1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Driver for the Hisilicon SEC units found on Hip06 Hip07
4 *
5 * Copyright (c) 2016-2017 Hisilicon Limited.
6 */
7#include <linux/acpi.h>
8#include <linux/atomic.h>
9#include <linux/delay.h>
10#include <linux/dma-direction.h>
11#include <linux/dma-mapping.h>
12#include <linux/dmapool.h>
13#include <linux/io.h>
14#include <linux/iommu.h>
15#include <linux/interrupt.h>
16#include <linux/irq.h>
17#include <linux/irqreturn.h>
18#include <linux/mm.h>
19#include <linux/module.h>
20#include <linux/of.h>
21#include <linux/platform_device.h>
22#include <linux/slab.h>
23
24#include "sec_drv.h"
25
26#define SEC_QUEUE_AR_FROCE_ALLOC			0
27#define SEC_QUEUE_AR_FROCE_NOALLOC			1
28#define SEC_QUEUE_AR_FROCE_DIS				2
29
30#define SEC_QUEUE_AW_FROCE_ALLOC			0
31#define SEC_QUEUE_AW_FROCE_NOALLOC			1
32#define SEC_QUEUE_AW_FROCE_DIS				2
33
34/* SEC_ALGSUB registers */
35#define SEC_ALGSUB_CLK_EN_REG				0x03b8
36#define SEC_ALGSUB_CLK_DIS_REG				0x03bc
37#define SEC_ALGSUB_CLK_ST_REG				0x535c
38#define SEC_ALGSUB_RST_REQ_REG				0x0aa8
39#define SEC_ALGSUB_RST_DREQ_REG				0x0aac
40#define SEC_ALGSUB_RST_ST_REG				0x5a54
41#define   SEC_ALGSUB_RST_ST_IS_RST			BIT(0)
42
43#define SEC_ALGSUB_BUILD_RST_REQ_REG			0x0ab8
44#define SEC_ALGSUB_BUILD_RST_DREQ_REG			0x0abc
45#define SEC_ALGSUB_BUILD_RST_ST_REG			0x5a5c
46#define   SEC_ALGSUB_BUILD_RST_ST_IS_RST		BIT(0)
47
48#define SEC_SAA_BASE					0x00001000UL
49
50/* SEC_SAA registers */
51#define SEC_SAA_CTRL_REG(x)	((x) * SEC_SAA_ADDR_SIZE)
52#define   SEC_SAA_CTRL_GET_QM_EN			BIT(0)
53
54#define SEC_ST_INTMSK1_REG				0x0200
55#define SEC_ST_RINT1_REG				0x0400
56#define SEC_ST_INTSTS1_REG				0x0600
57#define SEC_BD_MNG_STAT_REG				0x0800
58#define SEC_PARSING_STAT_REG				0x0804
59#define SEC_LOAD_TIME_OUT_CNT_REG			0x0808
60#define SEC_CORE_WORK_TIME_OUT_CNT_REG			0x080c
61#define SEC_BACK_TIME_OUT_CNT_REG			0x0810
62#define SEC_BD1_PARSING_RD_TIME_OUT_CNT_REG		0x0814
63#define SEC_BD1_PARSING_WR_TIME_OUT_CNT_REG		0x0818
64#define SEC_BD2_PARSING_RD_TIME_OUT_CNT_REG		0x081c
65#define SEC_BD2_PARSING_WR_TIME_OUT_CNT_REG		0x0820
66#define SEC_SAA_ACC_REG					0x083c
67#define SEC_BD_NUM_CNT_IN_SEC_REG			0x0858
68#define SEC_LOAD_WORK_TIME_CNT_REG			0x0860
69#define SEC_CORE_WORK_WORK_TIME_CNT_REG			0x0864
70#define SEC_BACK_WORK_TIME_CNT_REG			0x0868
71#define SEC_SAA_IDLE_TIME_CNT_REG			0x086c
72#define SEC_SAA_CLK_CNT_REG				0x0870
73
74/* SEC_COMMON registers */
75#define SEC_CLK_EN_REG					0x0000
76#define SEC_CTRL_REG					0x0004
77
78#define SEC_COMMON_CNT_CLR_CE_REG			0x0008
79#define   SEC_COMMON_CNT_CLR_CE_CLEAR			BIT(0)
80#define   SEC_COMMON_CNT_CLR_CE_SNAP_EN			BIT(1)
81
82#define SEC_SECURE_CTRL_REG				0x000c
83#define SEC_AXI_CACHE_CFG_REG				0x0010
84#define SEC_AXI_QOS_CFG_REG				0x0014
85#define SEC_IPV4_MASK_TABLE_REG				0x0020
86#define SEC_IPV6_MASK_TABLE_X_REG(x)	(0x0024 + (x) * 4)
87#define SEC_FSM_MAX_CNT_REG				0x0064
88
89#define SEC_CTRL2_REG					0x0068
90#define   SEC_CTRL2_DATA_AXI_RD_OTSD_CFG_M		GENMASK(3, 0)
91#define   SEC_CTRL2_DATA_AXI_RD_OTSD_CFG_S		0
92#define   SEC_CTRL2_DATA_AXI_WR_OTSD_CFG_M		GENMASK(6, 4)
93#define   SEC_CTRL2_DATA_AXI_WR_OTSD_CFG_S		4
94#define   SEC_CTRL2_CLK_GATE_EN				BIT(7)
95#define   SEC_CTRL2_ENDIAN_BD				BIT(8)
96#define   SEC_CTRL2_ENDIAN_BD_TYPE			BIT(9)
97
98#define SEC_CNT_PRECISION_CFG_REG			0x006c
99#define SEC_DEBUG_BD_CFG_REG				0x0070
100#define   SEC_DEBUG_BD_CFG_WB_NORMAL			BIT(0)
101#define   SEC_DEBUG_BD_CFG_WB_EN			BIT(1)
102
103#define SEC_Q_SIGHT_SEL					0x0074
104#define SEC_Q_SIGHT_HIS_CLR				0x0078
105#define SEC_Q_VMID_CFG_REG(q)		(0x0100 + (q) * 4)
106#define SEC_Q_WEIGHT_CFG_REG(q)		(0x200 + (q) * 4)
107#define SEC_STAT_CLR_REG				0x0a00
108#define SEC_SAA_IDLE_CNT_CLR_REG			0x0a04
109#define SEC_QM_CPL_Q_IDBUF_DFX_CFG_REG			0x0b00
110#define SEC_QM_CPL_Q_IDBUF_DFX_RESULT_REG		0x0b04
111#define SEC_QM_BD_DFX_CFG_REG				0x0b08
112#define SEC_QM_BD_DFX_RESULT_REG			0x0b0c
113#define SEC_QM_BDID_DFX_RESULT_REG			0x0b10
114#define SEC_QM_BD_DFIFO_STATUS_REG			0x0b14
115#define SEC_QM_BD_DFX_CFG2_REG				0x0b1c
116#define SEC_QM_BD_DFX_RESULT2_REG			0x0b20
117#define SEC_QM_BD_IDFIFO_STATUS_REG			0x0b18
118#define SEC_QM_BD_DFIFO_STATUS2_REG			0x0b28
119#define SEC_QM_BD_IDFIFO_STATUS2_REG			0x0b2c
120
121#define SEC_HASH_IPV4_MASK				0xfff00000
122#define SEC_MAX_SAA_NUM					0xa
123#define SEC_SAA_ADDR_SIZE				0x1000
124
125#define SEC_Q_INIT_REG					0x0
126#define   SEC_Q_INIT_WO_STAT_CLEAR			0x2
127#define   SEC_Q_INIT_AND_STAT_CLEAR			0x3
128
129#define SEC_Q_CFG_REG					0x8
130#define   SEC_Q_CFG_REORDER				BIT(0)
131
132#define SEC_Q_PROC_NUM_CFG_REG				0x10
133#define SEC_QUEUE_ENB_REG				0x18
134
135#define SEC_Q_DEPTH_CFG_REG				0x50
136#define   SEC_Q_DEPTH_CFG_DEPTH_M			GENMASK(11, 0)
137#define   SEC_Q_DEPTH_CFG_DEPTH_S			0
138
139#define SEC_Q_BASE_HADDR_REG				0x54
140#define SEC_Q_BASE_LADDR_REG				0x58
141#define SEC_Q_WR_PTR_REG				0x5c
142#define SEC_Q_OUTORDER_BASE_HADDR_REG			0x60
143#define SEC_Q_OUTORDER_BASE_LADDR_REG			0x64
144#define SEC_Q_OUTORDER_RD_PTR_REG			0x68
145#define SEC_Q_OT_TH_REG					0x6c
146
147#define SEC_Q_ARUSER_CFG_REG				0x70
148#define   SEC_Q_ARUSER_CFG_FA				BIT(0)
149#define   SEC_Q_ARUSER_CFG_FNA				BIT(1)
150#define   SEC_Q_ARUSER_CFG_RINVLD			BIT(2)
151#define   SEC_Q_ARUSER_CFG_PKG				BIT(3)
152
153#define SEC_Q_AWUSER_CFG_REG				0x74
154#define   SEC_Q_AWUSER_CFG_FA				BIT(0)
155#define   SEC_Q_AWUSER_CFG_FNA				BIT(1)
156#define   SEC_Q_AWUSER_CFG_PKG				BIT(2)
157
158#define SEC_Q_ERR_BASE_HADDR_REG			0x7c
159#define SEC_Q_ERR_BASE_LADDR_REG			0x80
160#define SEC_Q_CFG_VF_NUM_REG				0x84
161#define SEC_Q_SOFT_PROC_PTR_REG				0x88
162#define SEC_Q_FAIL_INT_MSK_REG				0x300
163#define SEC_Q_FLOW_INT_MKS_REG				0x304
164#define SEC_Q_FAIL_RINT_REG				0x400
165#define SEC_Q_FLOW_RINT_REG				0x404
166#define SEC_Q_FAIL_INT_STATUS_REG			0x500
167#define SEC_Q_FLOW_INT_STATUS_REG			0x504
168#define SEC_Q_STATUS_REG				0x600
169#define SEC_Q_RD_PTR_REG				0x604
170#define SEC_Q_PRO_PTR_REG				0x608
171#define SEC_Q_OUTORDER_WR_PTR_REG			0x60c
172#define SEC_Q_OT_CNT_STATUS_REG				0x610
173#define SEC_Q_INORDER_BD_NUM_ST_REG			0x650
174#define SEC_Q_INORDER_GET_FLAG_ST_REG			0x654
175#define SEC_Q_INORDER_ADD_FLAG_ST_REG			0x658
176#define SEC_Q_INORDER_TASK_INT_NUM_LEFT_ST_REG		0x65c
177#define SEC_Q_RD_DONE_PTR_REG				0x660
178#define SEC_Q_CPL_Q_BD_NUM_ST_REG			0x700
179#define SEC_Q_CPL_Q_PTR_ST_REG				0x704
180#define SEC_Q_CPL_Q_H_ADDR_ST_REG			0x708
181#define SEC_Q_CPL_Q_L_ADDR_ST_REG			0x70c
182#define SEC_Q_CPL_TASK_INT_NUM_LEFT_ST_REG		0x710
183#define SEC_Q_WRR_ID_CHECK_REG				0x714
184#define SEC_Q_CPLQ_FULL_CHECK_REG			0x718
185#define SEC_Q_SUCCESS_BD_CNT_REG			0x800
186#define SEC_Q_FAIL_BD_CNT_REG				0x804
187#define SEC_Q_GET_BD_CNT_REG				0x808
188#define SEC_Q_IVLD_CNT_REG				0x80c
189#define SEC_Q_BD_PROC_GET_CNT_REG			0x810
190#define SEC_Q_BD_PROC_DONE_CNT_REG			0x814
191#define SEC_Q_LAT_CLR_REG				0x850
192#define SEC_Q_PKT_LAT_MAX_REG				0x854
193#define SEC_Q_PKT_LAT_AVG_REG				0x858
194#define SEC_Q_PKT_LAT_MIN_REG				0x85c
195#define SEC_Q_ID_CLR_CFG_REG				0x900
196#define SEC_Q_1ST_BD_ERR_ID_REG				0x904
197#define SEC_Q_1ST_AUTH_FAIL_ID_REG			0x908
198#define SEC_Q_1ST_RD_ERR_ID_REG				0x90c
199#define SEC_Q_1ST_ECC2_ERR_ID_REG			0x910
200#define SEC_Q_1ST_IVLD_ID_REG				0x914
201#define SEC_Q_1ST_BD_WR_ERR_ID_REG			0x918
202#define SEC_Q_1ST_ERR_BD_WR_ERR_ID_REG			0x91c
203#define SEC_Q_1ST_BD_MAC_WR_ERR_ID_REG			0x920
204
205struct sec_debug_bd_info {
206#define SEC_DEBUG_BD_INFO_SOFT_ERR_CHECK_M	GENMASK(22, 0)
207	u32 soft_err_check;
208#define SEC_DEBUG_BD_INFO_HARD_ERR_CHECK_M	GENMASK(9, 0)
209	u32 hard_err_check;
210	u32 icv_mac1st_word;
211#define SEC_DEBUG_BD_INFO_GET_ID_M		GENMASK(19, 0)
212	u32 sec_get_id;
213	/* W4---W15 */
214	u32 reserv_left[12];
215};
216
217struct sec_out_bd_info	{
218#define SEC_OUT_BD_INFO_Q_ID_M			GENMASK(11, 0)
219#define SEC_OUT_BD_INFO_ECC_2BIT_ERR		BIT(14)
220	u16 data;
221};
222
223#define SEC_MAX_DEVICES				8
224static struct sec_dev_info *sec_devices[SEC_MAX_DEVICES];
225static DEFINE_MUTEX(sec_id_lock);
226
227static int sec_queue_map_io(struct sec_queue *queue)
228{
229	struct device *dev = queue->dev_info->dev;
230	struct resource *res;
231
232	res = platform_get_resource(to_platform_device(dev),
233				    IORESOURCE_MEM,
234				    2 + queue->queue_id);
235	if (!res) {
236		dev_err(dev, "Failed to get queue %d memory resource\n",
237			queue->queue_id);
238		return -ENOMEM;
239	}
240	queue->regs = ioremap(res->start, resource_size(res));
241	if (!queue->regs)
242		return -ENOMEM;
243
244	return 0;
245}
246
247static void sec_queue_unmap_io(struct sec_queue *queue)
248{
249	 iounmap(queue->regs);
250}
251
252static int sec_queue_ar_pkgattr(struct sec_queue *queue, u32 ar_pkg)
253{
254	void __iomem *addr = queue->regs +  SEC_Q_ARUSER_CFG_REG;
255	u32 regval;
256
257	regval = readl_relaxed(addr);
258	if (ar_pkg)
259		regval |= SEC_Q_ARUSER_CFG_PKG;
260	else
261		regval &= ~SEC_Q_ARUSER_CFG_PKG;
262	writel_relaxed(regval, addr);
263
264	return 0;
265}
266
267static int sec_queue_aw_pkgattr(struct sec_queue *queue, u32 aw_pkg)
268{
269	void __iomem *addr = queue->regs + SEC_Q_AWUSER_CFG_REG;
270	u32 regval;
271
272	regval = readl_relaxed(addr);
273	regval |= SEC_Q_AWUSER_CFG_PKG;
274	writel_relaxed(regval, addr);
275
276	return 0;
277}
278
279static int sec_clk_en(struct sec_dev_info *info)
280{
281	void __iomem *base = info->regs[SEC_COMMON];
282	u32 i = 0;
283
284	writel_relaxed(0x7, base + SEC_ALGSUB_CLK_EN_REG);
285	do {
286		usleep_range(1000, 10000);
287		if ((readl_relaxed(base + SEC_ALGSUB_CLK_ST_REG) & 0x7) == 0x7)
288			return 0;
289		i++;
290	} while (i < 10);
291	dev_err(info->dev, "sec clock enable fail!\n");
292
293	return -EIO;
294}
295
296static int sec_clk_dis(struct sec_dev_info *info)
297{
298	void __iomem *base = info->regs[SEC_COMMON];
299	u32 i = 0;
300
301	writel_relaxed(0x7, base + SEC_ALGSUB_CLK_DIS_REG);
302	do {
303		usleep_range(1000, 10000);
304		if ((readl_relaxed(base + SEC_ALGSUB_CLK_ST_REG) & 0x7) == 0)
305			return 0;
306		i++;
307	} while (i < 10);
308	dev_err(info->dev, "sec clock disable fail!\n");
309
310	return -EIO;
311}
312
313static int sec_reset_whole_module(struct sec_dev_info *info)
314{
315	void __iomem *base = info->regs[SEC_COMMON];
316	bool is_reset, b_is_reset;
317	u32 i = 0;
318
319	writel_relaxed(1, base + SEC_ALGSUB_RST_REQ_REG);
320	writel_relaxed(1, base + SEC_ALGSUB_BUILD_RST_REQ_REG);
321	while (1) {
322		usleep_range(1000, 10000);
323		is_reset = readl_relaxed(base + SEC_ALGSUB_RST_ST_REG) &
324			SEC_ALGSUB_RST_ST_IS_RST;
325		b_is_reset = readl_relaxed(base + SEC_ALGSUB_BUILD_RST_ST_REG) &
326			SEC_ALGSUB_BUILD_RST_ST_IS_RST;
327		if (is_reset && b_is_reset)
328			break;
329		i++;
330		if (i > 10) {
331			dev_err(info->dev, "Reset req failed\n");
332			return -EIO;
333		}
334	}
335
336	i = 0;
337	writel_relaxed(1, base + SEC_ALGSUB_RST_DREQ_REG);
338	writel_relaxed(1, base + SEC_ALGSUB_BUILD_RST_DREQ_REG);
339	while (1) {
340		usleep_range(1000, 10000);
341		is_reset = readl_relaxed(base + SEC_ALGSUB_RST_ST_REG) &
342			SEC_ALGSUB_RST_ST_IS_RST;
343		b_is_reset = readl_relaxed(base + SEC_ALGSUB_BUILD_RST_ST_REG) &
344			SEC_ALGSUB_BUILD_RST_ST_IS_RST;
345		if (!is_reset && !b_is_reset)
346			break;
347
348		i++;
349		if (i > 10) {
350			dev_err(info->dev, "Reset dreq failed\n");
351			return -EIO;
352		}
353	}
354
355	return 0;
356}
357
358static void sec_bd_endian_little(struct sec_dev_info *info)
359{
360	void __iomem *addr = info->regs[SEC_SAA] + SEC_CTRL2_REG;
361	u32 regval;
362
363	regval = readl_relaxed(addr);
364	regval &= ~(SEC_CTRL2_ENDIAN_BD | SEC_CTRL2_ENDIAN_BD_TYPE);
365	writel_relaxed(regval, addr);
366}
367
368/*
369 * sec_cache_config - configure optimum cache placement
370 */
371static void sec_cache_config(struct sec_dev_info *info)
372{
373	struct iommu_domain *domain;
374	void __iomem *addr = info->regs[SEC_SAA] + SEC_CTRL_REG;
375
376	domain = iommu_get_domain_for_dev(info->dev);
377
378	/* Check that translation is occurring */
379	if (domain && (domain->type & __IOMMU_DOMAIN_PAGING))
380		writel_relaxed(0x44cf9e, addr);
381	else
382		writel_relaxed(0x4cfd9, addr);
383}
384
385static void sec_data_axiwr_otsd_cfg(struct sec_dev_info *info, u32 cfg)
386{
387	void __iomem *addr = info->regs[SEC_SAA] + SEC_CTRL2_REG;
388	u32 regval;
389
390	regval = readl_relaxed(addr);
391	regval &= ~SEC_CTRL2_DATA_AXI_WR_OTSD_CFG_M;
392	regval |= (cfg << SEC_CTRL2_DATA_AXI_WR_OTSD_CFG_S) &
393		SEC_CTRL2_DATA_AXI_WR_OTSD_CFG_M;
394	writel_relaxed(regval, addr);
395}
396
397static void sec_data_axird_otsd_cfg(struct sec_dev_info *info, u32 cfg)
398{
399	void __iomem *addr = info->regs[SEC_SAA] + SEC_CTRL2_REG;
400	u32 regval;
401
402	regval = readl_relaxed(addr);
403	regval &= ~SEC_CTRL2_DATA_AXI_RD_OTSD_CFG_M;
404	regval |= (cfg << SEC_CTRL2_DATA_AXI_RD_OTSD_CFG_S) &
405		SEC_CTRL2_DATA_AXI_RD_OTSD_CFG_M;
406	writel_relaxed(regval, addr);
407}
408
409static void sec_clk_gate_en(struct sec_dev_info *info, bool clkgate)
410{
411	void __iomem *addr = info->regs[SEC_SAA] + SEC_CTRL2_REG;
412	u32 regval;
413
414	regval = readl_relaxed(addr);
415	if (clkgate)
416		regval |= SEC_CTRL2_CLK_GATE_EN;
417	else
418		regval &= ~SEC_CTRL2_CLK_GATE_EN;
419	writel_relaxed(regval, addr);
420}
421
422static void sec_comm_cnt_cfg(struct sec_dev_info *info, bool clr_ce)
423{
424	void __iomem *addr = info->regs[SEC_SAA] + SEC_COMMON_CNT_CLR_CE_REG;
425	u32 regval;
426
427	regval = readl_relaxed(addr);
428	if (clr_ce)
429		regval |= SEC_COMMON_CNT_CLR_CE_CLEAR;
430	else
431		regval &= ~SEC_COMMON_CNT_CLR_CE_CLEAR;
432	writel_relaxed(regval, addr);
433}
434
435static void sec_commsnap_en(struct sec_dev_info *info, bool snap_en)
436{
437	void __iomem *addr = info->regs[SEC_SAA] + SEC_COMMON_CNT_CLR_CE_REG;
438	u32 regval;
439
440	regval = readl_relaxed(addr);
441	if (snap_en)
442		regval |= SEC_COMMON_CNT_CLR_CE_SNAP_EN;
443	else
444		regval &= ~SEC_COMMON_CNT_CLR_CE_SNAP_EN;
445	writel_relaxed(regval, addr);
446}
447
448static void sec_ipv6_hashmask(struct sec_dev_info *info, u32 hash_mask[])
449{
450	void __iomem *base = info->regs[SEC_SAA];
451	int i;
452
453	for (i = 0; i < 10; i++)
454		writel_relaxed(hash_mask[0],
455			       base + SEC_IPV6_MASK_TABLE_X_REG(i));
456}
457
458static int sec_ipv4_hashmask(struct sec_dev_info *info, u32 hash_mask)
459{
460	if (hash_mask & SEC_HASH_IPV4_MASK) {
461		dev_err(info->dev, "Sec Ipv4 Hash Mask Input Error!\n ");
462		return -EINVAL;
463	}
464
465	writel_relaxed(hash_mask,
466		       info->regs[SEC_SAA] + SEC_IPV4_MASK_TABLE_REG);
467
468	return 0;
469}
470
471static void sec_set_dbg_bd_cfg(struct sec_dev_info *info, u32 cfg)
472{
473	void __iomem *addr = info->regs[SEC_SAA] + SEC_DEBUG_BD_CFG_REG;
474	u32 regval;
475
476	regval = readl_relaxed(addr);
477	/* Always disable write back of normal bd */
478	regval &= ~SEC_DEBUG_BD_CFG_WB_NORMAL;
479
480	if (cfg)
481		regval &= ~SEC_DEBUG_BD_CFG_WB_EN;
482	else
483		regval |= SEC_DEBUG_BD_CFG_WB_EN;
484
485	writel_relaxed(regval, addr);
486}
487
488static void sec_saa_getqm_en(struct sec_dev_info *info, u32 saa_indx, u32 en)
489{
490	void __iomem *addr = info->regs[SEC_SAA] + SEC_SAA_BASE +
491		SEC_SAA_CTRL_REG(saa_indx);
492	u32 regval;
493
494	regval = readl_relaxed(addr);
495	if (en)
496		regval |= SEC_SAA_CTRL_GET_QM_EN;
497	else
498		regval &= ~SEC_SAA_CTRL_GET_QM_EN;
499	writel_relaxed(regval, addr);
500}
501
502static void sec_saa_int_mask(struct sec_dev_info *info, u32 saa_indx,
503			     u32 saa_int_mask)
504{
505	writel_relaxed(saa_int_mask,
506		       info->regs[SEC_SAA] + SEC_SAA_BASE + SEC_ST_INTMSK1_REG +
507		       saa_indx * SEC_SAA_ADDR_SIZE);
508}
509
510static void sec_streamid(struct sec_dev_info *info, int i)
511{
512	#define SEC_SID 0x600
513	#define SEC_VMID 0
514
515	writel_relaxed((SEC_VMID | ((SEC_SID & 0xffff) << 8)),
516		       info->regs[SEC_SAA] + SEC_Q_VMID_CFG_REG(i));
517}
518
519static void sec_queue_ar_alloc(struct sec_queue *queue, u32 alloc)
520{
521	void __iomem *addr = queue->regs + SEC_Q_ARUSER_CFG_REG;
522	u32 regval;
523
524	regval = readl_relaxed(addr);
525	if (alloc == SEC_QUEUE_AR_FROCE_ALLOC) {
526		regval |= SEC_Q_ARUSER_CFG_FA;
527		regval &= ~SEC_Q_ARUSER_CFG_FNA;
528	} else {
529		regval &= ~SEC_Q_ARUSER_CFG_FA;
530		regval |= SEC_Q_ARUSER_CFG_FNA;
531	}
532
533	writel_relaxed(regval, addr);
534}
535
536static void sec_queue_aw_alloc(struct sec_queue *queue, u32 alloc)
537{
538	void __iomem *addr = queue->regs + SEC_Q_AWUSER_CFG_REG;
539	u32 regval;
540
541	regval = readl_relaxed(addr);
542	if (alloc == SEC_QUEUE_AW_FROCE_ALLOC) {
543		regval |= SEC_Q_AWUSER_CFG_FA;
544		regval &= ~SEC_Q_AWUSER_CFG_FNA;
545	} else {
546		regval &= ~SEC_Q_AWUSER_CFG_FA;
547		regval |= SEC_Q_AWUSER_CFG_FNA;
548	}
549
550	writel_relaxed(regval, addr);
551}
552
553static void sec_queue_reorder(struct sec_queue *queue, bool reorder)
554{
555	void __iomem *base = queue->regs;
556	u32 regval;
557
558	regval = readl_relaxed(base + SEC_Q_CFG_REG);
559	if (reorder)
560		regval |= SEC_Q_CFG_REORDER;
561	else
562		regval &= ~SEC_Q_CFG_REORDER;
563	writel_relaxed(regval, base + SEC_Q_CFG_REG);
564}
565
566static void sec_queue_depth(struct sec_queue *queue, u32 depth)
567{
568	void __iomem *addr = queue->regs + SEC_Q_DEPTH_CFG_REG;
569	u32 regval;
570
571	regval = readl_relaxed(addr);
572	regval &= ~SEC_Q_DEPTH_CFG_DEPTH_M;
573	regval |= (depth << SEC_Q_DEPTH_CFG_DEPTH_S) & SEC_Q_DEPTH_CFG_DEPTH_M;
574
575	writel_relaxed(regval, addr);
576}
577
578static void sec_queue_cmdbase_addr(struct sec_queue *queue, u64 addr)
579{
580	writel_relaxed(upper_32_bits(addr), queue->regs + SEC_Q_BASE_HADDR_REG);
581	writel_relaxed(lower_32_bits(addr), queue->regs + SEC_Q_BASE_LADDR_REG);
582}
583
584static void sec_queue_outorder_addr(struct sec_queue *queue, u64 addr)
585{
586	writel_relaxed(upper_32_bits(addr),
587		       queue->regs + SEC_Q_OUTORDER_BASE_HADDR_REG);
588	writel_relaxed(lower_32_bits(addr),
589		       queue->regs + SEC_Q_OUTORDER_BASE_LADDR_REG);
590}
591
592static void sec_queue_errbase_addr(struct sec_queue *queue, u64 addr)
593{
594	writel_relaxed(upper_32_bits(addr),
595		       queue->regs + SEC_Q_ERR_BASE_HADDR_REG);
596	writel_relaxed(lower_32_bits(addr),
597		       queue->regs + SEC_Q_ERR_BASE_LADDR_REG);
598}
599
600static void sec_queue_irq_disable(struct sec_queue *queue)
601{
602	writel_relaxed((u32)~0, queue->regs + SEC_Q_FLOW_INT_MKS_REG);
603}
604
605static void sec_queue_irq_enable(struct sec_queue *queue)
606{
607	writel_relaxed(0, queue->regs + SEC_Q_FLOW_INT_MKS_REG);
608}
609
610static void sec_queue_abn_irq_disable(struct sec_queue *queue)
611{
612	writel_relaxed((u32)~0, queue->regs + SEC_Q_FAIL_INT_MSK_REG);
613}
614
615static void sec_queue_stop(struct sec_queue *queue)
616{
617	disable_irq(queue->task_irq);
618	sec_queue_irq_disable(queue);
619	writel_relaxed(0x0, queue->regs + SEC_QUEUE_ENB_REG);
620}
621
622static void sec_queue_start(struct sec_queue *queue)
623{
624	sec_queue_irq_enable(queue);
625	enable_irq(queue->task_irq);
626	queue->expected = 0;
627	writel_relaxed(SEC_Q_INIT_AND_STAT_CLEAR, queue->regs + SEC_Q_INIT_REG);
628	writel_relaxed(0x1, queue->regs + SEC_QUEUE_ENB_REG);
629}
630
631static struct sec_queue *sec_alloc_queue(struct sec_dev_info *info)
632{
633	int i;
634
635	mutex_lock(&info->dev_lock);
636
637	/* Get the first idle queue in SEC device */
638	for (i = 0; i < SEC_Q_NUM; i++)
639		if (!info->queues[i].in_use) {
640			info->queues[i].in_use = true;
641			info->queues_in_use++;
642			mutex_unlock(&info->dev_lock);
643
644			return &info->queues[i];
645		}
646	mutex_unlock(&info->dev_lock);
647
648	return ERR_PTR(-ENODEV);
649}
650
651static int sec_queue_free(struct sec_queue *queue)
652{
653	struct sec_dev_info *info = queue->dev_info;
654
655	if (queue->queue_id >= SEC_Q_NUM) {
656		dev_err(info->dev, "No queue %d\n", queue->queue_id);
657		return -ENODEV;
658	}
659
660	if (!queue->in_use) {
661		dev_err(info->dev, "Queue %d is idle\n", queue->queue_id);
662		return -ENODEV;
663	}
664
665	mutex_lock(&info->dev_lock);
666	queue->in_use = false;
667	info->queues_in_use--;
668	mutex_unlock(&info->dev_lock);
669
670	return 0;
671}
672
673static irqreturn_t sec_isr_handle_th(int irq, void *q)
674{
675	sec_queue_irq_disable(q);
676	return IRQ_WAKE_THREAD;
677}
678
679static irqreturn_t sec_isr_handle(int irq, void *q)
680{
681	struct sec_queue *queue = q;
682	struct sec_queue_ring_cmd *msg_ring = &queue->ring_cmd;
683	struct sec_queue_ring_cq *cq_ring = &queue->ring_cq;
684	struct sec_out_bd_info *outorder_msg;
685	struct sec_bd_info *msg;
686	u32 ooo_read, ooo_write;
687	void __iomem *base = queue->regs;
688	int q_id;
689
690	ooo_read = readl(base + SEC_Q_OUTORDER_RD_PTR_REG);
691	ooo_write = readl(base + SEC_Q_OUTORDER_WR_PTR_REG);
692	outorder_msg = cq_ring->vaddr + ooo_read;
693	q_id = outorder_msg->data & SEC_OUT_BD_INFO_Q_ID_M;
694	msg = msg_ring->vaddr + q_id;
695
696	while ((ooo_write != ooo_read) && msg->w0 & SEC_BD_W0_DONE) {
697		/*
698		 * Must be before callback otherwise blocks adding other chained
699		 * elements
700		 */
701		set_bit(q_id, queue->unprocessed);
702		if (q_id == queue->expected)
703			while (test_bit(queue->expected, queue->unprocessed)) {
704				clear_bit(queue->expected, queue->unprocessed);
705				msg = msg_ring->vaddr + queue->expected;
706				msg->w0 &= ~SEC_BD_W0_DONE;
707				msg_ring->callback(msg,
708						queue->shadow[queue->expected]);
709				queue->shadow[queue->expected] = NULL;
710				queue->expected = (queue->expected + 1) %
711					SEC_QUEUE_LEN;
712				atomic_dec(&msg_ring->used);
713			}
714
715		ooo_read = (ooo_read + 1) % SEC_QUEUE_LEN;
716		writel(ooo_read, base + SEC_Q_OUTORDER_RD_PTR_REG);
717		ooo_write = readl(base + SEC_Q_OUTORDER_WR_PTR_REG);
718		outorder_msg = cq_ring->vaddr + ooo_read;
719		q_id = outorder_msg->data & SEC_OUT_BD_INFO_Q_ID_M;
720		msg = msg_ring->vaddr + q_id;
721	}
722
723	sec_queue_irq_enable(queue);
724
725	return IRQ_HANDLED;
726}
727
728static int sec_queue_irq_init(struct sec_queue *queue)
729{
730	struct sec_dev_info *info = queue->dev_info;
731	int irq = queue->task_irq;
732	int ret;
733
734	ret = request_threaded_irq(irq, sec_isr_handle_th, sec_isr_handle,
735				   IRQF_TRIGGER_RISING, queue->name, queue);
736	if (ret) {
737		dev_err(info->dev, "request irq(%d) failed %d\n", irq, ret);
738		return ret;
739	}
740	disable_irq(irq);
741
742	return 0;
743}
744
745static int sec_queue_irq_uninit(struct sec_queue *queue)
746{
747	free_irq(queue->task_irq, queue);
748
749	return 0;
750}
751
752static struct sec_dev_info *sec_device_get(void)
753{
754	struct sec_dev_info *sec_dev = NULL;
755	struct sec_dev_info *this_sec_dev;
756	int least_busy_n = SEC_Q_NUM + 1;
757	int i;
758
759	/* Find which one is least busy and use that first */
760	for (i = 0; i < SEC_MAX_DEVICES; i++) {
761		this_sec_dev = sec_devices[i];
762		if (this_sec_dev &&
763		    this_sec_dev->queues_in_use < least_busy_n) {
764			least_busy_n = this_sec_dev->queues_in_use;
765			sec_dev = this_sec_dev;
766		}
767	}
768
769	return sec_dev;
770}
771
772static struct sec_queue *sec_queue_alloc_start(struct sec_dev_info *info)
773{
774	struct sec_queue *queue;
775
776	queue = sec_alloc_queue(info);
777	if (IS_ERR(queue)) {
778		dev_err(info->dev, "alloc sec queue failed! %ld\n",
779			PTR_ERR(queue));
780		return queue;
781	}
782
783	sec_queue_start(queue);
784
785	return queue;
786}
787
788/**
789 * sec_queue_alloc_start_safe - get a hw queue from appropriate instance
790 *
791 * This function does extremely simplistic load balancing. It does not take into
792 * account NUMA locality of the accelerator, or which cpu has requested the
793 * queue.  Future work may focus on optimizing this in order to improve full
794 * machine throughput.
795 */
796struct sec_queue *sec_queue_alloc_start_safe(void)
797{
798	struct sec_dev_info *info;
799	struct sec_queue *queue = ERR_PTR(-ENODEV);
800
801	mutex_lock(&sec_id_lock);
802	info = sec_device_get();
803	if (!info)
804		goto unlock;
805
806	queue = sec_queue_alloc_start(info);
807
808unlock:
809	mutex_unlock(&sec_id_lock);
810
811	return queue;
812}
813
814/**
815 * sec_queue_stop_release() - free up a hw queue for reuse
816 * @queue: The queue we are done with.
817 *
818 * This will stop the current queue, terminanting any transactions
819 * that are inflight an return it to the pool of available hw queuess
820 */
821int sec_queue_stop_release(struct sec_queue *queue)
822{
823	struct device *dev = queue->dev_info->dev;
824	int ret;
825
826	sec_queue_stop(queue);
827
828	ret = sec_queue_free(queue);
829	if (ret)
830		dev_err(dev, "Releasing queue failed %d\n", ret);
831
832	return ret;
833}
834
835/**
836 * sec_queue_empty() - Is this hardware queue currently empty.
837 *
838 * We need to know if we have an empty queue for some of the chaining modes
839 * as if it is not empty we may need to hold the message in a software queue
840 * until the hw queue is drained.
841 */
842bool sec_queue_empty(struct sec_queue *queue)
843{
844	struct sec_queue_ring_cmd *msg_ring = &queue->ring_cmd;
845
846	return !atomic_read(&msg_ring->used);
847}
848
849/**
850 * sec_queue_send() - queue up a single operation in the hw queue
851 * @queue: The queue in which to put the message
852 * @msg: The message
853 * @ctx: Context to be put in the shadow array and passed back to cb on result.
854 *
855 * This function will return -EAGAIN if the queue is currently full.
856 */
857int sec_queue_send(struct sec_queue *queue, struct sec_bd_info *msg, void *ctx)
858{
859	struct sec_queue_ring_cmd *msg_ring = &queue->ring_cmd;
860	void __iomem *base = queue->regs;
861	u32 write, read;
862
863	mutex_lock(&msg_ring->lock);
864	read = readl(base + SEC_Q_RD_PTR_REG);
865	write = readl(base + SEC_Q_WR_PTR_REG);
866	if (write == read && atomic_read(&msg_ring->used) == SEC_QUEUE_LEN) {
867		mutex_unlock(&msg_ring->lock);
868		return -EAGAIN;
869	}
870	memcpy(msg_ring->vaddr + write, msg, sizeof(*msg));
871	queue->shadow[write] = ctx;
872	write = (write + 1) % SEC_QUEUE_LEN;
873
874	/* Ensure content updated before queue advance */
875	wmb();
876	writel(write, base + SEC_Q_WR_PTR_REG);
877
878	atomic_inc(&msg_ring->used);
879	mutex_unlock(&msg_ring->lock);
880
881	return 0;
882}
883
884bool sec_queue_can_enqueue(struct sec_queue *queue, int num)
885{
886	struct sec_queue_ring_cmd *msg_ring = &queue->ring_cmd;
887
888	return SEC_QUEUE_LEN - atomic_read(&msg_ring->used) >= num;
889}
890
891static void sec_queue_hw_init(struct sec_queue *queue)
892{
893	sec_queue_ar_alloc(queue, SEC_QUEUE_AR_FROCE_NOALLOC);
894	sec_queue_aw_alloc(queue, SEC_QUEUE_AR_FROCE_NOALLOC);
895	sec_queue_ar_pkgattr(queue, 1);
896	sec_queue_aw_pkgattr(queue, 1);
897
898	/* Enable out of order queue */
899	sec_queue_reorder(queue, true);
900
901	/* Interrupt after a single complete element */
902	writel_relaxed(1, queue->regs + SEC_Q_PROC_NUM_CFG_REG);
903
904	sec_queue_depth(queue, SEC_QUEUE_LEN - 1);
905
906	sec_queue_cmdbase_addr(queue, queue->ring_cmd.paddr);
907
908	sec_queue_outorder_addr(queue, queue->ring_cq.paddr);
909
910	sec_queue_errbase_addr(queue, queue->ring_db.paddr);
911
912	writel_relaxed(0x100, queue->regs + SEC_Q_OT_TH_REG);
913
914	sec_queue_abn_irq_disable(queue);
915	sec_queue_irq_disable(queue);
916	writel_relaxed(SEC_Q_INIT_AND_STAT_CLEAR, queue->regs + SEC_Q_INIT_REG);
917}
918
919static int sec_hw_init(struct sec_dev_info *info)
920{
921	struct iommu_domain *domain;
922	u32 sec_ipv4_mask = 0;
923	u32 sec_ipv6_mask[10] = {};
924	u32 i, ret;
925
926	domain = iommu_get_domain_for_dev(info->dev);
927
928	/*
929	 * Enable all available processing unit clocks.
930	 * Only the first cluster is usable with translations.
931	 */
932	if (domain && (domain->type & __IOMMU_DOMAIN_PAGING))
933		info->num_saas = 5;
934
935	else
936		info->num_saas = 10;
937
938	writel_relaxed(GENMASK(info->num_saas - 1, 0),
939		       info->regs[SEC_SAA] + SEC_CLK_EN_REG);
940
941	/* 32 bit little endian */
942	sec_bd_endian_little(info);
943
944	sec_cache_config(info);
945
946	/* Data axi port write and read outstanding config as per datasheet */
947	sec_data_axiwr_otsd_cfg(info, 0x7);
948	sec_data_axird_otsd_cfg(info, 0x7);
949
950	/* Enable clock gating */
951	sec_clk_gate_en(info, true);
952
953	/* Set CNT_CYC register not read clear */
954	sec_comm_cnt_cfg(info, false);
955
956	/* Enable CNT_CYC */
957	sec_commsnap_en(info, false);
958
959	writel_relaxed((u32)~0, info->regs[SEC_SAA] + SEC_FSM_MAX_CNT_REG);
960
961	ret = sec_ipv4_hashmask(info, sec_ipv4_mask);
962	if (ret) {
963		dev_err(info->dev, "Failed to set ipv4 hashmask %d\n", ret);
964		return -EIO;
965	}
966
967	sec_ipv6_hashmask(info, sec_ipv6_mask);
968
969	/*  do not use debug bd */
970	sec_set_dbg_bd_cfg(info, 0);
971
972	if (domain && (domain->type & __IOMMU_DOMAIN_PAGING)) {
973		for (i = 0; i < SEC_Q_NUM; i++) {
974			sec_streamid(info, i);
975			/* Same QoS for all queues */
976			writel_relaxed(0x3f,
977				       info->regs[SEC_SAA] +
978				       SEC_Q_WEIGHT_CFG_REG(i));
979		}
980	}
981
982	for (i = 0; i < info->num_saas; i++) {
983		sec_saa_getqm_en(info, i, 1);
984		sec_saa_int_mask(info, i, 0);
985	}
986
987	return 0;
988}
989
990static void sec_hw_exit(struct sec_dev_info *info)
991{
992	int i;
993
994	for (i = 0; i < SEC_MAX_SAA_NUM; i++) {
995		sec_saa_int_mask(info, i, (u32)~0);
996		sec_saa_getqm_en(info, i, 0);
997	}
998}
999
1000static void sec_queue_base_init(struct sec_dev_info *info,
1001				struct sec_queue *queue, int queue_id)
1002{
1003	queue->dev_info = info;
1004	queue->queue_id = queue_id;
1005	snprintf(queue->name, sizeof(queue->name),
1006		 "%s_%d", dev_name(info->dev), queue->queue_id);
1007}
1008
1009static int sec_map_io(struct sec_dev_info *info, struct platform_device *pdev)
1010{
1011	struct resource *res;
1012	int i;
1013
1014	for (i = 0; i < SEC_NUM_ADDR_REGIONS; i++) {
1015		res = platform_get_resource(pdev, IORESOURCE_MEM, i);
1016
1017		if (!res) {
1018			dev_err(info->dev, "Memory resource %d not found\n", i);
1019			return -EINVAL;
1020		}
1021
1022		info->regs[i] = devm_ioremap(info->dev, res->start,
1023					     resource_size(res));
1024		if (!info->regs[i]) {
1025			dev_err(info->dev,
1026				"Memory resource %d could not be remapped\n",
1027				i);
1028			return -EINVAL;
1029		}
1030	}
1031
1032	return 0;
1033}
1034
1035static int sec_base_init(struct sec_dev_info *info,
1036			 struct platform_device *pdev)
1037{
1038	int ret;
1039
1040	ret = sec_map_io(info, pdev);
1041	if (ret)
1042		return ret;
1043
1044	ret = sec_clk_en(info);
1045	if (ret)
1046		return ret;
1047
1048	ret = sec_reset_whole_module(info);
1049	if (ret)
1050		goto sec_clk_disable;
1051
1052	ret = sec_hw_init(info);
1053	if (ret)
1054		goto sec_clk_disable;
1055
1056	return 0;
1057
1058sec_clk_disable:
1059	sec_clk_dis(info);
1060
1061	return ret;
1062}
1063
1064static void sec_base_exit(struct sec_dev_info *info)
1065{
1066	sec_hw_exit(info);
1067	sec_clk_dis(info);
1068}
1069
1070#define SEC_Q_CMD_SIZE \
1071	round_up(SEC_QUEUE_LEN * sizeof(struct sec_bd_info), PAGE_SIZE)
1072#define SEC_Q_CQ_SIZE \
1073	round_up(SEC_QUEUE_LEN * sizeof(struct sec_out_bd_info), PAGE_SIZE)
1074#define SEC_Q_DB_SIZE \
1075	round_up(SEC_QUEUE_LEN * sizeof(struct sec_debug_bd_info), PAGE_SIZE)
1076
1077static int sec_queue_res_cfg(struct sec_queue *queue)
1078{
1079	struct device *dev = queue->dev_info->dev;
1080	struct sec_queue_ring_cmd *ring_cmd = &queue->ring_cmd;
1081	struct sec_queue_ring_cq *ring_cq = &queue->ring_cq;
1082	struct sec_queue_ring_db *ring_db = &queue->ring_db;
1083	int ret;
1084
1085	ring_cmd->vaddr = dma_alloc_coherent(dev, SEC_Q_CMD_SIZE,
1086					     &ring_cmd->paddr, GFP_KERNEL);
1087	if (!ring_cmd->vaddr)
1088		return -ENOMEM;
1089
1090	atomic_set(&ring_cmd->used, 0);
1091	mutex_init(&ring_cmd->lock);
1092	ring_cmd->callback = sec_alg_callback;
1093
1094	ring_cq->vaddr = dma_alloc_coherent(dev, SEC_Q_CQ_SIZE,
1095					    &ring_cq->paddr, GFP_KERNEL);
1096	if (!ring_cq->vaddr) {
1097		ret = -ENOMEM;
1098		goto err_free_ring_cmd;
1099	}
1100
1101	ring_db->vaddr = dma_alloc_coherent(dev, SEC_Q_DB_SIZE,
1102					    &ring_db->paddr, GFP_KERNEL);
1103	if (!ring_db->vaddr) {
1104		ret = -ENOMEM;
1105		goto err_free_ring_cq;
1106	}
1107	queue->task_irq = platform_get_irq(to_platform_device(dev),
1108					   queue->queue_id * 2 + 1);
1109	if (queue->task_irq <= 0) {
1110		ret = -EINVAL;
1111		goto err_free_ring_db;
1112	}
1113
1114	return 0;
1115
1116err_free_ring_db:
1117	dma_free_coherent(dev, SEC_Q_DB_SIZE, queue->ring_db.vaddr,
1118			  queue->ring_db.paddr);
1119err_free_ring_cq:
1120	dma_free_coherent(dev, SEC_Q_CQ_SIZE, queue->ring_cq.vaddr,
1121			  queue->ring_cq.paddr);
1122err_free_ring_cmd:
1123	dma_free_coherent(dev, SEC_Q_CMD_SIZE, queue->ring_cmd.vaddr,
1124			  queue->ring_cmd.paddr);
1125
1126	return ret;
1127}
1128
1129static void sec_queue_free_ring_pages(struct sec_queue *queue)
1130{
1131	struct device *dev = queue->dev_info->dev;
1132
1133	dma_free_coherent(dev, SEC_Q_DB_SIZE, queue->ring_db.vaddr,
1134			  queue->ring_db.paddr);
1135	dma_free_coherent(dev, SEC_Q_CQ_SIZE, queue->ring_cq.vaddr,
1136			  queue->ring_cq.paddr);
1137	dma_free_coherent(dev, SEC_Q_CMD_SIZE, queue->ring_cmd.vaddr,
1138			  queue->ring_cmd.paddr);
1139}
1140
1141static int sec_queue_config(struct sec_dev_info *info, struct sec_queue *queue,
1142			    int queue_id)
1143{
1144	int ret;
1145
1146	sec_queue_base_init(info, queue, queue_id);
1147
1148	ret = sec_queue_res_cfg(queue);
1149	if (ret)
1150		return ret;
1151
1152	ret = sec_queue_map_io(queue);
1153	if (ret) {
1154		dev_err(info->dev, "Queue map failed %d\n", ret);
1155		sec_queue_free_ring_pages(queue);
1156		return ret;
1157	}
1158
1159	sec_queue_hw_init(queue);
1160
1161	return 0;
1162}
1163
1164static void sec_queue_unconfig(struct sec_dev_info *info,
1165			       struct sec_queue *queue)
1166{
1167	sec_queue_unmap_io(queue);
1168	sec_queue_free_ring_pages(queue);
1169}
1170
1171static int sec_id_alloc(struct sec_dev_info *info)
1172{
1173	int ret = 0;
1174	int i;
1175
1176	mutex_lock(&sec_id_lock);
1177
1178	for (i = 0; i < SEC_MAX_DEVICES; i++)
1179		if (!sec_devices[i])
1180			break;
1181	if (i == SEC_MAX_DEVICES) {
1182		ret = -ENOMEM;
1183		goto unlock;
1184	}
1185	info->sec_id = i;
1186	sec_devices[info->sec_id] = info;
1187
1188unlock:
1189	mutex_unlock(&sec_id_lock);
1190
1191	return ret;
1192}
1193
1194static void sec_id_free(struct sec_dev_info *info)
1195{
1196	mutex_lock(&sec_id_lock);
1197	sec_devices[info->sec_id] = NULL;
1198	mutex_unlock(&sec_id_lock);
1199}
1200
1201static int sec_probe(struct platform_device *pdev)
1202{
1203	struct sec_dev_info *info;
1204	struct device *dev = &pdev->dev;
1205	int i, j;
1206	int ret;
1207
1208	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
1209	if (ret) {
1210		dev_err(dev, "Failed to set 64 bit dma mask %d", ret);
1211		return -ENODEV;
1212	}
1213
1214	info = devm_kzalloc(dev, (sizeof(*info)), GFP_KERNEL);
1215	if (!info)
1216		return -ENOMEM;
1217
1218	info->dev = dev;
1219	mutex_init(&info->dev_lock);
1220
1221	info->hw_sgl_pool = dmam_pool_create("sgl", dev,
1222					     sizeof(struct sec_hw_sgl), 64, 0);
1223	if (!info->hw_sgl_pool) {
1224		dev_err(dev, "Failed to create sec sgl dma pool\n");
1225		return -ENOMEM;
1226	}
1227
1228	ret = sec_base_init(info, pdev);
1229	if (ret) {
1230		dev_err(dev, "Base initialization fail! %d\n", ret);
1231		return ret;
1232	}
1233
1234	for (i = 0; i < SEC_Q_NUM; i++) {
1235		ret = sec_queue_config(info, &info->queues[i], i);
1236		if (ret)
1237			goto queues_unconfig;
1238
1239		ret = sec_queue_irq_init(&info->queues[i]);
1240		if (ret) {
1241			sec_queue_unconfig(info, &info->queues[i]);
1242			goto queues_unconfig;
1243		}
1244	}
1245
1246	ret = sec_algs_register();
1247	if (ret) {
1248		dev_err(dev, "Failed to register algorithms with crypto %d\n",
1249			ret);
1250		goto queues_unconfig;
1251	}
1252
1253	platform_set_drvdata(pdev, info);
1254
1255	ret = sec_id_alloc(info);
1256	if (ret)
1257		goto algs_unregister;
1258
1259	return 0;
1260
1261algs_unregister:
1262	sec_algs_unregister();
1263queues_unconfig:
1264	for (j = i - 1; j >= 0; j--) {
1265		sec_queue_irq_uninit(&info->queues[j]);
1266		sec_queue_unconfig(info, &info->queues[j]);
1267	}
1268	sec_base_exit(info);
1269
1270	return ret;
1271}
1272
1273static int sec_remove(struct platform_device *pdev)
1274{
1275	struct sec_dev_info *info = platform_get_drvdata(pdev);
1276	int i;
1277
1278	/* Unexpose as soon as possible, reuse during remove is fine */
1279	sec_id_free(info);
1280
1281	sec_algs_unregister();
1282
1283	for (i = 0; i < SEC_Q_NUM; i++) {
1284		sec_queue_irq_uninit(&info->queues[i]);
1285		sec_queue_unconfig(info, &info->queues[i]);
1286	}
1287
1288	sec_base_exit(info);
1289
1290	return 0;
1291}
1292
1293static const __maybe_unused struct of_device_id sec_match[] = {
1294	{ .compatible = "hisilicon,hip06-sec" },
1295	{ .compatible = "hisilicon,hip07-sec" },
1296	{}
1297};
1298MODULE_DEVICE_TABLE(of, sec_match);
1299
1300static const __maybe_unused struct acpi_device_id sec_acpi_match[] = {
1301	{ "HISI02C1", 0 },
1302	{ }
1303};
1304MODULE_DEVICE_TABLE(acpi, sec_acpi_match);
1305
1306static struct platform_driver sec_driver = {
1307	.probe = sec_probe,
1308	.remove = sec_remove,
1309	.driver = {
1310		.name = "hisi_sec_platform_driver",
1311		.of_match_table = sec_match,
1312		.acpi_match_table = ACPI_PTR(sec_acpi_match),
1313	},
1314};
1315module_platform_driver(sec_driver);
1316
1317MODULE_LICENSE("GPL");
1318MODULE_DESCRIPTION("Hisilicon Security Accelerators");
1319MODULE_AUTHOR("Zaibo Xu <xuzaibo@huawei.com");
1320MODULE_AUTHOR("Jonathan Cameron <jonathan.cameron@huawei.com>");
1321