1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Cryptographic API.
4 *
5 * Driver for EIP97 SHA1/SHA2(HMAC) acceleration.
6 *
7 * Copyright (c) 2016 Ryder Lee <ryder.lee@mediatek.com>
8 *
9 * Some ideas are from atmel-sha.c and omap-sham.c drivers.
10 */
11
12#include <crypto/hmac.h>
13#include <crypto/sha.h>
14#include "mtk-platform.h"
15
16#define SHA_ALIGN_MSK		(sizeof(u32) - 1)
17#define SHA_QUEUE_SIZE		512
18#define SHA_BUF_SIZE		((u32)PAGE_SIZE)
19
20#define SHA_OP_UPDATE		1
21#define SHA_OP_FINAL		2
22
23#define SHA_DATA_LEN_MSK	cpu_to_le32(GENMASK(16, 0))
24#define SHA_MAX_DIGEST_BUF_SIZE	32
25
26/* SHA command token */
27#define SHA_CT_SIZE		5
28#define SHA_CT_CTRL_HDR		cpu_to_le32(0x02220000)
29#define SHA_CMD0		cpu_to_le32(0x03020000)
30#define SHA_CMD1		cpu_to_le32(0x21060000)
31#define SHA_CMD2		cpu_to_le32(0xe0e63802)
32
33/* SHA transform information */
34#define SHA_TFM_HASH		cpu_to_le32(0x2 << 0)
35#define SHA_TFM_SIZE(x)		cpu_to_le32((x) << 8)
36#define SHA_TFM_START		cpu_to_le32(0x1 << 4)
37#define SHA_TFM_CONTINUE	cpu_to_le32(0x1 << 5)
38#define SHA_TFM_HASH_STORE	cpu_to_le32(0x1 << 19)
39#define SHA_TFM_SHA1		cpu_to_le32(0x2 << 23)
40#define SHA_TFM_SHA256		cpu_to_le32(0x3 << 23)
41#define SHA_TFM_SHA224		cpu_to_le32(0x4 << 23)
42#define SHA_TFM_SHA512		cpu_to_le32(0x5 << 23)
43#define SHA_TFM_SHA384		cpu_to_le32(0x6 << 23)
44#define SHA_TFM_DIGEST(x)	cpu_to_le32(((x) & GENMASK(3, 0)) << 24)
45
46/* SHA flags */
47#define SHA_FLAGS_BUSY		BIT(0)
48#define	SHA_FLAGS_FINAL		BIT(1)
49#define SHA_FLAGS_FINUP		BIT(2)
50#define SHA_FLAGS_SG		BIT(3)
51#define SHA_FLAGS_ALGO_MSK	GENMASK(8, 4)
52#define SHA_FLAGS_SHA1		BIT(4)
53#define SHA_FLAGS_SHA224	BIT(5)
54#define SHA_FLAGS_SHA256	BIT(6)
55#define SHA_FLAGS_SHA384	BIT(7)
56#define SHA_FLAGS_SHA512	BIT(8)
57#define SHA_FLAGS_HMAC		BIT(9)
58#define SHA_FLAGS_PAD		BIT(10)
59
60/**
61 * mtk_sha_info - hardware information of AES
62 * @cmd:	command token, hardware instruction
63 * @tfm:	transform state of cipher algorithm.
64 * @state:	contains keys and initial vectors.
65 *
66 */
67struct mtk_sha_info {
68	__le32 ctrl[2];
69	__le32 cmd[3];
70	__le32 tfm[2];
71	__le32 digest[SHA_MAX_DIGEST_BUF_SIZE];
72};
73
74struct mtk_sha_reqctx {
75	struct mtk_sha_info info;
76	unsigned long flags;
77	unsigned long op;
78
79	u64 digcnt;
80	size_t bufcnt;
81	dma_addr_t dma_addr;
82
83	__le32 ct_hdr;
84	u32 ct_size;
85	dma_addr_t ct_dma;
86	dma_addr_t tfm_dma;
87
88	/* Walk state */
89	struct scatterlist *sg;
90	u32 offset;	/* Offset in current sg */
91	u32 total;	/* Total request */
92	size_t ds;
93	size_t bs;
94
95	u8 *buffer;
96};
97
98struct mtk_sha_hmac_ctx {
99	struct crypto_shash	*shash;
100	u8 ipad[SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
101	u8 opad[SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
102};
103
104struct mtk_sha_ctx {
105	struct mtk_cryp *cryp;
106	unsigned long flags;
107	u8 id;
108	u8 buf[SHA_BUF_SIZE] __aligned(sizeof(u32));
109
110	struct mtk_sha_hmac_ctx	base[];
111};
112
113struct mtk_sha_drv {
114	struct list_head dev_list;
115	/* Device list lock */
116	spinlock_t lock;
117};
118
119static struct mtk_sha_drv mtk_sha = {
120	.dev_list = LIST_HEAD_INIT(mtk_sha.dev_list),
121	.lock = __SPIN_LOCK_UNLOCKED(mtk_sha.lock),
122};
123
124static int mtk_sha_handle_queue(struct mtk_cryp *cryp, u8 id,
125				struct ahash_request *req);
126
127static inline u32 mtk_sha_read(struct mtk_cryp *cryp, u32 offset)
128{
129	return readl_relaxed(cryp->base + offset);
130}
131
132static inline void mtk_sha_write(struct mtk_cryp *cryp,
133				 u32 offset, u32 value)
134{
135	writel_relaxed(value, cryp->base + offset);
136}
137
138static inline void mtk_sha_ring_shift(struct mtk_ring *ring,
139				      struct mtk_desc **cmd_curr,
140				      struct mtk_desc **res_curr,
141				      int *count)
142{
143	*cmd_curr = ring->cmd_next++;
144	*res_curr = ring->res_next++;
145	(*count)++;
146
147	if (ring->cmd_next == ring->cmd_base + MTK_DESC_NUM) {
148		ring->cmd_next = ring->cmd_base;
149		ring->res_next = ring->res_base;
150	}
151}
152
153static struct mtk_cryp *mtk_sha_find_dev(struct mtk_sha_ctx *tctx)
154{
155	struct mtk_cryp *cryp = NULL;
156	struct mtk_cryp *tmp;
157
158	spin_lock_bh(&mtk_sha.lock);
159	if (!tctx->cryp) {
160		list_for_each_entry(tmp, &mtk_sha.dev_list, sha_list) {
161			cryp = tmp;
162			break;
163		}
164		tctx->cryp = cryp;
165	} else {
166		cryp = tctx->cryp;
167	}
168
169	/*
170	 * Assign record id to tfm in round-robin fashion, and this
171	 * will help tfm to bind  to corresponding descriptor rings.
172	 */
173	tctx->id = cryp->rec;
174	cryp->rec = !cryp->rec;
175
176	spin_unlock_bh(&mtk_sha.lock);
177
178	return cryp;
179}
180
181static int mtk_sha_append_sg(struct mtk_sha_reqctx *ctx)
182{
183	size_t count;
184
185	while ((ctx->bufcnt < SHA_BUF_SIZE) && ctx->total) {
186		count = min(ctx->sg->length - ctx->offset, ctx->total);
187		count = min(count, SHA_BUF_SIZE - ctx->bufcnt);
188
189		if (count <= 0) {
190			/*
191			 * Check if count <= 0 because the buffer is full or
192			 * because the sg length is 0. In the latest case,
193			 * check if there is another sg in the list, a 0 length
194			 * sg doesn't necessarily mean the end of the sg list.
195			 */
196			if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
197				ctx->sg = sg_next(ctx->sg);
198				continue;
199			} else {
200				break;
201			}
202		}
203
204		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
205					 ctx->offset, count, 0);
206
207		ctx->bufcnt += count;
208		ctx->offset += count;
209		ctx->total -= count;
210
211		if (ctx->offset == ctx->sg->length) {
212			ctx->sg = sg_next(ctx->sg);
213			if (ctx->sg)
214				ctx->offset = 0;
215			else
216				ctx->total = 0;
217		}
218	}
219
220	return 0;
221}
222
223/*
224 * The purpose of this padding is to ensure that the padded message is a
225 * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
226 * The bit "1" is appended at the end of the message followed by
227 * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
228 * 128 bits block (SHA384/SHA512) equals to the message length in bits
229 * is appended.
230 *
231 * For SHA1/SHA224/SHA256, padlen is calculated as followed:
232 *  - if message length < 56 bytes then padlen = 56 - message length
233 *  - else padlen = 64 + 56 - message length
234 *
235 * For SHA384/SHA512, padlen is calculated as followed:
236 *  - if message length < 112 bytes then padlen = 112 - message length
237 *  - else padlen = 128 + 112 - message length
238 */
239static void mtk_sha_fill_padding(struct mtk_sha_reqctx *ctx, u32 len)
240{
241	u32 index, padlen;
242	__be64 bits[2];
243	u64 size = ctx->digcnt;
244
245	size += ctx->bufcnt;
246	size += len;
247
248	bits[1] = cpu_to_be64(size << 3);
249	bits[0] = cpu_to_be64(size >> 61);
250
251	switch (ctx->flags & SHA_FLAGS_ALGO_MSK) {
252	case SHA_FLAGS_SHA384:
253	case SHA_FLAGS_SHA512:
254		index = ctx->bufcnt & 0x7f;
255		padlen = (index < 112) ? (112 - index) : ((128 + 112) - index);
256		*(ctx->buffer + ctx->bufcnt) = 0x80;
257		memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen - 1);
258		memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
259		ctx->bufcnt += padlen + 16;
260		ctx->flags |= SHA_FLAGS_PAD;
261		break;
262
263	default:
264		index = ctx->bufcnt & 0x3f;
265		padlen = (index < 56) ? (56 - index) : ((64 + 56) - index);
266		*(ctx->buffer + ctx->bufcnt) = 0x80;
267		memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen - 1);
268		memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
269		ctx->bufcnt += padlen + 8;
270		ctx->flags |= SHA_FLAGS_PAD;
271		break;
272	}
273}
274
275/* Initialize basic transform information of SHA */
276static void mtk_sha_info_init(struct mtk_sha_reqctx *ctx)
277{
278	struct mtk_sha_info *info = &ctx->info;
279
280	ctx->ct_hdr = SHA_CT_CTRL_HDR;
281	ctx->ct_size = SHA_CT_SIZE;
282
283	info->tfm[0] = SHA_TFM_HASH | SHA_TFM_SIZE(SIZE_IN_WORDS(ctx->ds));
284
285	switch (ctx->flags & SHA_FLAGS_ALGO_MSK) {
286	case SHA_FLAGS_SHA1:
287		info->tfm[0] |= SHA_TFM_SHA1;
288		break;
289	case SHA_FLAGS_SHA224:
290		info->tfm[0] |= SHA_TFM_SHA224;
291		break;
292	case SHA_FLAGS_SHA256:
293		info->tfm[0] |= SHA_TFM_SHA256;
294		break;
295	case SHA_FLAGS_SHA384:
296		info->tfm[0] |= SHA_TFM_SHA384;
297		break;
298	case SHA_FLAGS_SHA512:
299		info->tfm[0] |= SHA_TFM_SHA512;
300		break;
301
302	default:
303		/* Should not happen... */
304		return;
305	}
306
307	info->tfm[1] = SHA_TFM_HASH_STORE;
308	info->ctrl[0] = info->tfm[0] | SHA_TFM_CONTINUE | SHA_TFM_START;
309	info->ctrl[1] = info->tfm[1];
310
311	info->cmd[0] = SHA_CMD0;
312	info->cmd[1] = SHA_CMD1;
313	info->cmd[2] = SHA_CMD2 | SHA_TFM_DIGEST(SIZE_IN_WORDS(ctx->ds));
314}
315
316/*
317 * Update input data length field of transform information and
318 * map it to DMA region.
319 */
320static int mtk_sha_info_update(struct mtk_cryp *cryp,
321			       struct mtk_sha_rec *sha,
322			       size_t len1, size_t len2)
323{
324	struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
325	struct mtk_sha_info *info = &ctx->info;
326
327	ctx->ct_hdr &= ~SHA_DATA_LEN_MSK;
328	ctx->ct_hdr |= cpu_to_le32(len1 + len2);
329	info->cmd[0] &= ~SHA_DATA_LEN_MSK;
330	info->cmd[0] |= cpu_to_le32(len1 + len2);
331
332	/* Setting SHA_TFM_START only for the first iteration */
333	if (ctx->digcnt)
334		info->ctrl[0] &= ~SHA_TFM_START;
335
336	ctx->digcnt += len1;
337
338	ctx->ct_dma = dma_map_single(cryp->dev, info, sizeof(*info),
339				     DMA_BIDIRECTIONAL);
340	if (unlikely(dma_mapping_error(cryp->dev, ctx->ct_dma))) {
341		dev_err(cryp->dev, "dma %zu bytes error\n", sizeof(*info));
342		return -EINVAL;
343	}
344
345	ctx->tfm_dma = ctx->ct_dma + sizeof(info->ctrl) + sizeof(info->cmd);
346
347	return 0;
348}
349
350/*
351 * Because of hardware limitation, we must pre-calculate the inner
352 * and outer digest that need to be processed firstly by engine, then
353 * apply the result digest to the input message. These complex hashing
354 * procedures limits HMAC performance, so we use fallback SW encoding.
355 */
356static int mtk_sha_finish_hmac(struct ahash_request *req)
357{
358	struct mtk_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
359	struct mtk_sha_hmac_ctx *bctx = tctx->base;
360	struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
361
362	SHASH_DESC_ON_STACK(shash, bctx->shash);
363
364	shash->tfm = bctx->shash;
365
366	return crypto_shash_init(shash) ?:
367	       crypto_shash_update(shash, bctx->opad, ctx->bs) ?:
368	       crypto_shash_finup(shash, req->result, ctx->ds, req->result);
369}
370
371/* Initialize request context */
372static int mtk_sha_init(struct ahash_request *req)
373{
374	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
375	struct mtk_sha_ctx *tctx = crypto_ahash_ctx(tfm);
376	struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
377
378	ctx->flags = 0;
379	ctx->ds = crypto_ahash_digestsize(tfm);
380
381	switch (ctx->ds) {
382	case SHA1_DIGEST_SIZE:
383		ctx->flags |= SHA_FLAGS_SHA1;
384		ctx->bs = SHA1_BLOCK_SIZE;
385		break;
386	case SHA224_DIGEST_SIZE:
387		ctx->flags |= SHA_FLAGS_SHA224;
388		ctx->bs = SHA224_BLOCK_SIZE;
389		break;
390	case SHA256_DIGEST_SIZE:
391		ctx->flags |= SHA_FLAGS_SHA256;
392		ctx->bs = SHA256_BLOCK_SIZE;
393		break;
394	case SHA384_DIGEST_SIZE:
395		ctx->flags |= SHA_FLAGS_SHA384;
396		ctx->bs = SHA384_BLOCK_SIZE;
397		break;
398	case SHA512_DIGEST_SIZE:
399		ctx->flags |= SHA_FLAGS_SHA512;
400		ctx->bs = SHA512_BLOCK_SIZE;
401		break;
402	default:
403		return -EINVAL;
404	}
405
406	ctx->bufcnt = 0;
407	ctx->digcnt = 0;
408	ctx->buffer = tctx->buf;
409
410	if (tctx->flags & SHA_FLAGS_HMAC) {
411		struct mtk_sha_hmac_ctx *bctx = tctx->base;
412
413		memcpy(ctx->buffer, bctx->ipad, ctx->bs);
414		ctx->bufcnt = ctx->bs;
415		ctx->flags |= SHA_FLAGS_HMAC;
416	}
417
418	return 0;
419}
420
421static int mtk_sha_xmit(struct mtk_cryp *cryp, struct mtk_sha_rec *sha,
422			dma_addr_t addr1, size_t len1,
423			dma_addr_t addr2, size_t len2)
424{
425	struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
426	struct mtk_ring *ring = cryp->ring[sha->id];
427	struct mtk_desc *cmd, *res;
428	int err, count = 0;
429
430	err = mtk_sha_info_update(cryp, sha, len1, len2);
431	if (err)
432		return err;
433
434	/* Fill in the command/result descriptors */
435	mtk_sha_ring_shift(ring, &cmd, &res, &count);
436
437	res->hdr = MTK_DESC_FIRST | MTK_DESC_BUF_LEN(len1);
438	cmd->hdr = MTK_DESC_FIRST | MTK_DESC_BUF_LEN(len1) |
439		   MTK_DESC_CT_LEN(ctx->ct_size);
440	cmd->buf = cpu_to_le32(addr1);
441	cmd->ct = cpu_to_le32(ctx->ct_dma);
442	cmd->ct_hdr = ctx->ct_hdr;
443	cmd->tfm = cpu_to_le32(ctx->tfm_dma);
444
445	if (len2) {
446		mtk_sha_ring_shift(ring, &cmd, &res, &count);
447
448		res->hdr = MTK_DESC_BUF_LEN(len2);
449		cmd->hdr = MTK_DESC_BUF_LEN(len2);
450		cmd->buf = cpu_to_le32(addr2);
451	}
452
453	cmd->hdr |= MTK_DESC_LAST;
454	res->hdr |= MTK_DESC_LAST;
455
456	/*
457	 * Make sure that all changes to the DMA ring are done before we
458	 * start engine.
459	 */
460	wmb();
461	/* Start DMA transfer */
462	mtk_sha_write(cryp, RDR_PREP_COUNT(sha->id), MTK_DESC_CNT(count));
463	mtk_sha_write(cryp, CDR_PREP_COUNT(sha->id), MTK_DESC_CNT(count));
464
465	return -EINPROGRESS;
466}
467
468static int mtk_sha_dma_map(struct mtk_cryp *cryp,
469			   struct mtk_sha_rec *sha,
470			   struct mtk_sha_reqctx *ctx,
471			   size_t count)
472{
473	ctx->dma_addr = dma_map_single(cryp->dev, ctx->buffer,
474				       SHA_BUF_SIZE, DMA_TO_DEVICE);
475	if (unlikely(dma_mapping_error(cryp->dev, ctx->dma_addr))) {
476		dev_err(cryp->dev, "dma map error\n");
477		return -EINVAL;
478	}
479
480	ctx->flags &= ~SHA_FLAGS_SG;
481
482	return mtk_sha_xmit(cryp, sha, ctx->dma_addr, count, 0, 0);
483}
484
485static int mtk_sha_update_slow(struct mtk_cryp *cryp,
486			       struct mtk_sha_rec *sha)
487{
488	struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
489	size_t count;
490	u32 final;
491
492	mtk_sha_append_sg(ctx);
493
494	final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
495
496	dev_dbg(cryp->dev, "slow: bufcnt: %zu\n", ctx->bufcnt);
497
498	if (final) {
499		sha->flags |= SHA_FLAGS_FINAL;
500		mtk_sha_fill_padding(ctx, 0);
501	}
502
503	if (final || (ctx->bufcnt == SHA_BUF_SIZE && ctx->total)) {
504		count = ctx->bufcnt;
505		ctx->bufcnt = 0;
506
507		return mtk_sha_dma_map(cryp, sha, ctx, count);
508	}
509	return 0;
510}
511
512static int mtk_sha_update_start(struct mtk_cryp *cryp,
513				struct mtk_sha_rec *sha)
514{
515	struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
516	u32 len, final, tail;
517	struct scatterlist *sg;
518
519	if (!ctx->total)
520		return 0;
521
522	if (ctx->bufcnt || ctx->offset)
523		return mtk_sha_update_slow(cryp, sha);
524
525	sg = ctx->sg;
526
527	if (!IS_ALIGNED(sg->offset, sizeof(u32)))
528		return mtk_sha_update_slow(cryp, sha);
529
530	if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->bs))
531		/* size is not ctx->bs aligned */
532		return mtk_sha_update_slow(cryp, sha);
533
534	len = min(ctx->total, sg->length);
535
536	if (sg_is_last(sg)) {
537		if (!(ctx->flags & SHA_FLAGS_FINUP)) {
538			/* not last sg must be ctx->bs aligned */
539			tail = len & (ctx->bs - 1);
540			len -= tail;
541		}
542	}
543
544	ctx->total -= len;
545	ctx->offset = len; /* offset where to start slow */
546
547	final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
548
549	/* Add padding */
550	if (final) {
551		size_t count;
552
553		tail = len & (ctx->bs - 1);
554		len -= tail;
555		ctx->total += tail;
556		ctx->offset = len; /* offset where to start slow */
557
558		sg = ctx->sg;
559		mtk_sha_append_sg(ctx);
560		mtk_sha_fill_padding(ctx, len);
561
562		ctx->dma_addr = dma_map_single(cryp->dev, ctx->buffer,
563					       SHA_BUF_SIZE, DMA_TO_DEVICE);
564		if (unlikely(dma_mapping_error(cryp->dev, ctx->dma_addr))) {
565			dev_err(cryp->dev, "dma map bytes error\n");
566			return -EINVAL;
567		}
568
569		sha->flags |= SHA_FLAGS_FINAL;
570		count = ctx->bufcnt;
571		ctx->bufcnt = 0;
572
573		if (len == 0) {
574			ctx->flags &= ~SHA_FLAGS_SG;
575			return mtk_sha_xmit(cryp, sha, ctx->dma_addr,
576					    count, 0, 0);
577
578		} else {
579			ctx->sg = sg;
580			if (!dma_map_sg(cryp->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
581				dev_err(cryp->dev, "dma_map_sg error\n");
582				return -EINVAL;
583			}
584
585			ctx->flags |= SHA_FLAGS_SG;
586			return mtk_sha_xmit(cryp, sha, sg_dma_address(ctx->sg),
587					    len, ctx->dma_addr, count);
588		}
589	}
590
591	if (!dma_map_sg(cryp->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
592		dev_err(cryp->dev, "dma_map_sg  error\n");
593		return -EINVAL;
594	}
595
596	ctx->flags |= SHA_FLAGS_SG;
597
598	return mtk_sha_xmit(cryp, sha, sg_dma_address(ctx->sg),
599			    len, 0, 0);
600}
601
602static int mtk_sha_final_req(struct mtk_cryp *cryp,
603			     struct mtk_sha_rec *sha)
604{
605	struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
606	size_t count;
607
608	mtk_sha_fill_padding(ctx, 0);
609
610	sha->flags |= SHA_FLAGS_FINAL;
611	count = ctx->bufcnt;
612	ctx->bufcnt = 0;
613
614	return mtk_sha_dma_map(cryp, sha, ctx, count);
615}
616
617/* Copy ready hash (+ finalize hmac) */
618static int mtk_sha_finish(struct ahash_request *req)
619{
620	struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
621	__le32 *digest = ctx->info.digest;
622	u32 *result = (u32 *)req->result;
623	int i;
624
625	/* Get the hash from the digest buffer */
626	for (i = 0; i < SIZE_IN_WORDS(ctx->ds); i++)
627		result[i] = le32_to_cpu(digest[i]);
628
629	if (ctx->flags & SHA_FLAGS_HMAC)
630		return mtk_sha_finish_hmac(req);
631
632	return 0;
633}
634
635static void mtk_sha_finish_req(struct mtk_cryp *cryp,
636			       struct mtk_sha_rec *sha,
637			       int err)
638{
639	if (likely(!err && (SHA_FLAGS_FINAL & sha->flags)))
640		err = mtk_sha_finish(sha->req);
641
642	sha->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL);
643
644	sha->req->base.complete(&sha->req->base, err);
645
646	/* Handle new request */
647	tasklet_schedule(&sha->queue_task);
648}
649
650static int mtk_sha_handle_queue(struct mtk_cryp *cryp, u8 id,
651				struct ahash_request *req)
652{
653	struct mtk_sha_rec *sha = cryp->sha[id];
654	struct crypto_async_request *async_req, *backlog;
655	struct mtk_sha_reqctx *ctx;
656	unsigned long flags;
657	int err = 0, ret = 0;
658
659	spin_lock_irqsave(&sha->lock, flags);
660	if (req)
661		ret = ahash_enqueue_request(&sha->queue, req);
662
663	if (SHA_FLAGS_BUSY & sha->flags) {
664		spin_unlock_irqrestore(&sha->lock, flags);
665		return ret;
666	}
667
668	backlog = crypto_get_backlog(&sha->queue);
669	async_req = crypto_dequeue_request(&sha->queue);
670	if (async_req)
671		sha->flags |= SHA_FLAGS_BUSY;
672	spin_unlock_irqrestore(&sha->lock, flags);
673
674	if (!async_req)
675		return ret;
676
677	if (backlog)
678		backlog->complete(backlog, -EINPROGRESS);
679
680	req = ahash_request_cast(async_req);
681	ctx = ahash_request_ctx(req);
682
683	sha->req = req;
684
685	mtk_sha_info_init(ctx);
686
687	if (ctx->op == SHA_OP_UPDATE) {
688		err = mtk_sha_update_start(cryp, sha);
689		if (err != -EINPROGRESS && (ctx->flags & SHA_FLAGS_FINUP))
690			/* No final() after finup() */
691			err = mtk_sha_final_req(cryp, sha);
692	} else if (ctx->op == SHA_OP_FINAL) {
693		err = mtk_sha_final_req(cryp, sha);
694	}
695
696	if (unlikely(err != -EINPROGRESS))
697		/* Task will not finish it, so do it here */
698		mtk_sha_finish_req(cryp, sha, err);
699
700	return ret;
701}
702
703static int mtk_sha_enqueue(struct ahash_request *req, u32 op)
704{
705	struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
706	struct mtk_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
707
708	ctx->op = op;
709
710	return mtk_sha_handle_queue(tctx->cryp, tctx->id, req);
711}
712
713static void mtk_sha_unmap(struct mtk_cryp *cryp, struct mtk_sha_rec *sha)
714{
715	struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
716
717	dma_unmap_single(cryp->dev, ctx->ct_dma, sizeof(ctx->info),
718			 DMA_BIDIRECTIONAL);
719
720	if (ctx->flags & SHA_FLAGS_SG) {
721		dma_unmap_sg(cryp->dev, ctx->sg, 1, DMA_TO_DEVICE);
722		if (ctx->sg->length == ctx->offset) {
723			ctx->sg = sg_next(ctx->sg);
724			if (ctx->sg)
725				ctx->offset = 0;
726		}
727		if (ctx->flags & SHA_FLAGS_PAD) {
728			dma_unmap_single(cryp->dev, ctx->dma_addr,
729					 SHA_BUF_SIZE, DMA_TO_DEVICE);
730		}
731	} else
732		dma_unmap_single(cryp->dev, ctx->dma_addr,
733				 SHA_BUF_SIZE, DMA_TO_DEVICE);
734}
735
736static void mtk_sha_complete(struct mtk_cryp *cryp,
737			     struct mtk_sha_rec *sha)
738{
739	int err = 0;
740
741	err = mtk_sha_update_start(cryp, sha);
742	if (err != -EINPROGRESS)
743		mtk_sha_finish_req(cryp, sha, err);
744}
745
746static int mtk_sha_update(struct ahash_request *req)
747{
748	struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
749
750	ctx->total = req->nbytes;
751	ctx->sg = req->src;
752	ctx->offset = 0;
753
754	if ((ctx->bufcnt + ctx->total < SHA_BUF_SIZE) &&
755	    !(ctx->flags & SHA_FLAGS_FINUP))
756		return mtk_sha_append_sg(ctx);
757
758	return mtk_sha_enqueue(req, SHA_OP_UPDATE);
759}
760
761static int mtk_sha_final(struct ahash_request *req)
762{
763	struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
764
765	ctx->flags |= SHA_FLAGS_FINUP;
766
767	if (ctx->flags & SHA_FLAGS_PAD)
768		return mtk_sha_finish(req);
769
770	return mtk_sha_enqueue(req, SHA_OP_FINAL);
771}
772
773static int mtk_sha_finup(struct ahash_request *req)
774{
775	struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
776	int err1, err2;
777
778	ctx->flags |= SHA_FLAGS_FINUP;
779
780	err1 = mtk_sha_update(req);
781	if (err1 == -EINPROGRESS ||
782	    (err1 == -EBUSY && (ahash_request_flags(req) &
783				CRYPTO_TFM_REQ_MAY_BACKLOG)))
784		return err1;
785	/*
786	 * final() has to be always called to cleanup resources
787	 * even if update() failed
788	 */
789	err2 = mtk_sha_final(req);
790
791	return err1 ?: err2;
792}
793
794static int mtk_sha_digest(struct ahash_request *req)
795{
796	return mtk_sha_init(req) ?: mtk_sha_finup(req);
797}
798
799static int mtk_sha_setkey(struct crypto_ahash *tfm, const u8 *key,
800			  u32 keylen)
801{
802	struct mtk_sha_ctx *tctx = crypto_ahash_ctx(tfm);
803	struct mtk_sha_hmac_ctx *bctx = tctx->base;
804	size_t bs = crypto_shash_blocksize(bctx->shash);
805	size_t ds = crypto_shash_digestsize(bctx->shash);
806	int err, i;
807
808	if (keylen > bs) {
809		err = crypto_shash_tfm_digest(bctx->shash, key, keylen,
810					      bctx->ipad);
811		if (err)
812			return err;
813		keylen = ds;
814	} else {
815		memcpy(bctx->ipad, key, keylen);
816	}
817
818	memset(bctx->ipad + keylen, 0, bs - keylen);
819	memcpy(bctx->opad, bctx->ipad, bs);
820
821	for (i = 0; i < bs; i++) {
822		bctx->ipad[i] ^= HMAC_IPAD_VALUE;
823		bctx->opad[i] ^= HMAC_OPAD_VALUE;
824	}
825
826	return 0;
827}
828
829static int mtk_sha_export(struct ahash_request *req, void *out)
830{
831	const struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
832
833	memcpy(out, ctx, sizeof(*ctx));
834	return 0;
835}
836
837static int mtk_sha_import(struct ahash_request *req, const void *in)
838{
839	struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
840
841	memcpy(ctx, in, sizeof(*ctx));
842	return 0;
843}
844
845static int mtk_sha_cra_init_alg(struct crypto_tfm *tfm,
846				const char *alg_base)
847{
848	struct mtk_sha_ctx *tctx = crypto_tfm_ctx(tfm);
849	struct mtk_cryp *cryp = NULL;
850
851	cryp = mtk_sha_find_dev(tctx);
852	if (!cryp)
853		return -ENODEV;
854
855	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
856				 sizeof(struct mtk_sha_reqctx));
857
858	if (alg_base) {
859		struct mtk_sha_hmac_ctx *bctx = tctx->base;
860
861		tctx->flags |= SHA_FLAGS_HMAC;
862		bctx->shash = crypto_alloc_shash(alg_base, 0,
863					CRYPTO_ALG_NEED_FALLBACK);
864		if (IS_ERR(bctx->shash)) {
865			pr_err("base driver %s could not be loaded.\n",
866			       alg_base);
867
868			return PTR_ERR(bctx->shash);
869		}
870	}
871	return 0;
872}
873
874static int mtk_sha_cra_init(struct crypto_tfm *tfm)
875{
876	return mtk_sha_cra_init_alg(tfm, NULL);
877}
878
879static int mtk_sha_cra_sha1_init(struct crypto_tfm *tfm)
880{
881	return mtk_sha_cra_init_alg(tfm, "sha1");
882}
883
884static int mtk_sha_cra_sha224_init(struct crypto_tfm *tfm)
885{
886	return mtk_sha_cra_init_alg(tfm, "sha224");
887}
888
889static int mtk_sha_cra_sha256_init(struct crypto_tfm *tfm)
890{
891	return mtk_sha_cra_init_alg(tfm, "sha256");
892}
893
894static int mtk_sha_cra_sha384_init(struct crypto_tfm *tfm)
895{
896	return mtk_sha_cra_init_alg(tfm, "sha384");
897}
898
899static int mtk_sha_cra_sha512_init(struct crypto_tfm *tfm)
900{
901	return mtk_sha_cra_init_alg(tfm, "sha512");
902}
903
904static void mtk_sha_cra_exit(struct crypto_tfm *tfm)
905{
906	struct mtk_sha_ctx *tctx = crypto_tfm_ctx(tfm);
907
908	if (tctx->flags & SHA_FLAGS_HMAC) {
909		struct mtk_sha_hmac_ctx *bctx = tctx->base;
910
911		crypto_free_shash(bctx->shash);
912	}
913}
914
915static struct ahash_alg algs_sha1_sha224_sha256[] = {
916{
917	.init		= mtk_sha_init,
918	.update		= mtk_sha_update,
919	.final		= mtk_sha_final,
920	.finup		= mtk_sha_finup,
921	.digest		= mtk_sha_digest,
922	.export		= mtk_sha_export,
923	.import		= mtk_sha_import,
924	.halg.digestsize	= SHA1_DIGEST_SIZE,
925	.halg.statesize = sizeof(struct mtk_sha_reqctx),
926	.halg.base	= {
927		.cra_name		= "sha1",
928		.cra_driver_name	= "mtk-sha1",
929		.cra_priority		= 400,
930		.cra_flags		= CRYPTO_ALG_ASYNC,
931		.cra_blocksize		= SHA1_BLOCK_SIZE,
932		.cra_ctxsize		= sizeof(struct mtk_sha_ctx),
933		.cra_alignmask		= SHA_ALIGN_MSK,
934		.cra_module		= THIS_MODULE,
935		.cra_init		= mtk_sha_cra_init,
936		.cra_exit		= mtk_sha_cra_exit,
937	}
938},
939{
940	.init		= mtk_sha_init,
941	.update		= mtk_sha_update,
942	.final		= mtk_sha_final,
943	.finup		= mtk_sha_finup,
944	.digest		= mtk_sha_digest,
945	.export		= mtk_sha_export,
946	.import		= mtk_sha_import,
947	.halg.digestsize	= SHA224_DIGEST_SIZE,
948	.halg.statesize = sizeof(struct mtk_sha_reqctx),
949	.halg.base	= {
950		.cra_name		= "sha224",
951		.cra_driver_name	= "mtk-sha224",
952		.cra_priority		= 400,
953		.cra_flags		= CRYPTO_ALG_ASYNC,
954		.cra_blocksize		= SHA224_BLOCK_SIZE,
955		.cra_ctxsize		= sizeof(struct mtk_sha_ctx),
956		.cra_alignmask		= SHA_ALIGN_MSK,
957		.cra_module		= THIS_MODULE,
958		.cra_init		= mtk_sha_cra_init,
959		.cra_exit		= mtk_sha_cra_exit,
960	}
961},
962{
963	.init		= mtk_sha_init,
964	.update		= mtk_sha_update,
965	.final		= mtk_sha_final,
966	.finup		= mtk_sha_finup,
967	.digest		= mtk_sha_digest,
968	.export		= mtk_sha_export,
969	.import		= mtk_sha_import,
970	.halg.digestsize	= SHA256_DIGEST_SIZE,
971	.halg.statesize = sizeof(struct mtk_sha_reqctx),
972	.halg.base	= {
973		.cra_name		= "sha256",
974		.cra_driver_name	= "mtk-sha256",
975		.cra_priority		= 400,
976		.cra_flags		= CRYPTO_ALG_ASYNC,
977		.cra_blocksize		= SHA256_BLOCK_SIZE,
978		.cra_ctxsize		= sizeof(struct mtk_sha_ctx),
979		.cra_alignmask		= SHA_ALIGN_MSK,
980		.cra_module		= THIS_MODULE,
981		.cra_init		= mtk_sha_cra_init,
982		.cra_exit		= mtk_sha_cra_exit,
983	}
984},
985{
986	.init		= mtk_sha_init,
987	.update		= mtk_sha_update,
988	.final		= mtk_sha_final,
989	.finup		= mtk_sha_finup,
990	.digest		= mtk_sha_digest,
991	.export		= mtk_sha_export,
992	.import		= mtk_sha_import,
993	.setkey		= mtk_sha_setkey,
994	.halg.digestsize	= SHA1_DIGEST_SIZE,
995	.halg.statesize = sizeof(struct mtk_sha_reqctx),
996	.halg.base	= {
997		.cra_name		= "hmac(sha1)",
998		.cra_driver_name	= "mtk-hmac-sha1",
999		.cra_priority		= 400,
1000		.cra_flags		= CRYPTO_ALG_ASYNC |
1001					  CRYPTO_ALG_NEED_FALLBACK,
1002		.cra_blocksize		= SHA1_BLOCK_SIZE,
1003		.cra_ctxsize		= sizeof(struct mtk_sha_ctx) +
1004					sizeof(struct mtk_sha_hmac_ctx),
1005		.cra_alignmask		= SHA_ALIGN_MSK,
1006		.cra_module		= THIS_MODULE,
1007		.cra_init		= mtk_sha_cra_sha1_init,
1008		.cra_exit		= mtk_sha_cra_exit,
1009	}
1010},
1011{
1012	.init		= mtk_sha_init,
1013	.update		= mtk_sha_update,
1014	.final		= mtk_sha_final,
1015	.finup		= mtk_sha_finup,
1016	.digest		= mtk_sha_digest,
1017	.export		= mtk_sha_export,
1018	.import		= mtk_sha_import,
1019	.setkey		= mtk_sha_setkey,
1020	.halg.digestsize	= SHA224_DIGEST_SIZE,
1021	.halg.statesize = sizeof(struct mtk_sha_reqctx),
1022	.halg.base	= {
1023		.cra_name		= "hmac(sha224)",
1024		.cra_driver_name	= "mtk-hmac-sha224",
1025		.cra_priority		= 400,
1026		.cra_flags		= CRYPTO_ALG_ASYNC |
1027					  CRYPTO_ALG_NEED_FALLBACK,
1028		.cra_blocksize		= SHA224_BLOCK_SIZE,
1029		.cra_ctxsize		= sizeof(struct mtk_sha_ctx) +
1030					sizeof(struct mtk_sha_hmac_ctx),
1031		.cra_alignmask		= SHA_ALIGN_MSK,
1032		.cra_module		= THIS_MODULE,
1033		.cra_init		= mtk_sha_cra_sha224_init,
1034		.cra_exit		= mtk_sha_cra_exit,
1035	}
1036},
1037{
1038	.init		= mtk_sha_init,
1039	.update		= mtk_sha_update,
1040	.final		= mtk_sha_final,
1041	.finup		= mtk_sha_finup,
1042	.digest		= mtk_sha_digest,
1043	.export		= mtk_sha_export,
1044	.import		= mtk_sha_import,
1045	.setkey		= mtk_sha_setkey,
1046	.halg.digestsize	= SHA256_DIGEST_SIZE,
1047	.halg.statesize = sizeof(struct mtk_sha_reqctx),
1048	.halg.base	= {
1049		.cra_name		= "hmac(sha256)",
1050		.cra_driver_name	= "mtk-hmac-sha256",
1051		.cra_priority		= 400,
1052		.cra_flags		= CRYPTO_ALG_ASYNC |
1053					  CRYPTO_ALG_NEED_FALLBACK,
1054		.cra_blocksize		= SHA256_BLOCK_SIZE,
1055		.cra_ctxsize		= sizeof(struct mtk_sha_ctx) +
1056					sizeof(struct mtk_sha_hmac_ctx),
1057		.cra_alignmask		= SHA_ALIGN_MSK,
1058		.cra_module		= THIS_MODULE,
1059		.cra_init		= mtk_sha_cra_sha256_init,
1060		.cra_exit		= mtk_sha_cra_exit,
1061	}
1062},
1063};
1064
1065static struct ahash_alg algs_sha384_sha512[] = {
1066{
1067	.init		= mtk_sha_init,
1068	.update		= mtk_sha_update,
1069	.final		= mtk_sha_final,
1070	.finup		= mtk_sha_finup,
1071	.digest		= mtk_sha_digest,
1072	.export		= mtk_sha_export,
1073	.import		= mtk_sha_import,
1074	.halg.digestsize	= SHA384_DIGEST_SIZE,
1075	.halg.statesize = sizeof(struct mtk_sha_reqctx),
1076	.halg.base	= {
1077		.cra_name		= "sha384",
1078		.cra_driver_name	= "mtk-sha384",
1079		.cra_priority		= 400,
1080		.cra_flags		= CRYPTO_ALG_ASYNC,
1081		.cra_blocksize		= SHA384_BLOCK_SIZE,
1082		.cra_ctxsize		= sizeof(struct mtk_sha_ctx),
1083		.cra_alignmask		= SHA_ALIGN_MSK,
1084		.cra_module		= THIS_MODULE,
1085		.cra_init		= mtk_sha_cra_init,
1086		.cra_exit		= mtk_sha_cra_exit,
1087	}
1088},
1089{
1090	.init		= mtk_sha_init,
1091	.update		= mtk_sha_update,
1092	.final		= mtk_sha_final,
1093	.finup		= mtk_sha_finup,
1094	.digest		= mtk_sha_digest,
1095	.export		= mtk_sha_export,
1096	.import		= mtk_sha_import,
1097	.halg.digestsize	= SHA512_DIGEST_SIZE,
1098	.halg.statesize = sizeof(struct mtk_sha_reqctx),
1099	.halg.base	= {
1100		.cra_name		= "sha512",
1101		.cra_driver_name	= "mtk-sha512",
1102		.cra_priority		= 400,
1103		.cra_flags		= CRYPTO_ALG_ASYNC,
1104		.cra_blocksize		= SHA512_BLOCK_SIZE,
1105		.cra_ctxsize		= sizeof(struct mtk_sha_ctx),
1106		.cra_alignmask		= SHA_ALIGN_MSK,
1107		.cra_module		= THIS_MODULE,
1108		.cra_init		= mtk_sha_cra_init,
1109		.cra_exit		= mtk_sha_cra_exit,
1110	}
1111},
1112{
1113	.init		= mtk_sha_init,
1114	.update		= mtk_sha_update,
1115	.final		= mtk_sha_final,
1116	.finup		= mtk_sha_finup,
1117	.digest		= mtk_sha_digest,
1118	.export		= mtk_sha_export,
1119	.import		= mtk_sha_import,
1120	.setkey		= mtk_sha_setkey,
1121	.halg.digestsize	= SHA384_DIGEST_SIZE,
1122	.halg.statesize = sizeof(struct mtk_sha_reqctx),
1123	.halg.base	= {
1124		.cra_name		= "hmac(sha384)",
1125		.cra_driver_name	= "mtk-hmac-sha384",
1126		.cra_priority		= 400,
1127		.cra_flags		= CRYPTO_ALG_ASYNC |
1128					  CRYPTO_ALG_NEED_FALLBACK,
1129		.cra_blocksize		= SHA384_BLOCK_SIZE,
1130		.cra_ctxsize		= sizeof(struct mtk_sha_ctx) +
1131					sizeof(struct mtk_sha_hmac_ctx),
1132		.cra_alignmask		= SHA_ALIGN_MSK,
1133		.cra_module		= THIS_MODULE,
1134		.cra_init		= mtk_sha_cra_sha384_init,
1135		.cra_exit		= mtk_sha_cra_exit,
1136	}
1137},
1138{
1139	.init		= mtk_sha_init,
1140	.update		= mtk_sha_update,
1141	.final		= mtk_sha_final,
1142	.finup		= mtk_sha_finup,
1143	.digest		= mtk_sha_digest,
1144	.export		= mtk_sha_export,
1145	.import		= mtk_sha_import,
1146	.setkey		= mtk_sha_setkey,
1147	.halg.digestsize	= SHA512_DIGEST_SIZE,
1148	.halg.statesize = sizeof(struct mtk_sha_reqctx),
1149	.halg.base	= {
1150		.cra_name		= "hmac(sha512)",
1151		.cra_driver_name	= "mtk-hmac-sha512",
1152		.cra_priority		= 400,
1153		.cra_flags		= CRYPTO_ALG_ASYNC |
1154					  CRYPTO_ALG_NEED_FALLBACK,
1155		.cra_blocksize		= SHA512_BLOCK_SIZE,
1156		.cra_ctxsize		= sizeof(struct mtk_sha_ctx) +
1157					sizeof(struct mtk_sha_hmac_ctx),
1158		.cra_alignmask		= SHA_ALIGN_MSK,
1159		.cra_module		= THIS_MODULE,
1160		.cra_init		= mtk_sha_cra_sha512_init,
1161		.cra_exit		= mtk_sha_cra_exit,
1162	}
1163},
1164};
1165
1166static void mtk_sha_queue_task(unsigned long data)
1167{
1168	struct mtk_sha_rec *sha = (struct mtk_sha_rec *)data;
1169
1170	mtk_sha_handle_queue(sha->cryp, sha->id - MTK_RING2, NULL);
1171}
1172
1173static void mtk_sha_done_task(unsigned long data)
1174{
1175	struct mtk_sha_rec *sha = (struct mtk_sha_rec *)data;
1176	struct mtk_cryp *cryp = sha->cryp;
1177
1178	mtk_sha_unmap(cryp, sha);
1179	mtk_sha_complete(cryp, sha);
1180}
1181
1182static irqreturn_t mtk_sha_irq(int irq, void *dev_id)
1183{
1184	struct mtk_sha_rec *sha = (struct mtk_sha_rec *)dev_id;
1185	struct mtk_cryp *cryp = sha->cryp;
1186	u32 val = mtk_sha_read(cryp, RDR_STAT(sha->id));
1187
1188	mtk_sha_write(cryp, RDR_STAT(sha->id), val);
1189
1190	if (likely((SHA_FLAGS_BUSY & sha->flags))) {
1191		mtk_sha_write(cryp, RDR_PROC_COUNT(sha->id), MTK_CNT_RST);
1192		mtk_sha_write(cryp, RDR_THRESH(sha->id),
1193			      MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE);
1194
1195		tasklet_schedule(&sha->done_task);
1196	} else {
1197		dev_warn(cryp->dev, "SHA interrupt when no active requests.\n");
1198	}
1199	return IRQ_HANDLED;
1200}
1201
1202/*
1203 * The purpose of two SHA records is used to get extra performance.
1204 * It is similar to mtk_aes_record_init().
1205 */
1206static int mtk_sha_record_init(struct mtk_cryp *cryp)
1207{
1208	struct mtk_sha_rec **sha = cryp->sha;
1209	int i, err = -ENOMEM;
1210
1211	for (i = 0; i < MTK_REC_NUM; i++) {
1212		sha[i] = kzalloc(sizeof(**sha), GFP_KERNEL);
1213		if (!sha[i])
1214			goto err_cleanup;
1215
1216		sha[i]->cryp = cryp;
1217
1218		spin_lock_init(&sha[i]->lock);
1219		crypto_init_queue(&sha[i]->queue, SHA_QUEUE_SIZE);
1220
1221		tasklet_init(&sha[i]->queue_task, mtk_sha_queue_task,
1222			     (unsigned long)sha[i]);
1223		tasklet_init(&sha[i]->done_task, mtk_sha_done_task,
1224			     (unsigned long)sha[i]);
1225	}
1226
1227	/* Link to ring2 and ring3 respectively */
1228	sha[0]->id = MTK_RING2;
1229	sha[1]->id = MTK_RING3;
1230
1231	cryp->rec = 1;
1232
1233	return 0;
1234
1235err_cleanup:
1236	for (; i--; )
1237		kfree(sha[i]);
1238	return err;
1239}
1240
1241static void mtk_sha_record_free(struct mtk_cryp *cryp)
1242{
1243	int i;
1244
1245	for (i = 0; i < MTK_REC_NUM; i++) {
1246		tasklet_kill(&cryp->sha[i]->done_task);
1247		tasklet_kill(&cryp->sha[i]->queue_task);
1248
1249		kfree(cryp->sha[i]);
1250	}
1251}
1252
1253static void mtk_sha_unregister_algs(void)
1254{
1255	int i;
1256
1257	for (i = 0; i < ARRAY_SIZE(algs_sha1_sha224_sha256); i++)
1258		crypto_unregister_ahash(&algs_sha1_sha224_sha256[i]);
1259
1260	for (i = 0; i < ARRAY_SIZE(algs_sha384_sha512); i++)
1261		crypto_unregister_ahash(&algs_sha384_sha512[i]);
1262}
1263
1264static int mtk_sha_register_algs(void)
1265{
1266	int err, i;
1267
1268	for (i = 0; i < ARRAY_SIZE(algs_sha1_sha224_sha256); i++) {
1269		err = crypto_register_ahash(&algs_sha1_sha224_sha256[i]);
1270		if (err)
1271			goto err_sha_224_256_algs;
1272	}
1273
1274	for (i = 0; i < ARRAY_SIZE(algs_sha384_sha512); i++) {
1275		err = crypto_register_ahash(&algs_sha384_sha512[i]);
1276		if (err)
1277			goto err_sha_384_512_algs;
1278	}
1279
1280	return 0;
1281
1282err_sha_384_512_algs:
1283	for (; i--; )
1284		crypto_unregister_ahash(&algs_sha384_sha512[i]);
1285	i = ARRAY_SIZE(algs_sha1_sha224_sha256);
1286err_sha_224_256_algs:
1287	for (; i--; )
1288		crypto_unregister_ahash(&algs_sha1_sha224_sha256[i]);
1289
1290	return err;
1291}
1292
1293int mtk_hash_alg_register(struct mtk_cryp *cryp)
1294{
1295	int err;
1296
1297	INIT_LIST_HEAD(&cryp->sha_list);
1298
1299	/* Initialize two hash records */
1300	err = mtk_sha_record_init(cryp);
1301	if (err)
1302		goto err_record;
1303
1304	err = devm_request_irq(cryp->dev, cryp->irq[MTK_RING2], mtk_sha_irq,
1305			       0, "mtk-sha", cryp->sha[0]);
1306	if (err) {
1307		dev_err(cryp->dev, "unable to request sha irq0.\n");
1308		goto err_res;
1309	}
1310
1311	err = devm_request_irq(cryp->dev, cryp->irq[MTK_RING3], mtk_sha_irq,
1312			       0, "mtk-sha", cryp->sha[1]);
1313	if (err) {
1314		dev_err(cryp->dev, "unable to request sha irq1.\n");
1315		goto err_res;
1316	}
1317
1318	/* Enable ring2 and ring3 interrupt for hash */
1319	mtk_sha_write(cryp, AIC_ENABLE_SET(MTK_RING2), MTK_IRQ_RDR2);
1320	mtk_sha_write(cryp, AIC_ENABLE_SET(MTK_RING3), MTK_IRQ_RDR3);
1321
1322	spin_lock(&mtk_sha.lock);
1323	list_add_tail(&cryp->sha_list, &mtk_sha.dev_list);
1324	spin_unlock(&mtk_sha.lock);
1325
1326	err = mtk_sha_register_algs();
1327	if (err)
1328		goto err_algs;
1329
1330	return 0;
1331
1332err_algs:
1333	spin_lock(&mtk_sha.lock);
1334	list_del(&cryp->sha_list);
1335	spin_unlock(&mtk_sha.lock);
1336err_res:
1337	mtk_sha_record_free(cryp);
1338err_record:
1339
1340	dev_err(cryp->dev, "mtk-sha initialization failed.\n");
1341	return err;
1342}
1343
1344void mtk_hash_alg_release(struct mtk_cryp *cryp)
1345{
1346	spin_lock(&mtk_sha.lock);
1347	list_del(&cryp->sha_list);
1348	spin_unlock(&mtk_sha.lock);
1349
1350	mtk_sha_unregister_algs();
1351	mtk_sha_record_free(cryp);
1352}
1353