf->attachments);
593
594	mutex_lock(&db_list.lock);
595	list_add(&dmabuf->list_node, &db_list.head);
596	mutex_unlock(&db_list.lock);
597
598	init_dma_buf_task_info(dmabuf);
599	return dmabuf;
600
601err_sysfs:
602	/*
603	 * Set file->f_path.dentry->d_fsdata to NULL so that when
604	 * dma_buf_release() gets invoked by dentry_ops, it exits
605	 * early before calling the release() dma_buf op.
606	 */
607	file->f_path.dentry->d_fsdata = NULL;
608	fput(file);
609err_dmabuf:
610	kfree(dmabuf);
611err_module:
612	module_put(exp_info->owner);
613	return ERR_PTR(ret);
614}
615EXPORT_SYMBOL_GPL(dma_buf_export);
616
617/**
618 * dma_buf_fd - returns a file descriptor for the given dma_buf
619 * @dmabuf:	[in]	pointer to dma_buf for which fd is required.
620 * @flags:      [in]    flags to give to fd
621 *
622 * On success, returns an associated 'fd'. Else, returns error.
623 */
624int dma_buf_fd(struct dma_buf *dmabuf, int flags)
625{
626	int fd;
627
628	if (!dmabuf || !dmabuf->file)
629		return -EINVAL;
630
631	fd = get_unused_fd_flags(flags);
632	if (fd < 0)
633		return fd;
634
635	fd_install(fd, dmabuf->file);
636
637	return fd;
638}
639EXPORT_SYMBOL_GPL(dma_buf_fd);
640
641/**
642 * dma_buf_get - returns the dma_buf structure related to an fd
643 * @fd:	[in]	fd associated with the dma_buf to be returned
644 *
645 * On success, returns the dma_buf structure associated with an fd; uses
646 * file's refcounting done by fget to increase refcount. returns ERR_PTR
647 * otherwise.
648 */
649struct dma_buf *dma_buf_get(int fd)
650{
651	struct file *file;
652
653	file = fget(fd);
654
655	if (!file)
656		return ERR_PTR(-EBADF);
657
658	if (!is_dma_buf_file(file)) {
659		fput(file);
660		return ERR_PTR(-EINVAL);
661	}
662
663	return file->private_data;
664}
665EXPORT_SYMBOL_GPL(dma_buf_get);
666
667/**
668 * dma_buf_put - decreases refcount of the buffer
669 * @dmabuf:	[in]	buffer to reduce refcount of
670 *
671 * Uses file's refcounting done implicitly by fput().
672 *
673 * If, as a result of this call, the refcount becomes 0, the 'release' file
674 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
675 * in turn, and frees the memory allocated for dmabuf when exported.
676 */
677void dma_buf_put(struct dma_buf *dmabuf)
678{
679	if (WARN_ON(!dmabuf || !dmabuf->file))
680		return;
681
682	fput(dmabuf->file);
683}
684EXPORT_SYMBOL_GPL(dma_buf_put);
685
686/**
687 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list; optionally,
688 * calls attach() of dma_buf_ops to allow device-specific attach functionality
689 * @dmabuf:		[in]	buffer to attach device to.
690 * @dev:		[in]	device to be attached.
691 * @importer_ops:	[in]	importer operations for the attachment
692 * @importer_priv:	[in]	importer private pointer for the attachment
693 *
694 * Returns struct dma_buf_attachment pointer for this attachment. Attachments
695 * must be cleaned up by calling dma_buf_detach().
696 *
697 * Returns:
698 *
699 * A pointer to newly created &dma_buf_attachment on success, or a negative
700 * error code wrapped into a pointer on failure.
701 *
702 * Note that this can fail if the backing storage of @dmabuf is in a place not
703 * accessible to @dev, and cannot be moved to a more suitable place. This is
704 * indicated with the error code -EBUSY.
705 */
706struct dma_buf_attachment *
707dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev,
708		       const struct dma_buf_attach_ops *importer_ops,
709		       void *importer_priv)
710{
711	struct dma_buf_attachment *attach;
712	int ret;
713
714	if (WARN_ON(!dmabuf || !dev))
715		return ERR_PTR(-EINVAL);
716
717	if (WARN_ON(importer_ops && !importer_ops->move_notify))
718		return ERR_PTR(-EINVAL);
719
720	attach = kzalloc(sizeof(*attach), GFP_KERNEL);
721	if (!attach)
722		return ERR_PTR(-ENOMEM);
723
724	attach->dev = dev;
725	attach->dmabuf = dmabuf;
726	if (importer_ops)
727		attach->peer2peer = importer_ops->allow_peer2peer;
728	attach->importer_ops = importer_ops;
729	attach->importer_priv = importer_priv;
730
731	if (dmabuf->ops->attach) {
732		ret = dmabuf->ops->attach(dmabuf, attach);
733		if (ret)
734			goto err_attach;
735	}
736	dma_resv_lock(dmabuf->resv, NULL);
737	list_add(&attach->node, &dmabuf->attachments);
738	dma_resv_unlock(dmabuf->resv);
739
740	/* When either the importer or the exporter can't handle dynamic
741	 * mappings we cache the mapping here to avoid issues with the
742	 * reservation object lock.
743	 */
744	if (dma_buf_attachment_is_dynamic(attach) !=
745	    dma_buf_is_dynamic(dmabuf)) {
746		struct sg_table *sgt;
747
748		if (dma_buf_is_dynamic(attach->dmabuf)) {
749			dma_resv_lock(attach->dmabuf->resv, NULL);
750			ret = dma_buf_pin(attach);
751			if (ret)
752				goto err_unlock;
753		}
754
755		sgt = dmabuf->ops->map_dma_buf(attach, DMA_BIDIRECTIONAL);
756		if (!sgt)
757			sgt = ERR_PTR(-ENOMEM);
758		if (IS_ERR(sgt)) {
759			ret = PTR_ERR(sgt);
760			goto err_unpin;
761		}
762		if (dma_buf_is_dynamic(attach->dmabuf))
763			dma_resv_unlock(attach->dmabuf->resv);
764		attach->sgt = sgt;
765		attach->dir = DMA_BIDIRECTIONAL;
766	}
767
768	return attach;
769
770err_attach:
771	kfree(attach);
772	return ERR_PTR(ret);
773
774err_unpin:
775	if (dma_buf_is_dynamic(attach->dmabuf))
776		dma_buf_unpin(attach);
777
778err_unlock:
779	if (dma_buf_is_dynamic(attach->dmabuf))
780		dma_resv_unlock(attach->dmabuf->resv);
781
782	dma_buf_detach(dmabuf, attach);
783	return ERR_PTR(ret);
784}
785EXPORT_SYMBOL_GPL(dma_buf_dynamic_attach);
786
787/**
788 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
789 * @dmabuf:	[in]	buffer to attach device to.
790 * @dev:	[in]	device to be attached.
791 *
792 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
793 * mapping.
794 */
795struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
796					  struct device *dev)
797{
798	return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL);
799}
800EXPORT_SYMBOL_GPL(dma_buf_attach);
801
802/**
803 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list;
804 * optionally calls detach() of dma_buf_ops for device-specific detach
805 * @dmabuf:	[in]	buffer to detach from.
806 * @attach:	[in]	attachment to be detached; is free'd after this call.
807 *
808 * Clean up a device attachment obtained by calling dma_buf_attach().
809 */
810void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
811{
812	if (WARN_ON(!dmabuf || !attach))
813		return;
814
815	if (attach->sgt) {
816		if (dma_buf_is_dynamic(attach->dmabuf))
817			dma_resv_lock(attach->dmabuf->resv, NULL);
818
819		dmabuf->ops->unmap_dma_buf(attach, attach->sgt, attach->dir);
820
821		if (dma_buf_is_dynamic(attach->dmabuf)) {
822			dma_buf_unpin(attach);
823			dma_resv_unlock(attach->dmabuf->resv);
824		}
825	}
826
827	dma_resv_lock(dmabuf->resv, NULL);
828	list_del(&attach->node);
829	dma_resv_unlock(dmabuf->resv);
830	if (dmabuf->ops->detach)
831		dmabuf->ops->detach(dmabuf, attach);
832
833	kfree(attach);
834}
835EXPORT_SYMBOL_GPL(dma_buf_detach);
836
837/**
838 * dma_buf_pin - Lock down the DMA-buf
839 *
840 * @attach:	[in]	attachment which should be pinned
841 *
842 * Returns:
843 * 0 on success, negative error code on failure.
844 */
845int dma_buf_pin(struct dma_buf_attachment *attach)
846{
847	struct dma_buf *dmabuf = attach->dmabuf;
848	int ret = 0;
849
850	dma_resv_assert_held(dmabuf->resv);
851
852	if (dmabuf->ops->pin)
853		ret = dmabuf->ops->pin(attach);
854
855	return ret;
856}
857EXPORT_SYMBOL_GPL(dma_buf_pin);
858
859/**
860 * dma_buf_unpin - Remove lock from DMA-buf
861 *
862 * @attach:	[in]	attachment which should be unpinned
863 */
864void dma_buf_unpin(struct dma_buf_attachment *attach)
865{
866	struct dma_buf *dmabuf = attach->dmabuf;
867
868	dma_resv_assert_held(dmabuf->resv);
869
870	if (dmabuf->ops->unpin)
871		dmabuf->ops->unpin(attach);
872}
873EXPORT_SYMBOL_GPL(dma_buf_unpin);
874
875/**
876 * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
877 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
878 * dma_buf_ops.
879 * @attach:	[in]	attachment whose scatterlist is to be returned
880 * @direction:	[in]	direction of DMA transfer
881 *
882 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
883 * on error. May return -EINTR if it is interrupted by a signal.
884 *
885 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
886 * the underlying backing storage is pinned for as long as a mapping exists,
887 * therefore users/importers should not hold onto a mapping for undue amounts of
888 * time.
889 */
890struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
891					enum dma_data_direction direction)
892{
893	struct sg_table *sg_table;
894	int r;
895
896	might_sleep();
897
898	if (WARN_ON(!attach || !attach->dmabuf))
899		return ERR_PTR(-EINVAL);
900
901	if (dma_buf_attachment_is_dynamic(attach))
902		dma_resv_assert_held(attach->dmabuf->resv);
903
904	if (attach->sgt) {
905		/*
906		 * Two mappings with different directions for the same
907		 * attachment are not allowed.
908		 */
909		if (attach->dir != direction &&
910		    attach->dir != DMA_BIDIRECTIONAL)
911			return ERR_PTR(-EBUSY);
912
913		return attach->sgt;
914	}
915
916	if (dma_buf_is_dynamic(attach->dmabuf)) {
917		dma_resv_assert_held(attach->dmabuf->resv);
918		if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) {
919			r = dma_buf_pin(attach);
920			if (r)
921				return ERR_PTR(r);
922		}
923	}
924
925	sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
926	if (!sg_table)
927		sg_table = ERR_PTR(-ENOMEM);
928
929	if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) &&
930	     !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
931		dma_buf_unpin(attach);
932
933	if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
934		attach->sgt = sg_table;
935		attach->dir = direction;
936	}
937
938	return sg_table;
939}
940EXPORT_SYMBOL_GPL(dma_buf_map_attachment);
941
942/**
943 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
944 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
945 * dma_buf_ops.
946 * @attach:	[in]	attachment to unmap buffer from
947 * @sg_table:	[in]	scatterlist info of the buffer to unmap
948 * @direction:  [in]    direction of DMA transfer
949 *
950 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
951 */
952void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
953				struct sg_table *sg_table,
954				enum dma_data_direction direction)
955{
956	might_sleep();
957
958	if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
959		return;
960
961	if (dma_buf_attachment_is_dynamic(attach))
962		dma_resv_assert_held(attach->dmabuf->resv);
963
964	if (attach->sgt == sg_table)
965		return;
966
967	if (dma_buf_is_dynamic(attach->dmabuf))
968		dma_resv_assert_held(attach->dmabuf->resv);
969
970	attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
971
972	if (dma_buf_is_dynamic(attach->dmabuf) &&
973	    !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
974		dma_buf_unpin(attach);
975}
976EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment);
977
978/**
979 * dma_buf_move_notify - notify attachments that DMA-buf is moving
980 *
981 * @dmabuf:	[in]	buffer which is moving
982 *
983 * Informs all attachmenst that they need to destroy and recreated all their
984 * mappings.
985 */
986void dma_buf_move_notify(struct dma_buf *dmabuf)
987{
988	struct dma_buf_attachment *attach;
989
990	dma_resv_assert_held(dmabuf->resv);
991
992	list_for_each_entry(attach, &dmabuf->attachments, node)
993		if (attach->importer_ops)
994			attach->importer_ops->move_notify(attach);
995}
996EXPORT_SYMBOL_GPL(dma_buf_move_notify);
997
998/**
999 * DOC: cpu access
1000 *
1001 * There are mutliple reasons for supporting CPU access to a dma buffer object:
1002 *
1003 * - Fallback operations in the kernel, for example when a device is connected
1004 *   over USB and the kernel needs to shuffle the data around first before
1005 *   sending it away. Cache coherency is handled by braketing any transactions
1006 *   with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
1007 *   access.
1008 *
1009 *   Since for most kernel internal dma-buf accesses need the entire buffer, a
1010 *   vmap interface is introduced. Note that on very old 32-bit architectures
1011 *   vmalloc space might be limited and result in vmap calls failing.
1012 *
1013 *   Interfaces::
1014 *      void \*dma_buf_vmap(struct dma_buf \*dmabuf)
1015 *      void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
1016 *
1017 *   The vmap call can fail if there is no vmap support in the exporter, or if
1018 *   it runs out of vmalloc space. Fallback to kmap should be implemented. Note
1019 *   that the dma-buf layer keeps a reference count for all vmap access and
1020 *   calls down into the exporter's vmap function only when no vmapping exists,
1021 *   and only unmaps it once. Protection against concurrent vmap/vunmap calls is
1022 *   provided by taking the dma_buf->lock mutex.
1023 *
1024 * - For full compatibility on the importer side with existing userspace
1025 *   interfaces, which might already support mmap'ing buffers. This is needed in
1026 *   many processing pipelines (e.g. feeding a software rendered image into a
1027 *   hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
1028 *   framework already supported this and for DMA buffer file descriptors to
1029 *   replace ION buffers mmap support was needed.
1030 *
1031 *   There is no special interfaces, userspace simply calls mmap on the dma-buf
1032 *   fd. But like for CPU access there's a need to braket the actual access,
1033 *   which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
1034 *   DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
1035 *   be restarted.
1036 *
1037 *   Some systems might need some sort of cache coherency management e.g. when
1038 *   CPU and GPU domains are being accessed through dma-buf at the same time.
1039 *   To circumvent this problem there are begin/end coherency markers, that
1040 *   forward directly to existing dma-buf device drivers vfunc hooks. Userspace
1041 *   can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
1042 *   sequence would be used like following:
1043 *
1044 *     - mmap dma-buf fd
1045 *     - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
1046 *       to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
1047 *       want (with the new data being consumed by say the GPU or the scanout
1048 *       device)
1049 *     - munmap once you don't need the buffer any more
1050 *
1051 *    For correctness and optimal performance, it is always required to use
1052 *    SYNC_START and SYNC_END before and after, respectively, when accessing the
1053 *    mapped address. Userspace cannot rely on coherent access, even when there
1054 *    are systems where it just works without calling these ioctls.
1055 *
1056 * - And as a CPU fallback in userspace processing pipelines.
1057 *
1058 *   Similar to the motivation for kernel cpu access it is again important that
1059 *   the userspace code of a given importing subsystem can use the same
1060 *   interfaces with a imported dma-buf buffer object as with a native buffer
1061 *   object. This is especially important for drm where the userspace part of
1062 *   contemporary OpenGL, X, and other drivers is huge, and reworking them to
1063 *   use a different way to mmap a buffer rather invasive.
1064 *
1065 *   The assumption in the current dma-buf interfaces is that redirecting the
1066 *   initial mmap is all that's needed. A survey of some of the existing
1067 *   subsystems shows that no driver seems to do any nefarious thing like
1068 *   syncing up with outstanding asynchronous processing on the device or
1069 *   allocating special resources at fault time. So hopefully this is good
1070 *   enough, since adding interfaces to intercept pagefaults and allow pte
1071 *   shootdowns would increase the complexity quite a bit.
1072 *
1073 *   Interface::
1074 *      int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
1075 *		       unsigned long);
1076 *
1077 *   If the importing subsystem simply provides a special-purpose mmap call to
1078 *   set up a mapping in userspace, calling do_mmap with dma_buf->file will
1079 *   equally achieve that for a dma-buf object.
1080 */
1081
1082static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1083				      enum dma_data_direction direction)
1084{
1085	bool write = (direction == DMA_BIDIRECTIONAL ||
1086		      direction == DMA_TO_DEVICE);
1087	struct dma_resv *resv = dmabuf->resv;
1088	long ret;
1089
1090	/* Wait on any implicit rendering fences */
1091	ret = dma_resv_wait_timeout_rcu(resv, write, true,
1092						  MAX_SCHEDULE_TIMEOUT);
1093	if (ret < 0)
1094		return ret;
1095
1096	return 0;
1097}
1098
1099/**
1100 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
1101 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
1102 * preparations. Coherency is only guaranteed in the specified range for the
1103 * specified access direction.
1104 * @dmabuf:	[in]	buffer to prepare cpu access for.
1105 * @direction:	[in]	length of range for cpu access.
1106 *
1107 * After the cpu access is complete the caller should call
1108 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
1109 * it guaranteed to be coherent with other DMA access.
1110 *
1111 * Can return negative error values, returns 0 on success.
1112 */
1113int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1114			     enum dma_data_direction direction)
1115{
1116	int ret = 0;
1117
1118	if (WARN_ON(!dmabuf))
1119		return -EINVAL;
1120
1121	if (dmabuf->ops->begin_cpu_access)
1122		ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
1123
1124	/* Ensure that all fences are waited upon - but we first allow
1125	 * the native handler the chance to do so more efficiently if it
1126	 * chooses. A double invocation here will be reasonably cheap no-op.
1127	 */
1128	if (ret == 0)
1129		ret = __dma_buf_begin_cpu_access(dmabuf, direction);
1130
1131	return ret;
1132}
1133EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access);
1134
1135/**
1136 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1137 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1138 * actions. Coherency is only guaranteed in the specified range for the
1139 * specified access direction.
1140 * @dmabuf:	[in]	buffer to complete cpu access for.
1141 * @direction:	[in]	length of range for cpu access.
1142 *
1143 * This terminates CPU access started with dma_buf_begin_cpu_access().
1144 *
1145 * Can return negative error values, returns 0 on success.
1146 */
1147int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
1148			   enum dma_data_direction direction)
1149{
1150	int ret = 0;
1151
1152	WARN_ON(!dmabuf);
1153
1154	if (dmabuf->ops->end_cpu_access)
1155		ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
1156
1157	return ret;
1158}
1159EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access);
1160
1161
1162/**
1163 * dma_buf_mmap - Setup up a userspace mmap with the given vma
1164 * @dmabuf:	[in]	buffer that should back the vma
1165 * @vma:	[in]	vma for the mmap
1166 * @pgoff:	[in]	offset in pages where this mmap should start within the
1167 *			dma-buf buffer.
1168 *
1169 * This function adjusts the passed in vma so that it points at the file of the
1170 * dma_buf operation. It also adjusts the starting pgoff and does bounds
1171 * checking on the size of the vma. Then it calls the exporters mmap function to
1172 * set up the mapping.
1173 *
1174 * Can return negative error values, returns 0 on success.
1175 */
1176int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1177		 unsigned long pgoff)
1178{
1179	struct file *oldfile;
1180	int ret;
1181
1182	if (WARN_ON(!dmabuf || !vma))
1183		return -EINVAL;
1184
1185	/* check if buffer supports mmap */
1186	if (!dmabuf->ops->mmap)
1187		return -EINVAL;
1188
1189	/* check for offset overflow */
1190	if (pgoff + vma_pages(vma) < pgoff)
1191		return -EOVERFLOW;
1192
1193	/* check for overflowing the buffer's size */
1194	if (pgoff + vma_pages(vma) >
1195	    dmabuf->size >> PAGE_SHIFT)
1196		return -EINVAL;
1197
1198	/* readjust the vma */
1199	get_file(dmabuf->file);
1200	oldfile = vma->vm_file;
1201	vma->vm_file = dmabuf->file;
1202	vma->vm_pgoff = pgoff;
1203
1204	ret = dmabuf->ops->mmap(dmabuf, vma);
1205	if (ret) {
1206		/* restore old parameters on failure */
1207		vma->vm_file = oldfile;
1208		fput(dmabuf->file);
1209	} else {
1210		if (oldfile)
1211			fput(oldfile);
1212	}
1213	return ret;
1214
1215}
1216EXPORT_SYMBOL_GPL(dma_buf_mmap);
1217
1218/**
1219 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1220 * address space. Same restrictions as for vmap and friends apply.
1221 * @dmabuf:	[in]	buffer to vmap
1222 *
1223 * This call may fail due to lack of virtual mapping address space.
1224 * These calls are optional in drivers. The intended use for them
1225 * is for mapping objects linear in kernel space for high use objects.
1226 * Please attempt to use kmap/kunmap before thinking about these interfaces.
1227 *
1228 * Returns NULL on error.
1229 */
1230void *dma_buf_vmap(struct dma_buf *dmabuf)
1231{
1232	void *ptr;
1233
1234	if (WARN_ON(!dmabuf))
1235		return NULL;
1236
1237	if (!dmabuf->ops->vmap)
1238		return NULL;
1239
1240	mutex_lock(&dmabuf->lock);
1241	if (dmabuf->vmapping_counter) {
1242		dmabuf->vmapping_counter++;
1243		BUG_ON(!dmabuf->vmap_ptr);
1244		ptr = dmabuf->vmap_ptr;
1245		goto out_unlock;
1246	}
1247
1248	BUG_ON(dmabuf->vmap_ptr);
1249
1250	ptr = dmabuf->ops->vmap(dmabuf);
1251	if (WARN_ON_ONCE(IS_ERR(ptr)))
1252		ptr = NULL;
1253	if (!ptr)
1254		goto out_unlock;
1255
1256	dmabuf->vmap_ptr = ptr;
1257	dmabuf->vmapping_counter = 1;
1258
1259out_unlock:
1260	mutex_unlock(&dmabuf->lock);
1261	return ptr;
1262}
1263EXPORT_SYMBOL_GPL(dma_buf_vmap);
1264
1265/**
1266 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1267 * @dmabuf:	[in]	buffer to vunmap
1268 * @vaddr:	[in]	vmap to vunmap
1269 */
1270void dma_buf_vunmap(struct dma_buf *dmabuf, void *vaddr)
1271{
1272	if (WARN_ON(!dmabuf))
1273		return;
1274
1275	BUG_ON(!dmabuf->vmap_ptr);
1276	BUG_ON(dmabuf->vmapping_counter == 0);
1277	BUG_ON(dmabuf->vmap_ptr != vaddr);
1278
1279	mutex_lock(&dmabuf->lock);
1280	if (--dmabuf->vmapping_counter == 0) {
1281		if (dmabuf->ops->vunmap)
1282			dmabuf->ops->vunmap(dmabuf, vaddr);
1283		dmabuf->vmap_ptr = NULL;
1284	}
1285	mutex_unlock(&dmabuf->lock);
1286}
1287EXPORT_SYMBOL_GPL(dma_buf_vunmap);
1288
1289#ifdef CONFIG_DEBUG_FS
1290static int dma_buf_debug_show(struct seq_file *s, void *unused)
1291{
1292	int ret;
1293	struct dma_buf *buf_obj;
1294	struct dma_buf_attachment *attach_obj;
1295	struct dma_resv *robj;
1296	struct dma_resv_list *fobj;
1297	struct dma_fence *fence;
1298	unsigned seq;
1299	int count = 0, attach_count, shared_count, i;
1300	size_t size = 0;
1301
1302	ret = mutex_lock_interruptible(&db_list.lock);
1303
1304	if (ret)
1305		return ret;
1306
1307	seq_puts(s, "\nDma-buf Objects:\n");
1308	seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\t"
1309		   "%-16s\t%-16s\t%-16s\n",
1310		   "size", "flags", "mode", "count", "ino",
1311		   "buf_name", "exp_pid",  "exp_task_comm");
1312
1313	list_for_each_entry(buf_obj, &db_list.head, list_node) {
1314
1315		ret = dma_resv_lock_interruptible(buf_obj->resv, NULL);
1316		if (ret)
1317			goto error_unlock;
1318
1319		seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\t"
1320			   "%-16d\t%-16s\n",
1321				buf_obj->size,
1322				buf_obj->file->f_flags, buf_obj->file->f_mode,
1323				file_count(buf_obj->file),
1324				buf_obj->exp_name,
1325				file_inode(buf_obj->file)->i_ino,
1326				buf_obj->name ?: "NULL",
1327				dma_buf_exp_pid(buf_obj),
1328				dma_buf_exp_task_comm(buf_obj) ?: "NULL");
1329
1330		robj = buf_obj->resv;
1331		while (true) {
1332			seq = read_seqcount_begin(&robj->seq);
1333			rcu_read_lock();
1334			fobj = rcu_dereference(robj->fence);
1335			shared_count = fobj ? fobj->shared_count : 0;
1336			fence = rcu_dereference(robj->fence_excl);
1337			if (!read_seqcount_retry(&robj->seq, seq))
1338				break;
1339			rcu_read_unlock();
1340		}
1341
1342		if (fence)
1343			seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n",
1344				   fence->ops->get_driver_name(fence),
1345				   fence->ops->get_timeline_name(fence),
1346				   dma_fence_is_signaled(fence) ? "" : "un");
1347		for (i = 0; i < shared_count; i++) {
1348			fence = rcu_dereference(fobj->shared[i]);
1349			if (!dma_fence_get_rcu(fence))
1350				continue;
1351			seq_printf(s, "\tShared fence: %s %s %ssignalled\n",
1352				   fence->ops->get_driver_name(fence),
1353				   fence->ops->get_timeline_name(fence),
1354				   dma_fence_is_signaled(fence) ? "" : "un");
1355			dma_fence_put(fence);
1356		}
1357		rcu_read_unlock();
1358
1359		seq_puts(s, "\tAttached Devices:\n");
1360		attach_count = 0;
1361
1362		list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1363			seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1364			attach_count++;
1365		}
1366		dma_resv_unlock(buf_obj->resv);
1367
1368		seq_printf(s, "Total %d devices attached\n\n",
1369				attach_count);
1370
1371		count++;
1372		size += buf_obj->size;
1373	}
1374
1375	seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1376
1377	mutex_unlock(&db_list.lock);
1378	return 0;
1379
1380error_unlock:
1381	mutex_unlock(&db_list.lock);
1382	return ret;
1383}
1384
1385DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1386
1387static struct dentry *dma_buf_debugfs_dir;
1388
1389static int dma_buf_init_debugfs(void)
1390{
1391	struct dentry *d;
1392	int err = 0;
1393
1394	d = debugfs_create_dir("dma_buf", NULL);
1395	if (IS_ERR(d))
1396		return PTR_ERR(d);
1397
1398	dma_buf_debugfs_dir = d;
1399
1400	d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1401				NULL, &dma_buf_debug_fops);
1402	if (IS_ERR(d)) {
1403		pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1404		debugfs_remove_recursive(dma_buf_debugfs_dir);
1405		dma_buf_debugfs_dir = NULL;
1406		err = PTR_ERR(d);
1407	}
1408
1409	dma_buf_process_info_init_debugfs(dma_buf_debugfs_dir);
1410	return err;
1411}
1412
1413static void dma_buf_uninit_debugfs(void)
1414{
1415	debugfs_remove_recursive(dma_buf_debugfs_dir);
1416}
1417#else
1418static inline int dma_buf_init_debugfs(void)
1419{
1420	return 0;
1421}
1422static inline void dma_buf_uninit_debugfs(void)
1423{
1424}
1425#endif
1426
1427#ifdef CONFIG_DMABUF_PROCESS_INFO
1428struct dma_buf *get_dma_buf_from_file(struct file *f)
1429{
1430	if (IS_ERR_OR_NULL(f))
1431		return NULL;
1432
1433	if (!is_dma_buf_file(f))
1434		return NULL;
1435
1436	return f->private_data;
1437}
1438#endif /* CONFIG_DMABUF_PROCESS_INFO */
1439
1440static int __init dma_buf_init(void)
1441{
1442	int ret;
1443
1444	ret = dma_buf_init_sysfs_statistics();
1445	if (ret)
1446		return ret;
1447
1448	dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1449	if (IS_ERR(dma_buf_mnt))
1450		return PTR_ERR(dma_buf_mnt);
1451
1452	mutex_init(&db_list.lock);
1453	INIT_LIST_HEAD(&db_list.head);
1454	dma_buf_init_debugfs();
1455	dma_buf_process_info_init_procfs();
1456	return 0;
1457}
1458subsys_initcall(dma_buf_init);
1459
1460static void __exit dma_buf_deinit(void)
1461{
1462	dma_buf_uninit_debugfs();
1463	kern_unmount(dma_buf_mnt);
1464	dma_buf_uninit_sysfs_statistics();
1465	dma_buf_process_info_uninit_procfs();
1466}
1467__exitcall(dma_buf_deinit);
1468