1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * AMD Cryptographic Coprocessor (CCP) SHA crypto API support
4 *
5 * Copyright (C) 2013,2018 Advanced Micro Devices, Inc.
6 *
7 * Author: Tom Lendacky <thomas.lendacky@amd.com>
8 * Author: Gary R Hook <gary.hook@amd.com>
9 */
10
11#include <linux/module.h>
12#include <linux/sched.h>
13#include <linux/delay.h>
14#include <linux/scatterlist.h>
15#include <linux/crypto.h>
16#include <crypto/algapi.h>
17#include <crypto/hash.h>
18#include <crypto/hmac.h>
19#include <crypto/internal/hash.h>
20#include <crypto/sha.h>
21#include <crypto/scatterwalk.h>
22#include <linux/string.h>
23
24#include "ccp-crypto.h"
25
26static int ccp_sha_complete(struct crypto_async_request *async_req, int ret)
27{
28	struct ahash_request *req = ahash_request_cast(async_req);
29	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
30	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
31	unsigned int digest_size = crypto_ahash_digestsize(tfm);
32
33	if (ret)
34		goto e_free;
35
36	if (rctx->hash_rem) {
37		/* Save remaining data to buffer */
38		unsigned int offset = rctx->nbytes - rctx->hash_rem;
39
40		scatterwalk_map_and_copy(rctx->buf, rctx->src,
41					 offset, rctx->hash_rem, 0);
42		rctx->buf_count = rctx->hash_rem;
43	} else {
44		rctx->buf_count = 0;
45	}
46
47	/* Update result area if supplied */
48	if (req->result && rctx->final)
49		memcpy(req->result, rctx->ctx, digest_size);
50
51e_free:
52	sg_free_table(&rctx->data_sg);
53
54	return ret;
55}
56
57static int ccp_do_sha_update(struct ahash_request *req, unsigned int nbytes,
58			     unsigned int final)
59{
60	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
61	struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
62	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
63	struct scatterlist *sg;
64	unsigned int block_size =
65		crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
66	unsigned int sg_count;
67	gfp_t gfp;
68	u64 len;
69	int ret;
70
71	len = (u64)rctx->buf_count + (u64)nbytes;
72
73	if (!final && (len <= block_size)) {
74		scatterwalk_map_and_copy(rctx->buf + rctx->buf_count, req->src,
75					 0, nbytes, 0);
76		rctx->buf_count += nbytes;
77
78		return 0;
79	}
80
81	rctx->src = req->src;
82	rctx->nbytes = nbytes;
83
84	rctx->final = final;
85	rctx->hash_rem = final ? 0 : len & (block_size - 1);
86	rctx->hash_cnt = len - rctx->hash_rem;
87	if (!final && !rctx->hash_rem) {
88		/* CCP can't do zero length final, so keep some data around */
89		rctx->hash_cnt -= block_size;
90		rctx->hash_rem = block_size;
91	}
92
93	/* Initialize the context scatterlist */
94	sg_init_one(&rctx->ctx_sg, rctx->ctx, sizeof(rctx->ctx));
95
96	sg = NULL;
97	if (rctx->buf_count && nbytes) {
98		/* Build the data scatterlist table - allocate enough entries
99		 * for both data pieces (buffer and input data)
100		 */
101		gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
102			GFP_KERNEL : GFP_ATOMIC;
103		sg_count = sg_nents(req->src) + 1;
104		ret = sg_alloc_table(&rctx->data_sg, sg_count, gfp);
105		if (ret)
106			return ret;
107
108		sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
109		sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->buf_sg);
110		if (!sg) {
111			ret = -EINVAL;
112			goto e_free;
113		}
114		sg = ccp_crypto_sg_table_add(&rctx->data_sg, req->src);
115		if (!sg) {
116			ret = -EINVAL;
117			goto e_free;
118		}
119		sg_mark_end(sg);
120
121		sg = rctx->data_sg.sgl;
122	} else if (rctx->buf_count) {
123		sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
124
125		sg = &rctx->buf_sg;
126	} else if (nbytes) {
127		sg = req->src;
128	}
129
130	rctx->msg_bits += (rctx->hash_cnt << 3);	/* Total in bits */
131
132	memset(&rctx->cmd, 0, sizeof(rctx->cmd));
133	INIT_LIST_HEAD(&rctx->cmd.entry);
134	rctx->cmd.engine = CCP_ENGINE_SHA;
135	rctx->cmd.u.sha.type = rctx->type;
136	rctx->cmd.u.sha.ctx = &rctx->ctx_sg;
137
138	switch (rctx->type) {
139	case CCP_SHA_TYPE_1:
140		rctx->cmd.u.sha.ctx_len = SHA1_DIGEST_SIZE;
141		break;
142	case CCP_SHA_TYPE_224:
143		rctx->cmd.u.sha.ctx_len = SHA224_DIGEST_SIZE;
144		break;
145	case CCP_SHA_TYPE_256:
146		rctx->cmd.u.sha.ctx_len = SHA256_DIGEST_SIZE;
147		break;
148	case CCP_SHA_TYPE_384:
149		rctx->cmd.u.sha.ctx_len = SHA384_DIGEST_SIZE;
150		break;
151	case CCP_SHA_TYPE_512:
152		rctx->cmd.u.sha.ctx_len = SHA512_DIGEST_SIZE;
153		break;
154	default:
155		/* Should never get here */
156		break;
157	}
158
159	rctx->cmd.u.sha.src = sg;
160	rctx->cmd.u.sha.src_len = rctx->hash_cnt;
161	rctx->cmd.u.sha.opad = ctx->u.sha.key_len ?
162		&ctx->u.sha.opad_sg : NULL;
163	rctx->cmd.u.sha.opad_len = ctx->u.sha.key_len ?
164		ctx->u.sha.opad_count : 0;
165	rctx->cmd.u.sha.first = rctx->first;
166	rctx->cmd.u.sha.final = rctx->final;
167	rctx->cmd.u.sha.msg_bits = rctx->msg_bits;
168
169	rctx->first = 0;
170
171	ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);
172
173	return ret;
174
175e_free:
176	sg_free_table(&rctx->data_sg);
177
178	return ret;
179}
180
181static int ccp_sha_init(struct ahash_request *req)
182{
183	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
184	struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
185	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
186	struct ccp_crypto_ahash_alg *alg =
187		ccp_crypto_ahash_alg(crypto_ahash_tfm(tfm));
188	unsigned int block_size =
189		crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
190
191	memset(rctx, 0, sizeof(*rctx));
192
193	rctx->type = alg->type;
194	rctx->first = 1;
195
196	if (ctx->u.sha.key_len) {
197		/* Buffer the HMAC key for first update */
198		memcpy(rctx->buf, ctx->u.sha.ipad, block_size);
199		rctx->buf_count = block_size;
200	}
201
202	return 0;
203}
204
205static int ccp_sha_update(struct ahash_request *req)
206{
207	return ccp_do_sha_update(req, req->nbytes, 0);
208}
209
210static int ccp_sha_final(struct ahash_request *req)
211{
212	return ccp_do_sha_update(req, 0, 1);
213}
214
215static int ccp_sha_finup(struct ahash_request *req)
216{
217	return ccp_do_sha_update(req, req->nbytes, 1);
218}
219
220static int ccp_sha_digest(struct ahash_request *req)
221{
222	int ret;
223
224	ret = ccp_sha_init(req);
225	if (ret)
226		return ret;
227
228	return ccp_sha_finup(req);
229}
230
231static int ccp_sha_export(struct ahash_request *req, void *out)
232{
233	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
234	struct ccp_sha_exp_ctx state;
235
236	/* Don't let anything leak to 'out' */
237	memset(&state, 0, sizeof(state));
238
239	state.type = rctx->type;
240	state.msg_bits = rctx->msg_bits;
241	state.first = rctx->first;
242	memcpy(state.ctx, rctx->ctx, sizeof(state.ctx));
243	state.buf_count = rctx->buf_count;
244	memcpy(state.buf, rctx->buf, sizeof(state.buf));
245
246	/* 'out' may not be aligned so memcpy from local variable */
247	memcpy(out, &state, sizeof(state));
248
249	return 0;
250}
251
252static int ccp_sha_import(struct ahash_request *req, const void *in)
253{
254	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
255	struct ccp_sha_exp_ctx state;
256
257	/* 'in' may not be aligned so memcpy to local variable */
258	memcpy(&state, in, sizeof(state));
259
260	memset(rctx, 0, sizeof(*rctx));
261	rctx->type = state.type;
262	rctx->msg_bits = state.msg_bits;
263	rctx->first = state.first;
264	memcpy(rctx->ctx, state.ctx, sizeof(rctx->ctx));
265	rctx->buf_count = state.buf_count;
266	memcpy(rctx->buf, state.buf, sizeof(rctx->buf));
267
268	return 0;
269}
270
271static int ccp_sha_setkey(struct crypto_ahash *tfm, const u8 *key,
272			  unsigned int key_len)
273{
274	struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
275	struct crypto_shash *shash = ctx->u.sha.hmac_tfm;
276	unsigned int block_size = crypto_shash_blocksize(shash);
277	unsigned int digest_size = crypto_shash_digestsize(shash);
278	int i, ret;
279
280	/* Set to zero until complete */
281	ctx->u.sha.key_len = 0;
282
283	/* Clear key area to provide zero padding for keys smaller
284	 * than the block size
285	 */
286	memset(ctx->u.sha.key, 0, sizeof(ctx->u.sha.key));
287
288	if (key_len > block_size) {
289		/* Must hash the input key */
290		ret = crypto_shash_tfm_digest(shash, key, key_len,
291					      ctx->u.sha.key);
292		if (ret)
293			return -EINVAL;
294
295		key_len = digest_size;
296	} else {
297		memcpy(ctx->u.sha.key, key, key_len);
298	}
299
300	for (i = 0; i < block_size; i++) {
301		ctx->u.sha.ipad[i] = ctx->u.sha.key[i] ^ HMAC_IPAD_VALUE;
302		ctx->u.sha.opad[i] = ctx->u.sha.key[i] ^ HMAC_OPAD_VALUE;
303	}
304
305	sg_init_one(&ctx->u.sha.opad_sg, ctx->u.sha.opad, block_size);
306	ctx->u.sha.opad_count = block_size;
307
308	ctx->u.sha.key_len = key_len;
309
310	return 0;
311}
312
313static int ccp_sha_cra_init(struct crypto_tfm *tfm)
314{
315	struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
316	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
317
318	ctx->complete = ccp_sha_complete;
319	ctx->u.sha.key_len = 0;
320
321	crypto_ahash_set_reqsize(ahash, sizeof(struct ccp_sha_req_ctx));
322
323	return 0;
324}
325
326static void ccp_sha_cra_exit(struct crypto_tfm *tfm)
327{
328}
329
330static int ccp_hmac_sha_cra_init(struct crypto_tfm *tfm)
331{
332	struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
333	struct ccp_crypto_ahash_alg *alg = ccp_crypto_ahash_alg(tfm);
334	struct crypto_shash *hmac_tfm;
335
336	hmac_tfm = crypto_alloc_shash(alg->child_alg, 0, 0);
337	if (IS_ERR(hmac_tfm)) {
338		pr_warn("could not load driver %s need for HMAC support\n",
339			alg->child_alg);
340		return PTR_ERR(hmac_tfm);
341	}
342
343	ctx->u.sha.hmac_tfm = hmac_tfm;
344
345	return ccp_sha_cra_init(tfm);
346}
347
348static void ccp_hmac_sha_cra_exit(struct crypto_tfm *tfm)
349{
350	struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
351
352	if (ctx->u.sha.hmac_tfm)
353		crypto_free_shash(ctx->u.sha.hmac_tfm);
354
355	ccp_sha_cra_exit(tfm);
356}
357
358struct ccp_sha_def {
359	unsigned int version;
360	const char *name;
361	const char *drv_name;
362	enum ccp_sha_type type;
363	u32 digest_size;
364	u32 block_size;
365};
366
367static struct ccp_sha_def sha_algs[] = {
368	{
369		.version	= CCP_VERSION(3, 0),
370		.name		= "sha1",
371		.drv_name	= "sha1-ccp",
372		.type		= CCP_SHA_TYPE_1,
373		.digest_size	= SHA1_DIGEST_SIZE,
374		.block_size	= SHA1_BLOCK_SIZE,
375	},
376	{
377		.version	= CCP_VERSION(3, 0),
378		.name		= "sha224",
379		.drv_name	= "sha224-ccp",
380		.type		= CCP_SHA_TYPE_224,
381		.digest_size	= SHA224_DIGEST_SIZE,
382		.block_size	= SHA224_BLOCK_SIZE,
383	},
384	{
385		.version	= CCP_VERSION(3, 0),
386		.name		= "sha256",
387		.drv_name	= "sha256-ccp",
388		.type		= CCP_SHA_TYPE_256,
389		.digest_size	= SHA256_DIGEST_SIZE,
390		.block_size	= SHA256_BLOCK_SIZE,
391	},
392	{
393		.version	= CCP_VERSION(5, 0),
394		.name		= "sha384",
395		.drv_name	= "sha384-ccp",
396		.type		= CCP_SHA_TYPE_384,
397		.digest_size	= SHA384_DIGEST_SIZE,
398		.block_size	= SHA384_BLOCK_SIZE,
399	},
400	{
401		.version	= CCP_VERSION(5, 0),
402		.name		= "sha512",
403		.drv_name	= "sha512-ccp",
404		.type		= CCP_SHA_TYPE_512,
405		.digest_size	= SHA512_DIGEST_SIZE,
406		.block_size	= SHA512_BLOCK_SIZE,
407	},
408};
409
410static int ccp_register_hmac_alg(struct list_head *head,
411				 const struct ccp_sha_def *def,
412				 const struct ccp_crypto_ahash_alg *base_alg)
413{
414	struct ccp_crypto_ahash_alg *ccp_alg;
415	struct ahash_alg *alg;
416	struct hash_alg_common *halg;
417	struct crypto_alg *base;
418	int ret;
419
420	ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
421	if (!ccp_alg)
422		return -ENOMEM;
423
424	/* Copy the base algorithm and only change what's necessary */
425	*ccp_alg = *base_alg;
426	INIT_LIST_HEAD(&ccp_alg->entry);
427
428	strscpy(ccp_alg->child_alg, def->name, CRYPTO_MAX_ALG_NAME);
429
430	alg = &ccp_alg->alg;
431	alg->setkey = ccp_sha_setkey;
432
433	halg = &alg->halg;
434
435	base = &halg->base;
436	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", def->name);
437	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s",
438		 def->drv_name);
439	base->cra_init = ccp_hmac_sha_cra_init;
440	base->cra_exit = ccp_hmac_sha_cra_exit;
441
442	ret = crypto_register_ahash(alg);
443	if (ret) {
444		pr_err("%s ahash algorithm registration error (%d)\n",
445		       base->cra_name, ret);
446		kfree(ccp_alg);
447		return ret;
448	}
449
450	list_add(&ccp_alg->entry, head);
451
452	return ret;
453}
454
455static int ccp_register_sha_alg(struct list_head *head,
456				const struct ccp_sha_def *def)
457{
458	struct ccp_crypto_ahash_alg *ccp_alg;
459	struct ahash_alg *alg;
460	struct hash_alg_common *halg;
461	struct crypto_alg *base;
462	int ret;
463
464	ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
465	if (!ccp_alg)
466		return -ENOMEM;
467
468	INIT_LIST_HEAD(&ccp_alg->entry);
469
470	ccp_alg->type = def->type;
471
472	alg = &ccp_alg->alg;
473	alg->init = ccp_sha_init;
474	alg->update = ccp_sha_update;
475	alg->final = ccp_sha_final;
476	alg->finup = ccp_sha_finup;
477	alg->digest = ccp_sha_digest;
478	alg->export = ccp_sha_export;
479	alg->import = ccp_sha_import;
480
481	halg = &alg->halg;
482	halg->digestsize = def->digest_size;
483	halg->statesize = sizeof(struct ccp_sha_exp_ctx);
484
485	base = &halg->base;
486	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
487	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
488		 def->drv_name);
489	base->cra_flags = CRYPTO_ALG_ASYNC |
490			  CRYPTO_ALG_ALLOCATES_MEMORY |
491			  CRYPTO_ALG_KERN_DRIVER_ONLY |
492			  CRYPTO_ALG_NEED_FALLBACK;
493	base->cra_blocksize = def->block_size;
494	base->cra_ctxsize = sizeof(struct ccp_ctx);
495	base->cra_priority = CCP_CRA_PRIORITY;
496	base->cra_init = ccp_sha_cra_init;
497	base->cra_exit = ccp_sha_cra_exit;
498	base->cra_module = THIS_MODULE;
499
500	ret = crypto_register_ahash(alg);
501	if (ret) {
502		pr_err("%s ahash algorithm registration error (%d)\n",
503		       base->cra_name, ret);
504		kfree(ccp_alg);
505		return ret;
506	}
507
508	list_add(&ccp_alg->entry, head);
509
510	ret = ccp_register_hmac_alg(head, def, ccp_alg);
511
512	return ret;
513}
514
515int ccp_register_sha_algs(struct list_head *head)
516{
517	int i, ret;
518	unsigned int ccpversion = ccp_version();
519
520	for (i = 0; i < ARRAY_SIZE(sha_algs); i++) {
521		if (sha_algs[i].version > ccpversion)
522			continue;
523		ret = ccp_register_sha_alg(head, &sha_algs[i]);
524		if (ret)
525			return ret;
526	}
527
528	return 0;
529}
530