1// SPDX-License-Identifier: GPL-2.0-only
2/* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
3 *
4 * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
5 */
6
7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9#include <linux/kernel.h>
10#include <linux/module.h>
11#include <linux/of.h>
12#include <linux/of_device.h>
13#include <linux/cpumask.h>
14#include <linux/slab.h>
15#include <linux/interrupt.h>
16#include <linux/crypto.h>
17#include <crypto/md5.h>
18#include <crypto/sha.h>
19#include <crypto/aes.h>
20#include <crypto/internal/des.h>
21#include <linux/mutex.h>
22#include <linux/delay.h>
23#include <linux/sched.h>
24
25#include <crypto/internal/hash.h>
26#include <crypto/internal/skcipher.h>
27#include <crypto/scatterwalk.h>
28#include <crypto/algapi.h>
29
30#include <asm/hypervisor.h>
31#include <asm/mdesc.h>
32
33#include "n2_core.h"
34
35#define DRV_MODULE_NAME		"n2_crypto"
36#define DRV_MODULE_VERSION	"0.2"
37#define DRV_MODULE_RELDATE	"July 28, 2011"
38
39static const char version[] =
40	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
41
42MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
43MODULE_DESCRIPTION("Niagara2 Crypto driver");
44MODULE_LICENSE("GPL");
45MODULE_VERSION(DRV_MODULE_VERSION);
46
47#define N2_CRA_PRIORITY		200
48
49static DEFINE_MUTEX(spu_lock);
50
51struct spu_queue {
52	cpumask_t		sharing;
53	unsigned long		qhandle;
54
55	spinlock_t		lock;
56	u8			q_type;
57	void			*q;
58	unsigned long		head;
59	unsigned long		tail;
60	struct list_head	jobs;
61
62	unsigned long		devino;
63
64	char			irq_name[32];
65	unsigned int		irq;
66
67	struct list_head	list;
68};
69
70struct spu_qreg {
71	struct spu_queue	*queue;
72	unsigned long		type;
73};
74
75static struct spu_queue **cpu_to_cwq;
76static struct spu_queue **cpu_to_mau;
77
78static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
79{
80	if (q->q_type == HV_NCS_QTYPE_MAU) {
81		off += MAU_ENTRY_SIZE;
82		if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
83			off = 0;
84	} else {
85		off += CWQ_ENTRY_SIZE;
86		if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
87			off = 0;
88	}
89	return off;
90}
91
92struct n2_request_common {
93	struct list_head	entry;
94	unsigned int		offset;
95};
96#define OFFSET_NOT_RUNNING	(~(unsigned int)0)
97
98/* An async job request records the final tail value it used in
99 * n2_request_common->offset, test to see if that offset is in
100 * the range old_head, new_head, inclusive.
101 */
102static inline bool job_finished(struct spu_queue *q, unsigned int offset,
103				unsigned long old_head, unsigned long new_head)
104{
105	if (old_head <= new_head) {
106		if (offset > old_head && offset <= new_head)
107			return true;
108	} else {
109		if (offset > old_head || offset <= new_head)
110			return true;
111	}
112	return false;
113}
114
115/* When the HEAD marker is unequal to the actual HEAD, we get
116 * a virtual device INO interrupt.  We should process the
117 * completed CWQ entries and adjust the HEAD marker to clear
118 * the IRQ.
119 */
120static irqreturn_t cwq_intr(int irq, void *dev_id)
121{
122	unsigned long off, new_head, hv_ret;
123	struct spu_queue *q = dev_id;
124
125	pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
126	       smp_processor_id(), q->qhandle);
127
128	spin_lock(&q->lock);
129
130	hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
131
132	pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
133	       smp_processor_id(), new_head, hv_ret);
134
135	for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
136		/* XXX ... XXX */
137	}
138
139	hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
140	if (hv_ret == HV_EOK)
141		q->head = new_head;
142
143	spin_unlock(&q->lock);
144
145	return IRQ_HANDLED;
146}
147
148static irqreturn_t mau_intr(int irq, void *dev_id)
149{
150	struct spu_queue *q = dev_id;
151	unsigned long head, hv_ret;
152
153	spin_lock(&q->lock);
154
155	pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
156	       smp_processor_id(), q->qhandle);
157
158	hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
159
160	pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
161	       smp_processor_id(), head, hv_ret);
162
163	sun4v_ncs_sethead_marker(q->qhandle, head);
164
165	spin_unlock(&q->lock);
166
167	return IRQ_HANDLED;
168}
169
170static void *spu_queue_next(struct spu_queue *q, void *cur)
171{
172	return q->q + spu_next_offset(q, cur - q->q);
173}
174
175static int spu_queue_num_free(struct spu_queue *q)
176{
177	unsigned long head = q->head;
178	unsigned long tail = q->tail;
179	unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
180	unsigned long diff;
181
182	if (head > tail)
183		diff = head - tail;
184	else
185		diff = (end - tail) + head;
186
187	return (diff / CWQ_ENTRY_SIZE) - 1;
188}
189
190static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
191{
192	int avail = spu_queue_num_free(q);
193
194	if (avail >= num_entries)
195		return q->q + q->tail;
196
197	return NULL;
198}
199
200static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
201{
202	unsigned long hv_ret, new_tail;
203
204	new_tail = spu_next_offset(q, last - q->q);
205
206	hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
207	if (hv_ret == HV_EOK)
208		q->tail = new_tail;
209	return hv_ret;
210}
211
212static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
213			     int enc_type, int auth_type,
214			     unsigned int hash_len,
215			     bool sfas, bool sob, bool eob, bool encrypt,
216			     int opcode)
217{
218	u64 word = (len - 1) & CONTROL_LEN;
219
220	word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
221	word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
222	word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
223	if (sfas)
224		word |= CONTROL_STORE_FINAL_AUTH_STATE;
225	if (sob)
226		word |= CONTROL_START_OF_BLOCK;
227	if (eob)
228		word |= CONTROL_END_OF_BLOCK;
229	if (encrypt)
230		word |= CONTROL_ENCRYPT;
231	if (hmac_key_len)
232		word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
233	if (hash_len)
234		word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
235
236	return word;
237}
238
239#if 0
240static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
241{
242	if (this_len >= 64 ||
243	    qp->head != qp->tail)
244		return true;
245	return false;
246}
247#endif
248
249struct n2_ahash_alg {
250	struct list_head	entry;
251	const u8		*hash_zero;
252	const u8		*hash_init;
253	u8			hw_op_hashsz;
254	u8			digest_size;
255	u8			auth_type;
256	u8			hmac_type;
257	struct ahash_alg	alg;
258};
259
260static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
261{
262	struct crypto_alg *alg = tfm->__crt_alg;
263	struct ahash_alg *ahash_alg;
264
265	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
266
267	return container_of(ahash_alg, struct n2_ahash_alg, alg);
268}
269
270struct n2_hmac_alg {
271	const char		*child_alg;
272	struct n2_ahash_alg	derived;
273};
274
275static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
276{
277	struct crypto_alg *alg = tfm->__crt_alg;
278	struct ahash_alg *ahash_alg;
279
280	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
281
282	return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
283}
284
285struct n2_hash_ctx {
286	struct crypto_ahash		*fallback_tfm;
287};
288
289#define N2_HASH_KEY_MAX			32 /* HW limit for all HMAC requests */
290
291struct n2_hmac_ctx {
292	struct n2_hash_ctx		base;
293
294	struct crypto_shash		*child_shash;
295
296	int				hash_key_len;
297	unsigned char			hash_key[N2_HASH_KEY_MAX];
298};
299
300struct n2_hash_req_ctx {
301	union {
302		struct md5_state	md5;
303		struct sha1_state	sha1;
304		struct sha256_state	sha256;
305	} u;
306
307	struct ahash_request		fallback_req;
308};
309
310static int n2_hash_async_init(struct ahash_request *req)
311{
312	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
313	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
314	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
315
316	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
317	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
318
319	return crypto_ahash_init(&rctx->fallback_req);
320}
321
322static int n2_hash_async_update(struct ahash_request *req)
323{
324	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
325	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
326	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
327
328	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
329	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
330	rctx->fallback_req.nbytes = req->nbytes;
331	rctx->fallback_req.src = req->src;
332
333	return crypto_ahash_update(&rctx->fallback_req);
334}
335
336static int n2_hash_async_final(struct ahash_request *req)
337{
338	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
339	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
340	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
341
342	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
343	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
344	rctx->fallback_req.result = req->result;
345
346	return crypto_ahash_final(&rctx->fallback_req);
347}
348
349static int n2_hash_async_finup(struct ahash_request *req)
350{
351	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
352	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
353	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
354
355	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
356	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
357	rctx->fallback_req.nbytes = req->nbytes;
358	rctx->fallback_req.src = req->src;
359	rctx->fallback_req.result = req->result;
360
361	return crypto_ahash_finup(&rctx->fallback_req);
362}
363
364static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
365{
366	return -ENOSYS;
367}
368
369static int n2_hash_async_noexport(struct ahash_request *req, void *out)
370{
371	return -ENOSYS;
372}
373
374static int n2_hash_cra_init(struct crypto_tfm *tfm)
375{
376	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
377	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
378	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
379	struct crypto_ahash *fallback_tfm;
380	int err;
381
382	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
383					  CRYPTO_ALG_NEED_FALLBACK);
384	if (IS_ERR(fallback_tfm)) {
385		pr_warn("Fallback driver '%s' could not be loaded!\n",
386			fallback_driver_name);
387		err = PTR_ERR(fallback_tfm);
388		goto out;
389	}
390
391	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
392					 crypto_ahash_reqsize(fallback_tfm)));
393
394	ctx->fallback_tfm = fallback_tfm;
395	return 0;
396
397out:
398	return err;
399}
400
401static void n2_hash_cra_exit(struct crypto_tfm *tfm)
402{
403	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
404	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
405
406	crypto_free_ahash(ctx->fallback_tfm);
407}
408
409static int n2_hmac_cra_init(struct crypto_tfm *tfm)
410{
411	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
412	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
413	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
414	struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
415	struct crypto_ahash *fallback_tfm;
416	struct crypto_shash *child_shash;
417	int err;
418
419	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
420					  CRYPTO_ALG_NEED_FALLBACK);
421	if (IS_ERR(fallback_tfm)) {
422		pr_warn("Fallback driver '%s' could not be loaded!\n",
423			fallback_driver_name);
424		err = PTR_ERR(fallback_tfm);
425		goto out;
426	}
427
428	child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
429	if (IS_ERR(child_shash)) {
430		pr_warn("Child shash '%s' could not be loaded!\n",
431			n2alg->child_alg);
432		err = PTR_ERR(child_shash);
433		goto out_free_fallback;
434	}
435
436	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
437					 crypto_ahash_reqsize(fallback_tfm)));
438
439	ctx->child_shash = child_shash;
440	ctx->base.fallback_tfm = fallback_tfm;
441	return 0;
442
443out_free_fallback:
444	crypto_free_ahash(fallback_tfm);
445
446out:
447	return err;
448}
449
450static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
451{
452	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
453	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
454
455	crypto_free_ahash(ctx->base.fallback_tfm);
456	crypto_free_shash(ctx->child_shash);
457}
458
459static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
460				unsigned int keylen)
461{
462	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
463	struct crypto_shash *child_shash = ctx->child_shash;
464	struct crypto_ahash *fallback_tfm;
465	int err, bs, ds;
466
467	fallback_tfm = ctx->base.fallback_tfm;
468	err = crypto_ahash_setkey(fallback_tfm, key, keylen);
469	if (err)
470		return err;
471
472	bs = crypto_shash_blocksize(child_shash);
473	ds = crypto_shash_digestsize(child_shash);
474	BUG_ON(ds > N2_HASH_KEY_MAX);
475	if (keylen > bs) {
476		err = crypto_shash_tfm_digest(child_shash, key, keylen,
477					      ctx->hash_key);
478		if (err)
479			return err;
480		keylen = ds;
481	} else if (keylen <= N2_HASH_KEY_MAX)
482		memcpy(ctx->hash_key, key, keylen);
483
484	ctx->hash_key_len = keylen;
485
486	return err;
487}
488
489static unsigned long wait_for_tail(struct spu_queue *qp)
490{
491	unsigned long head, hv_ret;
492
493	do {
494		hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
495		if (hv_ret != HV_EOK) {
496			pr_err("Hypervisor error on gethead\n");
497			break;
498		}
499		if (head == qp->tail) {
500			qp->head = head;
501			break;
502		}
503	} while (1);
504	return hv_ret;
505}
506
507static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
508					      struct cwq_initial_entry *ent)
509{
510	unsigned long hv_ret = spu_queue_submit(qp, ent);
511
512	if (hv_ret == HV_EOK)
513		hv_ret = wait_for_tail(qp);
514
515	return hv_ret;
516}
517
518static int n2_do_async_digest(struct ahash_request *req,
519			      unsigned int auth_type, unsigned int digest_size,
520			      unsigned int result_size, void *hash_loc,
521			      unsigned long auth_key, unsigned int auth_key_len)
522{
523	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
524	struct cwq_initial_entry *ent;
525	struct crypto_hash_walk walk;
526	struct spu_queue *qp;
527	unsigned long flags;
528	int err = -ENODEV;
529	int nbytes, cpu;
530
531	/* The total effective length of the operation may not
532	 * exceed 2^16.
533	 */
534	if (unlikely(req->nbytes > (1 << 16))) {
535		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
536		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
537
538		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
539		rctx->fallback_req.base.flags =
540			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
541		rctx->fallback_req.nbytes = req->nbytes;
542		rctx->fallback_req.src = req->src;
543		rctx->fallback_req.result = req->result;
544
545		return crypto_ahash_digest(&rctx->fallback_req);
546	}
547
548	nbytes = crypto_hash_walk_first(req, &walk);
549
550	cpu = get_cpu();
551	qp = cpu_to_cwq[cpu];
552	if (!qp)
553		goto out;
554
555	spin_lock_irqsave(&qp->lock, flags);
556
557	/* XXX can do better, improve this later by doing a by-hand scatterlist
558	 * XXX walk, etc.
559	 */
560	ent = qp->q + qp->tail;
561
562	ent->control = control_word_base(nbytes, auth_key_len, 0,
563					 auth_type, digest_size,
564					 false, true, false, false,
565					 OPCODE_INPLACE_BIT |
566					 OPCODE_AUTH_MAC);
567	ent->src_addr = __pa(walk.data);
568	ent->auth_key_addr = auth_key;
569	ent->auth_iv_addr = __pa(hash_loc);
570	ent->final_auth_state_addr = 0UL;
571	ent->enc_key_addr = 0UL;
572	ent->enc_iv_addr = 0UL;
573	ent->dest_addr = __pa(hash_loc);
574
575	nbytes = crypto_hash_walk_done(&walk, 0);
576	while (nbytes > 0) {
577		ent = spu_queue_next(qp, ent);
578
579		ent->control = (nbytes - 1);
580		ent->src_addr = __pa(walk.data);
581		ent->auth_key_addr = 0UL;
582		ent->auth_iv_addr = 0UL;
583		ent->final_auth_state_addr = 0UL;
584		ent->enc_key_addr = 0UL;
585		ent->enc_iv_addr = 0UL;
586		ent->dest_addr = 0UL;
587
588		nbytes = crypto_hash_walk_done(&walk, 0);
589	}
590	ent->control |= CONTROL_END_OF_BLOCK;
591
592	if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
593		err = -EINVAL;
594	else
595		err = 0;
596
597	spin_unlock_irqrestore(&qp->lock, flags);
598
599	if (!err)
600		memcpy(req->result, hash_loc, result_size);
601out:
602	put_cpu();
603
604	return err;
605}
606
607static int n2_hash_async_digest(struct ahash_request *req)
608{
609	struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
610	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
611	int ds;
612
613	ds = n2alg->digest_size;
614	if (unlikely(req->nbytes == 0)) {
615		memcpy(req->result, n2alg->hash_zero, ds);
616		return 0;
617	}
618	memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
619
620	return n2_do_async_digest(req, n2alg->auth_type,
621				  n2alg->hw_op_hashsz, ds,
622				  &rctx->u, 0UL, 0);
623}
624
625static int n2_hmac_async_digest(struct ahash_request *req)
626{
627	struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
628	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
629	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
630	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
631	int ds;
632
633	ds = n2alg->derived.digest_size;
634	if (unlikely(req->nbytes == 0) ||
635	    unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
636		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
637		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
638
639		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
640		rctx->fallback_req.base.flags =
641			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
642		rctx->fallback_req.nbytes = req->nbytes;
643		rctx->fallback_req.src = req->src;
644		rctx->fallback_req.result = req->result;
645
646		return crypto_ahash_digest(&rctx->fallback_req);
647	}
648	memcpy(&rctx->u, n2alg->derived.hash_init,
649	       n2alg->derived.hw_op_hashsz);
650
651	return n2_do_async_digest(req, n2alg->derived.hmac_type,
652				  n2alg->derived.hw_op_hashsz, ds,
653				  &rctx->u,
654				  __pa(&ctx->hash_key),
655				  ctx->hash_key_len);
656}
657
658struct n2_skcipher_context {
659	int			key_len;
660	int			enc_type;
661	union {
662		u8		aes[AES_MAX_KEY_SIZE];
663		u8		des[DES_KEY_SIZE];
664		u8		des3[3 * DES_KEY_SIZE];
665	} key;
666};
667
668#define N2_CHUNK_ARR_LEN	16
669
670struct n2_crypto_chunk {
671	struct list_head	entry;
672	unsigned long		iv_paddr : 44;
673	unsigned long		arr_len : 20;
674	unsigned long		dest_paddr;
675	unsigned long		dest_final;
676	struct {
677		unsigned long	src_paddr : 44;
678		unsigned long	src_len : 20;
679	} arr[N2_CHUNK_ARR_LEN];
680};
681
682struct n2_request_context {
683	struct skcipher_walk	walk;
684	struct list_head	chunk_list;
685	struct n2_crypto_chunk	chunk;
686	u8			temp_iv[16];
687};
688
689/* The SPU allows some level of flexibility for partial cipher blocks
690 * being specified in a descriptor.
691 *
692 * It merely requires that every descriptor's length field is at least
693 * as large as the cipher block size.  This means that a cipher block
694 * can span at most 2 descriptors.  However, this does not allow a
695 * partial block to span into the final descriptor as that would
696 * violate the rule (since every descriptor's length must be at lest
697 * the block size).  So, for example, assuming an 8 byte block size:
698 *
699 *	0xe --> 0xa --> 0x8
700 *
701 * is a valid length sequence, whereas:
702 *
703 *	0xe --> 0xb --> 0x7
704 *
705 * is not a valid sequence.
706 */
707
708struct n2_skcipher_alg {
709	struct list_head	entry;
710	u8			enc_type;
711	struct skcipher_alg	skcipher;
712};
713
714static inline struct n2_skcipher_alg *n2_skcipher_alg(struct crypto_skcipher *tfm)
715{
716	struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
717
718	return container_of(alg, struct n2_skcipher_alg, skcipher);
719}
720
721struct n2_skcipher_request_context {
722	struct skcipher_walk	walk;
723};
724
725static int n2_aes_setkey(struct crypto_skcipher *skcipher, const u8 *key,
726			 unsigned int keylen)
727{
728	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
729	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
730	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
731
732	ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
733
734	switch (keylen) {
735	case AES_KEYSIZE_128:
736		ctx->enc_type |= ENC_TYPE_ALG_AES128;
737		break;
738	case AES_KEYSIZE_192:
739		ctx->enc_type |= ENC_TYPE_ALG_AES192;
740		break;
741	case AES_KEYSIZE_256:
742		ctx->enc_type |= ENC_TYPE_ALG_AES256;
743		break;
744	default:
745		return -EINVAL;
746	}
747
748	ctx->key_len = keylen;
749	memcpy(ctx->key.aes, key, keylen);
750	return 0;
751}
752
753static int n2_des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
754			 unsigned int keylen)
755{
756	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
757	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
758	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
759	int err;
760
761	err = verify_skcipher_des_key(skcipher, key);
762	if (err)
763		return err;
764
765	ctx->enc_type = n2alg->enc_type;
766
767	ctx->key_len = keylen;
768	memcpy(ctx->key.des, key, keylen);
769	return 0;
770}
771
772static int n2_3des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
773			  unsigned int keylen)
774{
775	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
776	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
777	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
778	int err;
779
780	err = verify_skcipher_des3_key(skcipher, key);
781	if (err)
782		return err;
783
784	ctx->enc_type = n2alg->enc_type;
785
786	ctx->key_len = keylen;
787	memcpy(ctx->key.des3, key, keylen);
788	return 0;
789}
790
791static inline int skcipher_descriptor_len(int nbytes, unsigned int block_size)
792{
793	int this_len = nbytes;
794
795	this_len -= (nbytes & (block_size - 1));
796	return this_len > (1 << 16) ? (1 << 16) : this_len;
797}
798
799static int __n2_crypt_chunk(struct crypto_skcipher *skcipher,
800			    struct n2_crypto_chunk *cp,
801			    struct spu_queue *qp, bool encrypt)
802{
803	struct n2_skcipher_context *ctx = crypto_skcipher_ctx(skcipher);
804	struct cwq_initial_entry *ent;
805	bool in_place;
806	int i;
807
808	ent = spu_queue_alloc(qp, cp->arr_len);
809	if (!ent) {
810		pr_info("queue_alloc() of %d fails\n",
811			cp->arr_len);
812		return -EBUSY;
813	}
814
815	in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
816
817	ent->control = control_word_base(cp->arr[0].src_len,
818					 0, ctx->enc_type, 0, 0,
819					 false, true, false, encrypt,
820					 OPCODE_ENCRYPT |
821					 (in_place ? OPCODE_INPLACE_BIT : 0));
822	ent->src_addr = cp->arr[0].src_paddr;
823	ent->auth_key_addr = 0UL;
824	ent->auth_iv_addr = 0UL;
825	ent->final_auth_state_addr = 0UL;
826	ent->enc_key_addr = __pa(&ctx->key);
827	ent->enc_iv_addr = cp->iv_paddr;
828	ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
829
830	for (i = 1; i < cp->arr_len; i++) {
831		ent = spu_queue_next(qp, ent);
832
833		ent->control = cp->arr[i].src_len - 1;
834		ent->src_addr = cp->arr[i].src_paddr;
835		ent->auth_key_addr = 0UL;
836		ent->auth_iv_addr = 0UL;
837		ent->final_auth_state_addr = 0UL;
838		ent->enc_key_addr = 0UL;
839		ent->enc_iv_addr = 0UL;
840		ent->dest_addr = 0UL;
841	}
842	ent->control |= CONTROL_END_OF_BLOCK;
843
844	return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
845}
846
847static int n2_compute_chunks(struct skcipher_request *req)
848{
849	struct n2_request_context *rctx = skcipher_request_ctx(req);
850	struct skcipher_walk *walk = &rctx->walk;
851	struct n2_crypto_chunk *chunk;
852	unsigned long dest_prev;
853	unsigned int tot_len;
854	bool prev_in_place;
855	int err, nbytes;
856
857	err = skcipher_walk_async(walk, req);
858	if (err)
859		return err;
860
861	INIT_LIST_HEAD(&rctx->chunk_list);
862
863	chunk = &rctx->chunk;
864	INIT_LIST_HEAD(&chunk->entry);
865
866	chunk->iv_paddr = 0UL;
867	chunk->arr_len = 0;
868	chunk->dest_paddr = 0UL;
869
870	prev_in_place = false;
871	dest_prev = ~0UL;
872	tot_len = 0;
873
874	while ((nbytes = walk->nbytes) != 0) {
875		unsigned long dest_paddr, src_paddr;
876		bool in_place;
877		int this_len;
878
879		src_paddr = (page_to_phys(walk->src.phys.page) +
880			     walk->src.phys.offset);
881		dest_paddr = (page_to_phys(walk->dst.phys.page) +
882			      walk->dst.phys.offset);
883		in_place = (src_paddr == dest_paddr);
884		this_len = skcipher_descriptor_len(nbytes, walk->blocksize);
885
886		if (chunk->arr_len != 0) {
887			if (in_place != prev_in_place ||
888			    (!prev_in_place &&
889			     dest_paddr != dest_prev) ||
890			    chunk->arr_len == N2_CHUNK_ARR_LEN ||
891			    tot_len + this_len > (1 << 16)) {
892				chunk->dest_final = dest_prev;
893				list_add_tail(&chunk->entry,
894					      &rctx->chunk_list);
895				chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
896				if (!chunk) {
897					err = -ENOMEM;
898					break;
899				}
900				INIT_LIST_HEAD(&chunk->entry);
901			}
902		}
903		if (chunk->arr_len == 0) {
904			chunk->dest_paddr = dest_paddr;
905			tot_len = 0;
906		}
907		chunk->arr[chunk->arr_len].src_paddr = src_paddr;
908		chunk->arr[chunk->arr_len].src_len = this_len;
909		chunk->arr_len++;
910
911		dest_prev = dest_paddr + this_len;
912		prev_in_place = in_place;
913		tot_len += this_len;
914
915		err = skcipher_walk_done(walk, nbytes - this_len);
916		if (err)
917			break;
918	}
919	if (!err && chunk->arr_len != 0) {
920		chunk->dest_final = dest_prev;
921		list_add_tail(&chunk->entry, &rctx->chunk_list);
922	}
923
924	return err;
925}
926
927static void n2_chunk_complete(struct skcipher_request *req, void *final_iv)
928{
929	struct n2_request_context *rctx = skcipher_request_ctx(req);
930	struct n2_crypto_chunk *c, *tmp;
931
932	if (final_iv)
933		memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
934
935	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
936		list_del(&c->entry);
937		if (unlikely(c != &rctx->chunk))
938			kfree(c);
939	}
940
941}
942
943static int n2_do_ecb(struct skcipher_request *req, bool encrypt)
944{
945	struct n2_request_context *rctx = skcipher_request_ctx(req);
946	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
947	int err = n2_compute_chunks(req);
948	struct n2_crypto_chunk *c, *tmp;
949	unsigned long flags, hv_ret;
950	struct spu_queue *qp;
951
952	if (err)
953		return err;
954
955	qp = cpu_to_cwq[get_cpu()];
956	err = -ENODEV;
957	if (!qp)
958		goto out;
959
960	spin_lock_irqsave(&qp->lock, flags);
961
962	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
963		err = __n2_crypt_chunk(tfm, c, qp, encrypt);
964		if (err)
965			break;
966		list_del(&c->entry);
967		if (unlikely(c != &rctx->chunk))
968			kfree(c);
969	}
970	if (!err) {
971		hv_ret = wait_for_tail(qp);
972		if (hv_ret != HV_EOK)
973			err = -EINVAL;
974	}
975
976	spin_unlock_irqrestore(&qp->lock, flags);
977
978out:
979	put_cpu();
980
981	n2_chunk_complete(req, NULL);
982	return err;
983}
984
985static int n2_encrypt_ecb(struct skcipher_request *req)
986{
987	return n2_do_ecb(req, true);
988}
989
990static int n2_decrypt_ecb(struct skcipher_request *req)
991{
992	return n2_do_ecb(req, false);
993}
994
995static int n2_do_chaining(struct skcipher_request *req, bool encrypt)
996{
997	struct n2_request_context *rctx = skcipher_request_ctx(req);
998	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
999	unsigned long flags, hv_ret, iv_paddr;
1000	int err = n2_compute_chunks(req);
1001	struct n2_crypto_chunk *c, *tmp;
1002	struct spu_queue *qp;
1003	void *final_iv_addr;
1004
1005	final_iv_addr = NULL;
1006
1007	if (err)
1008		return err;
1009
1010	qp = cpu_to_cwq[get_cpu()];
1011	err = -ENODEV;
1012	if (!qp)
1013		goto out;
1014
1015	spin_lock_irqsave(&qp->lock, flags);
1016
1017	if (encrypt) {
1018		iv_paddr = __pa(rctx->walk.iv);
1019		list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1020					 entry) {
1021			c->iv_paddr = iv_paddr;
1022			err = __n2_crypt_chunk(tfm, c, qp, true);
1023			if (err)
1024				break;
1025			iv_paddr = c->dest_final - rctx->walk.blocksize;
1026			list_del(&c->entry);
1027			if (unlikely(c != &rctx->chunk))
1028				kfree(c);
1029		}
1030		final_iv_addr = __va(iv_paddr);
1031	} else {
1032		list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1033						 entry) {
1034			if (c == &rctx->chunk) {
1035				iv_paddr = __pa(rctx->walk.iv);
1036			} else {
1037				iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1038					    tmp->arr[tmp->arr_len-1].src_len -
1039					    rctx->walk.blocksize);
1040			}
1041			if (!final_iv_addr) {
1042				unsigned long pa;
1043
1044				pa = (c->arr[c->arr_len-1].src_paddr +
1045				      c->arr[c->arr_len-1].src_len -
1046				      rctx->walk.blocksize);
1047				final_iv_addr = rctx->temp_iv;
1048				memcpy(rctx->temp_iv, __va(pa),
1049				       rctx->walk.blocksize);
1050			}
1051			c->iv_paddr = iv_paddr;
1052			err = __n2_crypt_chunk(tfm, c, qp, false);
1053			if (err)
1054				break;
1055			list_del(&c->entry);
1056			if (unlikely(c != &rctx->chunk))
1057				kfree(c);
1058		}
1059	}
1060	if (!err) {
1061		hv_ret = wait_for_tail(qp);
1062		if (hv_ret != HV_EOK)
1063			err = -EINVAL;
1064	}
1065
1066	spin_unlock_irqrestore(&qp->lock, flags);
1067
1068out:
1069	put_cpu();
1070
1071	n2_chunk_complete(req, err ? NULL : final_iv_addr);
1072	return err;
1073}
1074
1075static int n2_encrypt_chaining(struct skcipher_request *req)
1076{
1077	return n2_do_chaining(req, true);
1078}
1079
1080static int n2_decrypt_chaining(struct skcipher_request *req)
1081{
1082	return n2_do_chaining(req, false);
1083}
1084
1085struct n2_skcipher_tmpl {
1086	const char		*name;
1087	const char		*drv_name;
1088	u8			block_size;
1089	u8			enc_type;
1090	struct skcipher_alg	skcipher;
1091};
1092
1093static const struct n2_skcipher_tmpl skcipher_tmpls[] = {
1094	/* DES: ECB CBC and CFB are supported */
1095	{	.name		= "ecb(des)",
1096		.drv_name	= "ecb-des",
1097		.block_size	= DES_BLOCK_SIZE,
1098		.enc_type	= (ENC_TYPE_ALG_DES |
1099				   ENC_TYPE_CHAINING_ECB),
1100		.skcipher	= {
1101			.min_keysize	= DES_KEY_SIZE,
1102			.max_keysize	= DES_KEY_SIZE,
1103			.setkey		= n2_des_setkey,
1104			.encrypt	= n2_encrypt_ecb,
1105			.decrypt	= n2_decrypt_ecb,
1106		},
1107	},
1108	{	.name		= "cbc(des)",
1109		.drv_name	= "cbc-des",
1110		.block_size	= DES_BLOCK_SIZE,
1111		.enc_type	= (ENC_TYPE_ALG_DES |
1112				   ENC_TYPE_CHAINING_CBC),
1113		.skcipher	= {
1114			.ivsize		= DES_BLOCK_SIZE,
1115			.min_keysize	= DES_KEY_SIZE,
1116			.max_keysize	= DES_KEY_SIZE,
1117			.setkey		= n2_des_setkey,
1118			.encrypt	= n2_encrypt_chaining,
1119			.decrypt	= n2_decrypt_chaining,
1120		},
1121	},
1122	{	.name		= "cfb(des)",
1123		.drv_name	= "cfb-des",
1124		.block_size	= DES_BLOCK_SIZE,
1125		.enc_type	= (ENC_TYPE_ALG_DES |
1126				   ENC_TYPE_CHAINING_CFB),
1127		.skcipher	= {
1128			.min_keysize	= DES_KEY_SIZE,
1129			.max_keysize	= DES_KEY_SIZE,
1130			.setkey		= n2_des_setkey,
1131			.encrypt	= n2_encrypt_chaining,
1132			.decrypt	= n2_decrypt_chaining,
1133		},
1134	},
1135
1136	/* 3DES: ECB CBC and CFB are supported */
1137	{	.name		= "ecb(des3_ede)",
1138		.drv_name	= "ecb-3des",
1139		.block_size	= DES_BLOCK_SIZE,
1140		.enc_type	= (ENC_TYPE_ALG_3DES |
1141				   ENC_TYPE_CHAINING_ECB),
1142		.skcipher	= {
1143			.min_keysize	= 3 * DES_KEY_SIZE,
1144			.max_keysize	= 3 * DES_KEY_SIZE,
1145			.setkey		= n2_3des_setkey,
1146			.encrypt	= n2_encrypt_ecb,
1147			.decrypt	= n2_decrypt_ecb,
1148		},
1149	},
1150	{	.name		= "cbc(des3_ede)",
1151		.drv_name	= "cbc-3des",
1152		.block_size	= DES_BLOCK_SIZE,
1153		.enc_type	= (ENC_TYPE_ALG_3DES |
1154				   ENC_TYPE_CHAINING_CBC),
1155		.skcipher	= {
1156			.ivsize		= DES_BLOCK_SIZE,
1157			.min_keysize	= 3 * DES_KEY_SIZE,
1158			.max_keysize	= 3 * DES_KEY_SIZE,
1159			.setkey		= n2_3des_setkey,
1160			.encrypt	= n2_encrypt_chaining,
1161			.decrypt	= n2_decrypt_chaining,
1162		},
1163	},
1164	{	.name		= "cfb(des3_ede)",
1165		.drv_name	= "cfb-3des",
1166		.block_size	= DES_BLOCK_SIZE,
1167		.enc_type	= (ENC_TYPE_ALG_3DES |
1168				   ENC_TYPE_CHAINING_CFB),
1169		.skcipher	= {
1170			.min_keysize	= 3 * DES_KEY_SIZE,
1171			.max_keysize	= 3 * DES_KEY_SIZE,
1172			.setkey		= n2_3des_setkey,
1173			.encrypt	= n2_encrypt_chaining,
1174			.decrypt	= n2_decrypt_chaining,
1175		},
1176	},
1177	/* AES: ECB CBC and CTR are supported */
1178	{	.name		= "ecb(aes)",
1179		.drv_name	= "ecb-aes",
1180		.block_size	= AES_BLOCK_SIZE,
1181		.enc_type	= (ENC_TYPE_ALG_AES128 |
1182				   ENC_TYPE_CHAINING_ECB),
1183		.skcipher	= {
1184			.min_keysize	= AES_MIN_KEY_SIZE,
1185			.max_keysize	= AES_MAX_KEY_SIZE,
1186			.setkey		= n2_aes_setkey,
1187			.encrypt	= n2_encrypt_ecb,
1188			.decrypt	= n2_decrypt_ecb,
1189		},
1190	},
1191	{	.name		= "cbc(aes)",
1192		.drv_name	= "cbc-aes",
1193		.block_size	= AES_BLOCK_SIZE,
1194		.enc_type	= (ENC_TYPE_ALG_AES128 |
1195				   ENC_TYPE_CHAINING_CBC),
1196		.skcipher	= {
1197			.ivsize		= AES_BLOCK_SIZE,
1198			.min_keysize	= AES_MIN_KEY_SIZE,
1199			.max_keysize	= AES_MAX_KEY_SIZE,
1200			.setkey		= n2_aes_setkey,
1201			.encrypt	= n2_encrypt_chaining,
1202			.decrypt	= n2_decrypt_chaining,
1203		},
1204	},
1205	{	.name		= "ctr(aes)",
1206		.drv_name	= "ctr-aes",
1207		.block_size	= AES_BLOCK_SIZE,
1208		.enc_type	= (ENC_TYPE_ALG_AES128 |
1209				   ENC_TYPE_CHAINING_COUNTER),
1210		.skcipher	= {
1211			.ivsize		= AES_BLOCK_SIZE,
1212			.min_keysize	= AES_MIN_KEY_SIZE,
1213			.max_keysize	= AES_MAX_KEY_SIZE,
1214			.setkey		= n2_aes_setkey,
1215			.encrypt	= n2_encrypt_chaining,
1216			.decrypt	= n2_encrypt_chaining,
1217		},
1218	},
1219
1220};
1221#define NUM_CIPHER_TMPLS ARRAY_SIZE(skcipher_tmpls)
1222
1223static LIST_HEAD(skcipher_algs);
1224
1225struct n2_hash_tmpl {
1226	const char	*name;
1227	const u8	*hash_zero;
1228	const u8	*hash_init;
1229	u8		hw_op_hashsz;
1230	u8		digest_size;
1231	u8		statesize;
1232	u8		block_size;
1233	u8		auth_type;
1234	u8		hmac_type;
1235};
1236
1237static const __le32 n2_md5_init[MD5_HASH_WORDS] = {
1238	cpu_to_le32(MD5_H0),
1239	cpu_to_le32(MD5_H1),
1240	cpu_to_le32(MD5_H2),
1241	cpu_to_le32(MD5_H3),
1242};
1243static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = {
1244	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1245};
1246static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = {
1247	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1248	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1249};
1250static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = {
1251	SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1252	SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1253};
1254
1255static const struct n2_hash_tmpl hash_tmpls[] = {
1256	{ .name		= "md5",
1257	  .hash_zero	= md5_zero_message_hash,
1258	  .hash_init	= (u8 *)n2_md5_init,
1259	  .auth_type	= AUTH_TYPE_MD5,
1260	  .hmac_type	= AUTH_TYPE_HMAC_MD5,
1261	  .hw_op_hashsz	= MD5_DIGEST_SIZE,
1262	  .digest_size	= MD5_DIGEST_SIZE,
1263	  .statesize	= sizeof(struct md5_state),
1264	  .block_size	= MD5_HMAC_BLOCK_SIZE },
1265	{ .name		= "sha1",
1266	  .hash_zero	= sha1_zero_message_hash,
1267	  .hash_init	= (u8 *)n2_sha1_init,
1268	  .auth_type	= AUTH_TYPE_SHA1,
1269	  .hmac_type	= AUTH_TYPE_HMAC_SHA1,
1270	  .hw_op_hashsz	= SHA1_DIGEST_SIZE,
1271	  .digest_size	= SHA1_DIGEST_SIZE,
1272	  .statesize	= sizeof(struct sha1_state),
1273	  .block_size	= SHA1_BLOCK_SIZE },
1274	{ .name		= "sha256",
1275	  .hash_zero	= sha256_zero_message_hash,
1276	  .hash_init	= (u8 *)n2_sha256_init,
1277	  .auth_type	= AUTH_TYPE_SHA256,
1278	  .hmac_type	= AUTH_TYPE_HMAC_SHA256,
1279	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1280	  .digest_size	= SHA256_DIGEST_SIZE,
1281	  .statesize	= sizeof(struct sha256_state),
1282	  .block_size	= SHA256_BLOCK_SIZE },
1283	{ .name		= "sha224",
1284	  .hash_zero	= sha224_zero_message_hash,
1285	  .hash_init	= (u8 *)n2_sha224_init,
1286	  .auth_type	= AUTH_TYPE_SHA256,
1287	  .hmac_type	= AUTH_TYPE_RESERVED,
1288	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1289	  .digest_size	= SHA224_DIGEST_SIZE,
1290	  .statesize	= sizeof(struct sha256_state),
1291	  .block_size	= SHA224_BLOCK_SIZE },
1292};
1293#define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1294
1295static LIST_HEAD(ahash_algs);
1296static LIST_HEAD(hmac_algs);
1297
1298static int algs_registered;
1299
1300static void __n2_unregister_algs(void)
1301{
1302	struct n2_skcipher_alg *skcipher, *skcipher_tmp;
1303	struct n2_ahash_alg *alg, *alg_tmp;
1304	struct n2_hmac_alg *hmac, *hmac_tmp;
1305
1306	list_for_each_entry_safe(skcipher, skcipher_tmp, &skcipher_algs, entry) {
1307		crypto_unregister_skcipher(&skcipher->skcipher);
1308		list_del(&skcipher->entry);
1309		kfree(skcipher);
1310	}
1311	list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1312		crypto_unregister_ahash(&hmac->derived.alg);
1313		list_del(&hmac->derived.entry);
1314		kfree(hmac);
1315	}
1316	list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1317		crypto_unregister_ahash(&alg->alg);
1318		list_del(&alg->entry);
1319		kfree(alg);
1320	}
1321}
1322
1323static int n2_skcipher_init_tfm(struct crypto_skcipher *tfm)
1324{
1325	crypto_skcipher_set_reqsize(tfm, sizeof(struct n2_request_context));
1326	return 0;
1327}
1328
1329static int __n2_register_one_skcipher(const struct n2_skcipher_tmpl *tmpl)
1330{
1331	struct n2_skcipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1332	struct skcipher_alg *alg;
1333	int err;
1334
1335	if (!p)
1336		return -ENOMEM;
1337
1338	alg = &p->skcipher;
1339	*alg = tmpl->skcipher;
1340
1341	snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1342	snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1343	alg->base.cra_priority = N2_CRA_PRIORITY;
1344	alg->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC |
1345			      CRYPTO_ALG_ALLOCATES_MEMORY;
1346	alg->base.cra_blocksize = tmpl->block_size;
1347	p->enc_type = tmpl->enc_type;
1348	alg->base.cra_ctxsize = sizeof(struct n2_skcipher_context);
1349	alg->base.cra_module = THIS_MODULE;
1350	alg->init = n2_skcipher_init_tfm;
1351
1352	list_add(&p->entry, &skcipher_algs);
1353	err = crypto_register_skcipher(alg);
1354	if (err) {
1355		pr_err("%s alg registration failed\n", alg->base.cra_name);
1356		list_del(&p->entry);
1357		kfree(p);
1358	} else {
1359		pr_info("%s alg registered\n", alg->base.cra_name);
1360	}
1361	return err;
1362}
1363
1364static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1365{
1366	struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1367	struct ahash_alg *ahash;
1368	struct crypto_alg *base;
1369	int err;
1370
1371	if (!p)
1372		return -ENOMEM;
1373
1374	p->child_alg = n2ahash->alg.halg.base.cra_name;
1375	memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1376	INIT_LIST_HEAD(&p->derived.entry);
1377
1378	ahash = &p->derived.alg;
1379	ahash->digest = n2_hmac_async_digest;
1380	ahash->setkey = n2_hmac_async_setkey;
1381
1382	base = &ahash->halg.base;
1383	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1384	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1385
1386	base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1387	base->cra_init = n2_hmac_cra_init;
1388	base->cra_exit = n2_hmac_cra_exit;
1389
1390	list_add(&p->derived.entry, &hmac_algs);
1391	err = crypto_register_ahash(ahash);
1392	if (err) {
1393		pr_err("%s alg registration failed\n", base->cra_name);
1394		list_del(&p->derived.entry);
1395		kfree(p);
1396	} else {
1397		pr_info("%s alg registered\n", base->cra_name);
1398	}
1399	return err;
1400}
1401
1402static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1403{
1404	struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1405	struct hash_alg_common *halg;
1406	struct crypto_alg *base;
1407	struct ahash_alg *ahash;
1408	int err;
1409
1410	if (!p)
1411		return -ENOMEM;
1412
1413	p->hash_zero = tmpl->hash_zero;
1414	p->hash_init = tmpl->hash_init;
1415	p->auth_type = tmpl->auth_type;
1416	p->hmac_type = tmpl->hmac_type;
1417	p->hw_op_hashsz = tmpl->hw_op_hashsz;
1418	p->digest_size = tmpl->digest_size;
1419
1420	ahash = &p->alg;
1421	ahash->init = n2_hash_async_init;
1422	ahash->update = n2_hash_async_update;
1423	ahash->final = n2_hash_async_final;
1424	ahash->finup = n2_hash_async_finup;
1425	ahash->digest = n2_hash_async_digest;
1426	ahash->export = n2_hash_async_noexport;
1427	ahash->import = n2_hash_async_noimport;
1428
1429	halg = &ahash->halg;
1430	halg->digestsize = tmpl->digest_size;
1431	halg->statesize = tmpl->statesize;
1432
1433	base = &halg->base;
1434	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1435	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1436	base->cra_priority = N2_CRA_PRIORITY;
1437	base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1438			  CRYPTO_ALG_NEED_FALLBACK;
1439	base->cra_blocksize = tmpl->block_size;
1440	base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1441	base->cra_module = THIS_MODULE;
1442	base->cra_init = n2_hash_cra_init;
1443	base->cra_exit = n2_hash_cra_exit;
1444
1445	list_add(&p->entry, &ahash_algs);
1446	err = crypto_register_ahash(ahash);
1447	if (err) {
1448		pr_err("%s alg registration failed\n", base->cra_name);
1449		list_del(&p->entry);
1450		kfree(p);
1451	} else {
1452		pr_info("%s alg registered\n", base->cra_name);
1453	}
1454	if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1455		err = __n2_register_one_hmac(p);
1456	return err;
1457}
1458
1459static int n2_register_algs(void)
1460{
1461	int i, err = 0;
1462
1463	mutex_lock(&spu_lock);
1464	if (algs_registered++)
1465		goto out;
1466
1467	for (i = 0; i < NUM_HASH_TMPLS; i++) {
1468		err = __n2_register_one_ahash(&hash_tmpls[i]);
1469		if (err) {
1470			__n2_unregister_algs();
1471			goto out;
1472		}
1473	}
1474	for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1475		err = __n2_register_one_skcipher(&skcipher_tmpls[i]);
1476		if (err) {
1477			__n2_unregister_algs();
1478			goto out;
1479		}
1480	}
1481
1482out:
1483	mutex_unlock(&spu_lock);
1484	return err;
1485}
1486
1487static void n2_unregister_algs(void)
1488{
1489	mutex_lock(&spu_lock);
1490	if (!--algs_registered)
1491		__n2_unregister_algs();
1492	mutex_unlock(&spu_lock);
1493}
1494
1495/* To map CWQ queues to interrupt sources, the hypervisor API provides
1496 * a devino.  This isn't very useful to us because all of the
1497 * interrupts listed in the device_node have been translated to
1498 * Linux virtual IRQ cookie numbers.
1499 *
1500 * So we have to back-translate, going through the 'intr' and 'ino'
1501 * property tables of the n2cp MDESC node, matching it with the OF
1502 * 'interrupts' property entries, in order to to figure out which
1503 * devino goes to which already-translated IRQ.
1504 */
1505static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1506			     unsigned long dev_ino)
1507{
1508	const unsigned int *dev_intrs;
1509	unsigned int intr;
1510	int i;
1511
1512	for (i = 0; i < ip->num_intrs; i++) {
1513		if (ip->ino_table[i].ino == dev_ino)
1514			break;
1515	}
1516	if (i == ip->num_intrs)
1517		return -ENODEV;
1518
1519	intr = ip->ino_table[i].intr;
1520
1521	dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1522	if (!dev_intrs)
1523		return -ENODEV;
1524
1525	for (i = 0; i < dev->archdata.num_irqs; i++) {
1526		if (dev_intrs[i] == intr)
1527			return i;
1528	}
1529
1530	return -ENODEV;
1531}
1532
1533static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1534		       const char *irq_name, struct spu_queue *p,
1535		       irq_handler_t handler)
1536{
1537	unsigned long herr;
1538	int index;
1539
1540	herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1541	if (herr)
1542		return -EINVAL;
1543
1544	index = find_devino_index(dev, ip, p->devino);
1545	if (index < 0)
1546		return index;
1547
1548	p->irq = dev->archdata.irqs[index];
1549
1550	sprintf(p->irq_name, "%s-%d", irq_name, index);
1551
1552	return request_irq(p->irq, handler, 0, p->irq_name, p);
1553}
1554
1555static struct kmem_cache *queue_cache[2];
1556
1557static void *new_queue(unsigned long q_type)
1558{
1559	return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1560}
1561
1562static void free_queue(void *p, unsigned long q_type)
1563{
1564	kmem_cache_free(queue_cache[q_type - 1], p);
1565}
1566
1567static int queue_cache_init(void)
1568{
1569	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1570		queue_cache[HV_NCS_QTYPE_MAU - 1] =
1571			kmem_cache_create("mau_queue",
1572					  (MAU_NUM_ENTRIES *
1573					   MAU_ENTRY_SIZE),
1574					  MAU_ENTRY_SIZE, 0, NULL);
1575	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1576		return -ENOMEM;
1577
1578	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1579		queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1580			kmem_cache_create("cwq_queue",
1581					  (CWQ_NUM_ENTRIES *
1582					   CWQ_ENTRY_SIZE),
1583					  CWQ_ENTRY_SIZE, 0, NULL);
1584	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1585		kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1586		queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1587		return -ENOMEM;
1588	}
1589	return 0;
1590}
1591
1592static void queue_cache_destroy(void)
1593{
1594	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1595	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1596	queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1597	queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1598}
1599
1600static long spu_queue_register_workfn(void *arg)
1601{
1602	struct spu_qreg *qr = arg;
1603	struct spu_queue *p = qr->queue;
1604	unsigned long q_type = qr->type;
1605	unsigned long hv_ret;
1606
1607	hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1608				 CWQ_NUM_ENTRIES, &p->qhandle);
1609	if (!hv_ret)
1610		sun4v_ncs_sethead_marker(p->qhandle, 0);
1611
1612	return hv_ret ? -EINVAL : 0;
1613}
1614
1615static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1616{
1617	int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1618	struct spu_qreg qr = { .queue = p, .type = q_type };
1619
1620	return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1621}
1622
1623static int spu_queue_setup(struct spu_queue *p)
1624{
1625	int err;
1626
1627	p->q = new_queue(p->q_type);
1628	if (!p->q)
1629		return -ENOMEM;
1630
1631	err = spu_queue_register(p, p->q_type);
1632	if (err) {
1633		free_queue(p->q, p->q_type);
1634		p->q = NULL;
1635	}
1636
1637	return err;
1638}
1639
1640static void spu_queue_destroy(struct spu_queue *p)
1641{
1642	unsigned long hv_ret;
1643
1644	if (!p->q)
1645		return;
1646
1647	hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1648
1649	if (!hv_ret)
1650		free_queue(p->q, p->q_type);
1651}
1652
1653static void spu_list_destroy(struct list_head *list)
1654{
1655	struct spu_queue *p, *n;
1656
1657	list_for_each_entry_safe(p, n, list, list) {
1658		int i;
1659
1660		for (i = 0; i < NR_CPUS; i++) {
1661			if (cpu_to_cwq[i] == p)
1662				cpu_to_cwq[i] = NULL;
1663		}
1664
1665		if (p->irq) {
1666			free_irq(p->irq, p);
1667			p->irq = 0;
1668		}
1669		spu_queue_destroy(p);
1670		list_del(&p->list);
1671		kfree(p);
1672	}
1673}
1674
1675/* Walk the backward arcs of a CWQ 'exec-unit' node,
1676 * gathering cpu membership information.
1677 */
1678static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1679			       struct platform_device *dev,
1680			       u64 node, struct spu_queue *p,
1681			       struct spu_queue **table)
1682{
1683	u64 arc;
1684
1685	mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1686		u64 tgt = mdesc_arc_target(mdesc, arc);
1687		const char *name = mdesc_node_name(mdesc, tgt);
1688		const u64 *id;
1689
1690		if (strcmp(name, "cpu"))
1691			continue;
1692		id = mdesc_get_property(mdesc, tgt, "id", NULL);
1693		if (table[*id] != NULL) {
1694			dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1695				dev->dev.of_node);
1696			return -EINVAL;
1697		}
1698		cpumask_set_cpu(*id, &p->sharing);
1699		table[*id] = p;
1700	}
1701	return 0;
1702}
1703
1704/* Process an 'exec-unit' MDESC node of type 'cwq'.  */
1705static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1706			    struct platform_device *dev, struct mdesc_handle *mdesc,
1707			    u64 node, const char *iname, unsigned long q_type,
1708			    irq_handler_t handler, struct spu_queue **table)
1709{
1710	struct spu_queue *p;
1711	int err;
1712
1713	p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1714	if (!p) {
1715		dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1716			dev->dev.of_node);
1717		return -ENOMEM;
1718	}
1719
1720	cpumask_clear(&p->sharing);
1721	spin_lock_init(&p->lock);
1722	p->q_type = q_type;
1723	INIT_LIST_HEAD(&p->jobs);
1724	list_add(&p->list, list);
1725
1726	err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1727	if (err)
1728		return err;
1729
1730	err = spu_queue_setup(p);
1731	if (err)
1732		return err;
1733
1734	return spu_map_ino(dev, ip, iname, p, handler);
1735}
1736
1737static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1738			  struct spu_mdesc_info *ip, struct list_head *list,
1739			  const char *exec_name, unsigned long q_type,
1740			  irq_handler_t handler, struct spu_queue **table)
1741{
1742	int err = 0;
1743	u64 node;
1744
1745	mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1746		const char *type;
1747
1748		type = mdesc_get_property(mdesc, node, "type", NULL);
1749		if (!type || strcmp(type, exec_name))
1750			continue;
1751
1752		err = handle_exec_unit(ip, list, dev, mdesc, node,
1753				       exec_name, q_type, handler, table);
1754		if (err) {
1755			spu_list_destroy(list);
1756			break;
1757		}
1758	}
1759
1760	return err;
1761}
1762
1763static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1764			 struct spu_mdesc_info *ip)
1765{
1766	const u64 *ino;
1767	int ino_len;
1768	int i;
1769
1770	ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1771	if (!ino) {
1772		printk("NO 'ino'\n");
1773		return -ENODEV;
1774	}
1775
1776	ip->num_intrs = ino_len / sizeof(u64);
1777	ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1778				 ip->num_intrs),
1779				GFP_KERNEL);
1780	if (!ip->ino_table)
1781		return -ENOMEM;
1782
1783	for (i = 0; i < ip->num_intrs; i++) {
1784		struct ino_blob *b = &ip->ino_table[i];
1785		b->intr = i + 1;
1786		b->ino = ino[i];
1787	}
1788
1789	return 0;
1790}
1791
1792static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1793				struct platform_device *dev,
1794				struct spu_mdesc_info *ip,
1795				const char *node_name)
1796{
1797	const unsigned int *reg;
1798	u64 node;
1799
1800	reg = of_get_property(dev->dev.of_node, "reg", NULL);
1801	if (!reg)
1802		return -ENODEV;
1803
1804	mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1805		const char *name;
1806		const u64 *chdl;
1807
1808		name = mdesc_get_property(mdesc, node, "name", NULL);
1809		if (!name || strcmp(name, node_name))
1810			continue;
1811		chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1812		if (!chdl || (*chdl != *reg))
1813			continue;
1814		ip->cfg_handle = *chdl;
1815		return get_irq_props(mdesc, node, ip);
1816	}
1817
1818	return -ENODEV;
1819}
1820
1821static unsigned long n2_spu_hvapi_major;
1822static unsigned long n2_spu_hvapi_minor;
1823
1824static int n2_spu_hvapi_register(void)
1825{
1826	int err;
1827
1828	n2_spu_hvapi_major = 2;
1829	n2_spu_hvapi_minor = 0;
1830
1831	err = sun4v_hvapi_register(HV_GRP_NCS,
1832				   n2_spu_hvapi_major,
1833				   &n2_spu_hvapi_minor);
1834
1835	if (!err)
1836		pr_info("Registered NCS HVAPI version %lu.%lu\n",
1837			n2_spu_hvapi_major,
1838			n2_spu_hvapi_minor);
1839
1840	return err;
1841}
1842
1843static void n2_spu_hvapi_unregister(void)
1844{
1845	sun4v_hvapi_unregister(HV_GRP_NCS);
1846}
1847
1848static int global_ref;
1849
1850static int grab_global_resources(void)
1851{
1852	int err = 0;
1853
1854	mutex_lock(&spu_lock);
1855
1856	if (global_ref++)
1857		goto out;
1858
1859	err = n2_spu_hvapi_register();
1860	if (err)
1861		goto out;
1862
1863	err = queue_cache_init();
1864	if (err)
1865		goto out_hvapi_release;
1866
1867	err = -ENOMEM;
1868	cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1869			     GFP_KERNEL);
1870	if (!cpu_to_cwq)
1871		goto out_queue_cache_destroy;
1872
1873	cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1874			     GFP_KERNEL);
1875	if (!cpu_to_mau)
1876		goto out_free_cwq_table;
1877
1878	err = 0;
1879
1880out:
1881	if (err)
1882		global_ref--;
1883	mutex_unlock(&spu_lock);
1884	return err;
1885
1886out_free_cwq_table:
1887	kfree(cpu_to_cwq);
1888	cpu_to_cwq = NULL;
1889
1890out_queue_cache_destroy:
1891	queue_cache_destroy();
1892
1893out_hvapi_release:
1894	n2_spu_hvapi_unregister();
1895	goto out;
1896}
1897
1898static void release_global_resources(void)
1899{
1900	mutex_lock(&spu_lock);
1901	if (!--global_ref) {
1902		kfree(cpu_to_cwq);
1903		cpu_to_cwq = NULL;
1904
1905		kfree(cpu_to_mau);
1906		cpu_to_mau = NULL;
1907
1908		queue_cache_destroy();
1909		n2_spu_hvapi_unregister();
1910	}
1911	mutex_unlock(&spu_lock);
1912}
1913
1914static struct n2_crypto *alloc_n2cp(void)
1915{
1916	struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1917
1918	if (np)
1919		INIT_LIST_HEAD(&np->cwq_list);
1920
1921	return np;
1922}
1923
1924static void free_n2cp(struct n2_crypto *np)
1925{
1926	kfree(np->cwq_info.ino_table);
1927	np->cwq_info.ino_table = NULL;
1928
1929	kfree(np);
1930}
1931
1932static void n2_spu_driver_version(void)
1933{
1934	static int n2_spu_version_printed;
1935
1936	if (n2_spu_version_printed++ == 0)
1937		pr_info("%s", version);
1938}
1939
1940static int n2_crypto_probe(struct platform_device *dev)
1941{
1942	struct mdesc_handle *mdesc;
1943	struct n2_crypto *np;
1944	int err;
1945
1946	n2_spu_driver_version();
1947
1948	pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
1949
1950	np = alloc_n2cp();
1951	if (!np) {
1952		dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
1953			dev->dev.of_node);
1954		return -ENOMEM;
1955	}
1956
1957	err = grab_global_resources();
1958	if (err) {
1959		dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
1960			dev->dev.of_node);
1961		goto out_free_n2cp;
1962	}
1963
1964	mdesc = mdesc_grab();
1965
1966	if (!mdesc) {
1967		dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
1968			dev->dev.of_node);
1969		err = -ENODEV;
1970		goto out_free_global;
1971	}
1972	err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
1973	if (err) {
1974		dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
1975			dev->dev.of_node);
1976		mdesc_release(mdesc);
1977		goto out_free_global;
1978	}
1979
1980	err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
1981			     "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
1982			     cpu_to_cwq);
1983	mdesc_release(mdesc);
1984
1985	if (err) {
1986		dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
1987			dev->dev.of_node);
1988		goto out_free_global;
1989	}
1990
1991	err = n2_register_algs();
1992	if (err) {
1993		dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
1994			dev->dev.of_node);
1995		goto out_free_spu_list;
1996	}
1997
1998	dev_set_drvdata(&dev->dev, np);
1999
2000	return 0;
2001
2002out_free_spu_list:
2003	spu_list_destroy(&np->cwq_list);
2004
2005out_free_global:
2006	release_global_resources();
2007
2008out_free_n2cp:
2009	free_n2cp(np);
2010
2011	return err;
2012}
2013
2014static int n2_crypto_remove(struct platform_device *dev)
2015{
2016	struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2017
2018	n2_unregister_algs();
2019
2020	spu_list_destroy(&np->cwq_list);
2021
2022	release_global_resources();
2023
2024	free_n2cp(np);
2025
2026	return 0;
2027}
2028
2029static struct n2_mau *alloc_ncp(void)
2030{
2031	struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2032
2033	if (mp)
2034		INIT_LIST_HEAD(&mp->mau_list);
2035
2036	return mp;
2037}
2038
2039static void free_ncp(struct n2_mau *mp)
2040{
2041	kfree(mp->mau_info.ino_table);
2042	mp->mau_info.ino_table = NULL;
2043
2044	kfree(mp);
2045}
2046
2047static int n2_mau_probe(struct platform_device *dev)
2048{
2049	struct mdesc_handle *mdesc;
2050	struct n2_mau *mp;
2051	int err;
2052
2053	n2_spu_driver_version();
2054
2055	pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2056
2057	mp = alloc_ncp();
2058	if (!mp) {
2059		dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2060			dev->dev.of_node);
2061		return -ENOMEM;
2062	}
2063
2064	err = grab_global_resources();
2065	if (err) {
2066		dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2067			dev->dev.of_node);
2068		goto out_free_ncp;
2069	}
2070
2071	mdesc = mdesc_grab();
2072
2073	if (!mdesc) {
2074		dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2075			dev->dev.of_node);
2076		err = -ENODEV;
2077		goto out_free_global;
2078	}
2079
2080	err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2081	if (err) {
2082		dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2083			dev->dev.of_node);
2084		mdesc_release(mdesc);
2085		goto out_free_global;
2086	}
2087
2088	err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2089			     "mau", HV_NCS_QTYPE_MAU, mau_intr,
2090			     cpu_to_mau);
2091	mdesc_release(mdesc);
2092
2093	if (err) {
2094		dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2095			dev->dev.of_node);
2096		goto out_free_global;
2097	}
2098
2099	dev_set_drvdata(&dev->dev, mp);
2100
2101	return 0;
2102
2103out_free_global:
2104	release_global_resources();
2105
2106out_free_ncp:
2107	free_ncp(mp);
2108
2109	return err;
2110}
2111
2112static int n2_mau_remove(struct platform_device *dev)
2113{
2114	struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2115
2116	spu_list_destroy(&mp->mau_list);
2117
2118	release_global_resources();
2119
2120	free_ncp(mp);
2121
2122	return 0;
2123}
2124
2125static const struct of_device_id n2_crypto_match[] = {
2126	{
2127		.name = "n2cp",
2128		.compatible = "SUNW,n2-cwq",
2129	},
2130	{
2131		.name = "n2cp",
2132		.compatible = "SUNW,vf-cwq",
2133	},
2134	{
2135		.name = "n2cp",
2136		.compatible = "SUNW,kt-cwq",
2137	},
2138	{},
2139};
2140
2141MODULE_DEVICE_TABLE(of, n2_crypto_match);
2142
2143static struct platform_driver n2_crypto_driver = {
2144	.driver = {
2145		.name		=	"n2cp",
2146		.of_match_table	=	n2_crypto_match,
2147	},
2148	.probe		=	n2_crypto_probe,
2149	.remove		=	n2_crypto_remove,
2150};
2151
2152static const struct of_device_id n2_mau_match[] = {
2153	{
2154		.name = "ncp",
2155		.compatible = "SUNW,n2-mau",
2156	},
2157	{
2158		.name = "ncp",
2159		.compatible = "SUNW,vf-mau",
2160	},
2161	{
2162		.name = "ncp",
2163		.compatible = "SUNW,kt-mau",
2164	},
2165	{},
2166};
2167
2168MODULE_DEVICE_TABLE(of, n2_mau_match);
2169
2170static struct platform_driver n2_mau_driver = {
2171	.driver = {
2172		.name		=	"ncp",
2173		.of_match_table	=	n2_mau_match,
2174	},
2175	.probe		=	n2_mau_probe,
2176	.remove		=	n2_mau_remove,
2177};
2178
2179static struct platform_driver * const drivers[] = {
2180	&n2_crypto_driver,
2181	&n2_mau_driver,
2182};
2183
2184static int __init n2_init(void)
2185{
2186	return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2187}
2188
2189static void __exit n2_exit(void)
2190{
2191	platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2192}
2193
2194module_init(n2_init);
2195module_exit(n2_exit);
2196