1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (C) 2012-2019 ARM Limited (or its affiliates). */
3
4#include <linux/kernel.h>
5#include <linux/module.h>
6#include <crypto/algapi.h>
7#include <crypto/internal/skcipher.h>
8#include <crypto/internal/des.h>
9#include <crypto/xts.h>
10#include <crypto/sm4.h>
11#include <crypto/scatterwalk.h>
12
13#include "cc_driver.h"
14#include "cc_lli_defs.h"
15#include "cc_buffer_mgr.h"
16#include "cc_cipher.h"
17#include "cc_request_mgr.h"
18
19#define MAX_SKCIPHER_SEQ_LEN 6
20
21#define template_skcipher	template_u.skcipher
22
23struct cc_user_key_info {
24	u8 *key;
25	dma_addr_t key_dma_addr;
26};
27
28struct cc_hw_key_info {
29	enum cc_hw_crypto_key key1_slot;
30	enum cc_hw_crypto_key key2_slot;
31};
32
33struct cc_cpp_key_info {
34	u8 slot;
35	enum cc_cpp_alg alg;
36};
37
38enum cc_key_type {
39	CC_UNPROTECTED_KEY,		/* User key */
40	CC_HW_PROTECTED_KEY,		/* HW (FDE) key */
41	CC_POLICY_PROTECTED_KEY,	/* CPP key */
42	CC_INVALID_PROTECTED_KEY	/* Invalid key */
43};
44
45struct cc_cipher_ctx {
46	struct cc_drvdata *drvdata;
47	int keylen;
48	int cipher_mode;
49	int flow_mode;
50	unsigned int flags;
51	enum cc_key_type key_type;
52	struct cc_user_key_info user;
53	union {
54		struct cc_hw_key_info hw;
55		struct cc_cpp_key_info cpp;
56	};
57	struct crypto_shash *shash_tfm;
58	struct crypto_skcipher *fallback_tfm;
59	bool fallback_on;
60};
61
62static void cc_cipher_complete(struct device *dev, void *cc_req, int err);
63
64static inline enum cc_key_type cc_key_type(struct crypto_tfm *tfm)
65{
66	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
67
68	return ctx_p->key_type;
69}
70
71static int validate_keys_sizes(struct cc_cipher_ctx *ctx_p, u32 size)
72{
73	switch (ctx_p->flow_mode) {
74	case S_DIN_to_AES:
75		switch (size) {
76		case CC_AES_128_BIT_KEY_SIZE:
77		case CC_AES_192_BIT_KEY_SIZE:
78			if (ctx_p->cipher_mode != DRV_CIPHER_XTS)
79				return 0;
80			break;
81		case CC_AES_256_BIT_KEY_SIZE:
82			return 0;
83		case (CC_AES_192_BIT_KEY_SIZE * 2):
84		case (CC_AES_256_BIT_KEY_SIZE * 2):
85			if (ctx_p->cipher_mode == DRV_CIPHER_XTS ||
86			    ctx_p->cipher_mode == DRV_CIPHER_ESSIV)
87				return 0;
88			break;
89		default:
90			break;
91		}
92		break;
93	case S_DIN_to_DES:
94		if (size == DES3_EDE_KEY_SIZE || size == DES_KEY_SIZE)
95			return 0;
96		break;
97	case S_DIN_to_SM4:
98		if (size == SM4_KEY_SIZE)
99			return 0;
100	default:
101		break;
102	}
103	return -EINVAL;
104}
105
106static int validate_data_size(struct cc_cipher_ctx *ctx_p,
107			      unsigned int size)
108{
109	switch (ctx_p->flow_mode) {
110	case S_DIN_to_AES:
111		switch (ctx_p->cipher_mode) {
112		case DRV_CIPHER_XTS:
113		case DRV_CIPHER_CBC_CTS:
114			if (size >= AES_BLOCK_SIZE)
115				return 0;
116			break;
117		case DRV_CIPHER_OFB:
118		case DRV_CIPHER_CTR:
119				return 0;
120		case DRV_CIPHER_ECB:
121		case DRV_CIPHER_CBC:
122		case DRV_CIPHER_ESSIV:
123			if (IS_ALIGNED(size, AES_BLOCK_SIZE))
124				return 0;
125			break;
126		default:
127			break;
128		}
129		break;
130	case S_DIN_to_DES:
131		if (IS_ALIGNED(size, DES_BLOCK_SIZE))
132			return 0;
133		break;
134	case S_DIN_to_SM4:
135		switch (ctx_p->cipher_mode) {
136		case DRV_CIPHER_CTR:
137			return 0;
138		case DRV_CIPHER_ECB:
139		case DRV_CIPHER_CBC:
140			if (IS_ALIGNED(size, SM4_BLOCK_SIZE))
141				return 0;
142		default:
143			break;
144		}
145	default:
146		break;
147	}
148	return -EINVAL;
149}
150
151static int cc_cipher_init(struct crypto_tfm *tfm)
152{
153	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
154	struct cc_crypto_alg *cc_alg =
155			container_of(tfm->__crt_alg, struct cc_crypto_alg,
156				     skcipher_alg.base);
157	struct device *dev = drvdata_to_dev(cc_alg->drvdata);
158	unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize;
159	unsigned int fallback_req_size = 0;
160
161	dev_dbg(dev, "Initializing context @%p for %s\n", ctx_p,
162		crypto_tfm_alg_name(tfm));
163
164	ctx_p->cipher_mode = cc_alg->cipher_mode;
165	ctx_p->flow_mode = cc_alg->flow_mode;
166	ctx_p->drvdata = cc_alg->drvdata;
167
168	if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
169		const char *name = crypto_tfm_alg_name(tfm);
170
171		/* Alloc hash tfm for essiv */
172		ctx_p->shash_tfm = crypto_alloc_shash("sha256", 0, 0);
173		if (IS_ERR(ctx_p->shash_tfm)) {
174			dev_err(dev, "Error allocating hash tfm for ESSIV.\n");
175			return PTR_ERR(ctx_p->shash_tfm);
176		}
177		max_key_buf_size <<= 1;
178
179		/* Alloc fallabck tfm or essiv when key size != 256 bit */
180		ctx_p->fallback_tfm =
181			crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC);
182
183		if (IS_ERR(ctx_p->fallback_tfm)) {
184			/* Note we're still allowing registration with no fallback since it's
185			 * better to have most modes supported than none at all.
186			 */
187			dev_warn(dev, "Error allocating fallback algo %s. Some modes may be available.\n",
188			       name);
189			ctx_p->fallback_tfm = NULL;
190		} else {
191			fallback_req_size = crypto_skcipher_reqsize(ctx_p->fallback_tfm);
192		}
193	}
194
195	crypto_skcipher_set_reqsize(__crypto_skcipher_cast(tfm),
196				    sizeof(struct cipher_req_ctx) + fallback_req_size);
197
198	/* Allocate key buffer, cache line aligned */
199	ctx_p->user.key = kzalloc(max_key_buf_size, GFP_KERNEL);
200	if (!ctx_p->user.key)
201		goto free_fallback;
202
203	dev_dbg(dev, "Allocated key buffer in context. key=@%p\n",
204		ctx_p->user.key);
205
206	/* Map key buffer */
207	ctx_p->user.key_dma_addr = dma_map_single(dev, ctx_p->user.key,
208						  max_key_buf_size,
209						  DMA_TO_DEVICE);
210	if (dma_mapping_error(dev, ctx_p->user.key_dma_addr)) {
211		dev_err(dev, "Mapping Key %u B at va=%pK for DMA failed\n",
212			max_key_buf_size, ctx_p->user.key);
213		goto free_key;
214	}
215	dev_dbg(dev, "Mapped key %u B at va=%pK to dma=%pad\n",
216		max_key_buf_size, ctx_p->user.key, &ctx_p->user.key_dma_addr);
217
218	return 0;
219
220free_key:
221	kfree(ctx_p->user.key);
222free_fallback:
223	crypto_free_skcipher(ctx_p->fallback_tfm);
224	crypto_free_shash(ctx_p->shash_tfm);
225
226	return -ENOMEM;
227}
228
229static void cc_cipher_exit(struct crypto_tfm *tfm)
230{
231	struct crypto_alg *alg = tfm->__crt_alg;
232	struct cc_crypto_alg *cc_alg =
233			container_of(alg, struct cc_crypto_alg,
234				     skcipher_alg.base);
235	unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize;
236	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
237	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
238
239	dev_dbg(dev, "Clearing context @%p for %s\n",
240		crypto_tfm_ctx(tfm), crypto_tfm_alg_name(tfm));
241
242	if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
243		/* Free hash tfm for essiv */
244		crypto_free_shash(ctx_p->shash_tfm);
245		ctx_p->shash_tfm = NULL;
246		crypto_free_skcipher(ctx_p->fallback_tfm);
247		ctx_p->fallback_tfm = NULL;
248	}
249
250	/* Unmap key buffer */
251	dma_unmap_single(dev, ctx_p->user.key_dma_addr, max_key_buf_size,
252			 DMA_TO_DEVICE);
253	dev_dbg(dev, "Unmapped key buffer key_dma_addr=%pad\n",
254		&ctx_p->user.key_dma_addr);
255
256	/* Free key buffer in context */
257	dev_dbg(dev, "Free key buffer in context. key=@%p\n", ctx_p->user.key);
258	kfree_sensitive(ctx_p->user.key);
259}
260
261struct tdes_keys {
262	u8	key1[DES_KEY_SIZE];
263	u8	key2[DES_KEY_SIZE];
264	u8	key3[DES_KEY_SIZE];
265};
266
267static enum cc_hw_crypto_key cc_slot_to_hw_key(u8 slot_num)
268{
269	switch (slot_num) {
270	case 0:
271		return KFDE0_KEY;
272	case 1:
273		return KFDE1_KEY;
274	case 2:
275		return KFDE2_KEY;
276	case 3:
277		return KFDE3_KEY;
278	}
279	return END_OF_KEYS;
280}
281
282static u8 cc_slot_to_cpp_key(u8 slot_num)
283{
284	return (slot_num - CC_FIRST_CPP_KEY_SLOT);
285}
286
287static inline enum cc_key_type cc_slot_to_key_type(u8 slot_num)
288{
289	if (slot_num >= CC_FIRST_HW_KEY_SLOT && slot_num <= CC_LAST_HW_KEY_SLOT)
290		return CC_HW_PROTECTED_KEY;
291	else if (slot_num >=  CC_FIRST_CPP_KEY_SLOT &&
292		 slot_num <=  CC_LAST_CPP_KEY_SLOT)
293		return CC_POLICY_PROTECTED_KEY;
294	else
295		return CC_INVALID_PROTECTED_KEY;
296}
297
298static int cc_cipher_sethkey(struct crypto_skcipher *sktfm, const u8 *key,
299			     unsigned int keylen)
300{
301	struct crypto_tfm *tfm = crypto_skcipher_tfm(sktfm);
302	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
303	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
304	struct cc_hkey_info hki;
305
306	dev_dbg(dev, "Setting HW key in context @%p for %s. keylen=%u\n",
307		ctx_p, crypto_tfm_alg_name(tfm), keylen);
308	dump_byte_array("key", key, keylen);
309
310	/* STAT_PHASE_0: Init and sanity checks */
311
312	/* This check the size of the protected key token */
313	if (keylen != sizeof(hki)) {
314		dev_err(dev, "Unsupported protected key size %d.\n", keylen);
315		return -EINVAL;
316	}
317
318	memcpy(&hki, key, keylen);
319
320	/* The real key len for crypto op is the size of the HW key
321	 * referenced by the HW key slot, not the hardware key token
322	 */
323	keylen = hki.keylen;
324
325	if (validate_keys_sizes(ctx_p, keylen)) {
326		dev_dbg(dev, "Unsupported key size %d.\n", keylen);
327		return -EINVAL;
328	}
329
330	ctx_p->keylen = keylen;
331	ctx_p->fallback_on = false;
332
333	switch (cc_slot_to_key_type(hki.hw_key1)) {
334	case CC_HW_PROTECTED_KEY:
335		if (ctx_p->flow_mode == S_DIN_to_SM4) {
336			dev_err(dev, "Only AES HW protected keys are supported\n");
337			return -EINVAL;
338		}
339
340		ctx_p->hw.key1_slot = cc_slot_to_hw_key(hki.hw_key1);
341		if (ctx_p->hw.key1_slot == END_OF_KEYS) {
342			dev_err(dev, "Unsupported hw key1 number (%d)\n",
343				hki.hw_key1);
344			return -EINVAL;
345		}
346
347		if (ctx_p->cipher_mode == DRV_CIPHER_XTS ||
348		    ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
349			if (hki.hw_key1 == hki.hw_key2) {
350				dev_err(dev, "Illegal hw key numbers (%d,%d)\n",
351					hki.hw_key1, hki.hw_key2);
352				return -EINVAL;
353			}
354
355			ctx_p->hw.key2_slot = cc_slot_to_hw_key(hki.hw_key2);
356			if (ctx_p->hw.key2_slot == END_OF_KEYS) {
357				dev_err(dev, "Unsupported hw key2 number (%d)\n",
358					hki.hw_key2);
359				return -EINVAL;
360			}
361		}
362
363		ctx_p->key_type = CC_HW_PROTECTED_KEY;
364		dev_dbg(dev, "HW protected key  %d/%d set\n.",
365			ctx_p->hw.key1_slot, ctx_p->hw.key2_slot);
366		break;
367
368	case CC_POLICY_PROTECTED_KEY:
369		if (ctx_p->drvdata->hw_rev < CC_HW_REV_713) {
370			dev_err(dev, "CPP keys not supported in this hardware revision.\n");
371			return -EINVAL;
372		}
373
374		if (ctx_p->cipher_mode != DRV_CIPHER_CBC &&
375		    ctx_p->cipher_mode != DRV_CIPHER_CTR) {
376			dev_err(dev, "CPP keys only supported in CBC or CTR modes.\n");
377			return -EINVAL;
378		}
379
380		ctx_p->cpp.slot = cc_slot_to_cpp_key(hki.hw_key1);
381		if (ctx_p->flow_mode == S_DIN_to_AES)
382			ctx_p->cpp.alg = CC_CPP_AES;
383		else /* Must be SM4 since due to sethkey registration */
384			ctx_p->cpp.alg = CC_CPP_SM4;
385		ctx_p->key_type = CC_POLICY_PROTECTED_KEY;
386		dev_dbg(dev, "policy protected key alg: %d slot: %d.\n",
387			ctx_p->cpp.alg, ctx_p->cpp.slot);
388		break;
389
390	default:
391		dev_err(dev, "Unsupported protected key (%d)\n", hki.hw_key1);
392		return -EINVAL;
393	}
394
395	return 0;
396}
397
398static int cc_cipher_setkey(struct crypto_skcipher *sktfm, const u8 *key,
399			    unsigned int keylen)
400{
401	struct crypto_tfm *tfm = crypto_skcipher_tfm(sktfm);
402	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
403	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
404	struct cc_crypto_alg *cc_alg =
405			container_of(tfm->__crt_alg, struct cc_crypto_alg,
406				     skcipher_alg.base);
407	unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize;
408
409	dev_dbg(dev, "Setting key in context @%p for %s. keylen=%u\n",
410		ctx_p, crypto_tfm_alg_name(tfm), keylen);
411	dump_byte_array("key", key, keylen);
412
413	/* STAT_PHASE_0: Init and sanity checks */
414
415	if (validate_keys_sizes(ctx_p, keylen)) {
416		dev_dbg(dev, "Invalid key size %d.\n", keylen);
417		return -EINVAL;
418	}
419
420	if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
421
422		/* We only support 256 bit ESSIV-CBC-AES keys */
423		if (keylen != AES_KEYSIZE_256)  {
424			unsigned int flags = crypto_tfm_get_flags(tfm) & CRYPTO_TFM_REQ_MASK;
425
426			if (likely(ctx_p->fallback_tfm)) {
427				ctx_p->fallback_on = true;
428				crypto_skcipher_clear_flags(ctx_p->fallback_tfm,
429							    CRYPTO_TFM_REQ_MASK);
430				crypto_skcipher_clear_flags(ctx_p->fallback_tfm, flags);
431				return crypto_skcipher_setkey(ctx_p->fallback_tfm, key, keylen);
432			}
433
434			dev_dbg(dev, "Unsupported key size %d and no fallback.\n", keylen);
435			return -EINVAL;
436		}
437
438		/* Internal ESSIV key buffer is double sized */
439		max_key_buf_size <<= 1;
440	}
441
442	ctx_p->fallback_on = false;
443	ctx_p->key_type = CC_UNPROTECTED_KEY;
444
445	/*
446	 * Verify DES weak keys
447	 * Note that we're dropping the expanded key since the
448	 * HW does the expansion on its own.
449	 */
450	if (ctx_p->flow_mode == S_DIN_to_DES) {
451		if ((keylen == DES3_EDE_KEY_SIZE &&
452		     verify_skcipher_des3_key(sktfm, key)) ||
453		    verify_skcipher_des_key(sktfm, key)) {
454			dev_dbg(dev, "weak DES key");
455			return -EINVAL;
456		}
457	}
458
459	if (ctx_p->cipher_mode == DRV_CIPHER_XTS &&
460	    xts_check_key(tfm, key, keylen)) {
461		dev_dbg(dev, "weak XTS key");
462		return -EINVAL;
463	}
464
465	/* STAT_PHASE_1: Copy key to ctx */
466	dma_sync_single_for_cpu(dev, ctx_p->user.key_dma_addr,
467				max_key_buf_size, DMA_TO_DEVICE);
468
469	memcpy(ctx_p->user.key, key, keylen);
470
471	if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
472		/* sha256 for key2 - use sw implementation */
473		int err;
474
475		err = crypto_shash_tfm_digest(ctx_p->shash_tfm,
476					      ctx_p->user.key, keylen,
477					      ctx_p->user.key + keylen);
478		if (err) {
479			dev_err(dev, "Failed to hash ESSIV key.\n");
480			return err;
481		}
482
483		keylen <<= 1;
484	}
485	dma_sync_single_for_device(dev, ctx_p->user.key_dma_addr,
486				   max_key_buf_size, DMA_TO_DEVICE);
487	ctx_p->keylen = keylen;
488
489	dev_dbg(dev, "return safely");
490	return 0;
491}
492
493static int cc_out_setup_mode(struct cc_cipher_ctx *ctx_p)
494{
495	switch (ctx_p->flow_mode) {
496	case S_DIN_to_AES:
497		return S_AES_to_DOUT;
498	case S_DIN_to_DES:
499		return S_DES_to_DOUT;
500	case S_DIN_to_SM4:
501		return S_SM4_to_DOUT;
502	default:
503		return ctx_p->flow_mode;
504	}
505}
506
507static void cc_setup_readiv_desc(struct crypto_tfm *tfm,
508				 struct cipher_req_ctx *req_ctx,
509				 unsigned int ivsize, struct cc_hw_desc desc[],
510				 unsigned int *seq_size)
511{
512	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
513	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
514	int cipher_mode = ctx_p->cipher_mode;
515	int flow_mode = cc_out_setup_mode(ctx_p);
516	int direction = req_ctx->gen_ctx.op_type;
517	dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr;
518
519	if (ctx_p->key_type == CC_POLICY_PROTECTED_KEY)
520		return;
521
522	switch (cipher_mode) {
523	case DRV_CIPHER_ECB:
524		break;
525	case DRV_CIPHER_CBC:
526	case DRV_CIPHER_CBC_CTS:
527	case DRV_CIPHER_CTR:
528	case DRV_CIPHER_OFB:
529		/* Read next IV */
530		hw_desc_init(&desc[*seq_size]);
531		set_dout_dlli(&desc[*seq_size], iv_dma_addr, ivsize, NS_BIT, 1);
532		set_cipher_config0(&desc[*seq_size], direction);
533		set_flow_mode(&desc[*seq_size], flow_mode);
534		set_cipher_mode(&desc[*seq_size], cipher_mode);
535		if (cipher_mode == DRV_CIPHER_CTR ||
536		    cipher_mode == DRV_CIPHER_OFB) {
537			set_setup_mode(&desc[*seq_size], SETUP_WRITE_STATE1);
538		} else {
539			set_setup_mode(&desc[*seq_size], SETUP_WRITE_STATE0);
540		}
541		set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
542		(*seq_size)++;
543		break;
544	case DRV_CIPHER_XTS:
545	case DRV_CIPHER_ESSIV:
546		/*  IV */
547		hw_desc_init(&desc[*seq_size]);
548		set_setup_mode(&desc[*seq_size], SETUP_WRITE_STATE1);
549		set_cipher_mode(&desc[*seq_size], cipher_mode);
550		set_cipher_config0(&desc[*seq_size], direction);
551		set_flow_mode(&desc[*seq_size], flow_mode);
552		set_dout_dlli(&desc[*seq_size], iv_dma_addr, CC_AES_BLOCK_SIZE,
553			     NS_BIT, 1);
554		set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
555		(*seq_size)++;
556		break;
557	default:
558		dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
559	}
560}
561
562
563static void cc_setup_state_desc(struct crypto_tfm *tfm,
564				 struct cipher_req_ctx *req_ctx,
565				 unsigned int ivsize, unsigned int nbytes,
566				 struct cc_hw_desc desc[],
567				 unsigned int *seq_size)
568{
569	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
570	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
571	int cipher_mode = ctx_p->cipher_mode;
572	int flow_mode = ctx_p->flow_mode;
573	int direction = req_ctx->gen_ctx.op_type;
574	dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr;
575
576	switch (cipher_mode) {
577	case DRV_CIPHER_ECB:
578		break;
579	case DRV_CIPHER_CBC:
580	case DRV_CIPHER_CBC_CTS:
581	case DRV_CIPHER_CTR:
582	case DRV_CIPHER_OFB:
583		/* Load IV */
584		hw_desc_init(&desc[*seq_size]);
585		set_din_type(&desc[*seq_size], DMA_DLLI, iv_dma_addr, ivsize,
586			     NS_BIT);
587		set_cipher_config0(&desc[*seq_size], direction);
588		set_flow_mode(&desc[*seq_size], flow_mode);
589		set_cipher_mode(&desc[*seq_size], cipher_mode);
590		if (cipher_mode == DRV_CIPHER_CTR ||
591		    cipher_mode == DRV_CIPHER_OFB) {
592			set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE1);
593		} else {
594			set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE0);
595		}
596		(*seq_size)++;
597		break;
598	case DRV_CIPHER_XTS:
599	case DRV_CIPHER_ESSIV:
600		break;
601	default:
602		dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
603	}
604}
605
606
607static void cc_setup_xex_state_desc(struct crypto_tfm *tfm,
608				 struct cipher_req_ctx *req_ctx,
609				 unsigned int ivsize, unsigned int nbytes,
610				 struct cc_hw_desc desc[],
611				 unsigned int *seq_size)
612{
613	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
614	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
615	int cipher_mode = ctx_p->cipher_mode;
616	int flow_mode = ctx_p->flow_mode;
617	int direction = req_ctx->gen_ctx.op_type;
618	dma_addr_t key_dma_addr = ctx_p->user.key_dma_addr;
619	unsigned int key_len = (ctx_p->keylen / 2);
620	dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr;
621	unsigned int key_offset = key_len;
622
623	switch (cipher_mode) {
624	case DRV_CIPHER_ECB:
625		break;
626	case DRV_CIPHER_CBC:
627	case DRV_CIPHER_CBC_CTS:
628	case DRV_CIPHER_CTR:
629	case DRV_CIPHER_OFB:
630		break;
631	case DRV_CIPHER_XTS:
632	case DRV_CIPHER_ESSIV:
633
634		if (cipher_mode == DRV_CIPHER_ESSIV)
635			key_len = SHA256_DIGEST_SIZE;
636
637		/* load XEX key */
638		hw_desc_init(&desc[*seq_size]);
639		set_cipher_mode(&desc[*seq_size], cipher_mode);
640		set_cipher_config0(&desc[*seq_size], direction);
641		if (cc_key_type(tfm) == CC_HW_PROTECTED_KEY) {
642			set_hw_crypto_key(&desc[*seq_size],
643					  ctx_p->hw.key2_slot);
644		} else {
645			set_din_type(&desc[*seq_size], DMA_DLLI,
646				     (key_dma_addr + key_offset),
647				     key_len, NS_BIT);
648		}
649		set_xex_data_unit_size(&desc[*seq_size], nbytes);
650		set_flow_mode(&desc[*seq_size], S_DIN_to_AES2);
651		set_key_size_aes(&desc[*seq_size], key_len);
652		set_setup_mode(&desc[*seq_size], SETUP_LOAD_XEX_KEY);
653		(*seq_size)++;
654
655		/* Load IV */
656		hw_desc_init(&desc[*seq_size]);
657		set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE1);
658		set_cipher_mode(&desc[*seq_size], cipher_mode);
659		set_cipher_config0(&desc[*seq_size], direction);
660		set_key_size_aes(&desc[*seq_size], key_len);
661		set_flow_mode(&desc[*seq_size], flow_mode);
662		set_din_type(&desc[*seq_size], DMA_DLLI, iv_dma_addr,
663			     CC_AES_BLOCK_SIZE, NS_BIT);
664		(*seq_size)++;
665		break;
666	default:
667		dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
668	}
669}
670
671static int cc_out_flow_mode(struct cc_cipher_ctx *ctx_p)
672{
673	switch (ctx_p->flow_mode) {
674	case S_DIN_to_AES:
675		return DIN_AES_DOUT;
676	case S_DIN_to_DES:
677		return DIN_DES_DOUT;
678	case S_DIN_to_SM4:
679		return DIN_SM4_DOUT;
680	default:
681		return ctx_p->flow_mode;
682	}
683}
684
685static void cc_setup_key_desc(struct crypto_tfm *tfm,
686			      struct cipher_req_ctx *req_ctx,
687			      unsigned int nbytes, struct cc_hw_desc desc[],
688			      unsigned int *seq_size)
689{
690	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
691	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
692	int cipher_mode = ctx_p->cipher_mode;
693	int flow_mode = ctx_p->flow_mode;
694	int direction = req_ctx->gen_ctx.op_type;
695	dma_addr_t key_dma_addr = ctx_p->user.key_dma_addr;
696	unsigned int key_len = ctx_p->keylen;
697	unsigned int din_size;
698
699	switch (cipher_mode) {
700	case DRV_CIPHER_CBC:
701	case DRV_CIPHER_CBC_CTS:
702	case DRV_CIPHER_CTR:
703	case DRV_CIPHER_OFB:
704	case DRV_CIPHER_ECB:
705		/* Load key */
706		hw_desc_init(&desc[*seq_size]);
707		set_cipher_mode(&desc[*seq_size], cipher_mode);
708		set_cipher_config0(&desc[*seq_size], direction);
709
710		if (cc_key_type(tfm) == CC_POLICY_PROTECTED_KEY) {
711			/* We use the AES key size coding for all CPP algs */
712			set_key_size_aes(&desc[*seq_size], key_len);
713			set_cpp_crypto_key(&desc[*seq_size], ctx_p->cpp.slot);
714			flow_mode = cc_out_flow_mode(ctx_p);
715		} else {
716			if (flow_mode == S_DIN_to_AES) {
717				if (cc_key_type(tfm) == CC_HW_PROTECTED_KEY) {
718					set_hw_crypto_key(&desc[*seq_size],
719							  ctx_p->hw.key1_slot);
720				} else {
721					/* CC_POLICY_UNPROTECTED_KEY
722					 * Invalid keys are filtered out in
723					 * sethkey()
724					 */
725					din_size = (key_len == 24) ?
726						AES_MAX_KEY_SIZE : key_len;
727
728					set_din_type(&desc[*seq_size], DMA_DLLI,
729						     key_dma_addr, din_size,
730						     NS_BIT);
731				}
732				set_key_size_aes(&desc[*seq_size], key_len);
733			} else {
734				/*des*/
735				set_din_type(&desc[*seq_size], DMA_DLLI,
736					     key_dma_addr, key_len, NS_BIT);
737				set_key_size_des(&desc[*seq_size], key_len);
738			}
739			set_setup_mode(&desc[*seq_size], SETUP_LOAD_KEY0);
740		}
741		set_flow_mode(&desc[*seq_size], flow_mode);
742		(*seq_size)++;
743		break;
744	case DRV_CIPHER_XTS:
745	case DRV_CIPHER_ESSIV:
746		/* Load AES key */
747		hw_desc_init(&desc[*seq_size]);
748		set_cipher_mode(&desc[*seq_size], cipher_mode);
749		set_cipher_config0(&desc[*seq_size], direction);
750		if (cc_key_type(tfm) == CC_HW_PROTECTED_KEY) {
751			set_hw_crypto_key(&desc[*seq_size],
752					  ctx_p->hw.key1_slot);
753		} else {
754			set_din_type(&desc[*seq_size], DMA_DLLI, key_dma_addr,
755				     (key_len / 2), NS_BIT);
756		}
757		set_key_size_aes(&desc[*seq_size], (key_len / 2));
758		set_flow_mode(&desc[*seq_size], flow_mode);
759		set_setup_mode(&desc[*seq_size], SETUP_LOAD_KEY0);
760		(*seq_size)++;
761		break;
762	default:
763		dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
764	}
765}
766
767static void cc_setup_mlli_desc(struct crypto_tfm *tfm,
768			       struct cipher_req_ctx *req_ctx,
769			       struct scatterlist *dst, struct scatterlist *src,
770			       unsigned int nbytes, void *areq,
771			       struct cc_hw_desc desc[], unsigned int *seq_size)
772{
773	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
774	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
775
776	if (req_ctx->dma_buf_type == CC_DMA_BUF_MLLI) {
777		/* bypass */
778		dev_dbg(dev, " bypass params addr %pad length 0x%X addr 0x%08X\n",
779			&req_ctx->mlli_params.mlli_dma_addr,
780			req_ctx->mlli_params.mlli_len,
781			ctx_p->drvdata->mlli_sram_addr);
782		hw_desc_init(&desc[*seq_size]);
783		set_din_type(&desc[*seq_size], DMA_DLLI,
784			     req_ctx->mlli_params.mlli_dma_addr,
785			     req_ctx->mlli_params.mlli_len, NS_BIT);
786		set_dout_sram(&desc[*seq_size],
787			      ctx_p->drvdata->mlli_sram_addr,
788			      req_ctx->mlli_params.mlli_len);
789		set_flow_mode(&desc[*seq_size], BYPASS);
790		(*seq_size)++;
791	}
792}
793
794static void cc_setup_flow_desc(struct crypto_tfm *tfm,
795			       struct cipher_req_ctx *req_ctx,
796			       struct scatterlist *dst, struct scatterlist *src,
797			       unsigned int nbytes, struct cc_hw_desc desc[],
798			       unsigned int *seq_size)
799{
800	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
801	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
802	unsigned int flow_mode = cc_out_flow_mode(ctx_p);
803	bool last_desc = (ctx_p->key_type == CC_POLICY_PROTECTED_KEY ||
804			  ctx_p->cipher_mode == DRV_CIPHER_ECB);
805
806	/* Process */
807	if (req_ctx->dma_buf_type == CC_DMA_BUF_DLLI) {
808		dev_dbg(dev, " data params addr %pad length 0x%X\n",
809			&sg_dma_address(src), nbytes);
810		dev_dbg(dev, " data params addr %pad length 0x%X\n",
811			&sg_dma_address(dst), nbytes);
812		hw_desc_init(&desc[*seq_size]);
813		set_din_type(&desc[*seq_size], DMA_DLLI, sg_dma_address(src),
814			     nbytes, NS_BIT);
815		set_dout_dlli(&desc[*seq_size], sg_dma_address(dst),
816			      nbytes, NS_BIT, (!last_desc ? 0 : 1));
817		if (last_desc)
818			set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
819
820		set_flow_mode(&desc[*seq_size], flow_mode);
821		(*seq_size)++;
822	} else {
823		hw_desc_init(&desc[*seq_size]);
824		set_din_type(&desc[*seq_size], DMA_MLLI,
825			     ctx_p->drvdata->mlli_sram_addr,
826			     req_ctx->in_mlli_nents, NS_BIT);
827		if (req_ctx->out_nents == 0) {
828			dev_dbg(dev, " din/dout params addr 0x%08X addr 0x%08X\n",
829				ctx_p->drvdata->mlli_sram_addr,
830				ctx_p->drvdata->mlli_sram_addr);
831			set_dout_mlli(&desc[*seq_size],
832				      ctx_p->drvdata->mlli_sram_addr,
833				      req_ctx->in_mlli_nents, NS_BIT,
834				      (!last_desc ? 0 : 1));
835		} else {
836			dev_dbg(dev, " din/dout params addr 0x%08X addr 0x%08X\n",
837				ctx_p->drvdata->mlli_sram_addr,
838				ctx_p->drvdata->mlli_sram_addr +
839				(u32)LLI_ENTRY_BYTE_SIZE * req_ctx->in_nents);
840			set_dout_mlli(&desc[*seq_size],
841				      (ctx_p->drvdata->mlli_sram_addr +
842				       (LLI_ENTRY_BYTE_SIZE *
843					req_ctx->in_mlli_nents)),
844				      req_ctx->out_mlli_nents, NS_BIT,
845				      (!last_desc ? 0 : 1));
846		}
847		if (last_desc)
848			set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
849
850		set_flow_mode(&desc[*seq_size], flow_mode);
851		(*seq_size)++;
852	}
853}
854
855static void cc_cipher_complete(struct device *dev, void *cc_req, int err)
856{
857	struct skcipher_request *req = (struct skcipher_request *)cc_req;
858	struct scatterlist *dst = req->dst;
859	struct scatterlist *src = req->src;
860	struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
861	struct crypto_skcipher *sk_tfm = crypto_skcipher_reqtfm(req);
862	unsigned int ivsize = crypto_skcipher_ivsize(sk_tfm);
863
864	if (err != -EINPROGRESS) {
865		/* Not a BACKLOG notification */
866		cc_unmap_cipher_request(dev, req_ctx, ivsize, src, dst);
867		memcpy(req->iv, req_ctx->iv, ivsize);
868		kfree_sensitive(req_ctx->iv);
869	}
870
871	skcipher_request_complete(req, err);
872}
873
874static int cc_cipher_process(struct skcipher_request *req,
875			     enum drv_crypto_direction direction)
876{
877	struct crypto_skcipher *sk_tfm = crypto_skcipher_reqtfm(req);
878	struct crypto_tfm *tfm = crypto_skcipher_tfm(sk_tfm);
879	struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
880	unsigned int ivsize = crypto_skcipher_ivsize(sk_tfm);
881	struct scatterlist *dst = req->dst;
882	struct scatterlist *src = req->src;
883	unsigned int nbytes = req->cryptlen;
884	void *iv = req->iv;
885	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
886	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
887	struct cc_hw_desc desc[MAX_SKCIPHER_SEQ_LEN];
888	struct cc_crypto_req cc_req = {};
889	int rc;
890	unsigned int seq_len = 0;
891	gfp_t flags = cc_gfp_flags(&req->base);
892
893	dev_dbg(dev, "%s req=%p iv=%p nbytes=%d\n",
894		((direction == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
895		"Encrypt" : "Decrypt"), req, iv, nbytes);
896
897	/* STAT_PHASE_0: Init and sanity checks */
898
899	if (validate_data_size(ctx_p, nbytes)) {
900		dev_dbg(dev, "Unsupported data size %d.\n", nbytes);
901		rc = -EINVAL;
902		goto exit_process;
903	}
904	if (nbytes == 0) {
905		/* No data to process is valid */
906		rc = 0;
907		goto exit_process;
908	}
909
910	if (ctx_p->fallback_on) {
911		struct skcipher_request *subreq = skcipher_request_ctx(req);
912
913		*subreq = *req;
914		skcipher_request_set_tfm(subreq, ctx_p->fallback_tfm);
915		if (direction == DRV_CRYPTO_DIRECTION_ENCRYPT)
916			return crypto_skcipher_encrypt(subreq);
917		else
918			return crypto_skcipher_decrypt(subreq);
919	}
920
921	/* The IV we are handed may be allocted from the stack so
922	 * we must copy it to a DMAable buffer before use.
923	 */
924	req_ctx->iv = kmemdup(iv, ivsize, flags);
925	if (!req_ctx->iv) {
926		rc = -ENOMEM;
927		goto exit_process;
928	}
929
930	/* Setup request structure */
931	cc_req.user_cb = cc_cipher_complete;
932	cc_req.user_arg = req;
933
934	/* Setup CPP operation details */
935	if (ctx_p->key_type == CC_POLICY_PROTECTED_KEY) {
936		cc_req.cpp.is_cpp = true;
937		cc_req.cpp.alg = ctx_p->cpp.alg;
938		cc_req.cpp.slot = ctx_p->cpp.slot;
939	}
940
941	/* Setup request context */
942	req_ctx->gen_ctx.op_type = direction;
943
944	/* STAT_PHASE_1: Map buffers */
945
946	rc = cc_map_cipher_request(ctx_p->drvdata, req_ctx, ivsize, nbytes,
947				      req_ctx->iv, src, dst, flags);
948	if (rc) {
949		dev_err(dev, "map_request() failed\n");
950		goto exit_process;
951	}
952
953	/* STAT_PHASE_2: Create sequence */
954
955	/* Setup state (IV)  */
956	cc_setup_state_desc(tfm, req_ctx, ivsize, nbytes, desc, &seq_len);
957	/* Setup MLLI line, if needed */
958	cc_setup_mlli_desc(tfm, req_ctx, dst, src, nbytes, req, desc, &seq_len);
959	/* Setup key */
960	cc_setup_key_desc(tfm, req_ctx, nbytes, desc, &seq_len);
961	/* Setup state (IV and XEX key)  */
962	cc_setup_xex_state_desc(tfm, req_ctx, ivsize, nbytes, desc, &seq_len);
963	/* Data processing */
964	cc_setup_flow_desc(tfm, req_ctx, dst, src, nbytes, desc, &seq_len);
965	/* Read next IV */
966	cc_setup_readiv_desc(tfm, req_ctx, ivsize, desc, &seq_len);
967
968	/* STAT_PHASE_3: Lock HW and push sequence */
969
970	rc = cc_send_request(ctx_p->drvdata, &cc_req, desc, seq_len,
971			     &req->base);
972	if (rc != -EINPROGRESS && rc != -EBUSY) {
973		/* Failed to send the request or request completed
974		 * synchronously
975		 */
976		cc_unmap_cipher_request(dev, req_ctx, ivsize, src, dst);
977	}
978
979exit_process:
980	if (rc != -EINPROGRESS && rc != -EBUSY) {
981		kfree_sensitive(req_ctx->iv);
982	}
983
984	return rc;
985}
986
987static int cc_cipher_encrypt(struct skcipher_request *req)
988{
989	struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
990
991	memset(req_ctx, 0, sizeof(*req_ctx));
992
993	return cc_cipher_process(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
994}
995
996static int cc_cipher_decrypt(struct skcipher_request *req)
997{
998	struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
999
1000	memset(req_ctx, 0, sizeof(*req_ctx));
1001
1002	return cc_cipher_process(req, DRV_CRYPTO_DIRECTION_DECRYPT);
1003}
1004
1005/* Block cipher alg */
1006static const struct cc_alg_template skcipher_algs[] = {
1007	{
1008		.name = "xts(paes)",
1009		.driver_name = "xts-paes-ccree",
1010		.blocksize = 1,
1011		.template_skcipher = {
1012			.setkey = cc_cipher_sethkey,
1013			.encrypt = cc_cipher_encrypt,
1014			.decrypt = cc_cipher_decrypt,
1015			.min_keysize = CC_HW_KEY_SIZE,
1016			.max_keysize = CC_HW_KEY_SIZE,
1017			.ivsize = AES_BLOCK_SIZE,
1018			},
1019		.cipher_mode = DRV_CIPHER_XTS,
1020		.flow_mode = S_DIN_to_AES,
1021		.min_hw_rev = CC_HW_REV_630,
1022		.std_body = CC_STD_NIST,
1023		.sec_func = true,
1024	},
1025	{
1026		.name = "essiv(cbc(paes),sha256)",
1027		.driver_name = "essiv-paes-ccree",
1028		.blocksize = AES_BLOCK_SIZE,
1029		.template_skcipher = {
1030			.setkey = cc_cipher_sethkey,
1031			.encrypt = cc_cipher_encrypt,
1032			.decrypt = cc_cipher_decrypt,
1033			.min_keysize = CC_HW_KEY_SIZE,
1034			.max_keysize = CC_HW_KEY_SIZE,
1035			.ivsize = AES_BLOCK_SIZE,
1036			},
1037		.cipher_mode = DRV_CIPHER_ESSIV,
1038		.flow_mode = S_DIN_to_AES,
1039		.min_hw_rev = CC_HW_REV_712,
1040		.std_body = CC_STD_NIST,
1041		.sec_func = true,
1042	},
1043	{
1044		.name = "ecb(paes)",
1045		.driver_name = "ecb-paes-ccree",
1046		.blocksize = AES_BLOCK_SIZE,
1047		.template_skcipher = {
1048			.setkey = cc_cipher_sethkey,
1049			.encrypt = cc_cipher_encrypt,
1050			.decrypt = cc_cipher_decrypt,
1051			.min_keysize = CC_HW_KEY_SIZE,
1052			.max_keysize = CC_HW_KEY_SIZE,
1053			.ivsize = 0,
1054			},
1055		.cipher_mode = DRV_CIPHER_ECB,
1056		.flow_mode = S_DIN_to_AES,
1057		.min_hw_rev = CC_HW_REV_712,
1058		.std_body = CC_STD_NIST,
1059		.sec_func = true,
1060	},
1061	{
1062		.name = "cbc(paes)",
1063		.driver_name = "cbc-paes-ccree",
1064		.blocksize = AES_BLOCK_SIZE,
1065		.template_skcipher = {
1066			.setkey = cc_cipher_sethkey,
1067			.encrypt = cc_cipher_encrypt,
1068			.decrypt = cc_cipher_decrypt,
1069			.min_keysize = CC_HW_KEY_SIZE,
1070			.max_keysize = CC_HW_KEY_SIZE,
1071			.ivsize = AES_BLOCK_SIZE,
1072		},
1073		.cipher_mode = DRV_CIPHER_CBC,
1074		.flow_mode = S_DIN_to_AES,
1075		.min_hw_rev = CC_HW_REV_712,
1076		.std_body = CC_STD_NIST,
1077		.sec_func = true,
1078	},
1079	{
1080		.name = "ofb(paes)",
1081		.driver_name = "ofb-paes-ccree",
1082		.blocksize = AES_BLOCK_SIZE,
1083		.template_skcipher = {
1084			.setkey = cc_cipher_sethkey,
1085			.encrypt = cc_cipher_encrypt,
1086			.decrypt = cc_cipher_decrypt,
1087			.min_keysize = CC_HW_KEY_SIZE,
1088			.max_keysize = CC_HW_KEY_SIZE,
1089			.ivsize = AES_BLOCK_SIZE,
1090			},
1091		.cipher_mode = DRV_CIPHER_OFB,
1092		.flow_mode = S_DIN_to_AES,
1093		.min_hw_rev = CC_HW_REV_712,
1094		.std_body = CC_STD_NIST,
1095		.sec_func = true,
1096	},
1097	{
1098		.name = "cts(cbc(paes))",
1099		.driver_name = "cts-cbc-paes-ccree",
1100		.blocksize = AES_BLOCK_SIZE,
1101		.template_skcipher = {
1102			.setkey = cc_cipher_sethkey,
1103			.encrypt = cc_cipher_encrypt,
1104			.decrypt = cc_cipher_decrypt,
1105			.min_keysize = CC_HW_KEY_SIZE,
1106			.max_keysize = CC_HW_KEY_SIZE,
1107			.ivsize = AES_BLOCK_SIZE,
1108			},
1109		.cipher_mode = DRV_CIPHER_CBC_CTS,
1110		.flow_mode = S_DIN_to_AES,
1111		.min_hw_rev = CC_HW_REV_712,
1112		.std_body = CC_STD_NIST,
1113		.sec_func = true,
1114	},
1115	{
1116		.name = "ctr(paes)",
1117		.driver_name = "ctr-paes-ccree",
1118		.blocksize = 1,
1119		.template_skcipher = {
1120			.setkey = cc_cipher_sethkey,
1121			.encrypt = cc_cipher_encrypt,
1122			.decrypt = cc_cipher_decrypt,
1123			.min_keysize = CC_HW_KEY_SIZE,
1124			.max_keysize = CC_HW_KEY_SIZE,
1125			.ivsize = AES_BLOCK_SIZE,
1126			},
1127		.cipher_mode = DRV_CIPHER_CTR,
1128		.flow_mode = S_DIN_to_AES,
1129		.min_hw_rev = CC_HW_REV_712,
1130		.std_body = CC_STD_NIST,
1131		.sec_func = true,
1132	},
1133	{
1134		/* See https://www.mail-archive.com/linux-crypto@vger.kernel.org/msg40576.html
1135		 * for the reason why this differs from the generic
1136		 * implementation.
1137		 */
1138		.name = "xts(aes)",
1139		.driver_name = "xts-aes-ccree",
1140		.blocksize = 1,
1141		.template_skcipher = {
1142			.setkey = cc_cipher_setkey,
1143			.encrypt = cc_cipher_encrypt,
1144			.decrypt = cc_cipher_decrypt,
1145			.min_keysize = AES_MIN_KEY_SIZE * 2,
1146			.max_keysize = AES_MAX_KEY_SIZE * 2,
1147			.ivsize = AES_BLOCK_SIZE,
1148			},
1149		.cipher_mode = DRV_CIPHER_XTS,
1150		.flow_mode = S_DIN_to_AES,
1151		.min_hw_rev = CC_HW_REV_630,
1152		.std_body = CC_STD_NIST,
1153	},
1154	{
1155		.name = "essiv(cbc(aes),sha256)",
1156		.driver_name = "essiv-aes-ccree",
1157		.blocksize = AES_BLOCK_SIZE,
1158		.template_skcipher = {
1159			.setkey = cc_cipher_setkey,
1160			.encrypt = cc_cipher_encrypt,
1161			.decrypt = cc_cipher_decrypt,
1162			.min_keysize = AES_MIN_KEY_SIZE,
1163			.max_keysize = AES_MAX_KEY_SIZE,
1164			.ivsize = AES_BLOCK_SIZE,
1165			},
1166		.cipher_mode = DRV_CIPHER_ESSIV,
1167		.flow_mode = S_DIN_to_AES,
1168		.min_hw_rev = CC_HW_REV_712,
1169		.std_body = CC_STD_NIST,
1170	},
1171	{
1172		.name = "ecb(aes)",
1173		.driver_name = "ecb-aes-ccree",
1174		.blocksize = AES_BLOCK_SIZE,
1175		.template_skcipher = {
1176			.setkey = cc_cipher_setkey,
1177			.encrypt = cc_cipher_encrypt,
1178			.decrypt = cc_cipher_decrypt,
1179			.min_keysize = AES_MIN_KEY_SIZE,
1180			.max_keysize = AES_MAX_KEY_SIZE,
1181			.ivsize = 0,
1182			},
1183		.cipher_mode = DRV_CIPHER_ECB,
1184		.flow_mode = S_DIN_to_AES,
1185		.min_hw_rev = CC_HW_REV_630,
1186		.std_body = CC_STD_NIST,
1187	},
1188	{
1189		.name = "cbc(aes)",
1190		.driver_name = "cbc-aes-ccree",
1191		.blocksize = AES_BLOCK_SIZE,
1192		.template_skcipher = {
1193			.setkey = cc_cipher_setkey,
1194			.encrypt = cc_cipher_encrypt,
1195			.decrypt = cc_cipher_decrypt,
1196			.min_keysize = AES_MIN_KEY_SIZE,
1197			.max_keysize = AES_MAX_KEY_SIZE,
1198			.ivsize = AES_BLOCK_SIZE,
1199		},
1200		.cipher_mode = DRV_CIPHER_CBC,
1201		.flow_mode = S_DIN_to_AES,
1202		.min_hw_rev = CC_HW_REV_630,
1203		.std_body = CC_STD_NIST,
1204	},
1205	{
1206		.name = "ofb(aes)",
1207		.driver_name = "ofb-aes-ccree",
1208		.blocksize = 1,
1209		.template_skcipher = {
1210			.setkey = cc_cipher_setkey,
1211			.encrypt = cc_cipher_encrypt,
1212			.decrypt = cc_cipher_decrypt,
1213			.min_keysize = AES_MIN_KEY_SIZE,
1214			.max_keysize = AES_MAX_KEY_SIZE,
1215			.ivsize = AES_BLOCK_SIZE,
1216			},
1217		.cipher_mode = DRV_CIPHER_OFB,
1218		.flow_mode = S_DIN_to_AES,
1219		.min_hw_rev = CC_HW_REV_630,
1220		.std_body = CC_STD_NIST,
1221	},
1222	{
1223		.name = "cts(cbc(aes))",
1224		.driver_name = "cts-cbc-aes-ccree",
1225		.blocksize = AES_BLOCK_SIZE,
1226		.template_skcipher = {
1227			.setkey = cc_cipher_setkey,
1228			.encrypt = cc_cipher_encrypt,
1229			.decrypt = cc_cipher_decrypt,
1230			.min_keysize = AES_MIN_KEY_SIZE,
1231			.max_keysize = AES_MAX_KEY_SIZE,
1232			.ivsize = AES_BLOCK_SIZE,
1233			},
1234		.cipher_mode = DRV_CIPHER_CBC_CTS,
1235		.flow_mode = S_DIN_to_AES,
1236		.min_hw_rev = CC_HW_REV_630,
1237		.std_body = CC_STD_NIST,
1238	},
1239	{
1240		.name = "ctr(aes)",
1241		.driver_name = "ctr-aes-ccree",
1242		.blocksize = 1,
1243		.template_skcipher = {
1244			.setkey = cc_cipher_setkey,
1245			.encrypt = cc_cipher_encrypt,
1246			.decrypt = cc_cipher_decrypt,
1247			.min_keysize = AES_MIN_KEY_SIZE,
1248			.max_keysize = AES_MAX_KEY_SIZE,
1249			.ivsize = AES_BLOCK_SIZE,
1250			},
1251		.cipher_mode = DRV_CIPHER_CTR,
1252		.flow_mode = S_DIN_to_AES,
1253		.min_hw_rev = CC_HW_REV_630,
1254		.std_body = CC_STD_NIST,
1255	},
1256	{
1257		.name = "cbc(des3_ede)",
1258		.driver_name = "cbc-3des-ccree",
1259		.blocksize = DES3_EDE_BLOCK_SIZE,
1260		.template_skcipher = {
1261			.setkey = cc_cipher_setkey,
1262			.encrypt = cc_cipher_encrypt,
1263			.decrypt = cc_cipher_decrypt,
1264			.min_keysize = DES3_EDE_KEY_SIZE,
1265			.max_keysize = DES3_EDE_KEY_SIZE,
1266			.ivsize = DES3_EDE_BLOCK_SIZE,
1267			},
1268		.cipher_mode = DRV_CIPHER_CBC,
1269		.flow_mode = S_DIN_to_DES,
1270		.min_hw_rev = CC_HW_REV_630,
1271		.std_body = CC_STD_NIST,
1272	},
1273	{
1274		.name = "ecb(des3_ede)",
1275		.driver_name = "ecb-3des-ccree",
1276		.blocksize = DES3_EDE_BLOCK_SIZE,
1277		.template_skcipher = {
1278			.setkey = cc_cipher_setkey,
1279			.encrypt = cc_cipher_encrypt,
1280			.decrypt = cc_cipher_decrypt,
1281			.min_keysize = DES3_EDE_KEY_SIZE,
1282			.max_keysize = DES3_EDE_KEY_SIZE,
1283			.ivsize = 0,
1284			},
1285		.cipher_mode = DRV_CIPHER_ECB,
1286		.flow_mode = S_DIN_to_DES,
1287		.min_hw_rev = CC_HW_REV_630,
1288		.std_body = CC_STD_NIST,
1289	},
1290	{
1291		.name = "cbc(des)",
1292		.driver_name = "cbc-des-ccree",
1293		.blocksize = DES_BLOCK_SIZE,
1294		.template_skcipher = {
1295			.setkey = cc_cipher_setkey,
1296			.encrypt = cc_cipher_encrypt,
1297			.decrypt = cc_cipher_decrypt,
1298			.min_keysize = DES_KEY_SIZE,
1299			.max_keysize = DES_KEY_SIZE,
1300			.ivsize = DES_BLOCK_SIZE,
1301			},
1302		.cipher_mode = DRV_CIPHER_CBC,
1303		.flow_mode = S_DIN_to_DES,
1304		.min_hw_rev = CC_HW_REV_630,
1305		.std_body = CC_STD_NIST,
1306	},
1307	{
1308		.name = "ecb(des)",
1309		.driver_name = "ecb-des-ccree",
1310		.blocksize = DES_BLOCK_SIZE,
1311		.template_skcipher = {
1312			.setkey = cc_cipher_setkey,
1313			.encrypt = cc_cipher_encrypt,
1314			.decrypt = cc_cipher_decrypt,
1315			.min_keysize = DES_KEY_SIZE,
1316			.max_keysize = DES_KEY_SIZE,
1317			.ivsize = 0,
1318			},
1319		.cipher_mode = DRV_CIPHER_ECB,
1320		.flow_mode = S_DIN_to_DES,
1321		.min_hw_rev = CC_HW_REV_630,
1322		.std_body = CC_STD_NIST,
1323	},
1324	{
1325		.name = "cbc(sm4)",
1326		.driver_name = "cbc-sm4-ccree",
1327		.blocksize = SM4_BLOCK_SIZE,
1328		.template_skcipher = {
1329			.setkey = cc_cipher_setkey,
1330			.encrypt = cc_cipher_encrypt,
1331			.decrypt = cc_cipher_decrypt,
1332			.min_keysize = SM4_KEY_SIZE,
1333			.max_keysize = SM4_KEY_SIZE,
1334			.ivsize = SM4_BLOCK_SIZE,
1335			},
1336		.cipher_mode = DRV_CIPHER_CBC,
1337		.flow_mode = S_DIN_to_SM4,
1338		.min_hw_rev = CC_HW_REV_713,
1339		.std_body = CC_STD_OSCCA,
1340	},
1341	{
1342		.name = "ecb(sm4)",
1343		.driver_name = "ecb-sm4-ccree",
1344		.blocksize = SM4_BLOCK_SIZE,
1345		.template_skcipher = {
1346			.setkey = cc_cipher_setkey,
1347			.encrypt = cc_cipher_encrypt,
1348			.decrypt = cc_cipher_decrypt,
1349			.min_keysize = SM4_KEY_SIZE,
1350			.max_keysize = SM4_KEY_SIZE,
1351			.ivsize = 0,
1352			},
1353		.cipher_mode = DRV_CIPHER_ECB,
1354		.flow_mode = S_DIN_to_SM4,
1355		.min_hw_rev = CC_HW_REV_713,
1356		.std_body = CC_STD_OSCCA,
1357	},
1358	{
1359		.name = "ctr(sm4)",
1360		.driver_name = "ctr-sm4-ccree",
1361		.blocksize = 1,
1362		.template_skcipher = {
1363			.setkey = cc_cipher_setkey,
1364			.encrypt = cc_cipher_encrypt,
1365			.decrypt = cc_cipher_decrypt,
1366			.min_keysize = SM4_KEY_SIZE,
1367			.max_keysize = SM4_KEY_SIZE,
1368			.ivsize = SM4_BLOCK_SIZE,
1369			},
1370		.cipher_mode = DRV_CIPHER_CTR,
1371		.flow_mode = S_DIN_to_SM4,
1372		.min_hw_rev = CC_HW_REV_713,
1373		.std_body = CC_STD_OSCCA,
1374	},
1375	{
1376		.name = "cbc(psm4)",
1377		.driver_name = "cbc-psm4-ccree",
1378		.blocksize = SM4_BLOCK_SIZE,
1379		.template_skcipher = {
1380			.setkey = cc_cipher_sethkey,
1381			.encrypt = cc_cipher_encrypt,
1382			.decrypt = cc_cipher_decrypt,
1383			.min_keysize = CC_HW_KEY_SIZE,
1384			.max_keysize = CC_HW_KEY_SIZE,
1385			.ivsize = SM4_BLOCK_SIZE,
1386			},
1387		.cipher_mode = DRV_CIPHER_CBC,
1388		.flow_mode = S_DIN_to_SM4,
1389		.min_hw_rev = CC_HW_REV_713,
1390		.std_body = CC_STD_OSCCA,
1391		.sec_func = true,
1392	},
1393	{
1394		.name = "ctr(psm4)",
1395		.driver_name = "ctr-psm4-ccree",
1396		.blocksize = SM4_BLOCK_SIZE,
1397		.template_skcipher = {
1398			.setkey = cc_cipher_sethkey,
1399			.encrypt = cc_cipher_encrypt,
1400			.decrypt = cc_cipher_decrypt,
1401			.min_keysize = CC_HW_KEY_SIZE,
1402			.max_keysize = CC_HW_KEY_SIZE,
1403			.ivsize = SM4_BLOCK_SIZE,
1404			},
1405		.cipher_mode = DRV_CIPHER_CTR,
1406		.flow_mode = S_DIN_to_SM4,
1407		.min_hw_rev = CC_HW_REV_713,
1408		.std_body = CC_STD_OSCCA,
1409		.sec_func = true,
1410	},
1411};
1412
1413static struct cc_crypto_alg *cc_create_alg(const struct cc_alg_template *tmpl,
1414					   struct device *dev)
1415{
1416	struct cc_crypto_alg *t_alg;
1417	struct skcipher_alg *alg;
1418
1419	t_alg = devm_kzalloc(dev, sizeof(*t_alg), GFP_KERNEL);
1420	if (!t_alg)
1421		return ERR_PTR(-ENOMEM);
1422
1423	alg = &t_alg->skcipher_alg;
1424
1425	memcpy(alg, &tmpl->template_skcipher, sizeof(*alg));
1426
1427	snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1428	snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
1429		 tmpl->driver_name);
1430	alg->base.cra_module = THIS_MODULE;
1431	alg->base.cra_priority = CC_CRA_PRIO;
1432	alg->base.cra_blocksize = tmpl->blocksize;
1433	alg->base.cra_alignmask = 0;
1434	alg->base.cra_ctxsize = sizeof(struct cc_cipher_ctx);
1435
1436	alg->base.cra_init = cc_cipher_init;
1437	alg->base.cra_exit = cc_cipher_exit;
1438	alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
1439
1440	t_alg->cipher_mode = tmpl->cipher_mode;
1441	t_alg->flow_mode = tmpl->flow_mode;
1442
1443	return t_alg;
1444}
1445
1446int cc_cipher_free(struct cc_drvdata *drvdata)
1447{
1448	struct cc_crypto_alg *t_alg, *n;
1449
1450	/* Remove registered algs */
1451	list_for_each_entry_safe(t_alg, n, &drvdata->alg_list, entry) {
1452		crypto_unregister_skcipher(&t_alg->skcipher_alg);
1453		list_del(&t_alg->entry);
1454	}
1455	return 0;
1456}
1457
1458int cc_cipher_alloc(struct cc_drvdata *drvdata)
1459{
1460	struct cc_crypto_alg *t_alg;
1461	struct device *dev = drvdata_to_dev(drvdata);
1462	int rc = -ENOMEM;
1463	int alg;
1464
1465	INIT_LIST_HEAD(&drvdata->alg_list);
1466
1467	/* Linux crypto */
1468	dev_dbg(dev, "Number of algorithms = %zu\n",
1469		ARRAY_SIZE(skcipher_algs));
1470	for (alg = 0; alg < ARRAY_SIZE(skcipher_algs); alg++) {
1471		if ((skcipher_algs[alg].min_hw_rev > drvdata->hw_rev) ||
1472		    !(drvdata->std_bodies & skcipher_algs[alg].std_body) ||
1473		    (drvdata->sec_disabled && skcipher_algs[alg].sec_func))
1474			continue;
1475
1476		dev_dbg(dev, "creating %s\n", skcipher_algs[alg].driver_name);
1477		t_alg = cc_create_alg(&skcipher_algs[alg], dev);
1478		if (IS_ERR(t_alg)) {
1479			rc = PTR_ERR(t_alg);
1480			dev_err(dev, "%s alg allocation failed\n",
1481				skcipher_algs[alg].driver_name);
1482			goto fail0;
1483		}
1484		t_alg->drvdata = drvdata;
1485
1486		dev_dbg(dev, "registering %s\n",
1487			skcipher_algs[alg].driver_name);
1488		rc = crypto_register_skcipher(&t_alg->skcipher_alg);
1489		dev_dbg(dev, "%s alg registration rc = %x\n",
1490			t_alg->skcipher_alg.base.cra_driver_name, rc);
1491		if (rc) {
1492			dev_err(dev, "%s alg registration failed\n",
1493				t_alg->skcipher_alg.base.cra_driver_name);
1494			goto fail0;
1495		}
1496
1497		list_add_tail(&t_alg->entry, &drvdata->alg_list);
1498		dev_dbg(dev, "Registered %s\n",
1499			t_alg->skcipher_alg.base.cra_driver_name);
1500	}
1501	return 0;
1502
1503fail0:
1504	cc_cipher_free(drvdata);
1505	return rc;
1506}
1507