1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2019 HiSilicon Limited. */
3
4#include <crypto/aes.h>
5#include <crypto/algapi.h>
6#include <crypto/authenc.h>
7#include <crypto/des.h>
8#include <crypto/hash.h>
9#include <crypto/internal/aead.h>
10#include <crypto/sha.h>
11#include <crypto/skcipher.h>
12#include <crypto/xts.h>
13#include <linux/crypto.h>
14#include <linux/dma-mapping.h>
15#include <linux/idr.h>
16
17#include "sec.h"
18#include "sec_crypto.h"
19
20#define SEC_PRIORITY		4001
21#define SEC_XTS_MIN_KEY_SIZE	(2 * AES_MIN_KEY_SIZE)
22#define SEC_XTS_MAX_KEY_SIZE	(2 * AES_MAX_KEY_SIZE)
23#define SEC_DES3_2KEY_SIZE	(2 * DES_KEY_SIZE)
24#define SEC_DES3_3KEY_SIZE	(3 * DES_KEY_SIZE)
25
26/* SEC sqe(bd) bit operational relative MACRO */
27#define SEC_DE_OFFSET		1
28#define SEC_CIPHER_OFFSET	4
29#define SEC_SCENE_OFFSET	3
30#define SEC_DST_SGL_OFFSET	2
31#define SEC_SRC_SGL_OFFSET	7
32#define SEC_CKEY_OFFSET		9
33#define SEC_CMODE_OFFSET	12
34#define SEC_AKEY_OFFSET         5
35#define SEC_AEAD_ALG_OFFSET     11
36#define SEC_AUTH_OFFSET		6
37
38#define SEC_FLAG_OFFSET		7
39#define SEC_FLAG_MASK		0x0780
40#define SEC_TYPE_MASK		0x0F
41#define SEC_DONE_MASK		0x0001
42
43#define SEC_TOTAL_IV_SZ		(SEC_IV_SIZE * QM_Q_DEPTH)
44#define SEC_SGL_SGE_NR		128
45#define SEC_CIPHER_AUTH		0xfe
46#define SEC_AUTH_CIPHER		0x1
47#define SEC_MAX_MAC_LEN		64
48#define SEC_MAX_AAD_LEN		65535
49#define SEC_TOTAL_MAC_SZ	(SEC_MAX_MAC_LEN * QM_Q_DEPTH)
50
51#define SEC_PBUF_SZ			512
52#define SEC_PBUF_IV_OFFSET		SEC_PBUF_SZ
53#define SEC_PBUF_MAC_OFFSET		(SEC_PBUF_SZ + SEC_IV_SIZE)
54#define SEC_PBUF_PKG		(SEC_PBUF_SZ + SEC_IV_SIZE +	\
55			SEC_MAX_MAC_LEN * 2)
56#define SEC_PBUF_NUM		(PAGE_SIZE / SEC_PBUF_PKG)
57#define SEC_PBUF_PAGE_NUM	(QM_Q_DEPTH / SEC_PBUF_NUM)
58#define SEC_PBUF_LEFT_SZ	(SEC_PBUF_PKG * (QM_Q_DEPTH -	\
59			SEC_PBUF_PAGE_NUM * SEC_PBUF_NUM))
60#define SEC_TOTAL_PBUF_SZ	(PAGE_SIZE * SEC_PBUF_PAGE_NUM +	\
61			SEC_PBUF_LEFT_SZ)
62
63#define SEC_SQE_LEN_RATE	4
64#define SEC_SQE_CFLAG		2
65#define SEC_SQE_AEAD_FLAG	3
66#define SEC_SQE_DONE		0x1
67
68/* Get an en/de-cipher queue cyclically to balance load over queues of TFM */
69static inline int sec_alloc_queue_id(struct sec_ctx *ctx, struct sec_req *req)
70{
71	if (req->c_req.encrypt)
72		return (u32)atomic_inc_return(&ctx->enc_qcyclic) %
73				 ctx->hlf_q_num;
74
75	return (u32)atomic_inc_return(&ctx->dec_qcyclic) % ctx->hlf_q_num +
76				 ctx->hlf_q_num;
77}
78
79static inline void sec_free_queue_id(struct sec_ctx *ctx, struct sec_req *req)
80{
81	if (req->c_req.encrypt)
82		atomic_dec(&ctx->enc_qcyclic);
83	else
84		atomic_dec(&ctx->dec_qcyclic);
85}
86
87static int sec_alloc_req_id(struct sec_req *req, struct sec_qp_ctx *qp_ctx)
88{
89	int req_id;
90
91	spin_lock_bh(&qp_ctx->req_lock);
92
93	req_id = idr_alloc_cyclic(&qp_ctx->req_idr, NULL,
94				  0, QM_Q_DEPTH, GFP_ATOMIC);
95	spin_unlock_bh(&qp_ctx->req_lock);
96	if (unlikely(req_id < 0)) {
97		dev_err(req->ctx->dev, "alloc req id fail!\n");
98		return req_id;
99	}
100
101	req->qp_ctx = qp_ctx;
102	qp_ctx->req_list[req_id] = req;
103	return req_id;
104}
105
106static void sec_free_req_id(struct sec_req *req)
107{
108	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
109	int req_id = req->req_id;
110
111	if (unlikely(req_id < 0 || req_id >= QM_Q_DEPTH)) {
112		dev_err(req->ctx->dev, "free request id invalid!\n");
113		return;
114	}
115
116	qp_ctx->req_list[req_id] = NULL;
117	req->qp_ctx = NULL;
118
119	spin_lock_bh(&qp_ctx->req_lock);
120	idr_remove(&qp_ctx->req_idr, req_id);
121	spin_unlock_bh(&qp_ctx->req_lock);
122}
123
124static int sec_aead_verify(struct sec_req *req)
125{
126	struct aead_request *aead_req = req->aead_req.aead_req;
127	struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
128	size_t authsize = crypto_aead_authsize(tfm);
129	u8 *mac_out = req->aead_req.out_mac;
130	u8 *mac = mac_out + SEC_MAX_MAC_LEN;
131	struct scatterlist *sgl = aead_req->src;
132	size_t sz;
133
134	sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), mac, authsize,
135				aead_req->cryptlen + aead_req->assoclen -
136				authsize);
137	if (unlikely(sz != authsize || memcmp(mac_out, mac, sz))) {
138		dev_err(req->ctx->dev, "aead verify failure!\n");
139		return -EBADMSG;
140	}
141
142	return 0;
143}
144
145static void sec_req_cb(struct hisi_qp *qp, void *resp)
146{
147	struct sec_qp_ctx *qp_ctx = qp->qp_ctx;
148	struct sec_dfx *dfx = &qp_ctx->ctx->sec->debug.dfx;
149	struct sec_sqe *bd = resp;
150	struct sec_ctx *ctx;
151	struct sec_req *req;
152	u16 done, flag;
153	int err = 0;
154	u8 type;
155
156	type = bd->type_cipher_auth & SEC_TYPE_MASK;
157	if (unlikely(type != SEC_BD_TYPE2)) {
158		atomic64_inc(&dfx->err_bd_cnt);
159		pr_err("err bd type [%d]\n", type);
160		return;
161	}
162
163	req = qp_ctx->req_list[le16_to_cpu(bd->type2.tag)];
164	if (unlikely(!req)) {
165		atomic64_inc(&dfx->invalid_req_cnt);
166		atomic_inc(&qp->qp_status.used);
167		return;
168	}
169	req->err_type = bd->type2.error_type;
170	ctx = req->ctx;
171	done = le16_to_cpu(bd->type2.done_flag) & SEC_DONE_MASK;
172	flag = (le16_to_cpu(bd->type2.done_flag) &
173		SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
174	if (unlikely(req->err_type || done != SEC_SQE_DONE ||
175	    (ctx->alg_type == SEC_SKCIPHER && flag != SEC_SQE_CFLAG) ||
176	    (ctx->alg_type == SEC_AEAD && flag != SEC_SQE_AEAD_FLAG))) {
177		dev_err_ratelimited(ctx->dev,
178			"err_type[%d],done[%d],flag[%d]\n",
179			req->err_type, done, flag);
180		err = -EIO;
181		atomic64_inc(&dfx->done_flag_cnt);
182	}
183
184	if (ctx->alg_type == SEC_AEAD && !req->c_req.encrypt)
185		err = sec_aead_verify(req);
186
187	atomic64_inc(&dfx->recv_cnt);
188
189	ctx->req_op->buf_unmap(ctx, req);
190
191	ctx->req_op->callback(ctx, req, err);
192}
193
194static int sec_bd_send(struct sec_ctx *ctx, struct sec_req *req)
195{
196	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
197	int ret;
198
199	if (ctx->fake_req_limit <=
200	    atomic_read(&qp_ctx->qp->qp_status.used) &&
201	    !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG))
202		return -EBUSY;
203
204	spin_lock_bh(&qp_ctx->req_lock);
205	ret = hisi_qp_send(qp_ctx->qp, &req->sec_sqe);
206
207	if (ctx->fake_req_limit <=
208	    atomic_read(&qp_ctx->qp->qp_status.used) && !ret) {
209		list_add_tail(&req->backlog_head, &qp_ctx->backlog);
210		atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
211		atomic64_inc(&ctx->sec->debug.dfx.send_busy_cnt);
212		spin_unlock_bh(&qp_ctx->req_lock);
213		return -EBUSY;
214	}
215	spin_unlock_bh(&qp_ctx->req_lock);
216
217	if (unlikely(ret == -EBUSY))
218		return -ENOBUFS;
219
220	if (likely(!ret)) {
221		ret = -EINPROGRESS;
222		atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
223	}
224
225	return ret;
226}
227
228/* Get DMA memory resources */
229static int sec_alloc_civ_resource(struct device *dev, struct sec_alg_res *res)
230{
231	int i;
232
233	res->c_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ,
234					 &res->c_ivin_dma, GFP_KERNEL);
235	if (!res->c_ivin)
236		return -ENOMEM;
237
238	for (i = 1; i < QM_Q_DEPTH; i++) {
239		res[i].c_ivin_dma = res->c_ivin_dma + i * SEC_IV_SIZE;
240		res[i].c_ivin = res->c_ivin + i * SEC_IV_SIZE;
241	}
242
243	return 0;
244}
245
246static void sec_free_civ_resource(struct device *dev, struct sec_alg_res *res)
247{
248	if (res->c_ivin)
249		dma_free_coherent(dev, SEC_TOTAL_IV_SZ,
250				  res->c_ivin, res->c_ivin_dma);
251}
252
253static int sec_alloc_mac_resource(struct device *dev, struct sec_alg_res *res)
254{
255	int i;
256
257	res->out_mac = dma_alloc_coherent(dev, SEC_TOTAL_MAC_SZ << 1,
258					  &res->out_mac_dma, GFP_KERNEL);
259	if (!res->out_mac)
260		return -ENOMEM;
261
262	for (i = 1; i < QM_Q_DEPTH; i++) {
263		res[i].out_mac_dma = res->out_mac_dma +
264				     i * (SEC_MAX_MAC_LEN << 1);
265		res[i].out_mac = res->out_mac + i * (SEC_MAX_MAC_LEN << 1);
266	}
267
268	return 0;
269}
270
271static void sec_free_mac_resource(struct device *dev, struct sec_alg_res *res)
272{
273	if (res->out_mac)
274		dma_free_coherent(dev, SEC_TOTAL_MAC_SZ << 1,
275				  res->out_mac, res->out_mac_dma);
276}
277
278static void sec_free_pbuf_resource(struct device *dev, struct sec_alg_res *res)
279{
280	if (res->pbuf)
281		dma_free_coherent(dev, SEC_TOTAL_PBUF_SZ,
282				  res->pbuf, res->pbuf_dma);
283}
284
285/*
286 * To improve performance, pbuffer is used for
287 * small packets (< 512Bytes) as IOMMU translation using.
288 */
289static int sec_alloc_pbuf_resource(struct device *dev, struct sec_alg_res *res)
290{
291	int pbuf_page_offset;
292	int i, j, k;
293
294	res->pbuf = dma_alloc_coherent(dev, SEC_TOTAL_PBUF_SZ,
295				&res->pbuf_dma, GFP_KERNEL);
296	if (!res->pbuf)
297		return -ENOMEM;
298
299	/*
300	 * SEC_PBUF_PKG contains data pbuf, iv and
301	 * out_mac : <SEC_PBUF|SEC_IV|SEC_MAC>
302	 * Every PAGE contains six SEC_PBUF_PKG
303	 * The sec_qp_ctx contains QM_Q_DEPTH numbers of SEC_PBUF_PKG
304	 * So we need SEC_PBUF_PAGE_NUM numbers of PAGE
305	 * for the SEC_TOTAL_PBUF_SZ
306	 */
307	for (i = 0; i <= SEC_PBUF_PAGE_NUM; i++) {
308		pbuf_page_offset = PAGE_SIZE * i;
309		for (j = 0; j < SEC_PBUF_NUM; j++) {
310			k = i * SEC_PBUF_NUM + j;
311			if (k == QM_Q_DEPTH)
312				break;
313			res[k].pbuf = res->pbuf +
314				j * SEC_PBUF_PKG + pbuf_page_offset;
315			res[k].pbuf_dma = res->pbuf_dma +
316				j * SEC_PBUF_PKG + pbuf_page_offset;
317		}
318	}
319	return 0;
320}
321
322static int sec_alg_resource_alloc(struct sec_ctx *ctx,
323				  struct sec_qp_ctx *qp_ctx)
324{
325	struct sec_alg_res *res = qp_ctx->res;
326	struct device *dev = ctx->dev;
327	int ret;
328
329	ret = sec_alloc_civ_resource(dev, res);
330	if (ret)
331		return ret;
332
333	if (ctx->alg_type == SEC_AEAD) {
334		ret = sec_alloc_mac_resource(dev, res);
335		if (ret)
336			goto alloc_fail;
337	}
338	if (ctx->pbuf_supported) {
339		ret = sec_alloc_pbuf_resource(dev, res);
340		if (ret) {
341			dev_err(dev, "fail to alloc pbuf dma resource!\n");
342			goto alloc_pbuf_fail;
343		}
344	}
345
346	return 0;
347alloc_pbuf_fail:
348	if (ctx->alg_type == SEC_AEAD)
349		sec_free_mac_resource(dev, qp_ctx->res);
350alloc_fail:
351	sec_free_civ_resource(dev, res);
352
353	return ret;
354}
355
356static void sec_alg_resource_free(struct sec_ctx *ctx,
357				  struct sec_qp_ctx *qp_ctx)
358{
359	struct device *dev = ctx->dev;
360
361	sec_free_civ_resource(dev, qp_ctx->res);
362
363	if (ctx->pbuf_supported)
364		sec_free_pbuf_resource(dev, qp_ctx->res);
365	if (ctx->alg_type == SEC_AEAD)
366		sec_free_mac_resource(dev, qp_ctx->res);
367}
368
369static int sec_create_qp_ctx(struct hisi_qm *qm, struct sec_ctx *ctx,
370			     int qp_ctx_id, int alg_type)
371{
372	struct device *dev = ctx->dev;
373	struct sec_qp_ctx *qp_ctx;
374	struct hisi_qp *qp;
375	int ret = -ENOMEM;
376
377	qp_ctx = &ctx->qp_ctx[qp_ctx_id];
378	qp = ctx->qps[qp_ctx_id];
379	qp->req_type = 0;
380	qp->qp_ctx = qp_ctx;
381	qp->req_cb = sec_req_cb;
382	qp_ctx->qp = qp;
383	qp_ctx->ctx = ctx;
384
385	spin_lock_init(&qp_ctx->req_lock);
386	idr_init(&qp_ctx->req_idr);
387	INIT_LIST_HEAD(&qp_ctx->backlog);
388
389	qp_ctx->c_in_pool = hisi_acc_create_sgl_pool(dev, QM_Q_DEPTH,
390						     SEC_SGL_SGE_NR);
391	if (IS_ERR(qp_ctx->c_in_pool)) {
392		dev_err(dev, "fail to create sgl pool for input!\n");
393		goto err_destroy_idr;
394	}
395
396	qp_ctx->c_out_pool = hisi_acc_create_sgl_pool(dev, QM_Q_DEPTH,
397						      SEC_SGL_SGE_NR);
398	if (IS_ERR(qp_ctx->c_out_pool)) {
399		dev_err(dev, "fail to create sgl pool for output!\n");
400		goto err_free_c_in_pool;
401	}
402
403	ret = sec_alg_resource_alloc(ctx, qp_ctx);
404	if (ret)
405		goto err_free_c_out_pool;
406
407	ret = hisi_qm_start_qp(qp, 0);
408	if (ret < 0)
409		goto err_queue_free;
410
411	return 0;
412
413err_queue_free:
414	sec_alg_resource_free(ctx, qp_ctx);
415err_free_c_out_pool:
416	hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
417err_free_c_in_pool:
418	hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
419err_destroy_idr:
420	idr_destroy(&qp_ctx->req_idr);
421
422	return ret;
423}
424
425static void sec_release_qp_ctx(struct sec_ctx *ctx,
426			       struct sec_qp_ctx *qp_ctx)
427{
428	struct device *dev = ctx->dev;
429
430	hisi_qm_stop_qp(qp_ctx->qp);
431	sec_alg_resource_free(ctx, qp_ctx);
432
433	hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
434	hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
435
436	idr_destroy(&qp_ctx->req_idr);
437}
438
439static int sec_ctx_base_init(struct sec_ctx *ctx)
440{
441	struct sec_dev *sec;
442	int i, ret;
443
444	ctx->qps = sec_create_qps();
445	if (!ctx->qps) {
446		pr_err("Can not create sec qps!\n");
447		return -ENODEV;
448	}
449
450	sec = container_of(ctx->qps[0]->qm, struct sec_dev, qm);
451	ctx->sec = sec;
452	ctx->dev = &sec->qm.pdev->dev;
453	ctx->hlf_q_num = sec->ctx_q_num >> 1;
454
455	ctx->pbuf_supported = ctx->sec->iommu_used;
456
457	/* Half of queue depth is taken as fake requests limit in the queue. */
458	ctx->fake_req_limit = QM_Q_DEPTH >> 1;
459	ctx->qp_ctx = kcalloc(sec->ctx_q_num, sizeof(struct sec_qp_ctx),
460			      GFP_KERNEL);
461	if (!ctx->qp_ctx) {
462		ret = -ENOMEM;
463		goto err_destroy_qps;
464	}
465
466	for (i = 0; i < sec->ctx_q_num; i++) {
467		ret = sec_create_qp_ctx(&sec->qm, ctx, i, 0);
468		if (ret)
469			goto err_sec_release_qp_ctx;
470	}
471
472	return 0;
473
474err_sec_release_qp_ctx:
475	for (i = i - 1; i >= 0; i--)
476		sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
477	kfree(ctx->qp_ctx);
478err_destroy_qps:
479	sec_destroy_qps(ctx->qps, sec->ctx_q_num);
480	return ret;
481}
482
483static void sec_ctx_base_uninit(struct sec_ctx *ctx)
484{
485	int i;
486
487	for (i = 0; i < ctx->sec->ctx_q_num; i++)
488		sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
489
490	sec_destroy_qps(ctx->qps, ctx->sec->ctx_q_num);
491	kfree(ctx->qp_ctx);
492}
493
494static int sec_cipher_init(struct sec_ctx *ctx)
495{
496	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
497
498	c_ctx->c_key = dma_alloc_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
499					  &c_ctx->c_key_dma, GFP_KERNEL);
500	if (!c_ctx->c_key)
501		return -ENOMEM;
502
503	return 0;
504}
505
506static void sec_cipher_uninit(struct sec_ctx *ctx)
507{
508	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
509
510	memzero_explicit(c_ctx->c_key, SEC_MAX_KEY_SIZE);
511	dma_free_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
512			  c_ctx->c_key, c_ctx->c_key_dma);
513}
514
515static int sec_auth_init(struct sec_ctx *ctx)
516{
517	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
518
519	a_ctx->a_key = dma_alloc_coherent(ctx->dev, SEC_MAX_AKEY_SIZE,
520					  &a_ctx->a_key_dma, GFP_KERNEL);
521	if (!a_ctx->a_key)
522		return -ENOMEM;
523
524	return 0;
525}
526
527static void sec_auth_uninit(struct sec_ctx *ctx)
528{
529	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
530
531	memzero_explicit(a_ctx->a_key, SEC_MAX_AKEY_SIZE);
532	dma_free_coherent(ctx->dev, SEC_MAX_AKEY_SIZE,
533			  a_ctx->a_key, a_ctx->a_key_dma);
534}
535
536static int sec_skcipher_init(struct crypto_skcipher *tfm)
537{
538	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
539	int ret;
540
541	ctx->alg_type = SEC_SKCIPHER;
542	crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_req));
543	ctx->c_ctx.ivsize = crypto_skcipher_ivsize(tfm);
544	if (ctx->c_ctx.ivsize > SEC_IV_SIZE) {
545		pr_err("get error skcipher iv size!\n");
546		return -EINVAL;
547	}
548
549	ret = sec_ctx_base_init(ctx);
550	if (ret)
551		return ret;
552
553	ret = sec_cipher_init(ctx);
554	if (ret)
555		goto err_cipher_init;
556
557	return 0;
558err_cipher_init:
559	sec_ctx_base_uninit(ctx);
560
561	return ret;
562}
563
564static void sec_skcipher_uninit(struct crypto_skcipher *tfm)
565{
566	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
567
568	sec_cipher_uninit(ctx);
569	sec_ctx_base_uninit(ctx);
570}
571
572static int sec_skcipher_3des_setkey(struct sec_cipher_ctx *c_ctx,
573				    const u32 keylen,
574				    const enum sec_cmode c_mode)
575{
576	switch (keylen) {
577	case SEC_DES3_2KEY_SIZE:
578		c_ctx->c_key_len = SEC_CKEY_3DES_2KEY;
579		break;
580	case SEC_DES3_3KEY_SIZE:
581		c_ctx->c_key_len = SEC_CKEY_3DES_3KEY;
582		break;
583	default:
584		return -EINVAL;
585	}
586
587	return 0;
588}
589
590static int sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx *c_ctx,
591				       const u32 keylen,
592				       const enum sec_cmode c_mode)
593{
594	if (c_mode == SEC_CMODE_XTS) {
595		switch (keylen) {
596		case SEC_XTS_MIN_KEY_SIZE:
597			c_ctx->c_key_len = SEC_CKEY_128BIT;
598			break;
599		case SEC_XTS_MAX_KEY_SIZE:
600			c_ctx->c_key_len = SEC_CKEY_256BIT;
601			break;
602		default:
603			pr_err("hisi_sec2: xts mode key error!\n");
604			return -EINVAL;
605		}
606	} else {
607		switch (keylen) {
608		case AES_KEYSIZE_128:
609			c_ctx->c_key_len = SEC_CKEY_128BIT;
610			break;
611		case AES_KEYSIZE_192:
612			c_ctx->c_key_len = SEC_CKEY_192BIT;
613			break;
614		case AES_KEYSIZE_256:
615			c_ctx->c_key_len = SEC_CKEY_256BIT;
616			break;
617		default:
618			pr_err("hisi_sec2: aes key error!\n");
619			return -EINVAL;
620		}
621	}
622
623	return 0;
624}
625
626static int sec_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
627			       const u32 keylen, const enum sec_calg c_alg,
628			       const enum sec_cmode c_mode)
629{
630	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
631	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
632	struct device *dev = ctx->dev;
633	int ret;
634
635	if (c_mode == SEC_CMODE_XTS) {
636		ret = xts_verify_key(tfm, key, keylen);
637		if (ret) {
638			dev_err(dev, "xts mode key err!\n");
639			return ret;
640		}
641	}
642
643	c_ctx->c_alg  = c_alg;
644	c_ctx->c_mode = c_mode;
645
646	switch (c_alg) {
647	case SEC_CALG_3DES:
648		ret = sec_skcipher_3des_setkey(c_ctx, keylen, c_mode);
649		break;
650	case SEC_CALG_AES:
651	case SEC_CALG_SM4:
652		ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
653		break;
654	default:
655		return -EINVAL;
656	}
657
658	if (ret) {
659		dev_err(dev, "set sec key err!\n");
660		return ret;
661	}
662
663	memcpy(c_ctx->c_key, key, keylen);
664
665	return 0;
666}
667
668#define GEN_SEC_SETKEY_FUNC(name, c_alg, c_mode)			\
669static int sec_setkey_##name(struct crypto_skcipher *tfm, const u8 *key,\
670	u32 keylen)							\
671{									\
672	return sec_skcipher_setkey(tfm, key, keylen, c_alg, c_mode);	\
673}
674
675GEN_SEC_SETKEY_FUNC(aes_ecb, SEC_CALG_AES, SEC_CMODE_ECB)
676GEN_SEC_SETKEY_FUNC(aes_cbc, SEC_CALG_AES, SEC_CMODE_CBC)
677GEN_SEC_SETKEY_FUNC(aes_xts, SEC_CALG_AES, SEC_CMODE_XTS)
678
679GEN_SEC_SETKEY_FUNC(3des_ecb, SEC_CALG_3DES, SEC_CMODE_ECB)
680GEN_SEC_SETKEY_FUNC(3des_cbc, SEC_CALG_3DES, SEC_CMODE_CBC)
681
682GEN_SEC_SETKEY_FUNC(sm4_xts, SEC_CALG_SM4, SEC_CMODE_XTS)
683GEN_SEC_SETKEY_FUNC(sm4_cbc, SEC_CALG_SM4, SEC_CMODE_CBC)
684
685static int sec_cipher_pbuf_map(struct sec_ctx *ctx, struct sec_req *req,
686			struct scatterlist *src)
687{
688	struct aead_request *aead_req = req->aead_req.aead_req;
689	struct sec_cipher_req *c_req = &req->c_req;
690	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
691	struct device *dev = ctx->dev;
692	int copy_size, pbuf_length;
693	int req_id = req->req_id;
694
695	if (ctx->alg_type == SEC_AEAD)
696		copy_size = aead_req->cryptlen + aead_req->assoclen;
697	else
698		copy_size = c_req->c_len;
699
700	pbuf_length = sg_copy_to_buffer(src, sg_nents(src),
701							qp_ctx->res[req_id].pbuf,
702							copy_size);
703	if (unlikely(pbuf_length != copy_size)) {
704		dev_err(dev, "copy src data to pbuf error!\n");
705		return -EINVAL;
706	}
707
708	c_req->c_in_dma = qp_ctx->res[req_id].pbuf_dma;
709
710	if (!c_req->c_in_dma) {
711		dev_err(dev, "fail to set pbuffer address!\n");
712		return -ENOMEM;
713	}
714
715	c_req->c_out_dma = c_req->c_in_dma;
716
717	return 0;
718}
719
720static void sec_cipher_pbuf_unmap(struct sec_ctx *ctx, struct sec_req *req,
721			struct scatterlist *dst)
722{
723	struct aead_request *aead_req = req->aead_req.aead_req;
724	struct sec_cipher_req *c_req = &req->c_req;
725	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
726	struct device *dev = ctx->dev;
727	int copy_size, pbuf_length;
728	int req_id = req->req_id;
729
730	if (ctx->alg_type == SEC_AEAD)
731		copy_size = c_req->c_len + aead_req->assoclen;
732	else
733		copy_size = c_req->c_len;
734
735	pbuf_length = sg_copy_from_buffer(dst, sg_nents(dst),
736				qp_ctx->res[req_id].pbuf,
737				copy_size);
738	if (unlikely(pbuf_length != copy_size))
739		dev_err(dev, "copy pbuf data to dst error!\n");
740
741}
742
743static int sec_cipher_map(struct sec_ctx *ctx, struct sec_req *req,
744			  struct scatterlist *src, struct scatterlist *dst)
745{
746	struct sec_cipher_req *c_req = &req->c_req;
747	struct sec_aead_req *a_req = &req->aead_req;
748	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
749	struct sec_alg_res *res = &qp_ctx->res[req->req_id];
750	struct device *dev = ctx->dev;
751	int ret;
752
753	if (req->use_pbuf) {
754		ret = sec_cipher_pbuf_map(ctx, req, src);
755		c_req->c_ivin = res->pbuf + SEC_PBUF_IV_OFFSET;
756		c_req->c_ivin_dma = res->pbuf_dma + SEC_PBUF_IV_OFFSET;
757		if (ctx->alg_type == SEC_AEAD) {
758			a_req->out_mac = res->pbuf + SEC_PBUF_MAC_OFFSET;
759			a_req->out_mac_dma = res->pbuf_dma +
760					SEC_PBUF_MAC_OFFSET;
761		}
762
763		return ret;
764	}
765	c_req->c_ivin = res->c_ivin;
766	c_req->c_ivin_dma = res->c_ivin_dma;
767	if (ctx->alg_type == SEC_AEAD) {
768		a_req->out_mac = res->out_mac;
769		a_req->out_mac_dma = res->out_mac_dma;
770	}
771
772	c_req->c_in = hisi_acc_sg_buf_map_to_hw_sgl(dev, src,
773						    qp_ctx->c_in_pool,
774						    req->req_id,
775						    &c_req->c_in_dma);
776
777	if (IS_ERR(c_req->c_in)) {
778		dev_err(dev, "fail to dma map input sgl buffers!\n");
779		return PTR_ERR(c_req->c_in);
780	}
781
782	if (dst == src) {
783		c_req->c_out = c_req->c_in;
784		c_req->c_out_dma = c_req->c_in_dma;
785	} else {
786		c_req->c_out = hisi_acc_sg_buf_map_to_hw_sgl(dev, dst,
787							     qp_ctx->c_out_pool,
788							     req->req_id,
789							     &c_req->c_out_dma);
790
791		if (IS_ERR(c_req->c_out)) {
792			dev_err(dev, "fail to dma map output sgl buffers!\n");
793			hisi_acc_sg_buf_unmap(dev, src, c_req->c_in);
794			return PTR_ERR(c_req->c_out);
795		}
796	}
797
798	return 0;
799}
800
801static void sec_cipher_unmap(struct sec_ctx *ctx, struct sec_req *req,
802			     struct scatterlist *src, struct scatterlist *dst)
803{
804	struct sec_cipher_req *c_req = &req->c_req;
805	struct device *dev = ctx->dev;
806
807	if (req->use_pbuf) {
808		sec_cipher_pbuf_unmap(ctx, req, dst);
809	} else {
810		if (dst != src)
811			hisi_acc_sg_buf_unmap(dev, src, c_req->c_in);
812
813		hisi_acc_sg_buf_unmap(dev, dst, c_req->c_out);
814	}
815}
816
817static int sec_skcipher_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
818{
819	struct skcipher_request *sq = req->c_req.sk_req;
820
821	return sec_cipher_map(ctx, req, sq->src, sq->dst);
822}
823
824static void sec_skcipher_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
825{
826	struct skcipher_request *sq = req->c_req.sk_req;
827
828	sec_cipher_unmap(ctx, req, sq->src, sq->dst);
829}
830
831static int sec_aead_aes_set_key(struct sec_cipher_ctx *c_ctx,
832				struct crypto_authenc_keys *keys)
833{
834	switch (keys->enckeylen) {
835	case AES_KEYSIZE_128:
836		c_ctx->c_key_len = SEC_CKEY_128BIT;
837		break;
838	case AES_KEYSIZE_192:
839		c_ctx->c_key_len = SEC_CKEY_192BIT;
840		break;
841	case AES_KEYSIZE_256:
842		c_ctx->c_key_len = SEC_CKEY_256BIT;
843		break;
844	default:
845		pr_err("hisi_sec2: aead aes key error!\n");
846		return -EINVAL;
847	}
848	memcpy(c_ctx->c_key, keys->enckey, keys->enckeylen);
849
850	return 0;
851}
852
853static int sec_aead_auth_set_key(struct sec_auth_ctx *ctx,
854				 struct crypto_authenc_keys *keys)
855{
856	struct crypto_shash *hash_tfm = ctx->hash_tfm;
857	int blocksize, ret;
858
859	if (!keys->authkeylen) {
860		pr_err("hisi_sec2: aead auth key error!\n");
861		return -EINVAL;
862	}
863
864	blocksize = crypto_shash_blocksize(hash_tfm);
865	if (keys->authkeylen > blocksize) {
866		ret = crypto_shash_tfm_digest(hash_tfm, keys->authkey,
867					      keys->authkeylen, ctx->a_key);
868		if (ret) {
869			pr_err("hisi_sec2: aead auth digest error!\n");
870			return -EINVAL;
871		}
872		ctx->a_key_len = blocksize;
873	} else {
874		memcpy(ctx->a_key, keys->authkey, keys->authkeylen);
875		ctx->a_key_len = keys->authkeylen;
876	}
877
878	return 0;
879}
880
881static int sec_aead_setkey(struct crypto_aead *tfm, const u8 *key,
882			   const u32 keylen, const enum sec_hash_alg a_alg,
883			   const enum sec_calg c_alg,
884			   const enum sec_mac_len mac_len,
885			   const enum sec_cmode c_mode)
886{
887	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
888	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
889	struct device *dev = ctx->dev;
890	struct crypto_authenc_keys keys;
891	int ret;
892
893	ctx->a_ctx.a_alg = a_alg;
894	ctx->c_ctx.c_alg = c_alg;
895	ctx->a_ctx.mac_len = mac_len;
896	c_ctx->c_mode = c_mode;
897
898	if (crypto_authenc_extractkeys(&keys, key, keylen))
899		goto bad_key;
900
901	ret = sec_aead_aes_set_key(c_ctx, &keys);
902	if (ret) {
903		dev_err(dev, "set sec cipher key err!\n");
904		goto bad_key;
905	}
906
907	ret = sec_aead_auth_set_key(&ctx->a_ctx, &keys);
908	if (ret) {
909		dev_err(dev, "set sec auth key err!\n");
910		goto bad_key;
911	}
912
913	return 0;
914bad_key:
915	memzero_explicit(&keys, sizeof(struct crypto_authenc_keys));
916
917	return -EINVAL;
918}
919
920
921#define GEN_SEC_AEAD_SETKEY_FUNC(name, aalg, calg, maclen, cmode)	\
922static int sec_setkey_##name(struct crypto_aead *tfm, const u8 *key,	\
923	u32 keylen)							\
924{									\
925	return sec_aead_setkey(tfm, key, keylen, aalg, calg, maclen, cmode);\
926}
927
928GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha1, SEC_A_HMAC_SHA1,
929			 SEC_CALG_AES, SEC_HMAC_SHA1_MAC, SEC_CMODE_CBC)
930GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha256, SEC_A_HMAC_SHA256,
931			 SEC_CALG_AES, SEC_HMAC_SHA256_MAC, SEC_CMODE_CBC)
932GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha512, SEC_A_HMAC_SHA512,
933			 SEC_CALG_AES, SEC_HMAC_SHA512_MAC, SEC_CMODE_CBC)
934
935static int sec_aead_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
936{
937	struct aead_request *aq = req->aead_req.aead_req;
938
939	return sec_cipher_map(ctx, req, aq->src, aq->dst);
940}
941
942static void sec_aead_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
943{
944	struct aead_request *aq = req->aead_req.aead_req;
945
946	sec_cipher_unmap(ctx, req, aq->src, aq->dst);
947}
948
949static int sec_request_transfer(struct sec_ctx *ctx, struct sec_req *req)
950{
951	int ret;
952
953	ret = ctx->req_op->buf_map(ctx, req);
954	if (unlikely(ret))
955		return ret;
956
957	ctx->req_op->do_transfer(ctx, req);
958
959	ret = ctx->req_op->bd_fill(ctx, req);
960	if (unlikely(ret))
961		goto unmap_req_buf;
962
963	return ret;
964
965unmap_req_buf:
966	ctx->req_op->buf_unmap(ctx, req);
967
968	return ret;
969}
970
971static void sec_request_untransfer(struct sec_ctx *ctx, struct sec_req *req)
972{
973	ctx->req_op->buf_unmap(ctx, req);
974}
975
976static void sec_skcipher_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
977{
978	struct skcipher_request *sk_req = req->c_req.sk_req;
979	struct sec_cipher_req *c_req = &req->c_req;
980
981	memcpy(c_req->c_ivin, sk_req->iv, ctx->c_ctx.ivsize);
982}
983
984static int sec_skcipher_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
985{
986	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
987	struct sec_cipher_req *c_req = &req->c_req;
988	struct sec_sqe *sec_sqe = &req->sec_sqe;
989	u8 scene, sa_type, da_type;
990	u8 bd_type, cipher;
991	u8 de = 0;
992
993	memset(sec_sqe, 0, sizeof(struct sec_sqe));
994
995	sec_sqe->type2.c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
996	sec_sqe->type2.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
997	sec_sqe->type2.data_src_addr = cpu_to_le64(c_req->c_in_dma);
998	sec_sqe->type2.data_dst_addr = cpu_to_le64(c_req->c_out_dma);
999
1000	sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_mode) <<
1001						SEC_CMODE_OFFSET);
1002	sec_sqe->type2.c_alg = c_ctx->c_alg;
1003	sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
1004						SEC_CKEY_OFFSET);
1005
1006	bd_type = SEC_BD_TYPE2;
1007	if (c_req->encrypt)
1008		cipher = SEC_CIPHER_ENC << SEC_CIPHER_OFFSET;
1009	else
1010		cipher = SEC_CIPHER_DEC << SEC_CIPHER_OFFSET;
1011	sec_sqe->type_cipher_auth = bd_type | cipher;
1012
1013	if (req->use_pbuf)
1014		sa_type = SEC_PBUF << SEC_SRC_SGL_OFFSET;
1015	else
1016		sa_type = SEC_SGL << SEC_SRC_SGL_OFFSET;
1017	scene = SEC_COMM_SCENE << SEC_SCENE_OFFSET;
1018	if (c_req->c_in_dma != c_req->c_out_dma)
1019		de = 0x1 << SEC_DE_OFFSET;
1020
1021	sec_sqe->sds_sa_type = (de | scene | sa_type);
1022
1023	/* Just set DST address type */
1024	if (req->use_pbuf)
1025		da_type = SEC_PBUF << SEC_DST_SGL_OFFSET;
1026	else
1027		da_type = SEC_SGL << SEC_DST_SGL_OFFSET;
1028	sec_sqe->sdm_addr_type |= da_type;
1029
1030	sec_sqe->type2.clen_ivhlen |= cpu_to_le32(c_req->c_len);
1031	sec_sqe->type2.tag = cpu_to_le16((u16)req->req_id);
1032
1033	return 0;
1034}
1035
1036static void sec_update_iv(struct sec_req *req, enum sec_alg_type alg_type)
1037{
1038	struct aead_request *aead_req = req->aead_req.aead_req;
1039	struct skcipher_request *sk_req = req->c_req.sk_req;
1040	u32 iv_size = req->ctx->c_ctx.ivsize;
1041	struct scatterlist *sgl;
1042	unsigned int cryptlen;
1043	size_t sz;
1044	u8 *iv;
1045
1046	if (req->c_req.encrypt)
1047		sgl = alg_type == SEC_SKCIPHER ? sk_req->dst : aead_req->dst;
1048	else
1049		sgl = alg_type == SEC_SKCIPHER ? sk_req->src : aead_req->src;
1050
1051	if (alg_type == SEC_SKCIPHER) {
1052		iv = sk_req->iv;
1053		cryptlen = sk_req->cryptlen;
1054	} else {
1055		iv = aead_req->iv;
1056		cryptlen = aead_req->cryptlen;
1057	}
1058
1059	sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), iv, iv_size,
1060				cryptlen - iv_size);
1061	if (unlikely(sz != iv_size))
1062		dev_err(req->ctx->dev, "copy output iv error!\n");
1063}
1064
1065static struct sec_req *sec_back_req_clear(struct sec_ctx *ctx,
1066				struct sec_qp_ctx *qp_ctx)
1067{
1068	struct sec_req *backlog_req = NULL;
1069
1070	spin_lock_bh(&qp_ctx->req_lock);
1071	if (ctx->fake_req_limit >=
1072	    atomic_read(&qp_ctx->qp->qp_status.used) &&
1073	    !list_empty(&qp_ctx->backlog)) {
1074		backlog_req = list_first_entry(&qp_ctx->backlog,
1075				typeof(*backlog_req), backlog_head);
1076		list_del(&backlog_req->backlog_head);
1077	}
1078	spin_unlock_bh(&qp_ctx->req_lock);
1079
1080	return backlog_req;
1081}
1082
1083static void sec_skcipher_callback(struct sec_ctx *ctx, struct sec_req *req,
1084				  int err)
1085{
1086	struct skcipher_request *sk_req = req->c_req.sk_req;
1087	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1088	struct skcipher_request *backlog_sk_req;
1089	struct sec_req *backlog_req;
1090
1091	sec_free_req_id(req);
1092
1093	/* IV output at encrypto of CBC mode */
1094	if (!err && ctx->c_ctx.c_mode == SEC_CMODE_CBC && req->c_req.encrypt)
1095		sec_update_iv(req, SEC_SKCIPHER);
1096
1097	while (1) {
1098		backlog_req = sec_back_req_clear(ctx, qp_ctx);
1099		if (!backlog_req)
1100			break;
1101
1102		backlog_sk_req = backlog_req->c_req.sk_req;
1103		backlog_sk_req->base.complete(&backlog_sk_req->base,
1104						-EINPROGRESS);
1105		atomic64_inc(&ctx->sec->debug.dfx.recv_busy_cnt);
1106	}
1107
1108
1109	sk_req->base.complete(&sk_req->base, err);
1110}
1111
1112static void sec_aead_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
1113{
1114	struct aead_request *aead_req = req->aead_req.aead_req;
1115	struct sec_cipher_req *c_req = &req->c_req;
1116
1117	memcpy(c_req->c_ivin, aead_req->iv, ctx->c_ctx.ivsize);
1118}
1119
1120static void sec_auth_bd_fill_ex(struct sec_auth_ctx *ctx, int dir,
1121			       struct sec_req *req, struct sec_sqe *sec_sqe)
1122{
1123	struct sec_aead_req *a_req = &req->aead_req;
1124	struct sec_cipher_req *c_req = &req->c_req;
1125	struct aead_request *aq = a_req->aead_req;
1126
1127	sec_sqe->type2.a_key_addr = cpu_to_le64(ctx->a_key_dma);
1128
1129	sec_sqe->type2.mac_key_alg =
1130			cpu_to_le32(ctx->mac_len / SEC_SQE_LEN_RATE);
1131
1132	sec_sqe->type2.mac_key_alg |=
1133			cpu_to_le32((u32)((ctx->a_key_len) /
1134			SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET);
1135
1136	sec_sqe->type2.mac_key_alg |=
1137			cpu_to_le32((u32)(ctx->a_alg) << SEC_AEAD_ALG_OFFSET);
1138
1139	sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE1 << SEC_AUTH_OFFSET;
1140
1141	if (dir)
1142		sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
1143	else
1144		sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
1145
1146	sec_sqe->type2.alen_ivllen = cpu_to_le32(c_req->c_len + aq->assoclen);
1147
1148	sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1149
1150	sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
1151}
1152
1153static int sec_aead_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
1154{
1155	struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1156	struct sec_sqe *sec_sqe = &req->sec_sqe;
1157	int ret;
1158
1159	ret = sec_skcipher_bd_fill(ctx, req);
1160	if (unlikely(ret)) {
1161		dev_err(ctx->dev, "skcipher bd fill is error!\n");
1162		return ret;
1163	}
1164
1165	sec_auth_bd_fill_ex(auth_ctx, req->c_req.encrypt, req, sec_sqe);
1166
1167	return 0;
1168}
1169
1170static void sec_aead_callback(struct sec_ctx *c, struct sec_req *req, int err)
1171{
1172	struct aead_request *a_req = req->aead_req.aead_req;
1173	struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
1174	struct sec_aead_req *aead_req = &req->aead_req;
1175	struct sec_cipher_req *c_req = &req->c_req;
1176	size_t authsize = crypto_aead_authsize(tfm);
1177	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1178	struct aead_request *backlog_aead_req;
1179	struct sec_req *backlog_req;
1180	size_t sz;
1181
1182	if (!err && c->c_ctx.c_mode == SEC_CMODE_CBC && c_req->encrypt)
1183		sec_update_iv(req, SEC_AEAD);
1184
1185	/* Copy output mac */
1186	if (!err && c_req->encrypt) {
1187		struct scatterlist *sgl = a_req->dst;
1188
1189		sz = sg_pcopy_from_buffer(sgl, sg_nents(sgl),
1190					  aead_req->out_mac,
1191					  authsize, a_req->cryptlen +
1192					  a_req->assoclen);
1193
1194		if (unlikely(sz != authsize)) {
1195			dev_err(c->dev, "copy out mac err!\n");
1196			err = -EINVAL;
1197		}
1198	}
1199
1200	sec_free_req_id(req);
1201
1202	while (1) {
1203		backlog_req = sec_back_req_clear(c, qp_ctx);
1204		if (!backlog_req)
1205			break;
1206
1207		backlog_aead_req = backlog_req->aead_req.aead_req;
1208		backlog_aead_req->base.complete(&backlog_aead_req->base,
1209						-EINPROGRESS);
1210		atomic64_inc(&c->sec->debug.dfx.recv_busy_cnt);
1211	}
1212
1213	a_req->base.complete(&a_req->base, err);
1214}
1215
1216static void sec_request_uninit(struct sec_ctx *ctx, struct sec_req *req)
1217{
1218	sec_free_req_id(req);
1219	sec_free_queue_id(ctx, req);
1220}
1221
1222static int sec_request_init(struct sec_ctx *ctx, struct sec_req *req)
1223{
1224	struct sec_qp_ctx *qp_ctx;
1225	int queue_id;
1226
1227	/* To load balance */
1228	queue_id = sec_alloc_queue_id(ctx, req);
1229	qp_ctx = &ctx->qp_ctx[queue_id];
1230
1231	req->req_id = sec_alloc_req_id(req, qp_ctx);
1232	if (unlikely(req->req_id < 0)) {
1233		sec_free_queue_id(ctx, req);
1234		return req->req_id;
1235	}
1236
1237	return 0;
1238}
1239
1240static int sec_process(struct sec_ctx *ctx, struct sec_req *req)
1241{
1242	struct sec_cipher_req *c_req = &req->c_req;
1243	int ret;
1244
1245	ret = sec_request_init(ctx, req);
1246	if (unlikely(ret))
1247		return ret;
1248
1249	ret = sec_request_transfer(ctx, req);
1250	if (unlikely(ret))
1251		goto err_uninit_req;
1252
1253	/* Output IV as decrypto */
1254	if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt)
1255		sec_update_iv(req, ctx->alg_type);
1256
1257	ret = ctx->req_op->bd_send(ctx, req);
1258	if (unlikely((ret != -EBUSY && ret != -EINPROGRESS) ||
1259		(ret == -EBUSY && !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG)))) {
1260		dev_err_ratelimited(ctx->dev, "send sec request failed!\n");
1261		goto err_send_req;
1262	}
1263
1264	return ret;
1265
1266err_send_req:
1267	/* As failing, restore the IV from user */
1268	if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt) {
1269		if (ctx->alg_type == SEC_SKCIPHER)
1270			memcpy(req->c_req.sk_req->iv, c_req->c_ivin,
1271			       ctx->c_ctx.ivsize);
1272		else
1273			memcpy(req->aead_req.aead_req->iv, c_req->c_ivin,
1274			       ctx->c_ctx.ivsize);
1275	}
1276
1277	sec_request_untransfer(ctx, req);
1278err_uninit_req:
1279	sec_request_uninit(ctx, req);
1280
1281	return ret;
1282}
1283
1284static const struct sec_req_op sec_skcipher_req_ops = {
1285	.buf_map	= sec_skcipher_sgl_map,
1286	.buf_unmap	= sec_skcipher_sgl_unmap,
1287	.do_transfer	= sec_skcipher_copy_iv,
1288	.bd_fill	= sec_skcipher_bd_fill,
1289	.bd_send	= sec_bd_send,
1290	.callback	= sec_skcipher_callback,
1291	.process	= sec_process,
1292};
1293
1294static const struct sec_req_op sec_aead_req_ops = {
1295	.buf_map	= sec_aead_sgl_map,
1296	.buf_unmap	= sec_aead_sgl_unmap,
1297	.do_transfer	= sec_aead_copy_iv,
1298	.bd_fill	= sec_aead_bd_fill,
1299	.bd_send	= sec_bd_send,
1300	.callback	= sec_aead_callback,
1301	.process	= sec_process,
1302};
1303
1304static int sec_skcipher_ctx_init(struct crypto_skcipher *tfm)
1305{
1306	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
1307
1308	ctx->req_op = &sec_skcipher_req_ops;
1309
1310	return sec_skcipher_init(tfm);
1311}
1312
1313static void sec_skcipher_ctx_exit(struct crypto_skcipher *tfm)
1314{
1315	sec_skcipher_uninit(tfm);
1316}
1317
1318static int sec_aead_init(struct crypto_aead *tfm)
1319{
1320	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1321	int ret;
1322
1323	crypto_aead_set_reqsize(tfm, sizeof(struct sec_req));
1324	ctx->alg_type = SEC_AEAD;
1325	ctx->c_ctx.ivsize = crypto_aead_ivsize(tfm);
1326	if (ctx->c_ctx.ivsize > SEC_IV_SIZE) {
1327		dev_err(ctx->dev, "get error aead iv size!\n");
1328		return -EINVAL;
1329	}
1330
1331	ctx->req_op = &sec_aead_req_ops;
1332	ret = sec_ctx_base_init(ctx);
1333	if (ret)
1334		return ret;
1335
1336	ret = sec_auth_init(ctx);
1337	if (ret)
1338		goto err_auth_init;
1339
1340	ret = sec_cipher_init(ctx);
1341	if (ret)
1342		goto err_cipher_init;
1343
1344	return ret;
1345
1346err_cipher_init:
1347	sec_auth_uninit(ctx);
1348err_auth_init:
1349	sec_ctx_base_uninit(ctx);
1350
1351	return ret;
1352}
1353
1354static void sec_aead_exit(struct crypto_aead *tfm)
1355{
1356	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1357
1358	sec_cipher_uninit(ctx);
1359	sec_auth_uninit(ctx);
1360	sec_ctx_base_uninit(ctx);
1361}
1362
1363static int sec_aead_ctx_init(struct crypto_aead *tfm, const char *hash_name)
1364{
1365	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1366	struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1367	int ret;
1368
1369	ret = sec_aead_init(tfm);
1370	if (ret) {
1371		pr_err("hisi_sec2: aead init error!\n");
1372		return ret;
1373	}
1374
1375	auth_ctx->hash_tfm = crypto_alloc_shash(hash_name, 0, 0);
1376	if (IS_ERR(auth_ctx->hash_tfm)) {
1377		dev_err(ctx->dev, "aead alloc shash error!\n");
1378		sec_aead_exit(tfm);
1379		return PTR_ERR(auth_ctx->hash_tfm);
1380	}
1381
1382	return 0;
1383}
1384
1385static void sec_aead_ctx_exit(struct crypto_aead *tfm)
1386{
1387	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1388
1389	crypto_free_shash(ctx->a_ctx.hash_tfm);
1390	sec_aead_exit(tfm);
1391}
1392
1393static int sec_aead_sha1_ctx_init(struct crypto_aead *tfm)
1394{
1395	return sec_aead_ctx_init(tfm, "sha1");
1396}
1397
1398static int sec_aead_sha256_ctx_init(struct crypto_aead *tfm)
1399{
1400	return sec_aead_ctx_init(tfm, "sha256");
1401}
1402
1403static int sec_aead_sha512_ctx_init(struct crypto_aead *tfm)
1404{
1405	return sec_aead_ctx_init(tfm, "sha512");
1406}
1407
1408static int sec_skcipher_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
1409{
1410	struct skcipher_request *sk_req = sreq->c_req.sk_req;
1411	struct device *dev = ctx->dev;
1412	u8 c_alg = ctx->c_ctx.c_alg;
1413
1414	if (unlikely(!sk_req->src || !sk_req->dst)) {
1415		dev_err(dev, "skcipher input param error!\n");
1416		return -EINVAL;
1417	}
1418	sreq->c_req.c_len = sk_req->cryptlen;
1419
1420	if (ctx->pbuf_supported && sk_req->cryptlen <= SEC_PBUF_SZ)
1421		sreq->use_pbuf = true;
1422	else
1423		sreq->use_pbuf = false;
1424
1425	if (c_alg == SEC_CALG_3DES) {
1426		if (unlikely(sk_req->cryptlen & (DES3_EDE_BLOCK_SIZE - 1))) {
1427			dev_err(dev, "skcipher 3des input length error!\n");
1428			return -EINVAL;
1429		}
1430		return 0;
1431	} else if (c_alg == SEC_CALG_AES || c_alg == SEC_CALG_SM4) {
1432		if (unlikely(sk_req->cryptlen & (AES_BLOCK_SIZE - 1))) {
1433			dev_err(dev, "skcipher aes input length error!\n");
1434			return -EINVAL;
1435		}
1436		return 0;
1437	}
1438
1439	dev_err(dev, "skcipher algorithm error!\n");
1440	return -EINVAL;
1441}
1442
1443static int sec_skcipher_crypto(struct skcipher_request *sk_req, bool encrypt)
1444{
1445	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(sk_req);
1446	struct sec_req *req = skcipher_request_ctx(sk_req);
1447	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
1448	int ret;
1449
1450	if (!sk_req->cryptlen)
1451		return 0;
1452
1453	req->flag = sk_req->base.flags;
1454	req->c_req.sk_req = sk_req;
1455	req->c_req.encrypt = encrypt;
1456	req->ctx = ctx;
1457
1458	ret = sec_skcipher_param_check(ctx, req);
1459	if (unlikely(ret))
1460		return -EINVAL;
1461
1462	return ctx->req_op->process(ctx, req);
1463}
1464
1465static int sec_skcipher_encrypt(struct skcipher_request *sk_req)
1466{
1467	return sec_skcipher_crypto(sk_req, true);
1468}
1469
1470static int sec_skcipher_decrypt(struct skcipher_request *sk_req)
1471{
1472	return sec_skcipher_crypto(sk_req, false);
1473}
1474
1475#define SEC_SKCIPHER_GEN_ALG(sec_cra_name, sec_set_key, sec_min_key_size, \
1476	sec_max_key_size, ctx_init, ctx_exit, blk_size, iv_size)\
1477{\
1478	.base = {\
1479		.cra_name = sec_cra_name,\
1480		.cra_driver_name = "hisi_sec_"sec_cra_name,\
1481		.cra_priority = SEC_PRIORITY,\
1482		.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,\
1483		.cra_blocksize = blk_size,\
1484		.cra_ctxsize = sizeof(struct sec_ctx),\
1485		.cra_module = THIS_MODULE,\
1486	},\
1487	.init = ctx_init,\
1488	.exit = ctx_exit,\
1489	.setkey = sec_set_key,\
1490	.decrypt = sec_skcipher_decrypt,\
1491	.encrypt = sec_skcipher_encrypt,\
1492	.min_keysize = sec_min_key_size,\
1493	.max_keysize = sec_max_key_size,\
1494	.ivsize = iv_size,\
1495},
1496
1497#define SEC_SKCIPHER_ALG(name, key_func, min_key_size, \
1498	max_key_size, blk_size, iv_size) \
1499	SEC_SKCIPHER_GEN_ALG(name, key_func, min_key_size, max_key_size, \
1500	sec_skcipher_ctx_init, sec_skcipher_ctx_exit, blk_size, iv_size)
1501
1502static struct skcipher_alg sec_skciphers[] = {
1503	SEC_SKCIPHER_ALG("ecb(aes)", sec_setkey_aes_ecb,
1504			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
1505			 AES_BLOCK_SIZE, 0)
1506
1507	SEC_SKCIPHER_ALG("cbc(aes)", sec_setkey_aes_cbc,
1508			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
1509			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)
1510
1511	SEC_SKCIPHER_ALG("xts(aes)", sec_setkey_aes_xts,
1512			 SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MAX_KEY_SIZE,
1513			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)
1514
1515	SEC_SKCIPHER_ALG("ecb(des3_ede)", sec_setkey_3des_ecb,
1516			 SEC_DES3_3KEY_SIZE, SEC_DES3_3KEY_SIZE,
1517			 DES3_EDE_BLOCK_SIZE, 0)
1518
1519	SEC_SKCIPHER_ALG("cbc(des3_ede)", sec_setkey_3des_cbc,
1520			 SEC_DES3_3KEY_SIZE, SEC_DES3_3KEY_SIZE,
1521			 DES3_EDE_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE)
1522
1523	SEC_SKCIPHER_ALG("xts(sm4)", sec_setkey_sm4_xts,
1524			 SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MIN_KEY_SIZE,
1525			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)
1526
1527	SEC_SKCIPHER_ALG("cbc(sm4)", sec_setkey_sm4_cbc,
1528			 AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
1529			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)
1530};
1531
1532static int sec_aead_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
1533{
1534	struct aead_request *req = sreq->aead_req.aead_req;
1535	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1536	size_t authsize = crypto_aead_authsize(tfm);
1537	struct device *dev = ctx->dev;
1538	u8 c_alg = ctx->c_ctx.c_alg;
1539
1540	if (unlikely(!req->src || !req->dst || !req->cryptlen ||
1541		req->assoclen > SEC_MAX_AAD_LEN)) {
1542		dev_err(dev, "aead input param error!\n");
1543		return -EINVAL;
1544	}
1545
1546	if (ctx->pbuf_supported && (req->cryptlen + req->assoclen) <=
1547		SEC_PBUF_SZ)
1548		sreq->use_pbuf = true;
1549	else
1550		sreq->use_pbuf = false;
1551
1552	/* Support AES only */
1553	if (unlikely(c_alg != SEC_CALG_AES)) {
1554		dev_err(dev, "aead crypto alg error!\n");
1555		return -EINVAL;
1556
1557	}
1558	if (sreq->c_req.encrypt)
1559		sreq->c_req.c_len = req->cryptlen;
1560	else
1561		sreq->c_req.c_len = req->cryptlen - authsize;
1562
1563	if (unlikely(sreq->c_req.c_len & (AES_BLOCK_SIZE - 1))) {
1564		dev_err(dev, "aead crypto length error!\n");
1565		return -EINVAL;
1566	}
1567
1568	return 0;
1569}
1570
1571static int sec_aead_crypto(struct aead_request *a_req, bool encrypt)
1572{
1573	struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
1574	struct sec_req *req = aead_request_ctx(a_req);
1575	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1576	int ret;
1577
1578	req->flag = a_req->base.flags;
1579	req->aead_req.aead_req = a_req;
1580	req->c_req.encrypt = encrypt;
1581	req->ctx = ctx;
1582
1583	ret = sec_aead_param_check(ctx, req);
1584	if (unlikely(ret))
1585		return -EINVAL;
1586
1587	return ctx->req_op->process(ctx, req);
1588}
1589
1590static int sec_aead_encrypt(struct aead_request *a_req)
1591{
1592	return sec_aead_crypto(a_req, true);
1593}
1594
1595static int sec_aead_decrypt(struct aead_request *a_req)
1596{
1597	return sec_aead_crypto(a_req, false);
1598}
1599
1600#define SEC_AEAD_GEN_ALG(sec_cra_name, sec_set_key, ctx_init,\
1601			 ctx_exit, blk_size, iv_size, max_authsize)\
1602{\
1603	.base = {\
1604		.cra_name = sec_cra_name,\
1605		.cra_driver_name = "hisi_sec_"sec_cra_name,\
1606		.cra_priority = SEC_PRIORITY,\
1607		.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,\
1608		.cra_blocksize = blk_size,\
1609		.cra_ctxsize = sizeof(struct sec_ctx),\
1610		.cra_module = THIS_MODULE,\
1611	},\
1612	.init = ctx_init,\
1613	.exit = ctx_exit,\
1614	.setkey = sec_set_key,\
1615	.decrypt = sec_aead_decrypt,\
1616	.encrypt = sec_aead_encrypt,\
1617	.ivsize = iv_size,\
1618	.maxauthsize = max_authsize,\
1619}
1620
1621#define SEC_AEAD_ALG(algname, keyfunc, aead_init, blksize, ivsize, authsize)\
1622	SEC_AEAD_GEN_ALG(algname, keyfunc, aead_init,\
1623			sec_aead_ctx_exit, blksize, ivsize, authsize)
1624
1625static struct aead_alg sec_aeads[] = {
1626	SEC_AEAD_ALG("authenc(hmac(sha1),cbc(aes))",
1627		     sec_setkey_aes_cbc_sha1, sec_aead_sha1_ctx_init,
1628		     AES_BLOCK_SIZE, AES_BLOCK_SIZE, SHA1_DIGEST_SIZE),
1629
1630	SEC_AEAD_ALG("authenc(hmac(sha256),cbc(aes))",
1631		     sec_setkey_aes_cbc_sha256, sec_aead_sha256_ctx_init,
1632		     AES_BLOCK_SIZE, AES_BLOCK_SIZE, SHA256_DIGEST_SIZE),
1633
1634	SEC_AEAD_ALG("authenc(hmac(sha512),cbc(aes))",
1635		     sec_setkey_aes_cbc_sha512, sec_aead_sha512_ctx_init,
1636		     AES_BLOCK_SIZE, AES_BLOCK_SIZE, SHA512_DIGEST_SIZE),
1637};
1638
1639int sec_register_to_crypto(void)
1640{
1641	int ret;
1642
1643	/* To avoid repeat register */
1644	ret = crypto_register_skciphers(sec_skciphers,
1645					ARRAY_SIZE(sec_skciphers));
1646	if (ret)
1647		return ret;
1648
1649	ret = crypto_register_aeads(sec_aeads, ARRAY_SIZE(sec_aeads));
1650	if (ret)
1651		crypto_unregister_skciphers(sec_skciphers,
1652					    ARRAY_SIZE(sec_skciphers));
1653	return ret;
1654}
1655
1656void sec_unregister_from_crypto(void)
1657{
1658	crypto_unregister_skciphers(sec_skciphers,
1659				    ARRAY_SIZE(sec_skciphers));
1660	crypto_unregister_aeads(sec_aeads, ARRAY_SIZE(sec_aeads));
1661}
1662