xref: /kernel/linux/linux-5.10/drivers/crypto/caam/qi.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * CAAM/SEC 4.x QI transport/backend driver
4 * Queue Interface backend functionality
5 *
6 * Copyright 2013-2016 Freescale Semiconductor, Inc.
7 * Copyright 2016-2017, 2019-2020 NXP
8 */
9
10#include <linux/cpumask.h>
11#include <linux/kthread.h>
12#include <soc/fsl/qman.h>
13
14#include "debugfs.h"
15#include "regs.h"
16#include "qi.h"
17#include "desc.h"
18#include "intern.h"
19#include "desc_constr.h"
20
21#define PREHDR_RSLS_SHIFT	31
22#define PREHDR_ABS		BIT(25)
23
24/*
25 * Use a reasonable backlog of frames (per CPU) as congestion threshold,
26 * so that resources used by the in-flight buffers do not become a memory hog.
27 */
28#define MAX_RSP_FQ_BACKLOG_PER_CPU	256
29
30#define CAAM_QI_ENQUEUE_RETRIES	10000
31
32#define CAAM_NAPI_WEIGHT	63
33
34/*
35 * caam_napi - struct holding CAAM NAPI-related params
36 * @irqtask: IRQ task for QI backend
37 * @p: QMan portal
38 */
39struct caam_napi {
40	struct napi_struct irqtask;
41	struct qman_portal *p;
42};
43
44/*
45 * caam_qi_pcpu_priv - percpu private data structure to main list of pending
46 *                     responses expected on each cpu.
47 * @caam_napi: CAAM NAPI params
48 * @net_dev: netdev used by NAPI
49 * @rsp_fq: response FQ from CAAM
50 */
51struct caam_qi_pcpu_priv {
52	struct caam_napi caam_napi;
53	struct net_device net_dev;
54	struct qman_fq *rsp_fq;
55} ____cacheline_aligned;
56
57static DEFINE_PER_CPU(struct caam_qi_pcpu_priv, pcpu_qipriv);
58static DEFINE_PER_CPU(int, last_cpu);
59
60/*
61 * caam_qi_priv - CAAM QI backend private params
62 * @cgr: QMan congestion group
63 */
64struct caam_qi_priv {
65	struct qman_cgr cgr;
66};
67
68static struct caam_qi_priv qipriv ____cacheline_aligned;
69
70/*
71 * This is written by only one core - the one that initialized the CGR - and
72 * read by multiple cores (all the others).
73 */
74bool caam_congested __read_mostly;
75EXPORT_SYMBOL(caam_congested);
76
77/*
78 * This is a a cache of buffers, from which the users of CAAM QI driver
79 * can allocate short (CAAM_QI_MEMCACHE_SIZE) buffers. It's faster than
80 * doing malloc on the hotpath.
81 * NOTE: A more elegant solution would be to have some headroom in the frames
82 *       being processed. This could be added by the dpaa-ethernet driver.
83 *       This would pose a problem for userspace application processing which
84 *       cannot know of this limitation. So for now, this will work.
85 * NOTE: The memcache is SMP-safe. No need to handle spinlocks in-here
86 */
87static struct kmem_cache *qi_cache;
88
89static void *caam_iova_to_virt(struct iommu_domain *domain,
90			       dma_addr_t iova_addr)
91{
92	phys_addr_t phys_addr;
93
94	phys_addr = domain ? iommu_iova_to_phys(domain, iova_addr) : iova_addr;
95
96	return phys_to_virt(phys_addr);
97}
98
99int caam_qi_enqueue(struct device *qidev, struct caam_drv_req *req)
100{
101	struct qm_fd fd;
102	dma_addr_t addr;
103	int ret;
104	int num_retries = 0;
105
106	qm_fd_clear_fd(&fd);
107	qm_fd_set_compound(&fd, qm_sg_entry_get_len(&req->fd_sgt[1]));
108
109	addr = dma_map_single(qidev, req->fd_sgt, sizeof(req->fd_sgt),
110			      DMA_BIDIRECTIONAL);
111	if (dma_mapping_error(qidev, addr)) {
112		dev_err(qidev, "DMA mapping error for QI enqueue request\n");
113		return -EIO;
114	}
115	qm_fd_addr_set64(&fd, addr);
116
117	do {
118		ret = qman_enqueue(req->drv_ctx->req_fq, &fd);
119		if (likely(!ret)) {
120			refcount_inc(&req->drv_ctx->refcnt);
121			return 0;
122		}
123
124		if (ret != -EBUSY)
125			break;
126		num_retries++;
127	} while (num_retries < CAAM_QI_ENQUEUE_RETRIES);
128
129	dev_err(qidev, "qman_enqueue failed: %d\n", ret);
130
131	return ret;
132}
133EXPORT_SYMBOL(caam_qi_enqueue);
134
135static void caam_fq_ern_cb(struct qman_portal *qm, struct qman_fq *fq,
136			   const union qm_mr_entry *msg)
137{
138	const struct qm_fd *fd;
139	struct caam_drv_req *drv_req;
140	struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev);
141	struct caam_drv_private *priv = dev_get_drvdata(qidev);
142
143	fd = &msg->ern.fd;
144
145	drv_req = caam_iova_to_virt(priv->domain, qm_fd_addr_get64(fd));
146	if (!drv_req) {
147		dev_err(qidev,
148			"Can't find original request for CAAM response\n");
149		return;
150	}
151
152	refcount_dec(&drv_req->drv_ctx->refcnt);
153
154	if (qm_fd_get_format(fd) != qm_fd_compound) {
155		dev_err(qidev, "Non-compound FD from CAAM\n");
156		return;
157	}
158
159	dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd),
160			 sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL);
161
162	if (fd->status)
163		drv_req->cbk(drv_req, be32_to_cpu(fd->status));
164	else
165		drv_req->cbk(drv_req, JRSTA_SSRC_QI);
166}
167
168static struct qman_fq *create_caam_req_fq(struct device *qidev,
169					  struct qman_fq *rsp_fq,
170					  dma_addr_t hwdesc,
171					  int fq_sched_flag)
172{
173	int ret;
174	struct qman_fq *req_fq;
175	struct qm_mcc_initfq opts;
176
177	req_fq = kzalloc(sizeof(*req_fq), GFP_ATOMIC);
178	if (!req_fq)
179		return ERR_PTR(-ENOMEM);
180
181	req_fq->cb.ern = caam_fq_ern_cb;
182	req_fq->cb.fqs = NULL;
183
184	ret = qman_create_fq(0, QMAN_FQ_FLAG_DYNAMIC_FQID |
185				QMAN_FQ_FLAG_TO_DCPORTAL, req_fq);
186	if (ret) {
187		dev_err(qidev, "Failed to create session req FQ\n");
188		goto create_req_fq_fail;
189	}
190
191	memset(&opts, 0, sizeof(opts));
192	opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ |
193				   QM_INITFQ_WE_CONTEXTB |
194				   QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID);
195	opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE);
196	qm_fqd_set_destwq(&opts.fqd, qm_channel_caam, 2);
197	opts.fqd.context_b = cpu_to_be32(qman_fq_fqid(rsp_fq));
198	qm_fqd_context_a_set64(&opts.fqd, hwdesc);
199	opts.fqd.cgid = qipriv.cgr.cgrid;
200
201	ret = qman_init_fq(req_fq, fq_sched_flag, &opts);
202	if (ret) {
203		dev_err(qidev, "Failed to init session req FQ\n");
204		goto init_req_fq_fail;
205	}
206
207	dev_dbg(qidev, "Allocated request FQ %u for CPU %u\n", req_fq->fqid,
208		smp_processor_id());
209	return req_fq;
210
211init_req_fq_fail:
212	qman_destroy_fq(req_fq);
213create_req_fq_fail:
214	kfree(req_fq);
215	return ERR_PTR(ret);
216}
217
218static int empty_retired_fq(struct device *qidev, struct qman_fq *fq)
219{
220	int ret;
221
222	ret = qman_volatile_dequeue(fq, QMAN_VOLATILE_FLAG_WAIT_INT |
223				    QMAN_VOLATILE_FLAG_FINISH,
224				    QM_VDQCR_PRECEDENCE_VDQCR |
225				    QM_VDQCR_NUMFRAMES_TILLEMPTY);
226	if (ret) {
227		dev_err(qidev, "Volatile dequeue fail for FQ: %u\n", fq->fqid);
228		return ret;
229	}
230
231	do {
232		struct qman_portal *p;
233
234		p = qman_get_affine_portal(smp_processor_id());
235		qman_p_poll_dqrr(p, 16);
236	} while (fq->flags & QMAN_FQ_STATE_NE);
237
238	return 0;
239}
240
241static int kill_fq(struct device *qidev, struct qman_fq *fq)
242{
243	u32 flags;
244	int ret;
245
246	ret = qman_retire_fq(fq, &flags);
247	if (ret < 0) {
248		dev_err(qidev, "qman_retire_fq failed: %d\n", ret);
249		return ret;
250	}
251
252	if (!ret)
253		goto empty_fq;
254
255	/* Async FQ retirement condition */
256	if (ret == 1) {
257		/* Retry till FQ gets in retired state */
258		do {
259			msleep(20);
260		} while (fq->state != qman_fq_state_retired);
261
262		WARN_ON(fq->flags & QMAN_FQ_STATE_BLOCKOOS);
263		WARN_ON(fq->flags & QMAN_FQ_STATE_ORL);
264	}
265
266empty_fq:
267	if (fq->flags & QMAN_FQ_STATE_NE) {
268		ret = empty_retired_fq(qidev, fq);
269		if (ret) {
270			dev_err(qidev, "empty_retired_fq fail for FQ: %u\n",
271				fq->fqid);
272			return ret;
273		}
274	}
275
276	ret = qman_oos_fq(fq);
277	if (ret)
278		dev_err(qidev, "OOS of FQID: %u failed\n", fq->fqid);
279
280	qman_destroy_fq(fq);
281	kfree(fq);
282
283	return ret;
284}
285
286static int empty_caam_fq(struct qman_fq *fq, struct caam_drv_ctx *drv_ctx)
287{
288	int ret;
289	int retries = 10;
290	struct qm_mcr_queryfq_np np;
291
292	/* Wait till the older CAAM FQ get empty */
293	do {
294		ret = qman_query_fq_np(fq, &np);
295		if (ret)
296			return ret;
297
298		if (!qm_mcr_np_get(&np, frm_cnt))
299			break;
300
301		msleep(20);
302	} while (1);
303
304	/* Wait until pending jobs from this FQ are processed by CAAM */
305	do {
306		if (refcount_read(&drv_ctx->refcnt) == 1)
307			break;
308
309		msleep(20);
310	} while (--retries);
311
312	if (!retries)
313		dev_warn_once(drv_ctx->qidev, "%d frames from FQID %u still pending in CAAM\n",
314			      refcount_read(&drv_ctx->refcnt), fq->fqid);
315
316	return 0;
317}
318
319int caam_drv_ctx_update(struct caam_drv_ctx *drv_ctx, u32 *sh_desc)
320{
321	int ret;
322	u32 num_words;
323	struct qman_fq *new_fq, *old_fq;
324	struct device *qidev = drv_ctx->qidev;
325
326	num_words = desc_len(sh_desc);
327	if (num_words > MAX_SDLEN) {
328		dev_err(qidev, "Invalid descriptor len: %d words\n", num_words);
329		return -EINVAL;
330	}
331
332	/* Note down older req FQ */
333	old_fq = drv_ctx->req_fq;
334
335	/* Create a new req FQ in parked state */
336	new_fq = create_caam_req_fq(drv_ctx->qidev, drv_ctx->rsp_fq,
337				    drv_ctx->context_a, 0);
338	if (IS_ERR(new_fq)) {
339		dev_err(qidev, "FQ allocation for shdesc update failed\n");
340		return PTR_ERR(new_fq);
341	}
342
343	/* Hook up new FQ to context so that new requests keep queuing */
344	drv_ctx->req_fq = new_fq;
345
346	/* Empty and remove the older FQ */
347	ret = empty_caam_fq(old_fq, drv_ctx);
348	if (ret) {
349		dev_err(qidev, "Old CAAM FQ empty failed: %d\n", ret);
350
351		/* We can revert to older FQ */
352		drv_ctx->req_fq = old_fq;
353
354		if (kill_fq(qidev, new_fq))
355			dev_warn(qidev, "New CAAM FQ kill failed\n");
356
357		return ret;
358	}
359
360	/*
361	 * Re-initialise pre-header. Set RSLS and SDLEN.
362	 * Update the shared descriptor for driver context.
363	 */
364	drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) |
365					   num_words);
366	drv_ctx->prehdr[1] = cpu_to_caam32(PREHDR_ABS);
367	memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc));
368	dma_sync_single_for_device(qidev, drv_ctx->context_a,
369				   sizeof(drv_ctx->sh_desc) +
370				   sizeof(drv_ctx->prehdr),
371				   DMA_BIDIRECTIONAL);
372
373	/* Put the new FQ in scheduled state */
374	ret = qman_schedule_fq(new_fq);
375	if (ret) {
376		dev_err(qidev, "Fail to sched new CAAM FQ, ecode = %d\n", ret);
377
378		/*
379		 * We can kill new FQ and revert to old FQ.
380		 * Since the desc is already modified, it is success case
381		 */
382
383		drv_ctx->req_fq = old_fq;
384
385		if (kill_fq(qidev, new_fq))
386			dev_warn(qidev, "New CAAM FQ kill failed\n");
387	} else if (kill_fq(qidev, old_fq)) {
388		dev_warn(qidev, "Old CAAM FQ kill failed\n");
389	}
390
391	return 0;
392}
393EXPORT_SYMBOL(caam_drv_ctx_update);
394
395struct caam_drv_ctx *caam_drv_ctx_init(struct device *qidev,
396				       int *cpu,
397				       u32 *sh_desc)
398{
399	size_t size;
400	u32 num_words;
401	dma_addr_t hwdesc;
402	struct caam_drv_ctx *drv_ctx;
403	const cpumask_t *cpus = qman_affine_cpus();
404
405	num_words = desc_len(sh_desc);
406	if (num_words > MAX_SDLEN) {
407		dev_err(qidev, "Invalid descriptor len: %d words\n",
408			num_words);
409		return ERR_PTR(-EINVAL);
410	}
411
412	drv_ctx = kzalloc(sizeof(*drv_ctx), GFP_ATOMIC);
413	if (!drv_ctx)
414		return ERR_PTR(-ENOMEM);
415
416	/*
417	 * Initialise pre-header - set RSLS and SDLEN - and shared descriptor
418	 * and dma-map them.
419	 */
420	drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) |
421					   num_words);
422	drv_ctx->prehdr[1] = cpu_to_caam32(PREHDR_ABS);
423	memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc));
424	size = sizeof(drv_ctx->prehdr) + sizeof(drv_ctx->sh_desc);
425	hwdesc = dma_map_single(qidev, drv_ctx->prehdr, size,
426				DMA_BIDIRECTIONAL);
427	if (dma_mapping_error(qidev, hwdesc)) {
428		dev_err(qidev, "DMA map error for preheader + shdesc\n");
429		kfree(drv_ctx);
430		return ERR_PTR(-ENOMEM);
431	}
432	drv_ctx->context_a = hwdesc;
433
434	/* If given CPU does not own the portal, choose another one that does */
435	if (!cpumask_test_cpu(*cpu, cpus)) {
436		int *pcpu = &get_cpu_var(last_cpu);
437
438		*pcpu = cpumask_next(*pcpu, cpus);
439		if (*pcpu >= nr_cpu_ids)
440			*pcpu = cpumask_first(cpus);
441		*cpu = *pcpu;
442
443		put_cpu_var(last_cpu);
444	}
445	drv_ctx->cpu = *cpu;
446
447	/* Find response FQ hooked with this CPU */
448	drv_ctx->rsp_fq = per_cpu(pcpu_qipriv.rsp_fq, drv_ctx->cpu);
449
450	/* Attach request FQ */
451	drv_ctx->req_fq = create_caam_req_fq(qidev, drv_ctx->rsp_fq, hwdesc,
452					     QMAN_INITFQ_FLAG_SCHED);
453	if (IS_ERR(drv_ctx->req_fq)) {
454		dev_err(qidev, "create_caam_req_fq failed\n");
455		dma_unmap_single(qidev, hwdesc, size, DMA_BIDIRECTIONAL);
456		kfree(drv_ctx);
457		return ERR_PTR(-ENOMEM);
458	}
459
460	/* init reference counter used to track references to request FQ */
461	refcount_set(&drv_ctx->refcnt, 1);
462
463	drv_ctx->qidev = qidev;
464	return drv_ctx;
465}
466EXPORT_SYMBOL(caam_drv_ctx_init);
467
468void *qi_cache_alloc(gfp_t flags)
469{
470	return kmem_cache_alloc(qi_cache, flags);
471}
472EXPORT_SYMBOL(qi_cache_alloc);
473
474void qi_cache_free(void *obj)
475{
476	kmem_cache_free(qi_cache, obj);
477}
478EXPORT_SYMBOL(qi_cache_free);
479
480static int caam_qi_poll(struct napi_struct *napi, int budget)
481{
482	struct caam_napi *np = container_of(napi, struct caam_napi, irqtask);
483
484	int cleaned = qman_p_poll_dqrr(np->p, budget);
485
486	if (cleaned < budget) {
487		napi_complete(napi);
488		qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
489	}
490
491	return cleaned;
492}
493
494void caam_drv_ctx_rel(struct caam_drv_ctx *drv_ctx)
495{
496	if (IS_ERR_OR_NULL(drv_ctx))
497		return;
498
499	/* Remove request FQ */
500	if (kill_fq(drv_ctx->qidev, drv_ctx->req_fq))
501		dev_err(drv_ctx->qidev, "Crypto session req FQ kill failed\n");
502
503	dma_unmap_single(drv_ctx->qidev, drv_ctx->context_a,
504			 sizeof(drv_ctx->sh_desc) + sizeof(drv_ctx->prehdr),
505			 DMA_BIDIRECTIONAL);
506	kfree(drv_ctx);
507}
508EXPORT_SYMBOL(caam_drv_ctx_rel);
509
510static void caam_qi_shutdown(void *data)
511{
512	int i;
513	struct device *qidev = data;
514	struct caam_qi_priv *priv = &qipriv;
515	const cpumask_t *cpus = qman_affine_cpus();
516
517	for_each_cpu(i, cpus) {
518		struct napi_struct *irqtask;
519
520		irqtask = &per_cpu_ptr(&pcpu_qipriv.caam_napi, i)->irqtask;
521		napi_disable(irqtask);
522		netif_napi_del(irqtask);
523
524		if (kill_fq(qidev, per_cpu(pcpu_qipriv.rsp_fq, i)))
525			dev_err(qidev, "Rsp FQ kill failed, cpu: %d\n", i);
526	}
527
528	qman_delete_cgr_safe(&priv->cgr);
529	qman_release_cgrid(priv->cgr.cgrid);
530
531	kmem_cache_destroy(qi_cache);
532}
533
534static void cgr_cb(struct qman_portal *qm, struct qman_cgr *cgr, int congested)
535{
536	caam_congested = congested;
537
538	if (congested) {
539		caam_debugfs_qi_congested();
540
541		pr_debug_ratelimited("CAAM entered congestion\n");
542
543	} else {
544		pr_debug_ratelimited("CAAM exited congestion\n");
545	}
546}
547
548static int caam_qi_napi_schedule(struct qman_portal *p, struct caam_napi *np)
549{
550	/*
551	 * In case of threaded ISR, for RT kernels in_irq() does not return
552	 * appropriate value, so use in_serving_softirq to distinguish between
553	 * softirq and irq contexts.
554	 */
555	if (unlikely(in_irq() || !in_serving_softirq())) {
556		/* Disable QMan IRQ source and invoke NAPI */
557		qman_p_irqsource_remove(p, QM_PIRQ_DQRI);
558		np->p = p;
559		napi_schedule(&np->irqtask);
560		return 1;
561	}
562	return 0;
563}
564
565static enum qman_cb_dqrr_result caam_rsp_fq_dqrr_cb(struct qman_portal *p,
566						    struct qman_fq *rsp_fq,
567						    const struct qm_dqrr_entry *dqrr)
568{
569	struct caam_napi *caam_napi = raw_cpu_ptr(&pcpu_qipriv.caam_napi);
570	struct caam_drv_req *drv_req;
571	const struct qm_fd *fd;
572	struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev);
573	struct caam_drv_private *priv = dev_get_drvdata(qidev);
574	u32 status;
575
576	if (caam_qi_napi_schedule(p, caam_napi))
577		return qman_cb_dqrr_stop;
578
579	fd = &dqrr->fd;
580
581	drv_req = caam_iova_to_virt(priv->domain, qm_fd_addr_get64(fd));
582	if (unlikely(!drv_req)) {
583		dev_err(qidev,
584			"Can't find original request for caam response\n");
585		return qman_cb_dqrr_consume;
586	}
587
588	refcount_dec(&drv_req->drv_ctx->refcnt);
589
590	status = be32_to_cpu(fd->status);
591	if (unlikely(status)) {
592		u32 ssrc = status & JRSTA_SSRC_MASK;
593		u8 err_id = status & JRSTA_CCBERR_ERRID_MASK;
594
595		if (ssrc != JRSTA_SSRC_CCB_ERROR ||
596		    err_id != JRSTA_CCBERR_ERRID_ICVCHK)
597			dev_err_ratelimited(qidev,
598					    "Error: %#x in CAAM response FD\n",
599					    status);
600	}
601
602	if (unlikely(qm_fd_get_format(fd) != qm_fd_compound)) {
603		dev_err(qidev, "Non-compound FD from CAAM\n");
604		return qman_cb_dqrr_consume;
605	}
606
607	dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd),
608			 sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL);
609
610	drv_req->cbk(drv_req, status);
611	return qman_cb_dqrr_consume;
612}
613
614static int alloc_rsp_fq_cpu(struct device *qidev, unsigned int cpu)
615{
616	struct qm_mcc_initfq opts;
617	struct qman_fq *fq;
618	int ret;
619
620	fq = kzalloc(sizeof(*fq), GFP_KERNEL | GFP_DMA);
621	if (!fq)
622		return -ENOMEM;
623
624	fq->cb.dqrr = caam_rsp_fq_dqrr_cb;
625
626	ret = qman_create_fq(0, QMAN_FQ_FLAG_NO_ENQUEUE |
627			     QMAN_FQ_FLAG_DYNAMIC_FQID, fq);
628	if (ret) {
629		dev_err(qidev, "Rsp FQ create failed\n");
630		kfree(fq);
631		return -ENODEV;
632	}
633
634	memset(&opts, 0, sizeof(opts));
635	opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ |
636				   QM_INITFQ_WE_CONTEXTB |
637				   QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID);
638	opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CTXASTASHING |
639				       QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE);
640	qm_fqd_set_destwq(&opts.fqd, qman_affine_channel(cpu), 3);
641	opts.fqd.cgid = qipriv.cgr.cgrid;
642	opts.fqd.context_a.stashing.exclusive =	QM_STASHING_EXCL_CTX |
643						QM_STASHING_EXCL_DATA;
644	qm_fqd_set_stashing(&opts.fqd, 0, 1, 1);
645
646	ret = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &opts);
647	if (ret) {
648		dev_err(qidev, "Rsp FQ init failed\n");
649		kfree(fq);
650		return -ENODEV;
651	}
652
653	per_cpu(pcpu_qipriv.rsp_fq, cpu) = fq;
654
655	dev_dbg(qidev, "Allocated response FQ %u for CPU %u", fq->fqid, cpu);
656	return 0;
657}
658
659static int init_cgr(struct device *qidev)
660{
661	int ret;
662	struct qm_mcc_initcgr opts;
663	const u64 val = (u64)cpumask_weight(qman_affine_cpus()) *
664			MAX_RSP_FQ_BACKLOG_PER_CPU;
665
666	ret = qman_alloc_cgrid(&qipriv.cgr.cgrid);
667	if (ret) {
668		dev_err(qidev, "CGR alloc failed for rsp FQs: %d\n", ret);
669		return ret;
670	}
671
672	qipriv.cgr.cb = cgr_cb;
673	memset(&opts, 0, sizeof(opts));
674	opts.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES |
675				   QM_CGR_WE_MODE);
676	opts.cgr.cscn_en = QM_CGR_EN;
677	opts.cgr.mode = QMAN_CGR_MODE_FRAME;
678	qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, val, 1);
679
680	ret = qman_create_cgr(&qipriv.cgr, QMAN_CGR_FLAG_USE_INIT, &opts);
681	if (ret) {
682		dev_err(qidev, "Error %d creating CAAM CGRID: %u\n", ret,
683			qipriv.cgr.cgrid);
684		return ret;
685	}
686
687	dev_dbg(qidev, "Congestion threshold set to %llu\n", val);
688	return 0;
689}
690
691static int alloc_rsp_fqs(struct device *qidev)
692{
693	int ret, i;
694	const cpumask_t *cpus = qman_affine_cpus();
695
696	/*Now create response FQs*/
697	for_each_cpu(i, cpus) {
698		ret = alloc_rsp_fq_cpu(qidev, i);
699		if (ret) {
700			dev_err(qidev, "CAAM rsp FQ alloc failed, cpu: %u", i);
701			return ret;
702		}
703	}
704
705	return 0;
706}
707
708static void free_rsp_fqs(void)
709{
710	int i;
711	const cpumask_t *cpus = qman_affine_cpus();
712
713	for_each_cpu(i, cpus)
714		kfree(per_cpu(pcpu_qipriv.rsp_fq, i));
715}
716
717int caam_qi_init(struct platform_device *caam_pdev)
718{
719	int err, i;
720	struct device *ctrldev = &caam_pdev->dev, *qidev;
721	struct caam_drv_private *ctrlpriv;
722	const cpumask_t *cpus = qman_affine_cpus();
723
724	ctrlpriv = dev_get_drvdata(ctrldev);
725	qidev = ctrldev;
726
727	/* Initialize the congestion detection */
728	err = init_cgr(qidev);
729	if (err) {
730		dev_err(qidev, "CGR initialization failed: %d\n", err);
731		return err;
732	}
733
734	/* Initialise response FQs */
735	err = alloc_rsp_fqs(qidev);
736	if (err) {
737		dev_err(qidev, "Can't allocate CAAM response FQs: %d\n", err);
738		free_rsp_fqs();
739		return err;
740	}
741
742	/*
743	 * Enable the NAPI contexts on each of the core which has an affine
744	 * portal.
745	 */
746	for_each_cpu(i, cpus) {
747		struct caam_qi_pcpu_priv *priv = per_cpu_ptr(&pcpu_qipriv, i);
748		struct caam_napi *caam_napi = &priv->caam_napi;
749		struct napi_struct *irqtask = &caam_napi->irqtask;
750		struct net_device *net_dev = &priv->net_dev;
751
752		net_dev->dev = *qidev;
753		INIT_LIST_HEAD(&net_dev->napi_list);
754
755		netif_napi_add(net_dev, irqtask, caam_qi_poll,
756			       CAAM_NAPI_WEIGHT);
757
758		napi_enable(irqtask);
759	}
760
761	qi_cache = kmem_cache_create("caamqicache", CAAM_QI_MEMCACHE_SIZE, 0,
762				     SLAB_CACHE_DMA, NULL);
763	if (!qi_cache) {
764		dev_err(qidev, "Can't allocate CAAM cache\n");
765		free_rsp_fqs();
766		return -ENOMEM;
767	}
768
769	caam_debugfs_qi_init(ctrlpriv);
770
771	err = devm_add_action_or_reset(qidev, caam_qi_shutdown, ctrlpriv);
772	if (err)
773		return err;
774
775	dev_info(qidev, "Linux CAAM Queue I/F driver initialised\n");
776	return 0;
777}
778