1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Cryptographic API.
4 *
5 * Driver for EIP97 AES acceleration.
6 *
7 * Copyright (c) 2016 Ryder Lee <ryder.lee@mediatek.com>
8 *
9 * Some ideas are from atmel-aes.c drivers.
10 */
11
12#include <crypto/aes.h>
13#include <crypto/gcm.h>
14#include <crypto/internal/skcipher.h>
15#include "mtk-platform.h"
16
17#define AES_QUEUE_SIZE		512
18#define AES_BUF_ORDER		2
19#define AES_BUF_SIZE		((PAGE_SIZE << AES_BUF_ORDER) \
20				& ~(AES_BLOCK_SIZE - 1))
21#define AES_MAX_STATE_BUF_SIZE	SIZE_IN_WORDS(AES_KEYSIZE_256 + \
22				AES_BLOCK_SIZE * 2)
23#define AES_MAX_CT_SIZE		6
24
25#define AES_CT_CTRL_HDR		cpu_to_le32(0x00220000)
26
27/* AES-CBC/ECB/CTR/OFB/CFB command token */
28#define AES_CMD0		cpu_to_le32(0x05000000)
29#define AES_CMD1		cpu_to_le32(0x2d060000)
30#define AES_CMD2		cpu_to_le32(0xe4a63806)
31/* AES-GCM command token */
32#define AES_GCM_CMD0		cpu_to_le32(0x0b000000)
33#define AES_GCM_CMD1		cpu_to_le32(0xa0800000)
34#define AES_GCM_CMD2		cpu_to_le32(0x25000010)
35#define AES_GCM_CMD3		cpu_to_le32(0x0f020000)
36#define AES_GCM_CMD4		cpu_to_le32(0x21e60000)
37#define AES_GCM_CMD5		cpu_to_le32(0x40e60000)
38#define AES_GCM_CMD6		cpu_to_le32(0xd0070000)
39
40/* AES transform information word 0 fields */
41#define AES_TFM_BASIC_OUT	cpu_to_le32(0x4 << 0)
42#define AES_TFM_BASIC_IN	cpu_to_le32(0x5 << 0)
43#define AES_TFM_GCM_OUT		cpu_to_le32(0x6 << 0)
44#define AES_TFM_GCM_IN		cpu_to_le32(0xf << 0)
45#define AES_TFM_SIZE(x)		cpu_to_le32((x) << 8)
46#define AES_TFM_128BITS		cpu_to_le32(0xb << 16)
47#define AES_TFM_192BITS		cpu_to_le32(0xd << 16)
48#define AES_TFM_256BITS		cpu_to_le32(0xf << 16)
49#define AES_TFM_GHASH_DIGEST	cpu_to_le32(0x2 << 21)
50#define AES_TFM_GHASH		cpu_to_le32(0x4 << 23)
51/* AES transform information word 1 fields */
52#define AES_TFM_ECB		cpu_to_le32(0x0 << 0)
53#define AES_TFM_CBC		cpu_to_le32(0x1 << 0)
54#define AES_TFM_OFB		cpu_to_le32(0x4 << 0)
55#define AES_TFM_CFB128		cpu_to_le32(0x5 << 0)
56#define AES_TFM_CTR_INIT	cpu_to_le32(0x2 << 0)	/* init counter to 1 */
57#define AES_TFM_CTR_LOAD	cpu_to_le32(0x6 << 0)	/* load/reuse counter */
58#define AES_TFM_3IV		cpu_to_le32(0x7 << 5)	/* using IV 0-2 */
59#define AES_TFM_FULL_IV		cpu_to_le32(0xf << 5)	/* using IV 0-3 */
60#define AES_TFM_IV_CTR_MODE	cpu_to_le32(0x1 << 10)
61#define AES_TFM_ENC_HASH	cpu_to_le32(0x1 << 17)
62
63/* AES flags */
64#define AES_FLAGS_CIPHER_MSK	GENMASK(4, 0)
65#define AES_FLAGS_ECB		BIT(0)
66#define AES_FLAGS_CBC		BIT(1)
67#define AES_FLAGS_CTR		BIT(2)
68#define AES_FLAGS_OFB		BIT(3)
69#define AES_FLAGS_CFB128	BIT(4)
70#define AES_FLAGS_GCM		BIT(5)
71#define AES_FLAGS_ENCRYPT	BIT(6)
72#define AES_FLAGS_BUSY		BIT(7)
73
74#define AES_AUTH_TAG_ERR	cpu_to_le32(BIT(26))
75
76/**
77 * mtk_aes_info - hardware information of AES
78 * @cmd:	command token, hardware instruction
79 * @tfm:	transform state of cipher algorithm.
80 * @state:	contains keys and initial vectors.
81 *
82 * Memory layout of GCM buffer:
83 * /-----------\
84 * |  AES KEY  | 128/196/256 bits
85 * |-----------|
86 * |  HASH KEY | a string 128 zero bits encrypted using the block cipher
87 * |-----------|
88 * |    IVs    | 4 * 4 bytes
89 * \-----------/
90 *
91 * The engine requires all these info to do:
92 * - Commands decoding and control of the engine's data path.
93 * - Coordinating hardware data fetch and store operations.
94 * - Result token construction and output.
95 */
96struct mtk_aes_info {
97	__le32 cmd[AES_MAX_CT_SIZE];
98	__le32 tfm[2];
99	__le32 state[AES_MAX_STATE_BUF_SIZE];
100};
101
102struct mtk_aes_reqctx {
103	u64 mode;
104};
105
106struct mtk_aes_base_ctx {
107	struct mtk_cryp *cryp;
108	u32 keylen;
109	__le32 key[12];
110	__le32 keymode;
111
112	mtk_aes_fn start;
113
114	struct mtk_aes_info info;
115	dma_addr_t ct_dma;
116	dma_addr_t tfm_dma;
117
118	__le32 ct_hdr;
119	u32 ct_size;
120};
121
122struct mtk_aes_ctx {
123	struct mtk_aes_base_ctx	base;
124};
125
126struct mtk_aes_ctr_ctx {
127	struct mtk_aes_base_ctx base;
128
129	__be32	iv[AES_BLOCK_SIZE / sizeof(u32)];
130	size_t offset;
131	struct scatterlist src[2];
132	struct scatterlist dst[2];
133};
134
135struct mtk_aes_gcm_ctx {
136	struct mtk_aes_base_ctx base;
137
138	u32 authsize;
139	size_t textlen;
140};
141
142struct mtk_aes_drv {
143	struct list_head dev_list;
144	/* Device list lock */
145	spinlock_t lock;
146};
147
148static struct mtk_aes_drv mtk_aes = {
149	.dev_list = LIST_HEAD_INIT(mtk_aes.dev_list),
150	.lock = __SPIN_LOCK_UNLOCKED(mtk_aes.lock),
151};
152
153static inline u32 mtk_aes_read(struct mtk_cryp *cryp, u32 offset)
154{
155	return readl_relaxed(cryp->base + offset);
156}
157
158static inline void mtk_aes_write(struct mtk_cryp *cryp,
159				 u32 offset, u32 value)
160{
161	writel_relaxed(value, cryp->base + offset);
162}
163
164static struct mtk_cryp *mtk_aes_find_dev(struct mtk_aes_base_ctx *ctx)
165{
166	struct mtk_cryp *cryp = NULL;
167	struct mtk_cryp *tmp;
168
169	spin_lock_bh(&mtk_aes.lock);
170	if (!ctx->cryp) {
171		list_for_each_entry(tmp, &mtk_aes.dev_list, aes_list) {
172			cryp = tmp;
173			break;
174		}
175		ctx->cryp = cryp;
176	} else {
177		cryp = ctx->cryp;
178	}
179	spin_unlock_bh(&mtk_aes.lock);
180
181	return cryp;
182}
183
184static inline size_t mtk_aes_padlen(size_t len)
185{
186	len &= AES_BLOCK_SIZE - 1;
187	return len ? AES_BLOCK_SIZE - len : 0;
188}
189
190static bool mtk_aes_check_aligned(struct scatterlist *sg, size_t len,
191				  struct mtk_aes_dma *dma)
192{
193	int nents;
194
195	if (!IS_ALIGNED(len, AES_BLOCK_SIZE))
196		return false;
197
198	for (nents = 0; sg; sg = sg_next(sg), ++nents) {
199		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
200			return false;
201
202		if (len <= sg->length) {
203			if (!IS_ALIGNED(len, AES_BLOCK_SIZE))
204				return false;
205
206			dma->nents = nents + 1;
207			dma->remainder = sg->length - len;
208			sg->length = len;
209			return true;
210		}
211
212		if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
213			return false;
214
215		len -= sg->length;
216	}
217
218	return false;
219}
220
221static inline void mtk_aes_set_mode(struct mtk_aes_rec *aes,
222				    const struct mtk_aes_reqctx *rctx)
223{
224	/* Clear all but persistent flags and set request flags. */
225	aes->flags = (aes->flags & AES_FLAGS_BUSY) | rctx->mode;
226}
227
228static inline void mtk_aes_restore_sg(const struct mtk_aes_dma *dma)
229{
230	struct scatterlist *sg = dma->sg;
231	int nents = dma->nents;
232
233	if (!dma->remainder)
234		return;
235
236	while (--nents > 0 && sg)
237		sg = sg_next(sg);
238
239	if (!sg)
240		return;
241
242	sg->length += dma->remainder;
243}
244
245static inline int mtk_aes_complete(struct mtk_cryp *cryp,
246				   struct mtk_aes_rec *aes,
247				   int err)
248{
249	aes->flags &= ~AES_FLAGS_BUSY;
250	aes->areq->complete(aes->areq, err);
251	/* Handle new request */
252	tasklet_schedule(&aes->queue_task);
253	return err;
254}
255
256/*
257 * Write descriptors for processing. This will configure the engine, load
258 * the transform information and then start the packet processing.
259 */
260static int mtk_aes_xmit(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
261{
262	struct mtk_ring *ring = cryp->ring[aes->id];
263	struct mtk_desc *cmd = NULL, *res = NULL;
264	struct scatterlist *ssg = aes->src.sg, *dsg = aes->dst.sg;
265	u32 slen = aes->src.sg_len, dlen = aes->dst.sg_len;
266	int nents;
267
268	/* Write command descriptors */
269	for (nents = 0; nents < slen; ++nents, ssg = sg_next(ssg)) {
270		cmd = ring->cmd_next;
271		cmd->hdr = MTK_DESC_BUF_LEN(ssg->length);
272		cmd->buf = cpu_to_le32(sg_dma_address(ssg));
273
274		if (nents == 0) {
275			cmd->hdr |= MTK_DESC_FIRST |
276				    MTK_DESC_CT_LEN(aes->ctx->ct_size);
277			cmd->ct = cpu_to_le32(aes->ctx->ct_dma);
278			cmd->ct_hdr = aes->ctx->ct_hdr;
279			cmd->tfm = cpu_to_le32(aes->ctx->tfm_dma);
280		}
281
282		/* Shift ring buffer and check boundary */
283		if (++ring->cmd_next == ring->cmd_base + MTK_DESC_NUM)
284			ring->cmd_next = ring->cmd_base;
285	}
286	cmd->hdr |= MTK_DESC_LAST;
287
288	/* Prepare result descriptors */
289	for (nents = 0; nents < dlen; ++nents, dsg = sg_next(dsg)) {
290		res = ring->res_next;
291		res->hdr = MTK_DESC_BUF_LEN(dsg->length);
292		res->buf = cpu_to_le32(sg_dma_address(dsg));
293
294		if (nents == 0)
295			res->hdr |= MTK_DESC_FIRST;
296
297		/* Shift ring buffer and check boundary */
298		if (++ring->res_next == ring->res_base + MTK_DESC_NUM)
299			ring->res_next = ring->res_base;
300	}
301	res->hdr |= MTK_DESC_LAST;
302
303	/* Pointer to current result descriptor */
304	ring->res_prev = res;
305
306	/* Prepare enough space for authenticated tag */
307	if (aes->flags & AES_FLAGS_GCM)
308		le32_add_cpu(&res->hdr, AES_BLOCK_SIZE);
309
310	/*
311	 * Make sure that all changes to the DMA ring are done before we
312	 * start engine.
313	 */
314	wmb();
315	/* Start DMA transfer */
316	mtk_aes_write(cryp, RDR_PREP_COUNT(aes->id), MTK_DESC_CNT(dlen));
317	mtk_aes_write(cryp, CDR_PREP_COUNT(aes->id), MTK_DESC_CNT(slen));
318
319	return -EINPROGRESS;
320}
321
322static void mtk_aes_unmap(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
323{
324	struct mtk_aes_base_ctx *ctx = aes->ctx;
325
326	dma_unmap_single(cryp->dev, ctx->ct_dma, sizeof(ctx->info),
327			 DMA_TO_DEVICE);
328
329	if (aes->src.sg == aes->dst.sg) {
330		dma_unmap_sg(cryp->dev, aes->src.sg, aes->src.nents,
331			     DMA_BIDIRECTIONAL);
332
333		if (aes->src.sg != &aes->aligned_sg)
334			mtk_aes_restore_sg(&aes->src);
335	} else {
336		dma_unmap_sg(cryp->dev, aes->dst.sg, aes->dst.nents,
337			     DMA_FROM_DEVICE);
338
339		if (aes->dst.sg != &aes->aligned_sg)
340			mtk_aes_restore_sg(&aes->dst);
341
342		dma_unmap_sg(cryp->dev, aes->src.sg, aes->src.nents,
343			     DMA_TO_DEVICE);
344
345		if (aes->src.sg != &aes->aligned_sg)
346			mtk_aes_restore_sg(&aes->src);
347	}
348
349	if (aes->dst.sg == &aes->aligned_sg)
350		sg_copy_from_buffer(aes->real_dst, sg_nents(aes->real_dst),
351				    aes->buf, aes->total);
352}
353
354static int mtk_aes_map(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
355{
356	struct mtk_aes_base_ctx *ctx = aes->ctx;
357	struct mtk_aes_info *info = &ctx->info;
358
359	ctx->ct_dma = dma_map_single(cryp->dev, info, sizeof(*info),
360				     DMA_TO_DEVICE);
361	if (unlikely(dma_mapping_error(cryp->dev, ctx->ct_dma)))
362		goto exit;
363
364	ctx->tfm_dma = ctx->ct_dma + sizeof(info->cmd);
365
366	if (aes->src.sg == aes->dst.sg) {
367		aes->src.sg_len = dma_map_sg(cryp->dev, aes->src.sg,
368					     aes->src.nents,
369					     DMA_BIDIRECTIONAL);
370		aes->dst.sg_len = aes->src.sg_len;
371		if (unlikely(!aes->src.sg_len))
372			goto sg_map_err;
373	} else {
374		aes->src.sg_len = dma_map_sg(cryp->dev, aes->src.sg,
375					     aes->src.nents, DMA_TO_DEVICE);
376		if (unlikely(!aes->src.sg_len))
377			goto sg_map_err;
378
379		aes->dst.sg_len = dma_map_sg(cryp->dev, aes->dst.sg,
380					     aes->dst.nents, DMA_FROM_DEVICE);
381		if (unlikely(!aes->dst.sg_len)) {
382			dma_unmap_sg(cryp->dev, aes->src.sg, aes->src.nents,
383				     DMA_TO_DEVICE);
384			goto sg_map_err;
385		}
386	}
387
388	return mtk_aes_xmit(cryp, aes);
389
390sg_map_err:
391	dma_unmap_single(cryp->dev, ctx->ct_dma, sizeof(*info), DMA_TO_DEVICE);
392exit:
393	return mtk_aes_complete(cryp, aes, -EINVAL);
394}
395
396/* Initialize transform information of CBC/ECB/CTR/OFB/CFB mode */
397static void mtk_aes_info_init(struct mtk_cryp *cryp, struct mtk_aes_rec *aes,
398			      size_t len)
399{
400	struct skcipher_request *req = skcipher_request_cast(aes->areq);
401	struct mtk_aes_base_ctx *ctx = aes->ctx;
402	struct mtk_aes_info *info = &ctx->info;
403	u32 cnt = 0;
404
405	ctx->ct_hdr = AES_CT_CTRL_HDR | cpu_to_le32(len);
406	info->cmd[cnt++] = AES_CMD0 | cpu_to_le32(len);
407	info->cmd[cnt++] = AES_CMD1;
408
409	info->tfm[0] = AES_TFM_SIZE(ctx->keylen) | ctx->keymode;
410	if (aes->flags & AES_FLAGS_ENCRYPT)
411		info->tfm[0] |= AES_TFM_BASIC_OUT;
412	else
413		info->tfm[0] |= AES_TFM_BASIC_IN;
414
415	switch (aes->flags & AES_FLAGS_CIPHER_MSK) {
416	case AES_FLAGS_CBC:
417		info->tfm[1] = AES_TFM_CBC;
418		break;
419	case AES_FLAGS_ECB:
420		info->tfm[1] = AES_TFM_ECB;
421		goto ecb;
422	case AES_FLAGS_CTR:
423		info->tfm[1] = AES_TFM_CTR_LOAD;
424		goto ctr;
425	case AES_FLAGS_OFB:
426		info->tfm[1] = AES_TFM_OFB;
427		break;
428	case AES_FLAGS_CFB128:
429		info->tfm[1] = AES_TFM_CFB128;
430		break;
431	default:
432		/* Should not happen... */
433		return;
434	}
435
436	memcpy(info->state + ctx->keylen, req->iv, AES_BLOCK_SIZE);
437ctr:
438	le32_add_cpu(&info->tfm[0],
439		     le32_to_cpu(AES_TFM_SIZE(SIZE_IN_WORDS(AES_BLOCK_SIZE))));
440	info->tfm[1] |= AES_TFM_FULL_IV;
441	info->cmd[cnt++] = AES_CMD2;
442ecb:
443	ctx->ct_size = cnt;
444}
445
446static int mtk_aes_dma(struct mtk_cryp *cryp, struct mtk_aes_rec *aes,
447		       struct scatterlist *src, struct scatterlist *dst,
448		       size_t len)
449{
450	size_t padlen = 0;
451	bool src_aligned, dst_aligned;
452
453	aes->total = len;
454	aes->src.sg = src;
455	aes->dst.sg = dst;
456	aes->real_dst = dst;
457
458	src_aligned = mtk_aes_check_aligned(src, len, &aes->src);
459	if (src == dst)
460		dst_aligned = src_aligned;
461	else
462		dst_aligned = mtk_aes_check_aligned(dst, len, &aes->dst);
463
464	if (!src_aligned || !dst_aligned) {
465		padlen = mtk_aes_padlen(len);
466
467		if (len + padlen > AES_BUF_SIZE)
468			return mtk_aes_complete(cryp, aes, -ENOMEM);
469
470		if (!src_aligned) {
471			sg_copy_to_buffer(src, sg_nents(src), aes->buf, len);
472			aes->src.sg = &aes->aligned_sg;
473			aes->src.nents = 1;
474			aes->src.remainder = 0;
475		}
476
477		if (!dst_aligned) {
478			aes->dst.sg = &aes->aligned_sg;
479			aes->dst.nents = 1;
480			aes->dst.remainder = 0;
481		}
482
483		sg_init_table(&aes->aligned_sg, 1);
484		sg_set_buf(&aes->aligned_sg, aes->buf, len + padlen);
485	}
486
487	mtk_aes_info_init(cryp, aes, len + padlen);
488
489	return mtk_aes_map(cryp, aes);
490}
491
492static int mtk_aes_handle_queue(struct mtk_cryp *cryp, u8 id,
493				struct crypto_async_request *new_areq)
494{
495	struct mtk_aes_rec *aes = cryp->aes[id];
496	struct crypto_async_request *areq, *backlog;
497	struct mtk_aes_base_ctx *ctx;
498	unsigned long flags;
499	int ret = 0;
500
501	spin_lock_irqsave(&aes->lock, flags);
502	if (new_areq)
503		ret = crypto_enqueue_request(&aes->queue, new_areq);
504	if (aes->flags & AES_FLAGS_BUSY) {
505		spin_unlock_irqrestore(&aes->lock, flags);
506		return ret;
507	}
508	backlog = crypto_get_backlog(&aes->queue);
509	areq = crypto_dequeue_request(&aes->queue);
510	if (areq)
511		aes->flags |= AES_FLAGS_BUSY;
512	spin_unlock_irqrestore(&aes->lock, flags);
513
514	if (!areq)
515		return ret;
516
517	if (backlog)
518		backlog->complete(backlog, -EINPROGRESS);
519
520	ctx = crypto_tfm_ctx(areq->tfm);
521	/* Write key into state buffer */
522	memcpy(ctx->info.state, ctx->key, sizeof(ctx->key));
523
524	aes->areq = areq;
525	aes->ctx = ctx;
526
527	return ctx->start(cryp, aes);
528}
529
530static int mtk_aes_transfer_complete(struct mtk_cryp *cryp,
531				     struct mtk_aes_rec *aes)
532{
533	return mtk_aes_complete(cryp, aes, 0);
534}
535
536static int mtk_aes_start(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
537{
538	struct skcipher_request *req = skcipher_request_cast(aes->areq);
539	struct mtk_aes_reqctx *rctx = skcipher_request_ctx(req);
540
541	mtk_aes_set_mode(aes, rctx);
542	aes->resume = mtk_aes_transfer_complete;
543
544	return mtk_aes_dma(cryp, aes, req->src, req->dst, req->cryptlen);
545}
546
547static inline struct mtk_aes_ctr_ctx *
548mtk_aes_ctr_ctx_cast(struct mtk_aes_base_ctx *ctx)
549{
550	return container_of(ctx, struct mtk_aes_ctr_ctx, base);
551}
552
553static int mtk_aes_ctr_transfer(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
554{
555	struct mtk_aes_base_ctx *ctx = aes->ctx;
556	struct mtk_aes_ctr_ctx *cctx = mtk_aes_ctr_ctx_cast(ctx);
557	struct skcipher_request *req = skcipher_request_cast(aes->areq);
558	struct scatterlist *src, *dst;
559	u32 start, end, ctr, blocks;
560	size_t datalen;
561	bool fragmented = false;
562
563	/* Check for transfer completion. */
564	cctx->offset += aes->total;
565	if (cctx->offset >= req->cryptlen)
566		return mtk_aes_transfer_complete(cryp, aes);
567
568	/* Compute data length. */
569	datalen = req->cryptlen - cctx->offset;
570	blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
571	ctr = be32_to_cpu(cctx->iv[3]);
572
573	/* Check 32bit counter overflow. */
574	start = ctr;
575	end = start + blocks - 1;
576	if (end < start) {
577		ctr = 0xffffffff;
578		datalen = AES_BLOCK_SIZE * -start;
579		fragmented = true;
580	}
581
582	/* Jump to offset. */
583	src = scatterwalk_ffwd(cctx->src, req->src, cctx->offset);
584	dst = ((req->src == req->dst) ? src :
585	       scatterwalk_ffwd(cctx->dst, req->dst, cctx->offset));
586
587	/* Write IVs into transform state buffer. */
588	memcpy(ctx->info.state + ctx->keylen, cctx->iv, AES_BLOCK_SIZE);
589
590	if (unlikely(fragmented)) {
591	/*
592	 * Increment the counter manually to cope with the hardware
593	 * counter overflow.
594	 */
595		cctx->iv[3] = cpu_to_be32(ctr);
596		crypto_inc((u8 *)cctx->iv, AES_BLOCK_SIZE);
597	}
598
599	return mtk_aes_dma(cryp, aes, src, dst, datalen);
600}
601
602static int mtk_aes_ctr_start(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
603{
604	struct mtk_aes_ctr_ctx *cctx = mtk_aes_ctr_ctx_cast(aes->ctx);
605	struct skcipher_request *req = skcipher_request_cast(aes->areq);
606	struct mtk_aes_reqctx *rctx = skcipher_request_ctx(req);
607
608	mtk_aes_set_mode(aes, rctx);
609
610	memcpy(cctx->iv, req->iv, AES_BLOCK_SIZE);
611	cctx->offset = 0;
612	aes->total = 0;
613	aes->resume = mtk_aes_ctr_transfer;
614
615	return mtk_aes_ctr_transfer(cryp, aes);
616}
617
618/* Check and set the AES key to transform state buffer */
619static int mtk_aes_setkey(struct crypto_skcipher *tfm,
620			  const u8 *key, u32 keylen)
621{
622	struct mtk_aes_base_ctx *ctx = crypto_skcipher_ctx(tfm);
623
624	switch (keylen) {
625	case AES_KEYSIZE_128:
626		ctx->keymode = AES_TFM_128BITS;
627		break;
628	case AES_KEYSIZE_192:
629		ctx->keymode = AES_TFM_192BITS;
630		break;
631	case AES_KEYSIZE_256:
632		ctx->keymode = AES_TFM_256BITS;
633		break;
634
635	default:
636		return -EINVAL;
637	}
638
639	ctx->keylen = SIZE_IN_WORDS(keylen);
640	memcpy(ctx->key, key, keylen);
641
642	return 0;
643}
644
645static int mtk_aes_crypt(struct skcipher_request *req, u64 mode)
646{
647	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
648	struct mtk_aes_base_ctx *ctx = crypto_skcipher_ctx(skcipher);
649	struct mtk_aes_reqctx *rctx;
650	struct mtk_cryp *cryp;
651
652	cryp = mtk_aes_find_dev(ctx);
653	if (!cryp)
654		return -ENODEV;
655
656	rctx = skcipher_request_ctx(req);
657	rctx->mode = mode;
658
659	return mtk_aes_handle_queue(cryp, !(mode & AES_FLAGS_ENCRYPT),
660				    &req->base);
661}
662
663static int mtk_aes_ecb_encrypt(struct skcipher_request *req)
664{
665	return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_ECB);
666}
667
668static int mtk_aes_ecb_decrypt(struct skcipher_request *req)
669{
670	return mtk_aes_crypt(req, AES_FLAGS_ECB);
671}
672
673static int mtk_aes_cbc_encrypt(struct skcipher_request *req)
674{
675	return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_CBC);
676}
677
678static int mtk_aes_cbc_decrypt(struct skcipher_request *req)
679{
680	return mtk_aes_crypt(req, AES_FLAGS_CBC);
681}
682
683static int mtk_aes_ctr_encrypt(struct skcipher_request *req)
684{
685	return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_CTR);
686}
687
688static int mtk_aes_ctr_decrypt(struct skcipher_request *req)
689{
690	return mtk_aes_crypt(req, AES_FLAGS_CTR);
691}
692
693static int mtk_aes_ofb_encrypt(struct skcipher_request *req)
694{
695	return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_OFB);
696}
697
698static int mtk_aes_ofb_decrypt(struct skcipher_request *req)
699{
700	return mtk_aes_crypt(req, AES_FLAGS_OFB);
701}
702
703static int mtk_aes_cfb_encrypt(struct skcipher_request *req)
704{
705	return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_CFB128);
706}
707
708static int mtk_aes_cfb_decrypt(struct skcipher_request *req)
709{
710	return mtk_aes_crypt(req, AES_FLAGS_CFB128);
711}
712
713static int mtk_aes_init_tfm(struct crypto_skcipher *tfm)
714{
715	struct mtk_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
716
717	crypto_skcipher_set_reqsize(tfm, sizeof(struct mtk_aes_reqctx));
718	ctx->base.start = mtk_aes_start;
719	return 0;
720}
721
722static int mtk_aes_ctr_init_tfm(struct crypto_skcipher *tfm)
723{
724	struct mtk_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
725
726	crypto_skcipher_set_reqsize(tfm, sizeof(struct mtk_aes_reqctx));
727	ctx->base.start = mtk_aes_ctr_start;
728	return 0;
729}
730
731static struct skcipher_alg aes_algs[] = {
732{
733	.base.cra_name		= "cbc(aes)",
734	.base.cra_driver_name	= "cbc-aes-mtk",
735	.base.cra_priority	= 400,
736	.base.cra_flags		= CRYPTO_ALG_ASYNC,
737	.base.cra_blocksize	= AES_BLOCK_SIZE,
738	.base.cra_ctxsize	= sizeof(struct mtk_aes_ctx),
739	.base.cra_alignmask	= 0xf,
740	.base.cra_module	= THIS_MODULE,
741
742	.min_keysize		= AES_MIN_KEY_SIZE,
743	.max_keysize		= AES_MAX_KEY_SIZE,
744	.setkey			= mtk_aes_setkey,
745	.encrypt		= mtk_aes_cbc_encrypt,
746	.decrypt		= mtk_aes_cbc_decrypt,
747	.ivsize			= AES_BLOCK_SIZE,
748	.init			= mtk_aes_init_tfm,
749},
750{
751	.base.cra_name		= "ecb(aes)",
752	.base.cra_driver_name	= "ecb-aes-mtk",
753	.base.cra_priority	= 400,
754	.base.cra_flags		= CRYPTO_ALG_ASYNC,
755	.base.cra_blocksize	= AES_BLOCK_SIZE,
756	.base.cra_ctxsize	= sizeof(struct mtk_aes_ctx),
757	.base.cra_alignmask	= 0xf,
758	.base.cra_module	= THIS_MODULE,
759
760	.min_keysize		= AES_MIN_KEY_SIZE,
761	.max_keysize		= AES_MAX_KEY_SIZE,
762	.setkey			= mtk_aes_setkey,
763	.encrypt		= mtk_aes_ecb_encrypt,
764	.decrypt		= mtk_aes_ecb_decrypt,
765	.init			= mtk_aes_init_tfm,
766},
767{
768	.base.cra_name		= "ctr(aes)",
769	.base.cra_driver_name	= "ctr-aes-mtk",
770	.base.cra_priority	= 400,
771	.base.cra_flags		= CRYPTO_ALG_ASYNC,
772	.base.cra_blocksize	= 1,
773	.base.cra_ctxsize	= sizeof(struct mtk_aes_ctx),
774	.base.cra_alignmask	= 0xf,
775	.base.cra_module	= THIS_MODULE,
776
777	.min_keysize		= AES_MIN_KEY_SIZE,
778	.max_keysize		= AES_MAX_KEY_SIZE,
779	.ivsize			= AES_BLOCK_SIZE,
780	.setkey			= mtk_aes_setkey,
781	.encrypt		= mtk_aes_ctr_encrypt,
782	.decrypt		= mtk_aes_ctr_decrypt,
783	.init			= mtk_aes_ctr_init_tfm,
784},
785{
786	.base.cra_name		= "ofb(aes)",
787	.base.cra_driver_name	= "ofb-aes-mtk",
788	.base.cra_priority	= 400,
789	.base.cra_flags		= CRYPTO_ALG_ASYNC,
790	.base.cra_blocksize	= AES_BLOCK_SIZE,
791	.base.cra_ctxsize	= sizeof(struct mtk_aes_ctx),
792	.base.cra_alignmask	= 0xf,
793	.base.cra_module	= THIS_MODULE,
794
795	.min_keysize		= AES_MIN_KEY_SIZE,
796	.max_keysize		= AES_MAX_KEY_SIZE,
797	.ivsize			= AES_BLOCK_SIZE,
798	.setkey			= mtk_aes_setkey,
799	.encrypt		= mtk_aes_ofb_encrypt,
800	.decrypt		= mtk_aes_ofb_decrypt,
801},
802{
803	.base.cra_name		= "cfb(aes)",
804	.base.cra_driver_name	= "cfb-aes-mtk",
805	.base.cra_priority	= 400,
806	.base.cra_flags		= CRYPTO_ALG_ASYNC,
807	.base.cra_blocksize	= 1,
808	.base.cra_ctxsize	= sizeof(struct mtk_aes_ctx),
809	.base.cra_alignmask	= 0xf,
810	.base.cra_module	= THIS_MODULE,
811
812	.min_keysize		= AES_MIN_KEY_SIZE,
813	.max_keysize		= AES_MAX_KEY_SIZE,
814	.ivsize			= AES_BLOCK_SIZE,
815	.setkey			= mtk_aes_setkey,
816	.encrypt		= mtk_aes_cfb_encrypt,
817	.decrypt		= mtk_aes_cfb_decrypt,
818},
819};
820
821static inline struct mtk_aes_gcm_ctx *
822mtk_aes_gcm_ctx_cast(struct mtk_aes_base_ctx *ctx)
823{
824	return container_of(ctx, struct mtk_aes_gcm_ctx, base);
825}
826
827/*
828 * Engine will verify and compare tag automatically, so we just need
829 * to check returned status which stored in the result descriptor.
830 */
831static int mtk_aes_gcm_tag_verify(struct mtk_cryp *cryp,
832				  struct mtk_aes_rec *aes)
833{
834	__le32 status = cryp->ring[aes->id]->res_prev->ct;
835
836	return mtk_aes_complete(cryp, aes, (status & AES_AUTH_TAG_ERR) ?
837				-EBADMSG : 0);
838}
839
840/* Initialize transform information of GCM mode */
841static void mtk_aes_gcm_info_init(struct mtk_cryp *cryp,
842				  struct mtk_aes_rec *aes,
843				  size_t len)
844{
845	struct aead_request *req = aead_request_cast(aes->areq);
846	struct mtk_aes_base_ctx *ctx = aes->ctx;
847	struct mtk_aes_gcm_ctx *gctx = mtk_aes_gcm_ctx_cast(ctx);
848	struct mtk_aes_info *info = &ctx->info;
849	u32 ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
850	u32 cnt = 0;
851
852	ctx->ct_hdr = AES_CT_CTRL_HDR | cpu_to_le32(len);
853
854	info->cmd[cnt++] = AES_GCM_CMD0 | cpu_to_le32(req->assoclen);
855	info->cmd[cnt++] = AES_GCM_CMD1 | cpu_to_le32(req->assoclen);
856	info->cmd[cnt++] = AES_GCM_CMD2;
857	info->cmd[cnt++] = AES_GCM_CMD3 | cpu_to_le32(gctx->textlen);
858
859	if (aes->flags & AES_FLAGS_ENCRYPT) {
860		info->cmd[cnt++] = AES_GCM_CMD4 | cpu_to_le32(gctx->authsize);
861		info->tfm[0] = AES_TFM_GCM_OUT;
862	} else {
863		info->cmd[cnt++] = AES_GCM_CMD5 | cpu_to_le32(gctx->authsize);
864		info->cmd[cnt++] = AES_GCM_CMD6 | cpu_to_le32(gctx->authsize);
865		info->tfm[0] = AES_TFM_GCM_IN;
866	}
867	ctx->ct_size = cnt;
868
869	info->tfm[0] |= AES_TFM_GHASH_DIGEST | AES_TFM_GHASH | AES_TFM_SIZE(
870			ctx->keylen + SIZE_IN_WORDS(AES_BLOCK_SIZE + ivsize)) |
871			ctx->keymode;
872	info->tfm[1] = AES_TFM_CTR_INIT | AES_TFM_IV_CTR_MODE | AES_TFM_3IV |
873		       AES_TFM_ENC_HASH;
874
875	memcpy(info->state + ctx->keylen + SIZE_IN_WORDS(AES_BLOCK_SIZE),
876	       req->iv, ivsize);
877}
878
879static int mtk_aes_gcm_dma(struct mtk_cryp *cryp, struct mtk_aes_rec *aes,
880			   struct scatterlist *src, struct scatterlist *dst,
881			   size_t len)
882{
883	bool src_aligned, dst_aligned;
884
885	aes->src.sg = src;
886	aes->dst.sg = dst;
887	aes->real_dst = dst;
888
889	src_aligned = mtk_aes_check_aligned(src, len, &aes->src);
890	if (src == dst)
891		dst_aligned = src_aligned;
892	else
893		dst_aligned = mtk_aes_check_aligned(dst, len, &aes->dst);
894
895	if (!src_aligned || !dst_aligned) {
896		if (aes->total > AES_BUF_SIZE)
897			return mtk_aes_complete(cryp, aes, -ENOMEM);
898
899		if (!src_aligned) {
900			sg_copy_to_buffer(src, sg_nents(src), aes->buf, len);
901			aes->src.sg = &aes->aligned_sg;
902			aes->src.nents = 1;
903			aes->src.remainder = 0;
904		}
905
906		if (!dst_aligned) {
907			aes->dst.sg = &aes->aligned_sg;
908			aes->dst.nents = 1;
909			aes->dst.remainder = 0;
910		}
911
912		sg_init_table(&aes->aligned_sg, 1);
913		sg_set_buf(&aes->aligned_sg, aes->buf, aes->total);
914	}
915
916	mtk_aes_gcm_info_init(cryp, aes, len);
917
918	return mtk_aes_map(cryp, aes);
919}
920
921/* Todo: GMAC */
922static int mtk_aes_gcm_start(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
923{
924	struct mtk_aes_gcm_ctx *gctx = mtk_aes_gcm_ctx_cast(aes->ctx);
925	struct aead_request *req = aead_request_cast(aes->areq);
926	struct mtk_aes_reqctx *rctx = aead_request_ctx(req);
927	u32 len = req->assoclen + req->cryptlen;
928
929	mtk_aes_set_mode(aes, rctx);
930
931	if (aes->flags & AES_FLAGS_ENCRYPT) {
932		u32 tag[4];
933
934		aes->resume = mtk_aes_transfer_complete;
935		/* Compute total process length. */
936		aes->total = len + gctx->authsize;
937		/* Hardware will append authenticated tag to output buffer */
938		scatterwalk_map_and_copy(tag, req->dst, len, gctx->authsize, 1);
939	} else {
940		aes->resume = mtk_aes_gcm_tag_verify;
941		aes->total = len;
942	}
943
944	return mtk_aes_gcm_dma(cryp, aes, req->src, req->dst, len);
945}
946
947static int mtk_aes_gcm_crypt(struct aead_request *req, u64 mode)
948{
949	struct mtk_aes_base_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
950	struct mtk_aes_gcm_ctx *gctx = mtk_aes_gcm_ctx_cast(ctx);
951	struct mtk_aes_reqctx *rctx = aead_request_ctx(req);
952	struct mtk_cryp *cryp;
953	bool enc = !!(mode & AES_FLAGS_ENCRYPT);
954
955	cryp = mtk_aes_find_dev(ctx);
956	if (!cryp)
957		return -ENODEV;
958
959	/* Compute text length. */
960	gctx->textlen = req->cryptlen - (enc ? 0 : gctx->authsize);
961
962	/* Empty messages are not supported yet */
963	if (!gctx->textlen && !req->assoclen)
964		return -EINVAL;
965
966	rctx->mode = AES_FLAGS_GCM | mode;
967
968	return mtk_aes_handle_queue(cryp, enc, &req->base);
969}
970
971/*
972 * Because of the hardware limitation, we need to pre-calculate key(H)
973 * for the GHASH operation. The result of the encryption operation
974 * need to be stored in the transform state buffer.
975 */
976static int mtk_aes_gcm_setkey(struct crypto_aead *aead, const u8 *key,
977			      u32 keylen)
978{
979	struct mtk_aes_base_ctx *ctx = crypto_aead_ctx(aead);
980	union {
981		u32 x32[SIZE_IN_WORDS(AES_BLOCK_SIZE)];
982		u8 x8[AES_BLOCK_SIZE];
983	} hash = {};
984	struct crypto_aes_ctx aes_ctx;
985	int err;
986	int i;
987
988	switch (keylen) {
989	case AES_KEYSIZE_128:
990		ctx->keymode = AES_TFM_128BITS;
991		break;
992	case AES_KEYSIZE_192:
993		ctx->keymode = AES_TFM_192BITS;
994		break;
995	case AES_KEYSIZE_256:
996		ctx->keymode = AES_TFM_256BITS;
997		break;
998
999	default:
1000		return -EINVAL;
1001	}
1002
1003	ctx->keylen = SIZE_IN_WORDS(keylen);
1004
1005	err = aes_expandkey(&aes_ctx, key, keylen);
1006	if (err)
1007		return err;
1008
1009	aes_encrypt(&aes_ctx, hash.x8, hash.x8);
1010	memzero_explicit(&aes_ctx, sizeof(aes_ctx));
1011
1012	memcpy(ctx->key, key, keylen);
1013
1014	/* Why do we need to do this? */
1015	for (i = 0; i < SIZE_IN_WORDS(AES_BLOCK_SIZE); i++)
1016		hash.x32[i] = swab32(hash.x32[i]);
1017
1018	memcpy(ctx->key + ctx->keylen, &hash, AES_BLOCK_SIZE);
1019
1020	return 0;
1021}
1022
1023static int mtk_aes_gcm_setauthsize(struct crypto_aead *aead,
1024				   u32 authsize)
1025{
1026	struct mtk_aes_base_ctx *ctx = crypto_aead_ctx(aead);
1027	struct mtk_aes_gcm_ctx *gctx = mtk_aes_gcm_ctx_cast(ctx);
1028
1029	/* Same as crypto_gcm_authsize() from crypto/gcm.c */
1030	switch (authsize) {
1031	case 8:
1032	case 12:
1033	case 16:
1034		break;
1035	default:
1036		return -EINVAL;
1037	}
1038
1039	gctx->authsize = authsize;
1040	return 0;
1041}
1042
1043static int mtk_aes_gcm_encrypt(struct aead_request *req)
1044{
1045	return mtk_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1046}
1047
1048static int mtk_aes_gcm_decrypt(struct aead_request *req)
1049{
1050	return mtk_aes_gcm_crypt(req, 0);
1051}
1052
1053static int mtk_aes_gcm_init(struct crypto_aead *aead)
1054{
1055	struct mtk_aes_gcm_ctx *ctx = crypto_aead_ctx(aead);
1056
1057	crypto_aead_set_reqsize(aead, sizeof(struct mtk_aes_reqctx));
1058	ctx->base.start = mtk_aes_gcm_start;
1059	return 0;
1060}
1061
1062static struct aead_alg aes_gcm_alg = {
1063	.setkey		= mtk_aes_gcm_setkey,
1064	.setauthsize	= mtk_aes_gcm_setauthsize,
1065	.encrypt	= mtk_aes_gcm_encrypt,
1066	.decrypt	= mtk_aes_gcm_decrypt,
1067	.init		= mtk_aes_gcm_init,
1068	.ivsize		= GCM_AES_IV_SIZE,
1069	.maxauthsize	= AES_BLOCK_SIZE,
1070
1071	.base = {
1072		.cra_name		= "gcm(aes)",
1073		.cra_driver_name	= "gcm-aes-mtk",
1074		.cra_priority		= 400,
1075		.cra_flags		= CRYPTO_ALG_ASYNC,
1076		.cra_blocksize		= 1,
1077		.cra_ctxsize		= sizeof(struct mtk_aes_gcm_ctx),
1078		.cra_alignmask		= 0xf,
1079		.cra_module		= THIS_MODULE,
1080	},
1081};
1082
1083static void mtk_aes_queue_task(unsigned long data)
1084{
1085	struct mtk_aes_rec *aes = (struct mtk_aes_rec *)data;
1086
1087	mtk_aes_handle_queue(aes->cryp, aes->id, NULL);
1088}
1089
1090static void mtk_aes_done_task(unsigned long data)
1091{
1092	struct mtk_aes_rec *aes = (struct mtk_aes_rec *)data;
1093	struct mtk_cryp *cryp = aes->cryp;
1094
1095	mtk_aes_unmap(cryp, aes);
1096	aes->resume(cryp, aes);
1097}
1098
1099static irqreturn_t mtk_aes_irq(int irq, void *dev_id)
1100{
1101	struct mtk_aes_rec *aes  = (struct mtk_aes_rec *)dev_id;
1102	struct mtk_cryp *cryp = aes->cryp;
1103	u32 val = mtk_aes_read(cryp, RDR_STAT(aes->id));
1104
1105	mtk_aes_write(cryp, RDR_STAT(aes->id), val);
1106
1107	if (likely(AES_FLAGS_BUSY & aes->flags)) {
1108		mtk_aes_write(cryp, RDR_PROC_COUNT(aes->id), MTK_CNT_RST);
1109		mtk_aes_write(cryp, RDR_THRESH(aes->id),
1110			      MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE);
1111
1112		tasklet_schedule(&aes->done_task);
1113	} else {
1114		dev_warn(cryp->dev, "AES interrupt when no active requests.\n");
1115	}
1116	return IRQ_HANDLED;
1117}
1118
1119/*
1120 * The purpose of creating encryption and decryption records is
1121 * to process outbound/inbound data in parallel, it can improve
1122 * performance in most use cases, such as IPSec VPN, especially
1123 * under heavy network traffic.
1124 */
1125static int mtk_aes_record_init(struct mtk_cryp *cryp)
1126{
1127	struct mtk_aes_rec **aes = cryp->aes;
1128	int i, err = -ENOMEM;
1129
1130	for (i = 0; i < MTK_REC_NUM; i++) {
1131		aes[i] = kzalloc(sizeof(**aes), GFP_KERNEL);
1132		if (!aes[i])
1133			goto err_cleanup;
1134
1135		aes[i]->buf = (void *)__get_free_pages(GFP_KERNEL,
1136						AES_BUF_ORDER);
1137		if (!aes[i]->buf)
1138			goto err_cleanup;
1139
1140		aes[i]->cryp = cryp;
1141
1142		spin_lock_init(&aes[i]->lock);
1143		crypto_init_queue(&aes[i]->queue, AES_QUEUE_SIZE);
1144
1145		tasklet_init(&aes[i]->queue_task, mtk_aes_queue_task,
1146			     (unsigned long)aes[i]);
1147		tasklet_init(&aes[i]->done_task, mtk_aes_done_task,
1148			     (unsigned long)aes[i]);
1149	}
1150
1151	/* Link to ring0 and ring1 respectively */
1152	aes[0]->id = MTK_RING0;
1153	aes[1]->id = MTK_RING1;
1154
1155	return 0;
1156
1157err_cleanup:
1158	for (; i--; ) {
1159		free_page((unsigned long)aes[i]->buf);
1160		kfree(aes[i]);
1161	}
1162
1163	return err;
1164}
1165
1166static void mtk_aes_record_free(struct mtk_cryp *cryp)
1167{
1168	int i;
1169
1170	for (i = 0; i < MTK_REC_NUM; i++) {
1171		tasklet_kill(&cryp->aes[i]->done_task);
1172		tasklet_kill(&cryp->aes[i]->queue_task);
1173
1174		free_page((unsigned long)cryp->aes[i]->buf);
1175		kfree(cryp->aes[i]);
1176	}
1177}
1178
1179static void mtk_aes_unregister_algs(void)
1180{
1181	int i;
1182
1183	crypto_unregister_aead(&aes_gcm_alg);
1184
1185	for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
1186		crypto_unregister_skcipher(&aes_algs[i]);
1187}
1188
1189static int mtk_aes_register_algs(void)
1190{
1191	int err, i;
1192
1193	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
1194		err = crypto_register_skcipher(&aes_algs[i]);
1195		if (err)
1196			goto err_aes_algs;
1197	}
1198
1199	err = crypto_register_aead(&aes_gcm_alg);
1200	if (err)
1201		goto err_aes_algs;
1202
1203	return 0;
1204
1205err_aes_algs:
1206	for (; i--; )
1207		crypto_unregister_skcipher(&aes_algs[i]);
1208
1209	return err;
1210}
1211
1212int mtk_cipher_alg_register(struct mtk_cryp *cryp)
1213{
1214	int ret;
1215
1216	INIT_LIST_HEAD(&cryp->aes_list);
1217
1218	/* Initialize two cipher records */
1219	ret = mtk_aes_record_init(cryp);
1220	if (ret)
1221		goto err_record;
1222
1223	ret = devm_request_irq(cryp->dev, cryp->irq[MTK_RING0], mtk_aes_irq,
1224			       0, "mtk-aes", cryp->aes[0]);
1225	if (ret) {
1226		dev_err(cryp->dev, "unable to request AES irq.\n");
1227		goto err_res;
1228	}
1229
1230	ret = devm_request_irq(cryp->dev, cryp->irq[MTK_RING1], mtk_aes_irq,
1231			       0, "mtk-aes", cryp->aes[1]);
1232	if (ret) {
1233		dev_err(cryp->dev, "unable to request AES irq.\n");
1234		goto err_res;
1235	}
1236
1237	/* Enable ring0 and ring1 interrupt */
1238	mtk_aes_write(cryp, AIC_ENABLE_SET(MTK_RING0), MTK_IRQ_RDR0);
1239	mtk_aes_write(cryp, AIC_ENABLE_SET(MTK_RING1), MTK_IRQ_RDR1);
1240
1241	spin_lock(&mtk_aes.lock);
1242	list_add_tail(&cryp->aes_list, &mtk_aes.dev_list);
1243	spin_unlock(&mtk_aes.lock);
1244
1245	ret = mtk_aes_register_algs();
1246	if (ret)
1247		goto err_algs;
1248
1249	return 0;
1250
1251err_algs:
1252	spin_lock(&mtk_aes.lock);
1253	list_del(&cryp->aes_list);
1254	spin_unlock(&mtk_aes.lock);
1255err_res:
1256	mtk_aes_record_free(cryp);
1257err_record:
1258
1259	dev_err(cryp->dev, "mtk-aes initialization failed.\n");
1260	return ret;
1261}
1262
1263void mtk_cipher_alg_release(struct mtk_cryp *cryp)
1264{
1265	spin_lock(&mtk_aes.lock);
1266	list_del(&cryp->aes_list);
1267	spin_unlock(&mtk_aes.lock);
1268
1269	mtk_aes_unregister_algs();
1270	mtk_aes_record_free(cryp);
1271}
1272