1// SPDX-License-Identifier: GPL-2.0
2//
3// Cryptographic API.
4//
5// Support for Samsung S5PV210 and Exynos HW acceleration.
6//
7// Copyright (C) 2011 NetUP Inc. All rights reserved.
8// Copyright (c) 2017 Samsung Electronics Co., Ltd. All rights reserved.
9//
10// Hash part based on omap-sham.c driver.
11
12#include <linux/clk.h>
13#include <linux/crypto.h>
14#include <linux/dma-mapping.h>
15#include <linux/err.h>
16#include <linux/errno.h>
17#include <linux/init.h>
18#include <linux/interrupt.h>
19#include <linux/io.h>
20#include <linux/kernel.h>
21#include <linux/module.h>
22#include <linux/of.h>
23#include <linux/platform_device.h>
24#include <linux/scatterlist.h>
25
26#include <crypto/ctr.h>
27#include <crypto/aes.h>
28#include <crypto/algapi.h>
29#include <crypto/scatterwalk.h>
30
31#include <crypto/hash.h>
32#include <crypto/md5.h>
33#include <crypto/sha.h>
34#include <crypto/internal/hash.h>
35
36#define _SBF(s, v)			((v) << (s))
37
38/* Feed control registers */
39#define SSS_REG_FCINTSTAT		0x0000
40#define SSS_FCINTSTAT_HPARTINT		BIT(7)
41#define SSS_FCINTSTAT_HDONEINT		BIT(5)
42#define SSS_FCINTSTAT_BRDMAINT		BIT(3)
43#define SSS_FCINTSTAT_BTDMAINT		BIT(2)
44#define SSS_FCINTSTAT_HRDMAINT		BIT(1)
45#define SSS_FCINTSTAT_PKDMAINT		BIT(0)
46
47#define SSS_REG_FCINTENSET		0x0004
48#define SSS_FCINTENSET_HPARTINTENSET	BIT(7)
49#define SSS_FCINTENSET_HDONEINTENSET	BIT(5)
50#define SSS_FCINTENSET_BRDMAINTENSET	BIT(3)
51#define SSS_FCINTENSET_BTDMAINTENSET	BIT(2)
52#define SSS_FCINTENSET_HRDMAINTENSET	BIT(1)
53#define SSS_FCINTENSET_PKDMAINTENSET	BIT(0)
54
55#define SSS_REG_FCINTENCLR		0x0008
56#define SSS_FCINTENCLR_HPARTINTENCLR	BIT(7)
57#define SSS_FCINTENCLR_HDONEINTENCLR	BIT(5)
58#define SSS_FCINTENCLR_BRDMAINTENCLR	BIT(3)
59#define SSS_FCINTENCLR_BTDMAINTENCLR	BIT(2)
60#define SSS_FCINTENCLR_HRDMAINTENCLR	BIT(1)
61#define SSS_FCINTENCLR_PKDMAINTENCLR	BIT(0)
62
63#define SSS_REG_FCINTPEND		0x000C
64#define SSS_FCINTPEND_HPARTINTP		BIT(7)
65#define SSS_FCINTPEND_HDONEINTP		BIT(5)
66#define SSS_FCINTPEND_BRDMAINTP		BIT(3)
67#define SSS_FCINTPEND_BTDMAINTP		BIT(2)
68#define SSS_FCINTPEND_HRDMAINTP		BIT(1)
69#define SSS_FCINTPEND_PKDMAINTP		BIT(0)
70
71#define SSS_REG_FCFIFOSTAT		0x0010
72#define SSS_FCFIFOSTAT_BRFIFOFUL	BIT(7)
73#define SSS_FCFIFOSTAT_BRFIFOEMP	BIT(6)
74#define SSS_FCFIFOSTAT_BTFIFOFUL	BIT(5)
75#define SSS_FCFIFOSTAT_BTFIFOEMP	BIT(4)
76#define SSS_FCFIFOSTAT_HRFIFOFUL	BIT(3)
77#define SSS_FCFIFOSTAT_HRFIFOEMP	BIT(2)
78#define SSS_FCFIFOSTAT_PKFIFOFUL	BIT(1)
79#define SSS_FCFIFOSTAT_PKFIFOEMP	BIT(0)
80
81#define SSS_REG_FCFIFOCTRL		0x0014
82#define SSS_FCFIFOCTRL_DESSEL		BIT(2)
83#define SSS_HASHIN_INDEPENDENT		_SBF(0, 0x00)
84#define SSS_HASHIN_CIPHER_INPUT		_SBF(0, 0x01)
85#define SSS_HASHIN_CIPHER_OUTPUT	_SBF(0, 0x02)
86#define SSS_HASHIN_MASK			_SBF(0, 0x03)
87
88#define SSS_REG_FCBRDMAS		0x0020
89#define SSS_REG_FCBRDMAL		0x0024
90#define SSS_REG_FCBRDMAC		0x0028
91#define SSS_FCBRDMAC_BYTESWAP		BIT(1)
92#define SSS_FCBRDMAC_FLUSH		BIT(0)
93
94#define SSS_REG_FCBTDMAS		0x0030
95#define SSS_REG_FCBTDMAL		0x0034
96#define SSS_REG_FCBTDMAC		0x0038
97#define SSS_FCBTDMAC_BYTESWAP		BIT(1)
98#define SSS_FCBTDMAC_FLUSH		BIT(0)
99
100#define SSS_REG_FCHRDMAS		0x0040
101#define SSS_REG_FCHRDMAL		0x0044
102#define SSS_REG_FCHRDMAC		0x0048
103#define SSS_FCHRDMAC_BYTESWAP		BIT(1)
104#define SSS_FCHRDMAC_FLUSH		BIT(0)
105
106#define SSS_REG_FCPKDMAS		0x0050
107#define SSS_REG_FCPKDMAL		0x0054
108#define SSS_REG_FCPKDMAC		0x0058
109#define SSS_FCPKDMAC_BYTESWAP		BIT(3)
110#define SSS_FCPKDMAC_DESCEND		BIT(2)
111#define SSS_FCPKDMAC_TRANSMIT		BIT(1)
112#define SSS_FCPKDMAC_FLUSH		BIT(0)
113
114#define SSS_REG_FCPKDMAO		0x005C
115
116/* AES registers */
117#define SSS_REG_AES_CONTROL		0x00
118#define SSS_AES_BYTESWAP_DI		BIT(11)
119#define SSS_AES_BYTESWAP_DO		BIT(10)
120#define SSS_AES_BYTESWAP_IV		BIT(9)
121#define SSS_AES_BYTESWAP_CNT		BIT(8)
122#define SSS_AES_BYTESWAP_KEY		BIT(7)
123#define SSS_AES_KEY_CHANGE_MODE		BIT(6)
124#define SSS_AES_KEY_SIZE_128		_SBF(4, 0x00)
125#define SSS_AES_KEY_SIZE_192		_SBF(4, 0x01)
126#define SSS_AES_KEY_SIZE_256		_SBF(4, 0x02)
127#define SSS_AES_FIFO_MODE		BIT(3)
128#define SSS_AES_CHAIN_MODE_ECB		_SBF(1, 0x00)
129#define SSS_AES_CHAIN_MODE_CBC		_SBF(1, 0x01)
130#define SSS_AES_CHAIN_MODE_CTR		_SBF(1, 0x02)
131#define SSS_AES_MODE_DECRYPT		BIT(0)
132
133#define SSS_REG_AES_STATUS		0x04
134#define SSS_AES_BUSY			BIT(2)
135#define SSS_AES_INPUT_READY		BIT(1)
136#define SSS_AES_OUTPUT_READY		BIT(0)
137
138#define SSS_REG_AES_IN_DATA(s)		(0x10 + (s << 2))
139#define SSS_REG_AES_OUT_DATA(s)		(0x20 + (s << 2))
140#define SSS_REG_AES_IV_DATA(s)		(0x30 + (s << 2))
141#define SSS_REG_AES_CNT_DATA(s)		(0x40 + (s << 2))
142#define SSS_REG_AES_KEY_DATA(s)		(0x80 + (s << 2))
143
144#define SSS_REG(dev, reg)		((dev)->ioaddr + (SSS_REG_##reg))
145#define SSS_READ(dev, reg)		__raw_readl(SSS_REG(dev, reg))
146#define SSS_WRITE(dev, reg, val)	__raw_writel((val), SSS_REG(dev, reg))
147
148#define SSS_AES_REG(dev, reg)		((dev)->aes_ioaddr + SSS_REG_##reg)
149#define SSS_AES_WRITE(dev, reg, val)    __raw_writel((val), \
150						SSS_AES_REG(dev, reg))
151
152/* HW engine modes */
153#define FLAGS_AES_DECRYPT		BIT(0)
154#define FLAGS_AES_MODE_MASK		_SBF(1, 0x03)
155#define FLAGS_AES_CBC			_SBF(1, 0x01)
156#define FLAGS_AES_CTR			_SBF(1, 0x02)
157
158#define AES_KEY_LEN			16
159#define CRYPTO_QUEUE_LEN		1
160
161/* HASH registers */
162#define SSS_REG_HASH_CTRL		0x00
163
164#define SSS_HASH_USER_IV_EN		BIT(5)
165#define SSS_HASH_INIT_BIT		BIT(4)
166#define SSS_HASH_ENGINE_SHA1		_SBF(1, 0x00)
167#define SSS_HASH_ENGINE_MD5		_SBF(1, 0x01)
168#define SSS_HASH_ENGINE_SHA256		_SBF(1, 0x02)
169
170#define SSS_HASH_ENGINE_MASK		_SBF(1, 0x03)
171
172#define SSS_REG_HASH_CTRL_PAUSE		0x04
173
174#define SSS_HASH_PAUSE			BIT(0)
175
176#define SSS_REG_HASH_CTRL_FIFO		0x08
177
178#define SSS_HASH_FIFO_MODE_DMA		BIT(0)
179#define SSS_HASH_FIFO_MODE_CPU          0
180
181#define SSS_REG_HASH_CTRL_SWAP		0x0C
182
183#define SSS_HASH_BYTESWAP_DI		BIT(3)
184#define SSS_HASH_BYTESWAP_DO		BIT(2)
185#define SSS_HASH_BYTESWAP_IV		BIT(1)
186#define SSS_HASH_BYTESWAP_KEY		BIT(0)
187
188#define SSS_REG_HASH_STATUS		0x10
189
190#define SSS_HASH_STATUS_MSG_DONE	BIT(6)
191#define SSS_HASH_STATUS_PARTIAL_DONE	BIT(4)
192#define SSS_HASH_STATUS_BUFFER_READY	BIT(0)
193
194#define SSS_REG_HASH_MSG_SIZE_LOW	0x20
195#define SSS_REG_HASH_MSG_SIZE_HIGH	0x24
196
197#define SSS_REG_HASH_PRE_MSG_SIZE_LOW	0x28
198#define SSS_REG_HASH_PRE_MSG_SIZE_HIGH	0x2C
199
200#define SSS_REG_HASH_IV(s)		(0xB0 + ((s) << 2))
201#define SSS_REG_HASH_OUT(s)		(0x100 + ((s) << 2))
202
203#define HASH_BLOCK_SIZE			64
204#define HASH_REG_SIZEOF			4
205#define HASH_MD5_MAX_REG		(MD5_DIGEST_SIZE / HASH_REG_SIZEOF)
206#define HASH_SHA1_MAX_REG		(SHA1_DIGEST_SIZE / HASH_REG_SIZEOF)
207#define HASH_SHA256_MAX_REG		(SHA256_DIGEST_SIZE / HASH_REG_SIZEOF)
208
209/*
210 * HASH bit numbers, used by device, setting in dev->hash_flags with
211 * functions set_bit(), clear_bit() or tested with test_bit() or BIT(),
212 * to keep HASH state BUSY or FREE, or to signal state from irq_handler
213 * to hash_tasklet. SGS keep track of allocated memory for scatterlist
214 */
215#define HASH_FLAGS_BUSY		0
216#define HASH_FLAGS_FINAL	1
217#define HASH_FLAGS_DMA_ACTIVE	2
218#define HASH_FLAGS_OUTPUT_READY	3
219#define HASH_FLAGS_DMA_READY	4
220#define HASH_FLAGS_SGS_COPIED	5
221#define HASH_FLAGS_SGS_ALLOCED	6
222
223/* HASH HW constants */
224#define BUFLEN			HASH_BLOCK_SIZE
225
226#define SSS_HASH_DMA_LEN_ALIGN	8
227#define SSS_HASH_DMA_ALIGN_MASK	(SSS_HASH_DMA_LEN_ALIGN - 1)
228
229#define SSS_HASH_QUEUE_LENGTH	10
230
231/**
232 * struct samsung_aes_variant - platform specific SSS driver data
233 * @aes_offset: AES register offset from SSS module's base.
234 * @hash_offset: HASH register offset from SSS module's base.
235 * @clk_names: names of clocks needed to run SSS IP
236 *
237 * Specifies platform specific configuration of SSS module.
238 * Note: A structure for driver specific platform data is used for future
239 * expansion of its usage.
240 */
241struct samsung_aes_variant {
242	unsigned int			aes_offset;
243	unsigned int			hash_offset;
244	const char			*clk_names[2];
245};
246
247struct s5p_aes_reqctx {
248	unsigned long			mode;
249};
250
251struct s5p_aes_ctx {
252	struct s5p_aes_dev		*dev;
253
254	u8				aes_key[AES_MAX_KEY_SIZE];
255	u8				nonce[CTR_RFC3686_NONCE_SIZE];
256	int				keylen;
257};
258
259/**
260 * struct s5p_aes_dev - Crypto device state container
261 * @dev:	Associated device
262 * @clk:	Clock for accessing hardware
263 * @pclk:	APB bus clock necessary to access the hardware
264 * @ioaddr:	Mapped IO memory region
265 * @aes_ioaddr:	Per-varian offset for AES block IO memory
266 * @irq_fc:	Feed control interrupt line
267 * @req:	Crypto request currently handled by the device
268 * @ctx:	Configuration for currently handled crypto request
269 * @sg_src:	Scatter list with source data for currently handled block
270 *		in device.  This is DMA-mapped into device.
271 * @sg_dst:	Scatter list with destination data for currently handled block
272 *		in device. This is DMA-mapped into device.
273 * @sg_src_cpy:	In case of unaligned access, copied scatter list
274 *		with source data.
275 * @sg_dst_cpy:	In case of unaligned access, copied scatter list
276 *		with destination data.
277 * @tasklet:	New request scheduling jib
278 * @queue:	Crypto queue
279 * @busy:	Indicates whether the device is currently handling some request
280 *		thus it uses some of the fields from this state, like:
281 *		req, ctx, sg_src/dst (and copies).  This essentially
282 *		protects against concurrent access to these fields.
283 * @lock:	Lock for protecting both access to device hardware registers
284 *		and fields related to current request (including the busy field).
285 * @res:	Resources for hash.
286 * @io_hash_base: Per-variant offset for HASH block IO memory.
287 * @hash_lock:	Lock for protecting hash_req, hash_queue and hash_flags
288 *		variable.
289 * @hash_flags:	Flags for current HASH op.
290 * @hash_queue:	Async hash queue.
291 * @hash_tasklet: New HASH request scheduling job.
292 * @xmit_buf:	Buffer for current HASH request transfer into SSS block.
293 * @hash_req:	Current request sending to SSS HASH block.
294 * @hash_sg_iter: Scatterlist transferred through DMA into SSS HASH block.
295 * @hash_sg_cnt: Counter for hash_sg_iter.
296 *
297 * @use_hash:	true if HASH algs enabled
298 */
299struct s5p_aes_dev {
300	struct device			*dev;
301	struct clk			*clk;
302	struct clk			*pclk;
303	void __iomem			*ioaddr;
304	void __iomem			*aes_ioaddr;
305	int				irq_fc;
306
307	struct skcipher_request		*req;
308	struct s5p_aes_ctx		*ctx;
309	struct scatterlist		*sg_src;
310	struct scatterlist		*sg_dst;
311
312	struct scatterlist		*sg_src_cpy;
313	struct scatterlist		*sg_dst_cpy;
314
315	struct tasklet_struct		tasklet;
316	struct crypto_queue		queue;
317	bool				busy;
318	spinlock_t			lock;
319
320	struct resource			*res;
321	void __iomem			*io_hash_base;
322
323	spinlock_t			hash_lock; /* protect hash_ vars */
324	unsigned long			hash_flags;
325	struct crypto_queue		hash_queue;
326	struct tasklet_struct		hash_tasklet;
327
328	u8				xmit_buf[BUFLEN];
329	struct ahash_request		*hash_req;
330	struct scatterlist		*hash_sg_iter;
331	unsigned int			hash_sg_cnt;
332
333	bool				use_hash;
334};
335
336/**
337 * struct s5p_hash_reqctx - HASH request context
338 * @dd:		Associated device
339 * @op_update:	Current request operation (OP_UPDATE or OP_FINAL)
340 * @digcnt:	Number of bytes processed by HW (without buffer[] ones)
341 * @digest:	Digest message or IV for partial result
342 * @nregs:	Number of HW registers for digest or IV read/write
343 * @engine:	Bits for selecting type of HASH in SSS block
344 * @sg:		sg for DMA transfer
345 * @sg_len:	Length of sg for DMA transfer
346 * @sgl:	sg for joining buffer and req->src scatterlist
347 * @skip:	Skip offset in req->src for current op
348 * @total:	Total number of bytes for current request
349 * @finup:	Keep state for finup or final.
350 * @error:	Keep track of error.
351 * @bufcnt:	Number of bytes holded in buffer[]
352 * @buffer:	For byte(s) from end of req->src in UPDATE op
353 */
354struct s5p_hash_reqctx {
355	struct s5p_aes_dev	*dd;
356	bool			op_update;
357
358	u64			digcnt;
359	u8			digest[SHA256_DIGEST_SIZE];
360
361	unsigned int		nregs; /* digest_size / sizeof(reg) */
362	u32			engine;
363
364	struct scatterlist	*sg;
365	unsigned int		sg_len;
366	struct scatterlist	sgl[2];
367	unsigned int		skip;
368	unsigned int		total;
369	bool			finup;
370	bool			error;
371
372	u32			bufcnt;
373	u8			buffer[];
374};
375
376/**
377 * struct s5p_hash_ctx - HASH transformation context
378 * @dd:		Associated device
379 * @flags:	Bits for algorithm HASH.
380 * @fallback:	Software transformation for zero message or size < BUFLEN.
381 */
382struct s5p_hash_ctx {
383	struct s5p_aes_dev	*dd;
384	unsigned long		flags;
385	struct crypto_shash	*fallback;
386};
387
388static const struct samsung_aes_variant s5p_aes_data = {
389	.aes_offset	= 0x4000,
390	.hash_offset	= 0x6000,
391	.clk_names	= { "secss", },
392};
393
394static const struct samsung_aes_variant exynos_aes_data = {
395	.aes_offset	= 0x200,
396	.hash_offset	= 0x400,
397	.clk_names	= { "secss", },
398};
399
400static const struct samsung_aes_variant exynos5433_slim_aes_data = {
401	.aes_offset	= 0x400,
402	.hash_offset	= 0x800,
403	.clk_names	= { "pclk", "aclk", },
404};
405
406static const struct of_device_id s5p_sss_dt_match[] = {
407	{
408		.compatible = "samsung,s5pv210-secss",
409		.data = &s5p_aes_data,
410	},
411	{
412		.compatible = "samsung,exynos4210-secss",
413		.data = &exynos_aes_data,
414	},
415	{
416		.compatible = "samsung,exynos5433-slim-sss",
417		.data = &exynos5433_slim_aes_data,
418	},
419	{ },
420};
421MODULE_DEVICE_TABLE(of, s5p_sss_dt_match);
422
423static inline const struct samsung_aes_variant *find_s5p_sss_version
424				   (const struct platform_device *pdev)
425{
426	if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node)) {
427		const struct of_device_id *match;
428
429		match = of_match_node(s5p_sss_dt_match,
430					pdev->dev.of_node);
431		return (const struct samsung_aes_variant *)match->data;
432	}
433	return (const struct samsung_aes_variant *)
434			platform_get_device_id(pdev)->driver_data;
435}
436
437static struct s5p_aes_dev *s5p_dev;
438
439static void s5p_set_dma_indata(struct s5p_aes_dev *dev,
440			       const struct scatterlist *sg)
441{
442	SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg));
443	SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg));
444}
445
446static void s5p_set_dma_outdata(struct s5p_aes_dev *dev,
447				const struct scatterlist *sg)
448{
449	SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg));
450	SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg));
451}
452
453static void s5p_free_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist **sg)
454{
455	int len;
456
457	if (!*sg)
458		return;
459
460	len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE);
461	free_pages((unsigned long)sg_virt(*sg), get_order(len));
462
463	kfree(*sg);
464	*sg = NULL;
465}
466
467static void s5p_sg_copy_buf(void *buf, struct scatterlist *sg,
468			    unsigned int nbytes, int out)
469{
470	struct scatter_walk walk;
471
472	if (!nbytes)
473		return;
474
475	scatterwalk_start(&walk, sg);
476	scatterwalk_copychunks(buf, &walk, nbytes, out);
477	scatterwalk_done(&walk, out, 0);
478}
479
480static void s5p_sg_done(struct s5p_aes_dev *dev)
481{
482	struct skcipher_request *req = dev->req;
483	struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req);
484
485	if (dev->sg_dst_cpy) {
486		dev_dbg(dev->dev,
487			"Copying %d bytes of output data back to original place\n",
488			dev->req->cryptlen);
489		s5p_sg_copy_buf(sg_virt(dev->sg_dst_cpy), dev->req->dst,
490				dev->req->cryptlen, 1);
491	}
492	s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
493	s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
494	if (reqctx->mode & FLAGS_AES_CBC)
495		memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), AES_BLOCK_SIZE);
496
497	else if (reqctx->mode & FLAGS_AES_CTR)
498		memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), AES_BLOCK_SIZE);
499}
500
501/* Calls the completion. Cannot be called with dev->lock hold. */
502static void s5p_aes_complete(struct skcipher_request *req, int err)
503{
504	req->base.complete(&req->base, err);
505}
506
507static void s5p_unset_outdata(struct s5p_aes_dev *dev)
508{
509	dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE);
510}
511
512static void s5p_unset_indata(struct s5p_aes_dev *dev)
513{
514	dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE);
515}
516
517static int s5p_make_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist *src,
518			   struct scatterlist **dst)
519{
520	void *pages;
521	int len;
522
523	*dst = kmalloc(sizeof(**dst), GFP_ATOMIC);
524	if (!*dst)
525		return -ENOMEM;
526
527	len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE);
528	pages = (void *)__get_free_pages(GFP_ATOMIC, get_order(len));
529	if (!pages) {
530		kfree(*dst);
531		*dst = NULL;
532		return -ENOMEM;
533	}
534
535	s5p_sg_copy_buf(pages, src, dev->req->cryptlen, 0);
536
537	sg_init_table(*dst, 1);
538	sg_set_buf(*dst, pages, len);
539
540	return 0;
541}
542
543static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
544{
545	if (!sg->length)
546		return -EINVAL;
547
548	if (!dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE))
549		return -ENOMEM;
550
551	dev->sg_dst = sg;
552
553	return 0;
554}
555
556static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
557{
558	if (!sg->length)
559		return -EINVAL;
560
561	if (!dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE))
562		return -ENOMEM;
563
564	dev->sg_src = sg;
565
566	return 0;
567}
568
569/*
570 * Returns -ERRNO on error (mapping of new data failed).
571 * On success returns:
572 *  - 0 if there is no more data,
573 *  - 1 if new transmitting (output) data is ready and its address+length
574 *     have to be written to device (by calling s5p_set_dma_outdata()).
575 */
576static int s5p_aes_tx(struct s5p_aes_dev *dev)
577{
578	int ret = 0;
579
580	s5p_unset_outdata(dev);
581
582	if (!sg_is_last(dev->sg_dst)) {
583		ret = s5p_set_outdata(dev, sg_next(dev->sg_dst));
584		if (!ret)
585			ret = 1;
586	}
587
588	return ret;
589}
590
591/*
592 * Returns -ERRNO on error (mapping of new data failed).
593 * On success returns:
594 *  - 0 if there is no more data,
595 *  - 1 if new receiving (input) data is ready and its address+length
596 *     have to be written to device (by calling s5p_set_dma_indata()).
597 */
598static int s5p_aes_rx(struct s5p_aes_dev *dev/*, bool *set_dma*/)
599{
600	int ret = 0;
601
602	s5p_unset_indata(dev);
603
604	if (!sg_is_last(dev->sg_src)) {
605		ret = s5p_set_indata(dev, sg_next(dev->sg_src));
606		if (!ret)
607			ret = 1;
608	}
609
610	return ret;
611}
612
613static inline u32 s5p_hash_read(struct s5p_aes_dev *dd, u32 offset)
614{
615	return __raw_readl(dd->io_hash_base + offset);
616}
617
618static inline void s5p_hash_write(struct s5p_aes_dev *dd,
619				  u32 offset, u32 value)
620{
621	__raw_writel(value, dd->io_hash_base + offset);
622}
623
624/**
625 * s5p_set_dma_hashdata() - start DMA with sg
626 * @dev:	device
627 * @sg:		scatterlist ready to DMA transmit
628 */
629static void s5p_set_dma_hashdata(struct s5p_aes_dev *dev,
630				 const struct scatterlist *sg)
631{
632	dev->hash_sg_cnt--;
633	SSS_WRITE(dev, FCHRDMAS, sg_dma_address(sg));
634	SSS_WRITE(dev, FCHRDMAL, sg_dma_len(sg)); /* DMA starts */
635}
636
637/**
638 * s5p_hash_rx() - get next hash_sg_iter
639 * @dev:	device
640 *
641 * Return:
642 * 2	if there is no more data and it is UPDATE op
643 * 1	if new receiving (input) data is ready and can be written to device
644 * 0	if there is no more data and it is FINAL op
645 */
646static int s5p_hash_rx(struct s5p_aes_dev *dev)
647{
648	if (dev->hash_sg_cnt > 0) {
649		dev->hash_sg_iter = sg_next(dev->hash_sg_iter);
650		return 1;
651	}
652
653	set_bit(HASH_FLAGS_DMA_READY, &dev->hash_flags);
654	if (test_bit(HASH_FLAGS_FINAL, &dev->hash_flags))
655		return 0;
656
657	return 2;
658}
659
660static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id)
661{
662	struct platform_device *pdev = dev_id;
663	struct s5p_aes_dev *dev = platform_get_drvdata(pdev);
664	struct skcipher_request *req;
665	int err_dma_tx = 0;
666	int err_dma_rx = 0;
667	int err_dma_hx = 0;
668	bool tx_end = false;
669	bool hx_end = false;
670	unsigned long flags;
671	u32 status, st_bits;
672	int err;
673
674	spin_lock_irqsave(&dev->lock, flags);
675
676	/*
677	 * Handle rx or tx interrupt. If there is still data (scatterlist did not
678	 * reach end), then map next scatterlist entry.
679	 * In case of such mapping error, s5p_aes_complete() should be called.
680	 *
681	 * If there is no more data in tx scatter list, call s5p_aes_complete()
682	 * and schedule new tasklet.
683	 *
684	 * Handle hx interrupt. If there is still data map next entry.
685	 */
686	status = SSS_READ(dev, FCINTSTAT);
687	if (status & SSS_FCINTSTAT_BRDMAINT)
688		err_dma_rx = s5p_aes_rx(dev);
689
690	if (status & SSS_FCINTSTAT_BTDMAINT) {
691		if (sg_is_last(dev->sg_dst))
692			tx_end = true;
693		err_dma_tx = s5p_aes_tx(dev);
694	}
695
696	if (status & SSS_FCINTSTAT_HRDMAINT)
697		err_dma_hx = s5p_hash_rx(dev);
698
699	st_bits = status & (SSS_FCINTSTAT_BRDMAINT | SSS_FCINTSTAT_BTDMAINT |
700				SSS_FCINTSTAT_HRDMAINT);
701	/* clear DMA bits */
702	SSS_WRITE(dev, FCINTPEND, st_bits);
703
704	/* clear HASH irq bits */
705	if (status & (SSS_FCINTSTAT_HDONEINT | SSS_FCINTSTAT_HPARTINT)) {
706		/* cannot have both HPART and HDONE */
707		if (status & SSS_FCINTSTAT_HPARTINT)
708			st_bits = SSS_HASH_STATUS_PARTIAL_DONE;
709
710		if (status & SSS_FCINTSTAT_HDONEINT)
711			st_bits = SSS_HASH_STATUS_MSG_DONE;
712
713		set_bit(HASH_FLAGS_OUTPUT_READY, &dev->hash_flags);
714		s5p_hash_write(dev, SSS_REG_HASH_STATUS, st_bits);
715		hx_end = true;
716		/* when DONE or PART, do not handle HASH DMA */
717		err_dma_hx = 0;
718	}
719
720	if (err_dma_rx < 0) {
721		err = err_dma_rx;
722		goto error;
723	}
724	if (err_dma_tx < 0) {
725		err = err_dma_tx;
726		goto error;
727	}
728
729	if (tx_end) {
730		s5p_sg_done(dev);
731		if (err_dma_hx == 1)
732			s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
733
734		spin_unlock_irqrestore(&dev->lock, flags);
735
736		s5p_aes_complete(dev->req, 0);
737		/* Device is still busy */
738		tasklet_schedule(&dev->tasklet);
739	} else {
740		/*
741		 * Writing length of DMA block (either receiving or
742		 * transmitting) will start the operation immediately, so this
743		 * should be done at the end (even after clearing pending
744		 * interrupts to not miss the interrupt).
745		 */
746		if (err_dma_tx == 1)
747			s5p_set_dma_outdata(dev, dev->sg_dst);
748		if (err_dma_rx == 1)
749			s5p_set_dma_indata(dev, dev->sg_src);
750		if (err_dma_hx == 1)
751			s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
752
753		spin_unlock_irqrestore(&dev->lock, flags);
754	}
755
756	goto hash_irq_end;
757
758error:
759	s5p_sg_done(dev);
760	dev->busy = false;
761	req = dev->req;
762	if (err_dma_hx == 1)
763		s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
764
765	spin_unlock_irqrestore(&dev->lock, flags);
766	s5p_aes_complete(req, err);
767
768hash_irq_end:
769	/*
770	 * Note about else if:
771	 *   when hash_sg_iter reaches end and its UPDATE op,
772	 *   issue SSS_HASH_PAUSE and wait for HPART irq
773	 */
774	if (hx_end)
775		tasklet_schedule(&dev->hash_tasklet);
776	else if (err_dma_hx == 2)
777		s5p_hash_write(dev, SSS_REG_HASH_CTRL_PAUSE,
778			       SSS_HASH_PAUSE);
779
780	return IRQ_HANDLED;
781}
782
783/**
784 * s5p_hash_read_msg() - read message or IV from HW
785 * @req:	AHASH request
786 */
787static void s5p_hash_read_msg(struct ahash_request *req)
788{
789	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
790	struct s5p_aes_dev *dd = ctx->dd;
791	u32 *hash = (u32 *)ctx->digest;
792	unsigned int i;
793
794	for (i = 0; i < ctx->nregs; i++)
795		hash[i] = s5p_hash_read(dd, SSS_REG_HASH_OUT(i));
796}
797
798/**
799 * s5p_hash_write_ctx_iv() - write IV for next partial/finup op.
800 * @dd:		device
801 * @ctx:	request context
802 */
803static void s5p_hash_write_ctx_iv(struct s5p_aes_dev *dd,
804				  const struct s5p_hash_reqctx *ctx)
805{
806	const u32 *hash = (const u32 *)ctx->digest;
807	unsigned int i;
808
809	for (i = 0; i < ctx->nregs; i++)
810		s5p_hash_write(dd, SSS_REG_HASH_IV(i), hash[i]);
811}
812
813/**
814 * s5p_hash_write_iv() - write IV for next partial/finup op.
815 * @req:	AHASH request
816 */
817static void s5p_hash_write_iv(struct ahash_request *req)
818{
819	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
820
821	s5p_hash_write_ctx_iv(ctx->dd, ctx);
822}
823
824/**
825 * s5p_hash_copy_result() - copy digest into req->result
826 * @req:	AHASH request
827 */
828static void s5p_hash_copy_result(struct ahash_request *req)
829{
830	const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
831
832	if (!req->result)
833		return;
834
835	memcpy(req->result, ctx->digest, ctx->nregs * HASH_REG_SIZEOF);
836}
837
838/**
839 * s5p_hash_dma_flush() - flush HASH DMA
840 * @dev:	secss device
841 */
842static void s5p_hash_dma_flush(struct s5p_aes_dev *dev)
843{
844	SSS_WRITE(dev, FCHRDMAC, SSS_FCHRDMAC_FLUSH);
845}
846
847/**
848 * s5p_hash_dma_enable() - enable DMA mode for HASH
849 * @dev:	secss device
850 *
851 * enable DMA mode for HASH
852 */
853static void s5p_hash_dma_enable(struct s5p_aes_dev *dev)
854{
855	s5p_hash_write(dev, SSS_REG_HASH_CTRL_FIFO, SSS_HASH_FIFO_MODE_DMA);
856}
857
858/**
859 * s5p_hash_irq_disable() - disable irq HASH signals
860 * @dev:	secss device
861 * @flags:	bitfield with irq's to be disabled
862 */
863static void s5p_hash_irq_disable(struct s5p_aes_dev *dev, u32 flags)
864{
865	SSS_WRITE(dev, FCINTENCLR, flags);
866}
867
868/**
869 * s5p_hash_irq_enable() - enable irq signals
870 * @dev:	secss device
871 * @flags:	bitfield with irq's to be enabled
872 */
873static void s5p_hash_irq_enable(struct s5p_aes_dev *dev, int flags)
874{
875	SSS_WRITE(dev, FCINTENSET, flags);
876}
877
878/**
879 * s5p_hash_set_flow() - set flow inside SecSS AES/DES with/without HASH
880 * @dev:	secss device
881 * @hashflow:	HASH stream flow with/without crypto AES/DES
882 */
883static void s5p_hash_set_flow(struct s5p_aes_dev *dev, u32 hashflow)
884{
885	unsigned long flags;
886	u32 flow;
887
888	spin_lock_irqsave(&dev->lock, flags);
889
890	flow = SSS_READ(dev, FCFIFOCTRL);
891	flow &= ~SSS_HASHIN_MASK;
892	flow |= hashflow;
893	SSS_WRITE(dev, FCFIFOCTRL, flow);
894
895	spin_unlock_irqrestore(&dev->lock, flags);
896}
897
898/**
899 * s5p_ahash_dma_init() - enable DMA and set HASH flow inside SecSS
900 * @dev:	secss device
901 * @hashflow:	HASH stream flow with/without AES/DES
902 *
903 * flush HASH DMA and enable DMA, set HASH stream flow inside SecSS HW,
904 * enable HASH irq's HRDMA, HDONE, HPART
905 */
906static void s5p_ahash_dma_init(struct s5p_aes_dev *dev, u32 hashflow)
907{
908	s5p_hash_irq_disable(dev, SSS_FCINTENCLR_HRDMAINTENCLR |
909			     SSS_FCINTENCLR_HDONEINTENCLR |
910			     SSS_FCINTENCLR_HPARTINTENCLR);
911	s5p_hash_dma_flush(dev);
912
913	s5p_hash_dma_enable(dev);
914	s5p_hash_set_flow(dev, hashflow & SSS_HASHIN_MASK);
915	s5p_hash_irq_enable(dev, SSS_FCINTENSET_HRDMAINTENSET |
916			    SSS_FCINTENSET_HDONEINTENSET |
917			    SSS_FCINTENSET_HPARTINTENSET);
918}
919
920/**
921 * s5p_hash_write_ctrl() - prepare HASH block in SecSS for processing
922 * @dd:		secss device
923 * @length:	length for request
924 * @final:	true if final op
925 *
926 * Prepare SSS HASH block for processing bytes in DMA mode. If it is called
927 * after previous updates, fill up IV words. For final, calculate and set
928 * lengths for HASH so SecSS can finalize hash. For partial, set SSS HASH
929 * length as 2^63 so it will be never reached and set to zero prelow and
930 * prehigh.
931 *
932 * This function does not start DMA transfer.
933 */
934static void s5p_hash_write_ctrl(struct s5p_aes_dev *dd, size_t length,
935				bool final)
936{
937	struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
938	u32 prelow, prehigh, low, high;
939	u32 configflags, swapflags;
940	u64 tmplen;
941
942	configflags = ctx->engine | SSS_HASH_INIT_BIT;
943
944	if (likely(ctx->digcnt)) {
945		s5p_hash_write_ctx_iv(dd, ctx);
946		configflags |= SSS_HASH_USER_IV_EN;
947	}
948
949	if (final) {
950		/* number of bytes for last part */
951		low = length;
952		high = 0;
953		/* total number of bits prev hashed */
954		tmplen = ctx->digcnt * 8;
955		prelow = (u32)tmplen;
956		prehigh = (u32)(tmplen >> 32);
957	} else {
958		prelow = 0;
959		prehigh = 0;
960		low = 0;
961		high = BIT(31);
962	}
963
964	swapflags = SSS_HASH_BYTESWAP_DI | SSS_HASH_BYTESWAP_DO |
965		    SSS_HASH_BYTESWAP_IV | SSS_HASH_BYTESWAP_KEY;
966
967	s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_LOW, low);
968	s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_HIGH, high);
969	s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_LOW, prelow);
970	s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_HIGH, prehigh);
971
972	s5p_hash_write(dd, SSS_REG_HASH_CTRL_SWAP, swapflags);
973	s5p_hash_write(dd, SSS_REG_HASH_CTRL, configflags);
974}
975
976/**
977 * s5p_hash_xmit_dma() - start DMA hash processing
978 * @dd:		secss device
979 * @length:	length for request
980 * @final:	true if final op
981 *
982 * Update digcnt here, as it is needed for finup/final op.
983 */
984static int s5p_hash_xmit_dma(struct s5p_aes_dev *dd, size_t length,
985			     bool final)
986{
987	struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
988	unsigned int cnt;
989
990	cnt = dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
991	if (!cnt) {
992		dev_err(dd->dev, "dma_map_sg error\n");
993		ctx->error = true;
994		return -EINVAL;
995	}
996
997	set_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
998	dd->hash_sg_iter = ctx->sg;
999	dd->hash_sg_cnt = cnt;
1000	s5p_hash_write_ctrl(dd, length, final);
1001	ctx->digcnt += length;
1002	ctx->total -= length;
1003
1004	/* catch last interrupt */
1005	if (final)
1006		set_bit(HASH_FLAGS_FINAL, &dd->hash_flags);
1007
1008	s5p_set_dma_hashdata(dd, dd->hash_sg_iter); /* DMA starts */
1009
1010	return -EINPROGRESS;
1011}
1012
1013/**
1014 * s5p_hash_copy_sgs() - copy request's bytes into new buffer
1015 * @ctx:	request context
1016 * @sg:		source scatterlist request
1017 * @new_len:	number of bytes to process from sg
1018 *
1019 * Allocate new buffer, copy data for HASH into it. If there was xmit_buf
1020 * filled, copy it first, then copy data from sg into it. Prepare one sgl[0]
1021 * with allocated buffer.
1022 *
1023 * Set bit in dd->hash_flag so we can free it after irq ends processing.
1024 */
1025static int s5p_hash_copy_sgs(struct s5p_hash_reqctx *ctx,
1026			     struct scatterlist *sg, unsigned int new_len)
1027{
1028	unsigned int pages, len;
1029	void *buf;
1030
1031	len = new_len + ctx->bufcnt;
1032	pages = get_order(len);
1033
1034	buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
1035	if (!buf) {
1036		dev_err(ctx->dd->dev, "alloc pages for unaligned case.\n");
1037		ctx->error = true;
1038		return -ENOMEM;
1039	}
1040
1041	if (ctx->bufcnt)
1042		memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt);
1043
1044	scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->skip,
1045				 new_len, 0);
1046	sg_init_table(ctx->sgl, 1);
1047	sg_set_buf(ctx->sgl, buf, len);
1048	ctx->sg = ctx->sgl;
1049	ctx->sg_len = 1;
1050	ctx->bufcnt = 0;
1051	ctx->skip = 0;
1052	set_bit(HASH_FLAGS_SGS_COPIED, &ctx->dd->hash_flags);
1053
1054	return 0;
1055}
1056
1057/**
1058 * s5p_hash_copy_sg_lists() - copy sg list and make fixes in copy
1059 * @ctx:	request context
1060 * @sg:		source scatterlist request
1061 * @new_len:	number of bytes to process from sg
1062 *
1063 * Allocate new scatterlist table, copy data for HASH into it. If there was
1064 * xmit_buf filled, prepare it first, then copy page, length and offset from
1065 * source sg into it, adjusting begin and/or end for skip offset and
1066 * hash_later value.
1067 *
1068 * Resulting sg table will be assigned to ctx->sg. Set flag so we can free
1069 * it after irq ends processing.
1070 */
1071static int s5p_hash_copy_sg_lists(struct s5p_hash_reqctx *ctx,
1072				  struct scatterlist *sg, unsigned int new_len)
1073{
1074	unsigned int skip = ctx->skip, n = sg_nents(sg);
1075	struct scatterlist *tmp;
1076	unsigned int len;
1077
1078	if (ctx->bufcnt)
1079		n++;
1080
1081	ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL);
1082	if (!ctx->sg) {
1083		ctx->error = true;
1084		return -ENOMEM;
1085	}
1086
1087	sg_init_table(ctx->sg, n);
1088
1089	tmp = ctx->sg;
1090
1091	ctx->sg_len = 0;
1092
1093	if (ctx->bufcnt) {
1094		sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt);
1095		tmp = sg_next(tmp);
1096		ctx->sg_len++;
1097	}
1098
1099	while (sg && skip >= sg->length) {
1100		skip -= sg->length;
1101		sg = sg_next(sg);
1102	}
1103
1104	while (sg && new_len) {
1105		len = sg->length - skip;
1106		if (new_len < len)
1107			len = new_len;
1108
1109		new_len -= len;
1110		sg_set_page(tmp, sg_page(sg), len, sg->offset + skip);
1111		skip = 0;
1112		if (new_len <= 0)
1113			sg_mark_end(tmp);
1114
1115		tmp = sg_next(tmp);
1116		ctx->sg_len++;
1117		sg = sg_next(sg);
1118	}
1119
1120	set_bit(HASH_FLAGS_SGS_ALLOCED, &ctx->dd->hash_flags);
1121
1122	return 0;
1123}
1124
1125/**
1126 * s5p_hash_prepare_sgs() - prepare sg for processing
1127 * @ctx:	request context
1128 * @sg:		source scatterlist request
1129 * @new_len:	number of bytes to process from sg
1130 * @final:	final flag
1131 *
1132 * Check two conditions: (1) if buffers in sg have len aligned data, and (2)
1133 * sg table have good aligned elements (list_ok). If one of this checks fails,
1134 * then either (1) allocates new buffer for data with s5p_hash_copy_sgs, copy
1135 * data into this buffer and prepare request in sgl, or (2) allocates new sg
1136 * table and prepare sg elements.
1137 *
1138 * For digest or finup all conditions can be good, and we may not need any
1139 * fixes.
1140 */
1141static int s5p_hash_prepare_sgs(struct s5p_hash_reqctx *ctx,
1142				struct scatterlist *sg,
1143				unsigned int new_len, bool final)
1144{
1145	unsigned int skip = ctx->skip, nbytes = new_len, n = 0;
1146	bool aligned = true, list_ok = true;
1147	struct scatterlist *sg_tmp = sg;
1148
1149	if (!sg || !sg->length || !new_len)
1150		return 0;
1151
1152	if (skip || !final)
1153		list_ok = false;
1154
1155	while (nbytes > 0 && sg_tmp) {
1156		n++;
1157		if (skip >= sg_tmp->length) {
1158			skip -= sg_tmp->length;
1159			if (!sg_tmp->length) {
1160				aligned = false;
1161				break;
1162			}
1163		} else {
1164			if (!IS_ALIGNED(sg_tmp->length - skip, BUFLEN)) {
1165				aligned = false;
1166				break;
1167			}
1168
1169			if (nbytes < sg_tmp->length - skip) {
1170				list_ok = false;
1171				break;
1172			}
1173
1174			nbytes -= sg_tmp->length - skip;
1175			skip = 0;
1176		}
1177
1178		sg_tmp = sg_next(sg_tmp);
1179	}
1180
1181	if (!aligned)
1182		return s5p_hash_copy_sgs(ctx, sg, new_len);
1183	else if (!list_ok)
1184		return s5p_hash_copy_sg_lists(ctx, sg, new_len);
1185
1186	/*
1187	 * Have aligned data from previous operation and/or current
1188	 * Note: will enter here only if (digest or finup) and aligned
1189	 */
1190	if (ctx->bufcnt) {
1191		ctx->sg_len = n;
1192		sg_init_table(ctx->sgl, 2);
1193		sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, ctx->bufcnt);
1194		sg_chain(ctx->sgl, 2, sg);
1195		ctx->sg = ctx->sgl;
1196		ctx->sg_len++;
1197	} else {
1198		ctx->sg = sg;
1199		ctx->sg_len = n;
1200	}
1201
1202	return 0;
1203}
1204
1205/**
1206 * s5p_hash_prepare_request() - prepare request for processing
1207 * @req:	AHASH request
1208 * @update:	true if UPDATE op
1209 *
1210 * Note 1: we can have update flag _and_ final flag at the same time.
1211 * Note 2: we enter here when digcnt > BUFLEN (=HASH_BLOCK_SIZE) or
1212 *	   either req->nbytes or ctx->bufcnt + req->nbytes is > BUFLEN or
1213 *	   we have final op
1214 */
1215static int s5p_hash_prepare_request(struct ahash_request *req, bool update)
1216{
1217	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1218	bool final = ctx->finup;
1219	int xmit_len, hash_later, nbytes;
1220	int ret;
1221
1222	if (update)
1223		nbytes = req->nbytes;
1224	else
1225		nbytes = 0;
1226
1227	ctx->total = nbytes + ctx->bufcnt;
1228	if (!ctx->total)
1229		return 0;
1230
1231	if (nbytes && (!IS_ALIGNED(ctx->bufcnt, BUFLEN))) {
1232		/* bytes left from previous request, so fill up to BUFLEN */
1233		int len = BUFLEN - ctx->bufcnt % BUFLEN;
1234
1235		if (len > nbytes)
1236			len = nbytes;
1237
1238		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1239					 0, len, 0);
1240		ctx->bufcnt += len;
1241		nbytes -= len;
1242		ctx->skip = len;
1243	} else {
1244		ctx->skip = 0;
1245	}
1246
1247	if (ctx->bufcnt)
1248		memcpy(ctx->dd->xmit_buf, ctx->buffer, ctx->bufcnt);
1249
1250	xmit_len = ctx->total;
1251	if (final) {
1252		hash_later = 0;
1253	} else {
1254		if (IS_ALIGNED(xmit_len, BUFLEN))
1255			xmit_len -= BUFLEN;
1256		else
1257			xmit_len -= xmit_len & (BUFLEN - 1);
1258
1259		hash_later = ctx->total - xmit_len;
1260		/* copy hash_later bytes from end of req->src */
1261		/* previous bytes are in xmit_buf, so no overwrite */
1262		scatterwalk_map_and_copy(ctx->buffer, req->src,
1263					 req->nbytes - hash_later,
1264					 hash_later, 0);
1265	}
1266
1267	if (xmit_len > BUFLEN) {
1268		ret = s5p_hash_prepare_sgs(ctx, req->src, nbytes - hash_later,
1269					   final);
1270		if (ret)
1271			return ret;
1272	} else {
1273		/* have buffered data only */
1274		if (unlikely(!ctx->bufcnt)) {
1275			/* first update didn't fill up buffer */
1276			scatterwalk_map_and_copy(ctx->dd->xmit_buf, req->src,
1277						 0, xmit_len, 0);
1278		}
1279
1280		sg_init_table(ctx->sgl, 1);
1281		sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, xmit_len);
1282
1283		ctx->sg = ctx->sgl;
1284		ctx->sg_len = 1;
1285	}
1286
1287	ctx->bufcnt = hash_later;
1288	if (!final)
1289		ctx->total = xmit_len;
1290
1291	return 0;
1292}
1293
1294/**
1295 * s5p_hash_update_dma_stop() - unmap DMA
1296 * @dd:		secss device
1297 *
1298 * Unmap scatterlist ctx->sg.
1299 */
1300static void s5p_hash_update_dma_stop(struct s5p_aes_dev *dd)
1301{
1302	const struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
1303
1304	dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
1305	clear_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
1306}
1307
1308/**
1309 * s5p_hash_finish() - copy calculated digest to crypto layer
1310 * @req:	AHASH request
1311 */
1312static void s5p_hash_finish(struct ahash_request *req)
1313{
1314	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1315	struct s5p_aes_dev *dd = ctx->dd;
1316
1317	if (ctx->digcnt)
1318		s5p_hash_copy_result(req);
1319
1320	dev_dbg(dd->dev, "hash_finish digcnt: %lld\n", ctx->digcnt);
1321}
1322
1323/**
1324 * s5p_hash_finish_req() - finish request
1325 * @req:	AHASH request
1326 * @err:	error
1327 */
1328static void s5p_hash_finish_req(struct ahash_request *req, int err)
1329{
1330	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1331	struct s5p_aes_dev *dd = ctx->dd;
1332	unsigned long flags;
1333
1334	if (test_bit(HASH_FLAGS_SGS_COPIED, &dd->hash_flags))
1335		free_pages((unsigned long)sg_virt(ctx->sg),
1336			   get_order(ctx->sg->length));
1337
1338	if (test_bit(HASH_FLAGS_SGS_ALLOCED, &dd->hash_flags))
1339		kfree(ctx->sg);
1340
1341	ctx->sg = NULL;
1342	dd->hash_flags &= ~(BIT(HASH_FLAGS_SGS_ALLOCED) |
1343			    BIT(HASH_FLAGS_SGS_COPIED));
1344
1345	if (!err && !ctx->error) {
1346		s5p_hash_read_msg(req);
1347		if (test_bit(HASH_FLAGS_FINAL, &dd->hash_flags))
1348			s5p_hash_finish(req);
1349	} else {
1350		ctx->error = true;
1351	}
1352
1353	spin_lock_irqsave(&dd->hash_lock, flags);
1354	dd->hash_flags &= ~(BIT(HASH_FLAGS_BUSY) | BIT(HASH_FLAGS_FINAL) |
1355			    BIT(HASH_FLAGS_DMA_READY) |
1356			    BIT(HASH_FLAGS_OUTPUT_READY));
1357	spin_unlock_irqrestore(&dd->hash_lock, flags);
1358
1359	if (req->base.complete)
1360		req->base.complete(&req->base, err);
1361}
1362
1363/**
1364 * s5p_hash_handle_queue() - handle hash queue
1365 * @dd:		device s5p_aes_dev
1366 * @req:	AHASH request
1367 *
1368 * If req!=NULL enqueue it on dd->queue, if FLAGS_BUSY is not set on the
1369 * device then processes the first request from the dd->queue
1370 *
1371 * Returns: see s5p_hash_final below.
1372 */
1373static int s5p_hash_handle_queue(struct s5p_aes_dev *dd,
1374				 struct ahash_request *req)
1375{
1376	struct crypto_async_request *async_req, *backlog;
1377	struct s5p_hash_reqctx *ctx;
1378	unsigned long flags;
1379	int err = 0, ret = 0;
1380
1381retry:
1382	spin_lock_irqsave(&dd->hash_lock, flags);
1383	if (req)
1384		ret = ahash_enqueue_request(&dd->hash_queue, req);
1385
1386	if (test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1387		spin_unlock_irqrestore(&dd->hash_lock, flags);
1388		return ret;
1389	}
1390
1391	backlog = crypto_get_backlog(&dd->hash_queue);
1392	async_req = crypto_dequeue_request(&dd->hash_queue);
1393	if (async_req)
1394		set_bit(HASH_FLAGS_BUSY, &dd->hash_flags);
1395
1396	spin_unlock_irqrestore(&dd->hash_lock, flags);
1397
1398	if (!async_req)
1399		return ret;
1400
1401	if (backlog)
1402		backlog->complete(backlog, -EINPROGRESS);
1403
1404	req = ahash_request_cast(async_req);
1405	dd->hash_req = req;
1406	ctx = ahash_request_ctx(req);
1407
1408	err = s5p_hash_prepare_request(req, ctx->op_update);
1409	if (err || !ctx->total)
1410		goto out;
1411
1412	dev_dbg(dd->dev, "handling new req, op_update: %u, nbytes: %d\n",
1413		ctx->op_update, req->nbytes);
1414
1415	s5p_ahash_dma_init(dd, SSS_HASHIN_INDEPENDENT);
1416	if (ctx->digcnt)
1417		s5p_hash_write_iv(req); /* restore hash IV */
1418
1419	if (ctx->op_update) { /* HASH_OP_UPDATE */
1420		err = s5p_hash_xmit_dma(dd, ctx->total, ctx->finup);
1421		if (err != -EINPROGRESS && ctx->finup && !ctx->error)
1422			/* no final() after finup() */
1423			err = s5p_hash_xmit_dma(dd, ctx->total, true);
1424	} else { /* HASH_OP_FINAL */
1425		err = s5p_hash_xmit_dma(dd, ctx->total, true);
1426	}
1427out:
1428	if (err != -EINPROGRESS) {
1429		/* hash_tasklet_cb will not finish it, so do it here */
1430		s5p_hash_finish_req(req, err);
1431		req = NULL;
1432
1433		/*
1434		 * Execute next request immediately if there is anything
1435		 * in queue.
1436		 */
1437		goto retry;
1438	}
1439
1440	return ret;
1441}
1442
1443/**
1444 * s5p_hash_tasklet_cb() - hash tasklet
1445 * @data:	ptr to s5p_aes_dev
1446 */
1447static void s5p_hash_tasklet_cb(unsigned long data)
1448{
1449	struct s5p_aes_dev *dd = (struct s5p_aes_dev *)data;
1450
1451	if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1452		s5p_hash_handle_queue(dd, NULL);
1453		return;
1454	}
1455
1456	if (test_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags)) {
1457		if (test_and_clear_bit(HASH_FLAGS_DMA_ACTIVE,
1458				       &dd->hash_flags)) {
1459			s5p_hash_update_dma_stop(dd);
1460		}
1461
1462		if (test_and_clear_bit(HASH_FLAGS_OUTPUT_READY,
1463				       &dd->hash_flags)) {
1464			/* hash or semi-hash ready */
1465			clear_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags);
1466			goto finish;
1467		}
1468	}
1469
1470	return;
1471
1472finish:
1473	/* finish curent request */
1474	s5p_hash_finish_req(dd->hash_req, 0);
1475
1476	/* If we are not busy, process next req */
1477	if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags))
1478		s5p_hash_handle_queue(dd, NULL);
1479}
1480
1481/**
1482 * s5p_hash_enqueue() - enqueue request
1483 * @req:	AHASH request
1484 * @op:		operation UPDATE (true) or FINAL (false)
1485 *
1486 * Returns: see s5p_hash_final below.
1487 */
1488static int s5p_hash_enqueue(struct ahash_request *req, bool op)
1489{
1490	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1491	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1492
1493	ctx->op_update = op;
1494
1495	return s5p_hash_handle_queue(tctx->dd, req);
1496}
1497
1498/**
1499 * s5p_hash_update() - process the hash input data
1500 * @req:	AHASH request
1501 *
1502 * If request will fit in buffer, copy it and return immediately
1503 * else enqueue it with OP_UPDATE.
1504 *
1505 * Returns: see s5p_hash_final below.
1506 */
1507static int s5p_hash_update(struct ahash_request *req)
1508{
1509	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1510
1511	if (!req->nbytes)
1512		return 0;
1513
1514	if (ctx->bufcnt + req->nbytes <= BUFLEN) {
1515		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1516					 0, req->nbytes, 0);
1517		ctx->bufcnt += req->nbytes;
1518		return 0;
1519	}
1520
1521	return s5p_hash_enqueue(req, true); /* HASH_OP_UPDATE */
1522}
1523
1524/**
1525 * s5p_hash_final() - close up hash and calculate digest
1526 * @req:	AHASH request
1527 *
1528 * Note: in final req->src do not have any data, and req->nbytes can be
1529 * non-zero.
1530 *
1531 * If there were no input data processed yet and the buffered hash data is
1532 * less than BUFLEN (64) then calculate the final hash immediately by using
1533 * SW algorithm fallback.
1534 *
1535 * Otherwise enqueues the current AHASH request with OP_FINAL operation op
1536 * and finalize hash message in HW. Note that if digcnt!=0 then there were
1537 * previous update op, so there are always some buffered bytes in ctx->buffer,
1538 * which means that ctx->bufcnt!=0
1539 *
1540 * Returns:
1541 * 0 if the request has been processed immediately,
1542 * -EINPROGRESS if the operation has been queued for later execution or is set
1543 *		to processing by HW,
1544 * -EBUSY if queue is full and request should be resubmitted later,
1545 * other negative values denotes an error.
1546 */
1547static int s5p_hash_final(struct ahash_request *req)
1548{
1549	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1550
1551	ctx->finup = true;
1552	if (ctx->error)
1553		return -EINVAL; /* uncompleted hash is not needed */
1554
1555	if (!ctx->digcnt && ctx->bufcnt < BUFLEN) {
1556		struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1557
1558		return crypto_shash_tfm_digest(tctx->fallback, ctx->buffer,
1559					       ctx->bufcnt, req->result);
1560	}
1561
1562	return s5p_hash_enqueue(req, false); /* HASH_OP_FINAL */
1563}
1564
1565/**
1566 * s5p_hash_finup() - process last req->src and calculate digest
1567 * @req:	AHASH request containing the last update data
1568 *
1569 * Return values: see s5p_hash_final above.
1570 */
1571static int s5p_hash_finup(struct ahash_request *req)
1572{
1573	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1574	int err1, err2;
1575
1576	ctx->finup = true;
1577
1578	err1 = s5p_hash_update(req);
1579	if (err1 == -EINPROGRESS || err1 == -EBUSY)
1580		return err1;
1581
1582	/*
1583	 * final() has to be always called to cleanup resources even if
1584	 * update() failed, except EINPROGRESS or calculate digest for small
1585	 * size
1586	 */
1587	err2 = s5p_hash_final(req);
1588
1589	return err1 ?: err2;
1590}
1591
1592/**
1593 * s5p_hash_init() - initialize AHASH request contex
1594 * @req:	AHASH request
1595 *
1596 * Init async hash request context.
1597 */
1598static int s5p_hash_init(struct ahash_request *req)
1599{
1600	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1601	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1602	struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1603
1604	ctx->dd = tctx->dd;
1605	ctx->error = false;
1606	ctx->finup = false;
1607	ctx->bufcnt = 0;
1608	ctx->digcnt = 0;
1609	ctx->total = 0;
1610	ctx->skip = 0;
1611
1612	dev_dbg(tctx->dd->dev, "init: digest size: %d\n",
1613		crypto_ahash_digestsize(tfm));
1614
1615	switch (crypto_ahash_digestsize(tfm)) {
1616	case MD5_DIGEST_SIZE:
1617		ctx->engine = SSS_HASH_ENGINE_MD5;
1618		ctx->nregs = HASH_MD5_MAX_REG;
1619		break;
1620	case SHA1_DIGEST_SIZE:
1621		ctx->engine = SSS_HASH_ENGINE_SHA1;
1622		ctx->nregs = HASH_SHA1_MAX_REG;
1623		break;
1624	case SHA256_DIGEST_SIZE:
1625		ctx->engine = SSS_HASH_ENGINE_SHA256;
1626		ctx->nregs = HASH_SHA256_MAX_REG;
1627		break;
1628	default:
1629		ctx->error = true;
1630		return -EINVAL;
1631	}
1632
1633	return 0;
1634}
1635
1636/**
1637 * s5p_hash_digest - calculate digest from req->src
1638 * @req:	AHASH request
1639 *
1640 * Return values: see s5p_hash_final above.
1641 */
1642static int s5p_hash_digest(struct ahash_request *req)
1643{
1644	return s5p_hash_init(req) ?: s5p_hash_finup(req);
1645}
1646
1647/**
1648 * s5p_hash_cra_init_alg - init crypto alg transformation
1649 * @tfm:	crypto transformation
1650 */
1651static int s5p_hash_cra_init_alg(struct crypto_tfm *tfm)
1652{
1653	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1654	const char *alg_name = crypto_tfm_alg_name(tfm);
1655
1656	tctx->dd = s5p_dev;
1657	/* Allocate a fallback and abort if it failed. */
1658	tctx->fallback = crypto_alloc_shash(alg_name, 0,
1659					    CRYPTO_ALG_NEED_FALLBACK);
1660	if (IS_ERR(tctx->fallback)) {
1661		pr_err("fallback alloc fails for '%s'\n", alg_name);
1662		return PTR_ERR(tctx->fallback);
1663	}
1664
1665	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1666				 sizeof(struct s5p_hash_reqctx) + BUFLEN);
1667
1668	return 0;
1669}
1670
1671/**
1672 * s5p_hash_cra_init - init crypto tfm
1673 * @tfm:	crypto transformation
1674 */
1675static int s5p_hash_cra_init(struct crypto_tfm *tfm)
1676{
1677	return s5p_hash_cra_init_alg(tfm);
1678}
1679
1680/**
1681 * s5p_hash_cra_exit - exit crypto tfm
1682 * @tfm:	crypto transformation
1683 *
1684 * free allocated fallback
1685 */
1686static void s5p_hash_cra_exit(struct crypto_tfm *tfm)
1687{
1688	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1689
1690	crypto_free_shash(tctx->fallback);
1691	tctx->fallback = NULL;
1692}
1693
1694/**
1695 * s5p_hash_export - export hash state
1696 * @req:	AHASH request
1697 * @out:	buffer for exported state
1698 */
1699static int s5p_hash_export(struct ahash_request *req, void *out)
1700{
1701	const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1702
1703	memcpy(out, ctx, sizeof(*ctx) + ctx->bufcnt);
1704
1705	return 0;
1706}
1707
1708/**
1709 * s5p_hash_import - import hash state
1710 * @req:	AHASH request
1711 * @in:		buffer with state to be imported from
1712 */
1713static int s5p_hash_import(struct ahash_request *req, const void *in)
1714{
1715	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1716	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1717	struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1718	const struct s5p_hash_reqctx *ctx_in = in;
1719
1720	memcpy(ctx, in, sizeof(*ctx) + BUFLEN);
1721	if (ctx_in->bufcnt > BUFLEN) {
1722		ctx->error = true;
1723		return -EINVAL;
1724	}
1725
1726	ctx->dd = tctx->dd;
1727	ctx->error = false;
1728
1729	return 0;
1730}
1731
1732static struct ahash_alg algs_sha1_md5_sha256[] = {
1733{
1734	.init		= s5p_hash_init,
1735	.update		= s5p_hash_update,
1736	.final		= s5p_hash_final,
1737	.finup		= s5p_hash_finup,
1738	.digest		= s5p_hash_digest,
1739	.export		= s5p_hash_export,
1740	.import		= s5p_hash_import,
1741	.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1742	.halg.digestsize	= SHA1_DIGEST_SIZE,
1743	.halg.base	= {
1744		.cra_name		= "sha1",
1745		.cra_driver_name	= "exynos-sha1",
1746		.cra_priority		= 100,
1747		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1748					  CRYPTO_ALG_ASYNC |
1749					  CRYPTO_ALG_NEED_FALLBACK,
1750		.cra_blocksize		= HASH_BLOCK_SIZE,
1751		.cra_ctxsize		= sizeof(struct s5p_hash_ctx),
1752		.cra_alignmask		= SSS_HASH_DMA_ALIGN_MASK,
1753		.cra_module		= THIS_MODULE,
1754		.cra_init		= s5p_hash_cra_init,
1755		.cra_exit		= s5p_hash_cra_exit,
1756	}
1757},
1758{
1759	.init		= s5p_hash_init,
1760	.update		= s5p_hash_update,
1761	.final		= s5p_hash_final,
1762	.finup		= s5p_hash_finup,
1763	.digest		= s5p_hash_digest,
1764	.export		= s5p_hash_export,
1765	.import		= s5p_hash_import,
1766	.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1767	.halg.digestsize	= MD5_DIGEST_SIZE,
1768	.halg.base	= {
1769		.cra_name		= "md5",
1770		.cra_driver_name	= "exynos-md5",
1771		.cra_priority		= 100,
1772		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1773					  CRYPTO_ALG_ASYNC |
1774					  CRYPTO_ALG_NEED_FALLBACK,
1775		.cra_blocksize		= HASH_BLOCK_SIZE,
1776		.cra_ctxsize		= sizeof(struct s5p_hash_ctx),
1777		.cra_alignmask		= SSS_HASH_DMA_ALIGN_MASK,
1778		.cra_module		= THIS_MODULE,
1779		.cra_init		= s5p_hash_cra_init,
1780		.cra_exit		= s5p_hash_cra_exit,
1781	}
1782},
1783{
1784	.init		= s5p_hash_init,
1785	.update		= s5p_hash_update,
1786	.final		= s5p_hash_final,
1787	.finup		= s5p_hash_finup,
1788	.digest		= s5p_hash_digest,
1789	.export		= s5p_hash_export,
1790	.import		= s5p_hash_import,
1791	.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1792	.halg.digestsize	= SHA256_DIGEST_SIZE,
1793	.halg.base	= {
1794		.cra_name		= "sha256",
1795		.cra_driver_name	= "exynos-sha256",
1796		.cra_priority		= 100,
1797		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1798					  CRYPTO_ALG_ASYNC |
1799					  CRYPTO_ALG_NEED_FALLBACK,
1800		.cra_blocksize		= HASH_BLOCK_SIZE,
1801		.cra_ctxsize		= sizeof(struct s5p_hash_ctx),
1802		.cra_alignmask		= SSS_HASH_DMA_ALIGN_MASK,
1803		.cra_module		= THIS_MODULE,
1804		.cra_init		= s5p_hash_cra_init,
1805		.cra_exit		= s5p_hash_cra_exit,
1806	}
1807}
1808
1809};
1810
1811static void s5p_set_aes(struct s5p_aes_dev *dev,
1812			const u8 *key, const u8 *iv, const u8 *ctr,
1813			unsigned int keylen)
1814{
1815	void __iomem *keystart;
1816
1817	if (iv)
1818		memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv,
1819			    AES_BLOCK_SIZE);
1820
1821	if (ctr)
1822		memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), ctr,
1823			    AES_BLOCK_SIZE);
1824
1825	if (keylen == AES_KEYSIZE_256)
1826		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0);
1827	else if (keylen == AES_KEYSIZE_192)
1828		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2);
1829	else
1830		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4);
1831
1832	memcpy_toio(keystart, key, keylen);
1833}
1834
1835static bool s5p_is_sg_aligned(struct scatterlist *sg)
1836{
1837	while (sg) {
1838		if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
1839			return false;
1840		sg = sg_next(sg);
1841	}
1842
1843	return true;
1844}
1845
1846static int s5p_set_indata_start(struct s5p_aes_dev *dev,
1847				struct skcipher_request *req)
1848{
1849	struct scatterlist *sg;
1850	int err;
1851
1852	dev->sg_src_cpy = NULL;
1853	sg = req->src;
1854	if (!s5p_is_sg_aligned(sg)) {
1855		dev_dbg(dev->dev,
1856			"At least one unaligned source scatter list, making a copy\n");
1857		err = s5p_make_sg_cpy(dev, sg, &dev->sg_src_cpy);
1858		if (err)
1859			return err;
1860
1861		sg = dev->sg_src_cpy;
1862	}
1863
1864	err = s5p_set_indata(dev, sg);
1865	if (err) {
1866		s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
1867		return err;
1868	}
1869
1870	return 0;
1871}
1872
1873static int s5p_set_outdata_start(struct s5p_aes_dev *dev,
1874				 struct skcipher_request *req)
1875{
1876	struct scatterlist *sg;
1877	int err;
1878
1879	dev->sg_dst_cpy = NULL;
1880	sg = req->dst;
1881	if (!s5p_is_sg_aligned(sg)) {
1882		dev_dbg(dev->dev,
1883			"At least one unaligned dest scatter list, making a copy\n");
1884		err = s5p_make_sg_cpy(dev, sg, &dev->sg_dst_cpy);
1885		if (err)
1886			return err;
1887
1888		sg = dev->sg_dst_cpy;
1889	}
1890
1891	err = s5p_set_outdata(dev, sg);
1892	if (err) {
1893		s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
1894		return err;
1895	}
1896
1897	return 0;
1898}
1899
1900static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode)
1901{
1902	struct skcipher_request *req = dev->req;
1903	u32 aes_control;
1904	unsigned long flags;
1905	int err;
1906	u8 *iv, *ctr;
1907
1908	/* This sets bit [13:12] to 00, which selects 128-bit counter */
1909	aes_control = SSS_AES_KEY_CHANGE_MODE;
1910	if (mode & FLAGS_AES_DECRYPT)
1911		aes_control |= SSS_AES_MODE_DECRYPT;
1912
1913	if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC) {
1914		aes_control |= SSS_AES_CHAIN_MODE_CBC;
1915		iv = req->iv;
1916		ctr = NULL;
1917	} else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR) {
1918		aes_control |= SSS_AES_CHAIN_MODE_CTR;
1919		iv = NULL;
1920		ctr = req->iv;
1921	} else {
1922		iv = NULL; /* AES_ECB */
1923		ctr = NULL;
1924	}
1925
1926	if (dev->ctx->keylen == AES_KEYSIZE_192)
1927		aes_control |= SSS_AES_KEY_SIZE_192;
1928	else if (dev->ctx->keylen == AES_KEYSIZE_256)
1929		aes_control |= SSS_AES_KEY_SIZE_256;
1930
1931	aes_control |= SSS_AES_FIFO_MODE;
1932
1933	/* as a variant it is possible to use byte swapping on DMA side */
1934	aes_control |= SSS_AES_BYTESWAP_DI
1935		    |  SSS_AES_BYTESWAP_DO
1936		    |  SSS_AES_BYTESWAP_IV
1937		    |  SSS_AES_BYTESWAP_KEY
1938		    |  SSS_AES_BYTESWAP_CNT;
1939
1940	spin_lock_irqsave(&dev->lock, flags);
1941
1942	SSS_WRITE(dev, FCINTENCLR,
1943		  SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR);
1944	SSS_WRITE(dev, FCFIFOCTRL, 0x00);
1945
1946	err = s5p_set_indata_start(dev, req);
1947	if (err)
1948		goto indata_error;
1949
1950	err = s5p_set_outdata_start(dev, req);
1951	if (err)
1952		goto outdata_error;
1953
1954	SSS_AES_WRITE(dev, AES_CONTROL, aes_control);
1955	s5p_set_aes(dev, dev->ctx->aes_key, iv, ctr, dev->ctx->keylen);
1956
1957	s5p_set_dma_indata(dev,  dev->sg_src);
1958	s5p_set_dma_outdata(dev, dev->sg_dst);
1959
1960	SSS_WRITE(dev, FCINTENSET,
1961		  SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET);
1962
1963	spin_unlock_irqrestore(&dev->lock, flags);
1964
1965	return;
1966
1967outdata_error:
1968	s5p_unset_indata(dev);
1969
1970indata_error:
1971	s5p_sg_done(dev);
1972	dev->busy = false;
1973	spin_unlock_irqrestore(&dev->lock, flags);
1974	s5p_aes_complete(req, err);
1975}
1976
1977static void s5p_tasklet_cb(unsigned long data)
1978{
1979	struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data;
1980	struct crypto_async_request *async_req, *backlog;
1981	struct s5p_aes_reqctx *reqctx;
1982	unsigned long flags;
1983
1984	spin_lock_irqsave(&dev->lock, flags);
1985	backlog   = crypto_get_backlog(&dev->queue);
1986	async_req = crypto_dequeue_request(&dev->queue);
1987
1988	if (!async_req) {
1989		dev->busy = false;
1990		spin_unlock_irqrestore(&dev->lock, flags);
1991		return;
1992	}
1993	spin_unlock_irqrestore(&dev->lock, flags);
1994
1995	if (backlog)
1996		backlog->complete(backlog, -EINPROGRESS);
1997
1998	dev->req = skcipher_request_cast(async_req);
1999	dev->ctx = crypto_tfm_ctx(dev->req->base.tfm);
2000	reqctx   = skcipher_request_ctx(dev->req);
2001
2002	s5p_aes_crypt_start(dev, reqctx->mode);
2003}
2004
2005static int s5p_aes_handle_req(struct s5p_aes_dev *dev,
2006			      struct skcipher_request *req)
2007{
2008	unsigned long flags;
2009	int err;
2010
2011	spin_lock_irqsave(&dev->lock, flags);
2012	err = crypto_enqueue_request(&dev->queue, &req->base);
2013	if (dev->busy) {
2014		spin_unlock_irqrestore(&dev->lock, flags);
2015		return err;
2016	}
2017	dev->busy = true;
2018
2019	spin_unlock_irqrestore(&dev->lock, flags);
2020
2021	tasklet_schedule(&dev->tasklet);
2022
2023	return err;
2024}
2025
2026static int s5p_aes_crypt(struct skcipher_request *req, unsigned long mode)
2027{
2028	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
2029	struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req);
2030	struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
2031	struct s5p_aes_dev *dev = ctx->dev;
2032
2033	if (!req->cryptlen)
2034		return 0;
2035
2036	if (!IS_ALIGNED(req->cryptlen, AES_BLOCK_SIZE) &&
2037			((mode & FLAGS_AES_MODE_MASK) != FLAGS_AES_CTR)) {
2038		dev_dbg(dev->dev, "request size is not exact amount of AES blocks\n");
2039		return -EINVAL;
2040	}
2041
2042	reqctx->mode = mode;
2043
2044	return s5p_aes_handle_req(dev, req);
2045}
2046
2047static int s5p_aes_setkey(struct crypto_skcipher *cipher,
2048			  const u8 *key, unsigned int keylen)
2049{
2050	struct crypto_tfm *tfm = crypto_skcipher_tfm(cipher);
2051	struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
2052
2053	if (keylen != AES_KEYSIZE_128 &&
2054	    keylen != AES_KEYSIZE_192 &&
2055	    keylen != AES_KEYSIZE_256)
2056		return -EINVAL;
2057
2058	memcpy(ctx->aes_key, key, keylen);
2059	ctx->keylen = keylen;
2060
2061	return 0;
2062}
2063
2064static int s5p_aes_ecb_encrypt(struct skcipher_request *req)
2065{
2066	return s5p_aes_crypt(req, 0);
2067}
2068
2069static int s5p_aes_ecb_decrypt(struct skcipher_request *req)
2070{
2071	return s5p_aes_crypt(req, FLAGS_AES_DECRYPT);
2072}
2073
2074static int s5p_aes_cbc_encrypt(struct skcipher_request *req)
2075{
2076	return s5p_aes_crypt(req, FLAGS_AES_CBC);
2077}
2078
2079static int s5p_aes_cbc_decrypt(struct skcipher_request *req)
2080{
2081	return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC);
2082}
2083
2084static int s5p_aes_ctr_crypt(struct skcipher_request *req)
2085{
2086	return s5p_aes_crypt(req, FLAGS_AES_CTR);
2087}
2088
2089static int s5p_aes_init_tfm(struct crypto_skcipher *tfm)
2090{
2091	struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
2092
2093	ctx->dev = s5p_dev;
2094	crypto_skcipher_set_reqsize(tfm, sizeof(struct s5p_aes_reqctx));
2095
2096	return 0;
2097}
2098
2099static struct skcipher_alg algs[] = {
2100	{
2101		.base.cra_name		= "ecb(aes)",
2102		.base.cra_driver_name	= "ecb-aes-s5p",
2103		.base.cra_priority	= 100,
2104		.base.cra_flags		= CRYPTO_ALG_ASYNC |
2105					  CRYPTO_ALG_KERN_DRIVER_ONLY,
2106		.base.cra_blocksize	= AES_BLOCK_SIZE,
2107		.base.cra_ctxsize	= sizeof(struct s5p_aes_ctx),
2108		.base.cra_alignmask	= 0x0f,
2109		.base.cra_module	= THIS_MODULE,
2110
2111		.min_keysize		= AES_MIN_KEY_SIZE,
2112		.max_keysize		= AES_MAX_KEY_SIZE,
2113		.setkey			= s5p_aes_setkey,
2114		.encrypt		= s5p_aes_ecb_encrypt,
2115		.decrypt		= s5p_aes_ecb_decrypt,
2116		.init			= s5p_aes_init_tfm,
2117	},
2118	{
2119		.base.cra_name		= "cbc(aes)",
2120		.base.cra_driver_name	= "cbc-aes-s5p",
2121		.base.cra_priority	= 100,
2122		.base.cra_flags		= CRYPTO_ALG_ASYNC |
2123					  CRYPTO_ALG_KERN_DRIVER_ONLY,
2124		.base.cra_blocksize	= AES_BLOCK_SIZE,
2125		.base.cra_ctxsize	= sizeof(struct s5p_aes_ctx),
2126		.base.cra_alignmask	= 0x0f,
2127		.base.cra_module	= THIS_MODULE,
2128
2129		.min_keysize		= AES_MIN_KEY_SIZE,
2130		.max_keysize		= AES_MAX_KEY_SIZE,
2131		.ivsize			= AES_BLOCK_SIZE,
2132		.setkey			= s5p_aes_setkey,
2133		.encrypt		= s5p_aes_cbc_encrypt,
2134		.decrypt		= s5p_aes_cbc_decrypt,
2135		.init			= s5p_aes_init_tfm,
2136	},
2137	{
2138		.base.cra_name		= "ctr(aes)",
2139		.base.cra_driver_name	= "ctr-aes-s5p",
2140		.base.cra_priority	= 100,
2141		.base.cra_flags		= CRYPTO_ALG_ASYNC |
2142					  CRYPTO_ALG_KERN_DRIVER_ONLY,
2143		.base.cra_blocksize	= 1,
2144		.base.cra_ctxsize	= sizeof(struct s5p_aes_ctx),
2145		.base.cra_alignmask	= 0x0f,
2146		.base.cra_module	= THIS_MODULE,
2147
2148		.min_keysize		= AES_MIN_KEY_SIZE,
2149		.max_keysize		= AES_MAX_KEY_SIZE,
2150		.ivsize			= AES_BLOCK_SIZE,
2151		.setkey			= s5p_aes_setkey,
2152		.encrypt		= s5p_aes_ctr_crypt,
2153		.decrypt		= s5p_aes_ctr_crypt,
2154		.init			= s5p_aes_init_tfm,
2155	},
2156};
2157
2158static int s5p_aes_probe(struct platform_device *pdev)
2159{
2160	struct device *dev = &pdev->dev;
2161	int i, j, err = -ENODEV;
2162	const struct samsung_aes_variant *variant;
2163	struct s5p_aes_dev *pdata;
2164	struct resource *res;
2165	unsigned int hash_i;
2166
2167	if (s5p_dev)
2168		return -EEXIST;
2169
2170	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2171	if (!pdata)
2172		return -ENOMEM;
2173
2174	variant = find_s5p_sss_version(pdev);
2175	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2176	if (!res)
2177		return -EINVAL;
2178
2179	/*
2180	 * Note: HASH and PRNG uses the same registers in secss, avoid
2181	 * overwrite each other. This will drop HASH when CONFIG_EXYNOS_RNG
2182	 * is enabled in config. We need larger size for HASH registers in
2183	 * secss, current describe only AES/DES
2184	 */
2185	if (IS_ENABLED(CONFIG_CRYPTO_DEV_EXYNOS_HASH)) {
2186		if (variant == &exynos_aes_data) {
2187			res->end += 0x300;
2188			pdata->use_hash = true;
2189		}
2190	}
2191
2192	pdata->res = res;
2193	pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
2194	if (IS_ERR(pdata->ioaddr)) {
2195		if (!pdata->use_hash)
2196			return PTR_ERR(pdata->ioaddr);
2197		/* try AES without HASH */
2198		res->end -= 0x300;
2199		pdata->use_hash = false;
2200		pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
2201		if (IS_ERR(pdata->ioaddr))
2202			return PTR_ERR(pdata->ioaddr);
2203	}
2204
2205	pdata->clk = devm_clk_get(dev, variant->clk_names[0]);
2206	if (IS_ERR(pdata->clk))
2207		return dev_err_probe(dev, PTR_ERR(pdata->clk),
2208				     "failed to find secss clock %s\n",
2209				     variant->clk_names[0]);
2210
2211	err = clk_prepare_enable(pdata->clk);
2212	if (err < 0) {
2213		dev_err(dev, "Enabling clock %s failed, err %d\n",
2214			variant->clk_names[0], err);
2215		return err;
2216	}
2217
2218	if (variant->clk_names[1]) {
2219		pdata->pclk = devm_clk_get(dev, variant->clk_names[1]);
2220		if (IS_ERR(pdata->pclk)) {
2221			err = dev_err_probe(dev, PTR_ERR(pdata->pclk),
2222					    "failed to find clock %s\n",
2223					    variant->clk_names[1]);
2224			goto err_clk;
2225		}
2226
2227		err = clk_prepare_enable(pdata->pclk);
2228		if (err < 0) {
2229			dev_err(dev, "Enabling clock %s failed, err %d\n",
2230				variant->clk_names[0], err);
2231			goto err_clk;
2232		}
2233	} else {
2234		pdata->pclk = NULL;
2235	}
2236
2237	spin_lock_init(&pdata->lock);
2238	spin_lock_init(&pdata->hash_lock);
2239
2240	pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset;
2241	pdata->io_hash_base = pdata->ioaddr + variant->hash_offset;
2242
2243	pdata->irq_fc = platform_get_irq(pdev, 0);
2244	if (pdata->irq_fc < 0) {
2245		err = pdata->irq_fc;
2246		dev_warn(dev, "feed control interrupt is not available.\n");
2247		goto err_irq;
2248	}
2249	err = devm_request_threaded_irq(dev, pdata->irq_fc, NULL,
2250					s5p_aes_interrupt, IRQF_ONESHOT,
2251					pdev->name, pdev);
2252	if (err < 0) {
2253		dev_warn(dev, "feed control interrupt is not available.\n");
2254		goto err_irq;
2255	}
2256
2257	pdata->busy = false;
2258	pdata->dev = dev;
2259	platform_set_drvdata(pdev, pdata);
2260	s5p_dev = pdata;
2261
2262	tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata);
2263	crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN);
2264
2265	for (i = 0; i < ARRAY_SIZE(algs); i++) {
2266		err = crypto_register_skcipher(&algs[i]);
2267		if (err)
2268			goto err_algs;
2269	}
2270
2271	if (pdata->use_hash) {
2272		tasklet_init(&pdata->hash_tasklet, s5p_hash_tasklet_cb,
2273			     (unsigned long)pdata);
2274		crypto_init_queue(&pdata->hash_queue, SSS_HASH_QUEUE_LENGTH);
2275
2276		for (hash_i = 0; hash_i < ARRAY_SIZE(algs_sha1_md5_sha256);
2277		     hash_i++) {
2278			struct ahash_alg *alg;
2279
2280			alg = &algs_sha1_md5_sha256[hash_i];
2281			err = crypto_register_ahash(alg);
2282			if (err) {
2283				dev_err(dev, "can't register '%s': %d\n",
2284					alg->halg.base.cra_driver_name, err);
2285				goto err_hash;
2286			}
2287		}
2288	}
2289
2290	dev_info(dev, "s5p-sss driver registered\n");
2291
2292	return 0;
2293
2294err_hash:
2295	for (j = hash_i - 1; j >= 0; j--)
2296		crypto_unregister_ahash(&algs_sha1_md5_sha256[j]);
2297
2298	tasklet_kill(&pdata->hash_tasklet);
2299	res->end -= 0x300;
2300
2301err_algs:
2302	if (i < ARRAY_SIZE(algs))
2303		dev_err(dev, "can't register '%s': %d\n", algs[i].base.cra_name,
2304			err);
2305
2306	for (j = 0; j < i; j++)
2307		crypto_unregister_skcipher(&algs[j]);
2308
2309	tasklet_kill(&pdata->tasklet);
2310
2311err_irq:
2312	clk_disable_unprepare(pdata->pclk);
2313
2314err_clk:
2315	clk_disable_unprepare(pdata->clk);
2316	s5p_dev = NULL;
2317
2318	return err;
2319}
2320
2321static int s5p_aes_remove(struct platform_device *pdev)
2322{
2323	struct s5p_aes_dev *pdata = platform_get_drvdata(pdev);
2324	int i;
2325
2326	if (!pdata)
2327		return -ENODEV;
2328
2329	for (i = 0; i < ARRAY_SIZE(algs); i++)
2330		crypto_unregister_skcipher(&algs[i]);
2331
2332	tasklet_kill(&pdata->tasklet);
2333	if (pdata->use_hash) {
2334		for (i = ARRAY_SIZE(algs_sha1_md5_sha256) - 1; i >= 0; i--)
2335			crypto_unregister_ahash(&algs_sha1_md5_sha256[i]);
2336
2337		pdata->res->end -= 0x300;
2338		tasklet_kill(&pdata->hash_tasklet);
2339		pdata->use_hash = false;
2340	}
2341
2342	clk_disable_unprepare(pdata->pclk);
2343
2344	clk_disable_unprepare(pdata->clk);
2345	s5p_dev = NULL;
2346
2347	return 0;
2348}
2349
2350static struct platform_driver s5p_aes_crypto = {
2351	.probe	= s5p_aes_probe,
2352	.remove	= s5p_aes_remove,
2353	.driver	= {
2354		.name	= "s5p-secss",
2355		.of_match_table = s5p_sss_dt_match,
2356	},
2357};
2358
2359module_platform_driver(s5p_aes_crypto);
2360
2361MODULE_DESCRIPTION("S5PV210 AES hw acceleration support.");
2362MODULE_LICENSE("GPL v2");
2363MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>");
2364MODULE_AUTHOR("Kamil Konieczny <k.konieczny@partner.samsung.com>");
2365