xref: /kernel/linux/linux-5.10/drivers/crypto/qce/sha.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2010-2014, The Linux Foundation. All rights reserved.
4 */
5
6#include <linux/device.h>
7#include <linux/dma-mapping.h>
8#include <linux/interrupt.h>
9#include <crypto/internal/hash.h>
10
11#include "common.h"
12#include "core.h"
13#include "sha.h"
14
15/* crypto hw padding constant for first operation */
16#define SHA_PADDING		64
17#define SHA_PADDING_MASK	(SHA_PADDING - 1)
18
19static LIST_HEAD(ahash_algs);
20
21static const u32 std_iv_sha1[SHA256_DIGEST_SIZE / sizeof(u32)] = {
22	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 0, 0, 0
23};
24
25static const u32 std_iv_sha256[SHA256_DIGEST_SIZE / sizeof(u32)] = {
26	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
27	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7
28};
29
30static void qce_ahash_done(void *data)
31{
32	struct crypto_async_request *async_req = data;
33	struct ahash_request *req = ahash_request_cast(async_req);
34	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
35	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
36	struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
37	struct qce_device *qce = tmpl->qce;
38	struct qce_result_dump *result = qce->dma.result_buf;
39	unsigned int digestsize = crypto_ahash_digestsize(ahash);
40	int error;
41	u32 status;
42
43	error = qce_dma_terminate_all(&qce->dma);
44	if (error)
45		dev_dbg(qce->dev, "ahash dma termination error (%d)\n", error);
46
47	dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
48	dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
49
50	memcpy(rctx->digest, result->auth_iv, digestsize);
51	if (req->result)
52		memcpy(req->result, result->auth_iv, digestsize);
53
54	rctx->byte_count[0] = cpu_to_be32(result->auth_byte_count[0]);
55	rctx->byte_count[1] = cpu_to_be32(result->auth_byte_count[1]);
56
57	error = qce_check_status(qce, &status);
58	if (error < 0)
59		dev_dbg(qce->dev, "ahash operation error (%x)\n", status);
60
61	req->src = rctx->src_orig;
62	req->nbytes = rctx->nbytes_orig;
63	rctx->last_blk = false;
64	rctx->first_blk = false;
65
66	qce->async_req_done(tmpl->qce, error);
67}
68
69static int qce_ahash_async_req_handle(struct crypto_async_request *async_req)
70{
71	struct ahash_request *req = ahash_request_cast(async_req);
72	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
73	struct qce_sha_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
74	struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
75	struct qce_device *qce = tmpl->qce;
76	unsigned long flags = rctx->flags;
77	int ret;
78
79	if (IS_SHA_HMAC(flags)) {
80		rctx->authkey = ctx->authkey;
81		rctx->authklen = QCE_SHA_HMAC_KEY_SIZE;
82	} else if (IS_CMAC(flags)) {
83		rctx->authkey = ctx->authkey;
84		rctx->authklen = AES_KEYSIZE_128;
85	}
86
87	rctx->src_nents = sg_nents_for_len(req->src, req->nbytes);
88	if (rctx->src_nents < 0) {
89		dev_err(qce->dev, "Invalid numbers of src SG.\n");
90		return rctx->src_nents;
91	}
92
93	ret = dma_map_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
94	if (ret < 0)
95		return ret;
96
97	sg_init_one(&rctx->result_sg, qce->dma.result_buf, QCE_RESULT_BUF_SZ);
98
99	ret = dma_map_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
100	if (ret < 0)
101		goto error_unmap_src;
102
103	ret = qce_dma_prep_sgs(&qce->dma, req->src, rctx->src_nents,
104			       &rctx->result_sg, 1, qce_ahash_done, async_req);
105	if (ret)
106		goto error_unmap_dst;
107
108	qce_dma_issue_pending(&qce->dma);
109
110	ret = qce_start(async_req, tmpl->crypto_alg_type, 0, 0);
111	if (ret)
112		goto error_terminate;
113
114	return 0;
115
116error_terminate:
117	qce_dma_terminate_all(&qce->dma);
118error_unmap_dst:
119	dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
120error_unmap_src:
121	dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
122	return ret;
123}
124
125static int qce_ahash_init(struct ahash_request *req)
126{
127	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
128	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
129	const u32 *std_iv = tmpl->std_iv;
130
131	memset(rctx, 0, sizeof(*rctx));
132	rctx->first_blk = true;
133	rctx->last_blk = false;
134	rctx->flags = tmpl->alg_flags;
135	memcpy(rctx->digest, std_iv, sizeof(rctx->digest));
136
137	return 0;
138}
139
140static int qce_ahash_export(struct ahash_request *req, void *out)
141{
142	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
143	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
144	unsigned long flags = rctx->flags;
145	unsigned int digestsize = crypto_ahash_digestsize(ahash);
146	unsigned int blocksize =
147			crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
148
149	if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
150		struct sha1_state *out_state = out;
151
152		out_state->count = rctx->count;
153		qce_cpu_to_be32p_array((__be32 *)out_state->state,
154				       rctx->digest, digestsize);
155		memcpy(out_state->buffer, rctx->buf, blocksize);
156	} else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
157		struct sha256_state *out_state = out;
158
159		out_state->count = rctx->count;
160		qce_cpu_to_be32p_array((__be32 *)out_state->state,
161				       rctx->digest, digestsize);
162		memcpy(out_state->buf, rctx->buf, blocksize);
163	} else {
164		return -EINVAL;
165	}
166
167	return 0;
168}
169
170static int qce_import_common(struct ahash_request *req, u64 in_count,
171			     const u32 *state, const u8 *buffer, bool hmac)
172{
173	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
174	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
175	unsigned int digestsize = crypto_ahash_digestsize(ahash);
176	unsigned int blocksize;
177	u64 count = in_count;
178
179	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
180	rctx->count = in_count;
181	memcpy(rctx->buf, buffer, blocksize);
182
183	if (in_count <= blocksize) {
184		rctx->first_blk = 1;
185	} else {
186		rctx->first_blk = 0;
187		/*
188		 * For HMAC, there is a hardware padding done when first block
189		 * is set. Therefore the byte_count must be incremened by 64
190		 * after the first block operation.
191		 */
192		if (hmac)
193			count += SHA_PADDING;
194	}
195
196	rctx->byte_count[0] = (__force __be32)(count & ~SHA_PADDING_MASK);
197	rctx->byte_count[1] = (__force __be32)(count >> 32);
198	qce_cpu_to_be32p_array((__be32 *)rctx->digest, (const u8 *)state,
199			       digestsize);
200	rctx->buflen = (unsigned int)(in_count & (blocksize - 1));
201
202	return 0;
203}
204
205static int qce_ahash_import(struct ahash_request *req, const void *in)
206{
207	struct qce_sha_reqctx *rctx;
208	unsigned long flags;
209	bool hmac;
210	int ret;
211
212	ret = qce_ahash_init(req);
213	if (ret)
214		return ret;
215
216	rctx = ahash_request_ctx(req);
217	flags = rctx->flags;
218	hmac = IS_SHA_HMAC(flags);
219
220	if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
221		const struct sha1_state *state = in;
222
223		ret = qce_import_common(req, state->count, state->state,
224					state->buffer, hmac);
225	} else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
226		const struct sha256_state *state = in;
227
228		ret = qce_import_common(req, state->count, state->state,
229					state->buf, hmac);
230	}
231
232	return ret;
233}
234
235static int qce_ahash_update(struct ahash_request *req)
236{
237	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
238	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
239	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
240	struct qce_device *qce = tmpl->qce;
241	struct scatterlist *sg_last, *sg;
242	unsigned int total, len;
243	unsigned int hash_later;
244	unsigned int nbytes;
245	unsigned int blocksize;
246
247	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
248	rctx->count += req->nbytes;
249
250	/* check for buffer from previous updates and append it */
251	total = req->nbytes + rctx->buflen;
252
253	if (total <= blocksize) {
254		scatterwalk_map_and_copy(rctx->buf + rctx->buflen, req->src,
255					 0, req->nbytes, 0);
256		rctx->buflen += req->nbytes;
257		return 0;
258	}
259
260	/* save the original req structure fields */
261	rctx->src_orig = req->src;
262	rctx->nbytes_orig = req->nbytes;
263
264	/*
265	 * if we have data from previous update copy them on buffer. The old
266	 * data will be combined with current request bytes.
267	 */
268	if (rctx->buflen)
269		memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
270
271	/* calculate how many bytes will be hashed later */
272	hash_later = total % blocksize;
273	if (hash_later) {
274		unsigned int src_offset = req->nbytes - hash_later;
275		scatterwalk_map_and_copy(rctx->buf, req->src, src_offset,
276					 hash_later, 0);
277	}
278
279	/* here nbytes is multiple of blocksize */
280	nbytes = total - hash_later;
281
282	len = rctx->buflen;
283	sg = sg_last = req->src;
284
285	while (len < nbytes && sg) {
286		if (len + sg_dma_len(sg) > nbytes)
287			break;
288		len += sg_dma_len(sg);
289		sg_last = sg;
290		sg = sg_next(sg);
291	}
292
293	if (!sg_last)
294		return -EINVAL;
295
296	if (rctx->buflen) {
297		sg_init_table(rctx->sg, 2);
298		sg_set_buf(rctx->sg, rctx->tmpbuf, rctx->buflen);
299		sg_chain(rctx->sg, 2, req->src);
300		req->src = rctx->sg;
301	}
302
303	req->nbytes = nbytes;
304	rctx->buflen = hash_later;
305
306	return qce->async_req_enqueue(tmpl->qce, &req->base);
307}
308
309static int qce_ahash_final(struct ahash_request *req)
310{
311	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
312	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
313	struct qce_device *qce = tmpl->qce;
314
315	if (!rctx->buflen) {
316		if (tmpl->hash_zero)
317			memcpy(req->result, tmpl->hash_zero,
318					tmpl->alg.ahash.halg.digestsize);
319		return 0;
320	}
321
322	rctx->last_blk = true;
323
324	rctx->src_orig = req->src;
325	rctx->nbytes_orig = req->nbytes;
326
327	memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
328	sg_init_one(rctx->sg, rctx->tmpbuf, rctx->buflen);
329
330	req->src = rctx->sg;
331	req->nbytes = rctx->buflen;
332
333	return qce->async_req_enqueue(tmpl->qce, &req->base);
334}
335
336static int qce_ahash_digest(struct ahash_request *req)
337{
338	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
339	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
340	struct qce_device *qce = tmpl->qce;
341	int ret;
342
343	ret = qce_ahash_init(req);
344	if (ret)
345		return ret;
346
347	rctx->src_orig = req->src;
348	rctx->nbytes_orig = req->nbytes;
349	rctx->first_blk = true;
350	rctx->last_blk = true;
351
352	if (!rctx->nbytes_orig) {
353		if (tmpl->hash_zero)
354			memcpy(req->result, tmpl->hash_zero,
355					tmpl->alg.ahash.halg.digestsize);
356		return 0;
357	}
358
359	return qce->async_req_enqueue(tmpl->qce, &req->base);
360}
361
362static int qce_ahash_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
363				 unsigned int keylen)
364{
365	unsigned int digestsize = crypto_ahash_digestsize(tfm);
366	struct qce_sha_ctx *ctx = crypto_tfm_ctx(&tfm->base);
367	struct crypto_wait wait;
368	struct ahash_request *req;
369	struct scatterlist sg;
370	unsigned int blocksize;
371	struct crypto_ahash *ahash_tfm;
372	u8 *buf;
373	int ret;
374	const char *alg_name;
375
376	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
377	memset(ctx->authkey, 0, sizeof(ctx->authkey));
378
379	if (keylen <= blocksize) {
380		memcpy(ctx->authkey, key, keylen);
381		return 0;
382	}
383
384	if (digestsize == SHA1_DIGEST_SIZE)
385		alg_name = "sha1-qce";
386	else if (digestsize == SHA256_DIGEST_SIZE)
387		alg_name = "sha256-qce";
388	else
389		return -EINVAL;
390
391	ahash_tfm = crypto_alloc_ahash(alg_name, 0, 0);
392	if (IS_ERR(ahash_tfm))
393		return PTR_ERR(ahash_tfm);
394
395	req = ahash_request_alloc(ahash_tfm, GFP_KERNEL);
396	if (!req) {
397		ret = -ENOMEM;
398		goto err_free_ahash;
399	}
400
401	crypto_init_wait(&wait);
402	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
403				   crypto_req_done, &wait);
404	crypto_ahash_clear_flags(ahash_tfm, ~0);
405
406	buf = kzalloc(keylen + QCE_MAX_ALIGN_SIZE, GFP_KERNEL);
407	if (!buf) {
408		ret = -ENOMEM;
409		goto err_free_req;
410	}
411
412	memcpy(buf, key, keylen);
413	sg_init_one(&sg, buf, keylen);
414	ahash_request_set_crypt(req, &sg, ctx->authkey, keylen);
415
416	ret = crypto_wait_req(crypto_ahash_digest(req), &wait);
417
418	kfree(buf);
419err_free_req:
420	ahash_request_free(req);
421err_free_ahash:
422	crypto_free_ahash(ahash_tfm);
423	return ret;
424}
425
426static int qce_ahash_cra_init(struct crypto_tfm *tfm)
427{
428	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
429	struct qce_sha_ctx *ctx = crypto_tfm_ctx(tfm);
430
431	crypto_ahash_set_reqsize(ahash, sizeof(struct qce_sha_reqctx));
432	memset(ctx, 0, sizeof(*ctx));
433	return 0;
434}
435
436struct qce_ahash_def {
437	unsigned long flags;
438	const char *name;
439	const char *drv_name;
440	unsigned int digestsize;
441	unsigned int blocksize;
442	unsigned int statesize;
443	const u32 *std_iv;
444};
445
446static const struct qce_ahash_def ahash_def[] = {
447	{
448		.flags		= QCE_HASH_SHA1,
449		.name		= "sha1",
450		.drv_name	= "sha1-qce",
451		.digestsize	= SHA1_DIGEST_SIZE,
452		.blocksize	= SHA1_BLOCK_SIZE,
453		.statesize	= sizeof(struct sha1_state),
454		.std_iv		= std_iv_sha1,
455	},
456	{
457		.flags		= QCE_HASH_SHA256,
458		.name		= "sha256",
459		.drv_name	= "sha256-qce",
460		.digestsize	= SHA256_DIGEST_SIZE,
461		.blocksize	= SHA256_BLOCK_SIZE,
462		.statesize	= sizeof(struct sha256_state),
463		.std_iv		= std_iv_sha256,
464	},
465	{
466		.flags		= QCE_HASH_SHA1_HMAC,
467		.name		= "hmac(sha1)",
468		.drv_name	= "hmac-sha1-qce",
469		.digestsize	= SHA1_DIGEST_SIZE,
470		.blocksize	= SHA1_BLOCK_SIZE,
471		.statesize	= sizeof(struct sha1_state),
472		.std_iv		= std_iv_sha1,
473	},
474	{
475		.flags		= QCE_HASH_SHA256_HMAC,
476		.name		= "hmac(sha256)",
477		.drv_name	= "hmac-sha256-qce",
478		.digestsize	= SHA256_DIGEST_SIZE,
479		.blocksize	= SHA256_BLOCK_SIZE,
480		.statesize	= sizeof(struct sha256_state),
481		.std_iv		= std_iv_sha256,
482	},
483};
484
485static int qce_ahash_register_one(const struct qce_ahash_def *def,
486				  struct qce_device *qce)
487{
488	struct qce_alg_template *tmpl;
489	struct ahash_alg *alg;
490	struct crypto_alg *base;
491	int ret;
492
493	tmpl = kzalloc(sizeof(*tmpl), GFP_KERNEL);
494	if (!tmpl)
495		return -ENOMEM;
496
497	tmpl->std_iv = def->std_iv;
498
499	alg = &tmpl->alg.ahash;
500	alg->init = qce_ahash_init;
501	alg->update = qce_ahash_update;
502	alg->final = qce_ahash_final;
503	alg->digest = qce_ahash_digest;
504	alg->export = qce_ahash_export;
505	alg->import = qce_ahash_import;
506	if (IS_SHA_HMAC(def->flags))
507		alg->setkey = qce_ahash_hmac_setkey;
508	alg->halg.digestsize = def->digestsize;
509	alg->halg.statesize = def->statesize;
510
511	if (IS_SHA1(def->flags))
512		tmpl->hash_zero = sha1_zero_message_hash;
513	else if (IS_SHA256(def->flags))
514		tmpl->hash_zero = sha256_zero_message_hash;
515
516	base = &alg->halg.base;
517	base->cra_blocksize = def->blocksize;
518	base->cra_priority = 300;
519	base->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
520	base->cra_ctxsize = sizeof(struct qce_sha_ctx);
521	base->cra_alignmask = 0;
522	base->cra_module = THIS_MODULE;
523	base->cra_init = qce_ahash_cra_init;
524
525	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
526	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
527		 def->drv_name);
528
529	INIT_LIST_HEAD(&tmpl->entry);
530	tmpl->crypto_alg_type = CRYPTO_ALG_TYPE_AHASH;
531	tmpl->alg_flags = def->flags;
532	tmpl->qce = qce;
533
534	ret = crypto_register_ahash(alg);
535	if (ret) {
536		dev_err(qce->dev, "%s registration failed\n", base->cra_name);
537		kfree(tmpl);
538		return ret;
539	}
540
541	list_add_tail(&tmpl->entry, &ahash_algs);
542	dev_dbg(qce->dev, "%s is registered\n", base->cra_name);
543	return 0;
544}
545
546static void qce_ahash_unregister(struct qce_device *qce)
547{
548	struct qce_alg_template *tmpl, *n;
549
550	list_for_each_entry_safe(tmpl, n, &ahash_algs, entry) {
551		crypto_unregister_ahash(&tmpl->alg.ahash);
552		list_del(&tmpl->entry);
553		kfree(tmpl);
554	}
555}
556
557static int qce_ahash_register(struct qce_device *qce)
558{
559	int ret, i;
560
561	for (i = 0; i < ARRAY_SIZE(ahash_def); i++) {
562		ret = qce_ahash_register_one(&ahash_def[i], qce);
563		if (ret)
564			goto err;
565	}
566
567	return 0;
568err:
569	qce_ahash_unregister(qce);
570	return ret;
571}
572
573const struct qce_algo_ops ahash_ops = {
574	.type = CRYPTO_ALG_TYPE_AHASH,
575	.register_algs = qce_ahash_register,
576	.unregister_algs = qce_ahash_unregister,
577	.async_req_handle = qce_ahash_async_req_handle,
578};
579