1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright 2016 Broadcom
4 */
5
6/*
7 * This file works with the SPU2 version of the SPU. SPU2 has different message
8 * formats than the previous version of the SPU. All SPU message format
9 * differences should be hidden in the spux.c,h files.
10 */
11
12#include <linux/kernel.h>
13#include <linux/string.h>
14
15#include "util.h"
16#include "spu.h"
17#include "spu2.h"
18
19#define SPU2_TX_STATUS_LEN  0	/* SPU2 has no STATUS in input packet */
20
21/*
22 * Controlled by pkt_stat_cnt field in CRYPTO_SS_SPU0_CORE_SPU2_CONTROL0
23 * register. Defaults to 2.
24 */
25#define SPU2_RX_STATUS_LEN  2
26
27enum spu2_proto_sel {
28	SPU2_PROTO_RESV = 0,
29	SPU2_MACSEC_SECTAG8_ECB = 1,
30	SPU2_MACSEC_SECTAG8_SCB = 2,
31	SPU2_MACSEC_SECTAG16 = 3,
32	SPU2_MACSEC_SECTAG16_8_XPN = 4,
33	SPU2_IPSEC = 5,
34	SPU2_IPSEC_ESN = 6,
35	SPU2_TLS_CIPHER = 7,
36	SPU2_TLS_AEAD = 8,
37	SPU2_DTLS_CIPHER = 9,
38	SPU2_DTLS_AEAD = 10
39};
40
41static char *spu2_cipher_type_names[] = { "None", "AES128", "AES192", "AES256",
42	"DES", "3DES"
43};
44
45static char *spu2_cipher_mode_names[] = { "ECB", "CBC", "CTR", "CFB", "OFB",
46	"XTS", "CCM", "GCM"
47};
48
49static char *spu2_hash_type_names[] = { "None", "AES128", "AES192", "AES256",
50	"Reserved", "Reserved", "MD5", "SHA1", "SHA224", "SHA256", "SHA384",
51	"SHA512", "SHA512/224", "SHA512/256", "SHA3-224", "SHA3-256",
52	"SHA3-384", "SHA3-512"
53};
54
55static char *spu2_hash_mode_names[] = { "CMAC", "CBC-MAC", "XCBC-MAC", "HMAC",
56	"Rabin", "CCM", "GCM", "Reserved"
57};
58
59static char *spu2_ciph_type_name(enum spu2_cipher_type cipher_type)
60{
61	if (cipher_type >= SPU2_CIPHER_TYPE_LAST)
62		return "Reserved";
63	return spu2_cipher_type_names[cipher_type];
64}
65
66static char *spu2_ciph_mode_name(enum spu2_cipher_mode cipher_mode)
67{
68	if (cipher_mode >= SPU2_CIPHER_MODE_LAST)
69		return "Reserved";
70	return spu2_cipher_mode_names[cipher_mode];
71}
72
73static char *spu2_hash_type_name(enum spu2_hash_type hash_type)
74{
75	if (hash_type >= SPU2_HASH_TYPE_LAST)
76		return "Reserved";
77	return spu2_hash_type_names[hash_type];
78}
79
80static char *spu2_hash_mode_name(enum spu2_hash_mode hash_mode)
81{
82	if (hash_mode >= SPU2_HASH_MODE_LAST)
83		return "Reserved";
84	return spu2_hash_mode_names[hash_mode];
85}
86
87/*
88 * Convert from a software cipher mode value to the corresponding value
89 * for SPU2.
90 */
91static int spu2_cipher_mode_xlate(enum spu_cipher_mode cipher_mode,
92				  enum spu2_cipher_mode *spu2_mode)
93{
94	switch (cipher_mode) {
95	case CIPHER_MODE_ECB:
96		*spu2_mode = SPU2_CIPHER_MODE_ECB;
97		break;
98	case CIPHER_MODE_CBC:
99		*spu2_mode = SPU2_CIPHER_MODE_CBC;
100		break;
101	case CIPHER_MODE_OFB:
102		*spu2_mode = SPU2_CIPHER_MODE_OFB;
103		break;
104	case CIPHER_MODE_CFB:
105		*spu2_mode = SPU2_CIPHER_MODE_CFB;
106		break;
107	case CIPHER_MODE_CTR:
108		*spu2_mode = SPU2_CIPHER_MODE_CTR;
109		break;
110	case CIPHER_MODE_CCM:
111		*spu2_mode = SPU2_CIPHER_MODE_CCM;
112		break;
113	case CIPHER_MODE_GCM:
114		*spu2_mode = SPU2_CIPHER_MODE_GCM;
115		break;
116	case CIPHER_MODE_XTS:
117		*spu2_mode = SPU2_CIPHER_MODE_XTS;
118		break;
119	default:
120		return -EINVAL;
121	}
122	return 0;
123}
124
125/**
126 * spu2_cipher_xlate() - Convert a cipher {alg/mode/type} triple to a SPU2
127 * cipher type and mode.
128 * @cipher_alg:  [in]  cipher algorithm value from software enumeration
129 * @cipher_mode: [in]  cipher mode value from software enumeration
130 * @cipher_type: [in]  cipher type value from software enumeration
131 * @spu2_type:   [out] cipher type value used by spu2 hardware
132 * @spu2_mode:   [out] cipher mode value used by spu2 hardware
133 *
134 * Return:  0 if successful
135 */
136static int spu2_cipher_xlate(enum spu_cipher_alg cipher_alg,
137			     enum spu_cipher_mode cipher_mode,
138			     enum spu_cipher_type cipher_type,
139			     enum spu2_cipher_type *spu2_type,
140			     enum spu2_cipher_mode *spu2_mode)
141{
142	int err;
143
144	err = spu2_cipher_mode_xlate(cipher_mode, spu2_mode);
145	if (err) {
146		flow_log("Invalid cipher mode %d\n", cipher_mode);
147		return err;
148	}
149
150	switch (cipher_alg) {
151	case CIPHER_ALG_NONE:
152		*spu2_type = SPU2_CIPHER_TYPE_NONE;
153		break;
154	case CIPHER_ALG_RC4:
155		/* SPU2 does not support RC4 */
156		err = -EINVAL;
157		*spu2_type = SPU2_CIPHER_TYPE_NONE;
158		break;
159	case CIPHER_ALG_DES:
160		*spu2_type = SPU2_CIPHER_TYPE_DES;
161		break;
162	case CIPHER_ALG_3DES:
163		*spu2_type = SPU2_CIPHER_TYPE_3DES;
164		break;
165	case CIPHER_ALG_AES:
166		switch (cipher_type) {
167		case CIPHER_TYPE_AES128:
168			*spu2_type = SPU2_CIPHER_TYPE_AES128;
169			break;
170		case CIPHER_TYPE_AES192:
171			*spu2_type = SPU2_CIPHER_TYPE_AES192;
172			break;
173		case CIPHER_TYPE_AES256:
174			*spu2_type = SPU2_CIPHER_TYPE_AES256;
175			break;
176		default:
177			err = -EINVAL;
178		}
179		break;
180	case CIPHER_ALG_LAST:
181	default:
182		err = -EINVAL;
183		break;
184	}
185
186	if (err)
187		flow_log("Invalid cipher alg %d or type %d\n",
188			 cipher_alg, cipher_type);
189	return err;
190}
191
192/*
193 * Convert from a software hash mode value to the corresponding value
194 * for SPU2. Note that HASH_MODE_NONE and HASH_MODE_XCBC have the same value.
195 */
196static int spu2_hash_mode_xlate(enum hash_mode hash_mode,
197				enum spu2_hash_mode *spu2_mode)
198{
199	switch (hash_mode) {
200	case HASH_MODE_XCBC:
201		*spu2_mode = SPU2_HASH_MODE_XCBC_MAC;
202		break;
203	case HASH_MODE_CMAC:
204		*spu2_mode = SPU2_HASH_MODE_CMAC;
205		break;
206	case HASH_MODE_HMAC:
207		*spu2_mode = SPU2_HASH_MODE_HMAC;
208		break;
209	case HASH_MODE_CCM:
210		*spu2_mode = SPU2_HASH_MODE_CCM;
211		break;
212	case HASH_MODE_GCM:
213		*spu2_mode = SPU2_HASH_MODE_GCM;
214		break;
215	default:
216		return -EINVAL;
217	}
218	return 0;
219}
220
221/**
222 * spu2_hash_xlate() - Convert a hash {alg/mode/type} triple to a SPU2 hash type
223 * and mode.
224 * @hash_alg:  [in] hash algorithm value from software enumeration
225 * @hash_mode: [in] hash mode value from software enumeration
226 * @hash_type: [in] hash type value from software enumeration
227 * @ciph_type: [in] cipher type value from software enumeration
228 * @spu2_type: [out] hash type value used by SPU2 hardware
229 * @spu2_mode: [out] hash mode value used by SPU2 hardware
230 *
231 * Return:  0 if successful
232 */
233static int
234spu2_hash_xlate(enum hash_alg hash_alg, enum hash_mode hash_mode,
235		enum hash_type hash_type, enum spu_cipher_type ciph_type,
236		enum spu2_hash_type *spu2_type, enum spu2_hash_mode *spu2_mode)
237{
238	int err;
239
240	err = spu2_hash_mode_xlate(hash_mode, spu2_mode);
241	if (err) {
242		flow_log("Invalid hash mode %d\n", hash_mode);
243		return err;
244	}
245
246	switch (hash_alg) {
247	case HASH_ALG_NONE:
248		*spu2_type = SPU2_HASH_TYPE_NONE;
249		break;
250	case HASH_ALG_MD5:
251		*spu2_type = SPU2_HASH_TYPE_MD5;
252		break;
253	case HASH_ALG_SHA1:
254		*spu2_type = SPU2_HASH_TYPE_SHA1;
255		break;
256	case HASH_ALG_SHA224:
257		*spu2_type = SPU2_HASH_TYPE_SHA224;
258		break;
259	case HASH_ALG_SHA256:
260		*spu2_type = SPU2_HASH_TYPE_SHA256;
261		break;
262	case HASH_ALG_SHA384:
263		*spu2_type = SPU2_HASH_TYPE_SHA384;
264		break;
265	case HASH_ALG_SHA512:
266		*spu2_type = SPU2_HASH_TYPE_SHA512;
267		break;
268	case HASH_ALG_AES:
269		switch (ciph_type) {
270		case CIPHER_TYPE_AES128:
271			*spu2_type = SPU2_HASH_TYPE_AES128;
272			break;
273		case CIPHER_TYPE_AES192:
274			*spu2_type = SPU2_HASH_TYPE_AES192;
275			break;
276		case CIPHER_TYPE_AES256:
277			*spu2_type = SPU2_HASH_TYPE_AES256;
278			break;
279		default:
280			err = -EINVAL;
281		}
282		break;
283	case HASH_ALG_SHA3_224:
284		*spu2_type = SPU2_HASH_TYPE_SHA3_224;
285		break;
286	case HASH_ALG_SHA3_256:
287		*spu2_type = SPU2_HASH_TYPE_SHA3_256;
288		break;
289	case HASH_ALG_SHA3_384:
290		*spu2_type = SPU2_HASH_TYPE_SHA3_384;
291		break;
292	case HASH_ALG_SHA3_512:
293		*spu2_type = SPU2_HASH_TYPE_SHA3_512;
294		break;
295	case HASH_ALG_LAST:
296	default:
297		err = -EINVAL;
298		break;
299	}
300
301	if (err)
302		flow_log("Invalid hash alg %d or type %d\n",
303			 hash_alg, hash_type);
304	return err;
305}
306
307/* Dump FMD ctrl0. The ctrl0 input is in host byte order */
308static void spu2_dump_fmd_ctrl0(u64 ctrl0)
309{
310	enum spu2_cipher_type ciph_type;
311	enum spu2_cipher_mode ciph_mode;
312	enum spu2_hash_type hash_type;
313	enum spu2_hash_mode hash_mode;
314	char *ciph_name;
315	char *ciph_mode_name;
316	char *hash_name;
317	char *hash_mode_name;
318	u8 cfb;
319	u8 proto;
320
321	packet_log(" FMD CTRL0 %#16llx\n", ctrl0);
322	if (ctrl0 & SPU2_CIPH_ENCRYPT_EN)
323		packet_log("  encrypt\n");
324	else
325		packet_log("  decrypt\n");
326
327	ciph_type = (ctrl0 & SPU2_CIPH_TYPE) >> SPU2_CIPH_TYPE_SHIFT;
328	ciph_name = spu2_ciph_type_name(ciph_type);
329	packet_log("  Cipher type: %s\n", ciph_name);
330
331	if (ciph_type != SPU2_CIPHER_TYPE_NONE) {
332		ciph_mode = (ctrl0 & SPU2_CIPH_MODE) >> SPU2_CIPH_MODE_SHIFT;
333		ciph_mode_name = spu2_ciph_mode_name(ciph_mode);
334		packet_log("  Cipher mode: %s\n", ciph_mode_name);
335	}
336
337	cfb = (ctrl0 & SPU2_CFB_MASK) >> SPU2_CFB_MASK_SHIFT;
338	packet_log("  CFB %#x\n", cfb);
339
340	proto = (ctrl0 & SPU2_PROTO_SEL) >> SPU2_PROTO_SEL_SHIFT;
341	packet_log("  protocol %#x\n", proto);
342
343	if (ctrl0 & SPU2_HASH_FIRST)
344		packet_log("  hash first\n");
345	else
346		packet_log("  cipher first\n");
347
348	if (ctrl0 & SPU2_CHK_TAG)
349		packet_log("  check tag\n");
350
351	hash_type = (ctrl0 & SPU2_HASH_TYPE) >> SPU2_HASH_TYPE_SHIFT;
352	hash_name = spu2_hash_type_name(hash_type);
353	packet_log("  Hash type: %s\n", hash_name);
354
355	if (hash_type != SPU2_HASH_TYPE_NONE) {
356		hash_mode = (ctrl0 & SPU2_HASH_MODE) >> SPU2_HASH_MODE_SHIFT;
357		hash_mode_name = spu2_hash_mode_name(hash_mode);
358		packet_log("  Hash mode: %s\n", hash_mode_name);
359	}
360
361	if (ctrl0 & SPU2_CIPH_PAD_EN) {
362		packet_log("  Cipher pad: %#2llx\n",
363			   (ctrl0 & SPU2_CIPH_PAD) >> SPU2_CIPH_PAD_SHIFT);
364	}
365}
366
367/* Dump FMD ctrl1. The ctrl1 input is in host byte order */
368static void spu2_dump_fmd_ctrl1(u64 ctrl1)
369{
370	u8 hash_key_len;
371	u8 ciph_key_len;
372	u8 ret_iv_len;
373	u8 iv_offset;
374	u8 iv_len;
375	u8 hash_tag_len;
376	u8 ret_md;
377
378	packet_log(" FMD CTRL1 %#16llx\n", ctrl1);
379	if (ctrl1 & SPU2_TAG_LOC)
380		packet_log("  Tag after payload\n");
381
382	packet_log("  Msg includes ");
383	if (ctrl1 & SPU2_HAS_FR_DATA)
384		packet_log("FD ");
385	if (ctrl1 & SPU2_HAS_AAD1)
386		packet_log("AAD1 ");
387	if (ctrl1 & SPU2_HAS_NAAD)
388		packet_log("NAAD ");
389	if (ctrl1 & SPU2_HAS_AAD2)
390		packet_log("AAD2 ");
391	if (ctrl1 & SPU2_HAS_ESN)
392		packet_log("ESN ");
393	packet_log("\n");
394
395	hash_key_len = (ctrl1 & SPU2_HASH_KEY_LEN) >> SPU2_HASH_KEY_LEN_SHIFT;
396	packet_log("  Hash key len %u\n", hash_key_len);
397
398	ciph_key_len = (ctrl1 & SPU2_CIPH_KEY_LEN) >> SPU2_CIPH_KEY_LEN_SHIFT;
399	packet_log("  Cipher key len %u\n", ciph_key_len);
400
401	if (ctrl1 & SPU2_GENIV)
402		packet_log("  Generate IV\n");
403
404	if (ctrl1 & SPU2_HASH_IV)
405		packet_log("  IV included in hash\n");
406
407	if (ctrl1 & SPU2_RET_IV)
408		packet_log("  Return IV in output before payload\n");
409
410	ret_iv_len = (ctrl1 & SPU2_RET_IV_LEN) >> SPU2_RET_IV_LEN_SHIFT;
411	packet_log("  Length of returned IV %u bytes\n",
412		   ret_iv_len ? ret_iv_len : 16);
413
414	iv_offset = (ctrl1 & SPU2_IV_OFFSET) >> SPU2_IV_OFFSET_SHIFT;
415	packet_log("  IV offset %u\n", iv_offset);
416
417	iv_len = (ctrl1 & SPU2_IV_LEN) >> SPU2_IV_LEN_SHIFT;
418	packet_log("  Input IV len %u bytes\n", iv_len);
419
420	hash_tag_len = (ctrl1 & SPU2_HASH_TAG_LEN) >> SPU2_HASH_TAG_LEN_SHIFT;
421	packet_log("  Hash tag length %u bytes\n", hash_tag_len);
422
423	packet_log("  Return ");
424	ret_md = (ctrl1 & SPU2_RETURN_MD) >> SPU2_RETURN_MD_SHIFT;
425	if (ret_md)
426		packet_log("FMD ");
427	if (ret_md == SPU2_RET_FMD_OMD)
428		packet_log("OMD ");
429	else if (ret_md == SPU2_RET_FMD_OMD_IV)
430		packet_log("OMD IV ");
431	if (ctrl1 & SPU2_RETURN_FD)
432		packet_log("FD ");
433	if (ctrl1 & SPU2_RETURN_AAD1)
434		packet_log("AAD1 ");
435	if (ctrl1 & SPU2_RETURN_NAAD)
436		packet_log("NAAD ");
437	if (ctrl1 & SPU2_RETURN_AAD2)
438		packet_log("AAD2 ");
439	if (ctrl1 & SPU2_RETURN_PAY)
440		packet_log("Payload");
441	packet_log("\n");
442}
443
444/* Dump FMD ctrl2. The ctrl2 input is in host byte order */
445static void spu2_dump_fmd_ctrl2(u64 ctrl2)
446{
447	packet_log(" FMD CTRL2 %#16llx\n", ctrl2);
448
449	packet_log("  AAD1 offset %llu length %llu bytes\n",
450		   ctrl2 & SPU2_AAD1_OFFSET,
451		   (ctrl2 & SPU2_AAD1_LEN) >> SPU2_AAD1_LEN_SHIFT);
452	packet_log("  AAD2 offset %llu\n",
453		   (ctrl2 & SPU2_AAD2_OFFSET) >> SPU2_AAD2_OFFSET_SHIFT);
454	packet_log("  Payload offset %llu\n",
455		   (ctrl2 & SPU2_PL_OFFSET) >> SPU2_PL_OFFSET_SHIFT);
456}
457
458/* Dump FMD ctrl3. The ctrl3 input is in host byte order */
459static void spu2_dump_fmd_ctrl3(u64 ctrl3)
460{
461	packet_log(" FMD CTRL3 %#16llx\n", ctrl3);
462
463	packet_log("  Payload length %llu bytes\n", ctrl3 & SPU2_PL_LEN);
464	packet_log("  TLS length %llu bytes\n",
465		   (ctrl3 & SPU2_TLS_LEN) >> SPU2_TLS_LEN_SHIFT);
466}
467
468static void spu2_dump_fmd(struct SPU2_FMD *fmd)
469{
470	spu2_dump_fmd_ctrl0(le64_to_cpu(fmd->ctrl0));
471	spu2_dump_fmd_ctrl1(le64_to_cpu(fmd->ctrl1));
472	spu2_dump_fmd_ctrl2(le64_to_cpu(fmd->ctrl2));
473	spu2_dump_fmd_ctrl3(le64_to_cpu(fmd->ctrl3));
474}
475
476static void spu2_dump_omd(u8 *omd, u16 hash_key_len, u16 ciph_key_len,
477			  u16 hash_iv_len, u16 ciph_iv_len)
478{
479	u8 *ptr = omd;
480
481	packet_log(" OMD:\n");
482
483	if (hash_key_len) {
484		packet_log("  Hash Key Length %u bytes\n", hash_key_len);
485		packet_dump("  KEY: ", ptr, hash_key_len);
486		ptr += hash_key_len;
487	}
488
489	if (ciph_key_len) {
490		packet_log("  Cipher Key Length %u bytes\n", ciph_key_len);
491		packet_dump("  KEY: ", ptr, ciph_key_len);
492		ptr += ciph_key_len;
493	}
494
495	if (hash_iv_len) {
496		packet_log("  Hash IV Length %u bytes\n", hash_iv_len);
497		packet_dump("  hash IV: ", ptr, hash_iv_len);
498		ptr += ciph_key_len;
499	}
500
501	if (ciph_iv_len) {
502		packet_log("  Cipher IV Length %u bytes\n", ciph_iv_len);
503		packet_dump("  cipher IV: ", ptr, ciph_iv_len);
504	}
505}
506
507/* Dump a SPU2 header for debug */
508void spu2_dump_msg_hdr(u8 *buf, unsigned int buf_len)
509{
510	struct SPU2_FMD *fmd = (struct SPU2_FMD *)buf;
511	u8 *omd;
512	u64 ctrl1;
513	u16 hash_key_len;
514	u16 ciph_key_len;
515	u16 hash_iv_len;
516	u16 ciph_iv_len;
517	u16 omd_len;
518
519	packet_log("\n");
520	packet_log("SPU2 message header %p len: %u\n", buf, buf_len);
521
522	spu2_dump_fmd(fmd);
523	omd = (u8 *)(fmd + 1);
524
525	ctrl1 = le64_to_cpu(fmd->ctrl1);
526	hash_key_len = (ctrl1 & SPU2_HASH_KEY_LEN) >> SPU2_HASH_KEY_LEN_SHIFT;
527	ciph_key_len = (ctrl1 & SPU2_CIPH_KEY_LEN) >> SPU2_CIPH_KEY_LEN_SHIFT;
528	hash_iv_len = 0;
529	ciph_iv_len = (ctrl1 & SPU2_IV_LEN) >> SPU2_IV_LEN_SHIFT;
530	spu2_dump_omd(omd, hash_key_len, ciph_key_len, hash_iv_len,
531		      ciph_iv_len);
532
533	/* Double check sanity */
534	omd_len = hash_key_len + ciph_key_len + hash_iv_len + ciph_iv_len;
535	if (FMD_SIZE + omd_len != buf_len) {
536		packet_log
537		    (" Packet parsed incorrectly. buf_len %u, sum of MD %zu\n",
538		     buf_len, FMD_SIZE + omd_len);
539	}
540	packet_log("\n");
541}
542
543/**
544 * spu2_fmd_init() - At setkey time, initialize the fixed meta data for
545 * subsequent skcipher requests for this context.
546 * @spu2_cipher_type:  Cipher algorithm
547 * @spu2_mode:         Cipher mode
548 * @cipher_key_len:    Length of cipher key, in bytes
549 * @cipher_iv_len:     Length of cipher initialization vector, in bytes
550 *
551 * Return:  0 (success)
552 */
553static int spu2_fmd_init(struct SPU2_FMD *fmd,
554			 enum spu2_cipher_type spu2_type,
555			 enum spu2_cipher_mode spu2_mode,
556			 u32 cipher_key_len, u32 cipher_iv_len)
557{
558	u64 ctrl0;
559	u64 ctrl1;
560	u64 ctrl2;
561	u64 ctrl3;
562	u32 aad1_offset;
563	u32 aad2_offset;
564	u16 aad1_len = 0;
565	u64 payload_offset;
566
567	ctrl0 = (spu2_type << SPU2_CIPH_TYPE_SHIFT) |
568	    (spu2_mode << SPU2_CIPH_MODE_SHIFT);
569
570	ctrl1 = (cipher_key_len << SPU2_CIPH_KEY_LEN_SHIFT) |
571	    ((u64)cipher_iv_len << SPU2_IV_LEN_SHIFT) |
572	    ((u64)SPU2_RET_FMD_ONLY << SPU2_RETURN_MD_SHIFT) | SPU2_RETURN_PAY;
573
574	/*
575	 * AAD1 offset is from start of FD. FD length is always 0 for this
576	 * driver. So AAD1_offset is always 0.
577	 */
578	aad1_offset = 0;
579	aad2_offset = aad1_offset;
580	payload_offset = 0;
581	ctrl2 = aad1_offset |
582	    (aad1_len << SPU2_AAD1_LEN_SHIFT) |
583	    (aad2_offset << SPU2_AAD2_OFFSET_SHIFT) |
584	    (payload_offset << SPU2_PL_OFFSET_SHIFT);
585
586	ctrl3 = 0;
587
588	fmd->ctrl0 = cpu_to_le64(ctrl0);
589	fmd->ctrl1 = cpu_to_le64(ctrl1);
590	fmd->ctrl2 = cpu_to_le64(ctrl2);
591	fmd->ctrl3 = cpu_to_le64(ctrl3);
592
593	return 0;
594}
595
596/**
597 * spu2_fmd_ctrl0_write() - Write ctrl0 field in fixed metadata (FMD) field of
598 * SPU request packet.
599 * @fmd:            Start of FMD field to be written
600 * @is_inbound:     true if decrypting. false if encrypting.
601 * @authFirst:      true if alg authenticates before encrypting
602 * @protocol:       protocol selector
603 * @cipher_type:    cipher algorithm
604 * @cipher_mode:    cipher mode
605 * @auth_type:      authentication type
606 * @auth_mode:      authentication mode
607 */
608static void spu2_fmd_ctrl0_write(struct SPU2_FMD *fmd,
609				 bool is_inbound, bool auth_first,
610				 enum spu2_proto_sel protocol,
611				 enum spu2_cipher_type cipher_type,
612				 enum spu2_cipher_mode cipher_mode,
613				 enum spu2_hash_type auth_type,
614				 enum spu2_hash_mode auth_mode)
615{
616	u64 ctrl0 = 0;
617
618	if ((cipher_type != SPU2_CIPHER_TYPE_NONE) && !is_inbound)
619		ctrl0 |= SPU2_CIPH_ENCRYPT_EN;
620
621	ctrl0 |= ((u64)cipher_type << SPU2_CIPH_TYPE_SHIFT) |
622	    ((u64)cipher_mode << SPU2_CIPH_MODE_SHIFT);
623
624	if (protocol)
625		ctrl0 |= (u64)protocol << SPU2_PROTO_SEL_SHIFT;
626
627	if (auth_first)
628		ctrl0 |= SPU2_HASH_FIRST;
629
630	if (is_inbound && (auth_type != SPU2_HASH_TYPE_NONE))
631		ctrl0 |= SPU2_CHK_TAG;
632
633	ctrl0 |= (((u64)auth_type << SPU2_HASH_TYPE_SHIFT) |
634		  ((u64)auth_mode << SPU2_HASH_MODE_SHIFT));
635
636	fmd->ctrl0 = cpu_to_le64(ctrl0);
637}
638
639/**
640 * spu2_fmd_ctrl1_write() - Write ctrl1 field in fixed metadata (FMD) field of
641 * SPU request packet.
642 * @fmd:            Start of FMD field to be written
643 * @assoc_size:     Length of additional associated data, in bytes
644 * @auth_key_len:   Length of authentication key, in bytes
645 * @cipher_key_len: Length of cipher key, in bytes
646 * @gen_iv:         If true, hw generates IV and returns in response
647 * @hash_iv:        IV participates in hash. Used for IPSEC and TLS.
648 * @return_iv:      Return IV in output packet before payload
649 * @ret_iv_len:     Length of IV returned from SPU, in bytes
650 * @ret_iv_offset:  Offset into full IV of start of returned IV
651 * @cipher_iv_len:  Length of input cipher IV, in bytes
652 * @digest_size:    Length of digest (aka, hash tag or ICV), in bytes
653 * @return_payload: Return payload in SPU response
654 * @return_md : return metadata in SPU response
655 *
656 * Packet can have AAD2 w/o AAD1. For algorithms currently supported,
657 * associated data goes in AAD2.
658 */
659static void spu2_fmd_ctrl1_write(struct SPU2_FMD *fmd, bool is_inbound,
660				 u64 assoc_size,
661				 u64 auth_key_len, u64 cipher_key_len,
662				 bool gen_iv, bool hash_iv, bool return_iv,
663				 u64 ret_iv_len, u64 ret_iv_offset,
664				 u64 cipher_iv_len, u64 digest_size,
665				 bool return_payload, bool return_md)
666{
667	u64 ctrl1 = 0;
668
669	if (is_inbound && digest_size)
670		ctrl1 |= SPU2_TAG_LOC;
671
672	if (assoc_size) {
673		ctrl1 |= SPU2_HAS_AAD2;
674		ctrl1 |= SPU2_RETURN_AAD2;  /* need aad2 for gcm aes esp */
675	}
676
677	if (auth_key_len)
678		ctrl1 |= ((auth_key_len << SPU2_HASH_KEY_LEN_SHIFT) &
679			  SPU2_HASH_KEY_LEN);
680
681	if (cipher_key_len)
682		ctrl1 |= ((cipher_key_len << SPU2_CIPH_KEY_LEN_SHIFT) &
683			  SPU2_CIPH_KEY_LEN);
684
685	if (gen_iv)
686		ctrl1 |= SPU2_GENIV;
687
688	if (hash_iv)
689		ctrl1 |= SPU2_HASH_IV;
690
691	if (return_iv) {
692		ctrl1 |= SPU2_RET_IV;
693		ctrl1 |= ret_iv_len << SPU2_RET_IV_LEN_SHIFT;
694		ctrl1 |= ret_iv_offset << SPU2_IV_OFFSET_SHIFT;
695	}
696
697	ctrl1 |= ((cipher_iv_len << SPU2_IV_LEN_SHIFT) & SPU2_IV_LEN);
698
699	if (digest_size)
700		ctrl1 |= ((digest_size << SPU2_HASH_TAG_LEN_SHIFT) &
701			  SPU2_HASH_TAG_LEN);
702
703	/* Let's ask for the output pkt to include FMD, but don't need to
704	 * get keys and IVs back in OMD.
705	 */
706	if (return_md)
707		ctrl1 |= ((u64)SPU2_RET_FMD_ONLY << SPU2_RETURN_MD_SHIFT);
708	else
709		ctrl1 |= ((u64)SPU2_RET_NO_MD << SPU2_RETURN_MD_SHIFT);
710
711	/* Crypto API does not get assoc data back. So no need for AAD2. */
712
713	if (return_payload)
714		ctrl1 |= SPU2_RETURN_PAY;
715
716	fmd->ctrl1 = cpu_to_le64(ctrl1);
717}
718
719/**
720 * spu2_fmd_ctrl2_write() - Set the ctrl2 field in the fixed metadata field of
721 * SPU2 header.
722 * @fmd:            Start of FMD field to be written
723 * @cipher_offset:  Number of bytes from Start of Packet (end of FD field) where
724 *                  data to be encrypted or decrypted begins
725 * @auth_key_len:   Length of authentication key, in bytes
726 * @auth_iv_len:    Length of authentication initialization vector, in bytes
727 * @cipher_key_len: Length of cipher key, in bytes
728 * @cipher_iv_len:  Length of cipher IV, in bytes
729 */
730static void spu2_fmd_ctrl2_write(struct SPU2_FMD *fmd, u64 cipher_offset,
731				 u64 auth_key_len, u64 auth_iv_len,
732				 u64 cipher_key_len, u64 cipher_iv_len)
733{
734	u64 ctrl2;
735	u64 aad1_offset;
736	u64 aad2_offset;
737	u16 aad1_len = 0;
738	u64 payload_offset;
739
740	/* AAD1 offset is from start of FD. FD length always 0. */
741	aad1_offset = 0;
742
743	aad2_offset = aad1_offset;
744	payload_offset = cipher_offset;
745	ctrl2 = aad1_offset |
746	    (aad1_len << SPU2_AAD1_LEN_SHIFT) |
747	    (aad2_offset << SPU2_AAD2_OFFSET_SHIFT) |
748	    (payload_offset << SPU2_PL_OFFSET_SHIFT);
749
750	fmd->ctrl2 = cpu_to_le64(ctrl2);
751}
752
753/**
754 * spu2_fmd_ctrl3_write() - Set the ctrl3 field in FMD
755 * @fmd:          Fixed meta data. First field in SPU2 msg header.
756 * @payload_len:  Length of payload, in bytes
757 */
758static void spu2_fmd_ctrl3_write(struct SPU2_FMD *fmd, u64 payload_len)
759{
760	u64 ctrl3;
761
762	ctrl3 = payload_len & SPU2_PL_LEN;
763
764	fmd->ctrl3 = cpu_to_le64(ctrl3);
765}
766
767/**
768 * spu2_ctx_max_payload() - Determine the maximum length of the payload for a
769 * SPU message for a given cipher and hash alg context.
770 * @cipher_alg:		The cipher algorithm
771 * @cipher_mode:	The cipher mode
772 * @blocksize:		The size of a block of data for this algo
773 *
774 * For SPU2, the hardware generally ignores the PayloadLen field in ctrl3 of
775 * FMD and just keeps computing until it receives a DMA descriptor with the EOF
776 * flag set. So we consider the max payload to be infinite. AES CCM is an
777 * exception.
778 *
779 * Return: Max payload length in bytes
780 */
781u32 spu2_ctx_max_payload(enum spu_cipher_alg cipher_alg,
782			 enum spu_cipher_mode cipher_mode,
783			 unsigned int blocksize)
784{
785	if ((cipher_alg == CIPHER_ALG_AES) &&
786	    (cipher_mode == CIPHER_MODE_CCM)) {
787		u32 excess = SPU2_MAX_PAYLOAD % blocksize;
788
789		return SPU2_MAX_PAYLOAD - excess;
790	} else {
791		return SPU_MAX_PAYLOAD_INF;
792	}
793}
794
795/**
796 * spu_payload_length() -  Given a SPU2 message header, extract the payload
797 * length.
798 * @spu_hdr:  Start of SPU message header (FMD)
799 *
800 * Return: payload length, in bytes
801 */
802u32 spu2_payload_length(u8 *spu_hdr)
803{
804	struct SPU2_FMD *fmd = (struct SPU2_FMD *)spu_hdr;
805	u32 pl_len;
806	u64 ctrl3;
807
808	ctrl3 = le64_to_cpu(fmd->ctrl3);
809	pl_len = ctrl3 & SPU2_PL_LEN;
810
811	return pl_len;
812}
813
814/**
815 * spu_response_hdr_len() - Determine the expected length of a SPU response
816 * header.
817 * @auth_key_len:  Length of authentication key, in bytes
818 * @enc_key_len:   Length of encryption key, in bytes
819 *
820 * For SPU2, includes just FMD. OMD is never requested.
821 *
822 * Return: Length of FMD, in bytes
823 */
824u16 spu2_response_hdr_len(u16 auth_key_len, u16 enc_key_len, bool is_hash)
825{
826	return FMD_SIZE;
827}
828
829/**
830 * spu_hash_pad_len() - Calculate the length of hash padding required to extend
831 * data to a full block size.
832 * @hash_alg:        hash algorithm
833 * @hash_mode:       hash mode
834 * @chunksize:       length of data, in bytes
835 * @hash_block_size: size of a hash block, in bytes
836 *
837 * SPU2 hardware does all hash padding
838 *
839 * Return:  length of hash pad in bytes
840 */
841u16 spu2_hash_pad_len(enum hash_alg hash_alg, enum hash_mode hash_mode,
842		      u32 chunksize, u16 hash_block_size)
843{
844	return 0;
845}
846
847/**
848 * spu2_gcm_ccm_padlen() -  Determine the length of GCM/CCM padding for either
849 * the AAD field or the data.
850 *
851 * Return:  0. Unlike SPU-M, SPU2 hardware does any GCM/CCM padding required.
852 */
853u32 spu2_gcm_ccm_pad_len(enum spu_cipher_mode cipher_mode,
854			 unsigned int data_size)
855{
856	return 0;
857}
858
859/**
860 * spu_assoc_resp_len() - Determine the size of the AAD2 buffer needed to catch
861 * associated data in a SPU2 output packet.
862 * @cipher_mode:   cipher mode
863 * @assoc_len:     length of additional associated data, in bytes
864 * @iv_len:        length of initialization vector, in bytes
865 * @is_encrypt:    true if encrypting. false if decrypt.
866 *
867 * Return: Length of buffer to catch associated data in response
868 */
869u32 spu2_assoc_resp_len(enum spu_cipher_mode cipher_mode,
870			unsigned int assoc_len, unsigned int iv_len,
871			bool is_encrypt)
872{
873	u32 resp_len = assoc_len;
874
875	if (is_encrypt)
876		/* gcm aes esp has to write 8-byte IV in response */
877		resp_len += iv_len;
878	return resp_len;
879}
880
881/*
882 * spu_aead_ivlen() - Calculate the length of the AEAD IV to be included
883 * in a SPU request after the AAD and before the payload.
884 * @cipher_mode:  cipher mode
885 * @iv_ctr_len:   initialization vector length in bytes
886 *
887 * For SPU2, AEAD IV is included in OMD and does not need to be repeated
888 * prior to the payload.
889 *
890 * Return: Length of AEAD IV in bytes
891 */
892u8 spu2_aead_ivlen(enum spu_cipher_mode cipher_mode, u16 iv_len)
893{
894	return 0;
895}
896
897/**
898 * spu2_hash_type() - Determine the type of hash operation.
899 * @src_sent:  The number of bytes in the current request that have already
900 *             been sent to the SPU to be hashed.
901 *
902 * SPU2 always does a FULL hash operation
903 */
904enum hash_type spu2_hash_type(u32 src_sent)
905{
906	return HASH_TYPE_FULL;
907}
908
909/**
910 * spu2_digest_size() - Determine the size of a hash digest to expect the SPU to
911 * return.
912 * alg_digest_size: Number of bytes in the final digest for the given algo
913 * alg:             The hash algorithm
914 * htype:           Type of hash operation (init, update, full, etc)
915 *
916 */
917u32 spu2_digest_size(u32 alg_digest_size, enum hash_alg alg,
918		     enum hash_type htype)
919{
920	return alg_digest_size;
921}
922
923/**
924 * spu_create_request() - Build a SPU2 request message header, includint FMD and
925 * OMD.
926 * @spu_hdr: Start of buffer where SPU request header is to be written
927 * @req_opts: SPU request message options
928 * @cipher_parms: Parameters related to cipher algorithm
929 * @hash_parms:   Parameters related to hash algorithm
930 * @aead_parms:   Parameters related to AEAD operation
931 * @data_size:    Length of data to be encrypted or authenticated. If AEAD, does
932 *		  not include length of AAD.
933 *
934 * Construct the message starting at spu_hdr. Caller should allocate this buffer
935 * in DMA-able memory at least SPU_HEADER_ALLOC_LEN bytes long.
936 *
937 * Return: the length of the SPU header in bytes. 0 if an error occurs.
938 */
939u32 spu2_create_request(u8 *spu_hdr,
940			struct spu_request_opts *req_opts,
941			struct spu_cipher_parms *cipher_parms,
942			struct spu_hash_parms *hash_parms,
943			struct spu_aead_parms *aead_parms,
944			unsigned int data_size)
945{
946	struct SPU2_FMD *fmd;
947	u8 *ptr;
948	unsigned int buf_len;
949	int err;
950	enum spu2_cipher_type spu2_ciph_type = SPU2_CIPHER_TYPE_NONE;
951	enum spu2_cipher_mode spu2_ciph_mode;
952	enum spu2_hash_type spu2_auth_type = SPU2_HASH_TYPE_NONE;
953	enum spu2_hash_mode spu2_auth_mode;
954	bool return_md = true;
955	enum spu2_proto_sel proto = SPU2_PROTO_RESV;
956
957	/* size of the payload */
958	unsigned int payload_len =
959	    hash_parms->prebuf_len + data_size + hash_parms->pad_len -
960	    ((req_opts->is_aead && req_opts->is_inbound) ?
961	     hash_parms->digestsize : 0);
962
963	/* offset of prebuf or data from start of AAD2 */
964	unsigned int cipher_offset = aead_parms->assoc_size +
965			aead_parms->aad_pad_len + aead_parms->iv_len;
966
967#ifdef DEBUG
968	/* total size of the data following OMD (without STAT word padding) */
969	unsigned int real_db_size = spu_real_db_size(aead_parms->assoc_size,
970						 aead_parms->iv_len,
971						 hash_parms->prebuf_len,
972						 data_size,
973						 aead_parms->aad_pad_len,
974						 aead_parms->data_pad_len,
975						 hash_parms->pad_len);
976#endif
977	unsigned int assoc_size = aead_parms->assoc_size;
978
979	if (req_opts->is_aead &&
980	    (cipher_parms->alg == CIPHER_ALG_AES) &&
981	    (cipher_parms->mode == CIPHER_MODE_GCM))
982		/*
983		 * On SPU 2, aes gcm cipher first on encrypt, auth first on
984		 * decrypt
985		 */
986		req_opts->auth_first = req_opts->is_inbound;
987
988	/* and do opposite for ccm (auth 1st on encrypt) */
989	if (req_opts->is_aead &&
990	    (cipher_parms->alg == CIPHER_ALG_AES) &&
991	    (cipher_parms->mode == CIPHER_MODE_CCM))
992		req_opts->auth_first = !req_opts->is_inbound;
993
994	flow_log("%s()\n", __func__);
995	flow_log("  in:%u authFirst:%u\n",
996		 req_opts->is_inbound, req_opts->auth_first);
997	flow_log("  cipher alg:%u mode:%u type %u\n", cipher_parms->alg,
998		 cipher_parms->mode, cipher_parms->type);
999	flow_log("  is_esp: %s\n", req_opts->is_esp ? "yes" : "no");
1000	flow_log("    key: %d\n", cipher_parms->key_len);
1001	flow_dump("    key: ", cipher_parms->key_buf, cipher_parms->key_len);
1002	flow_log("    iv: %d\n", cipher_parms->iv_len);
1003	flow_dump("    iv: ", cipher_parms->iv_buf, cipher_parms->iv_len);
1004	flow_log("  auth alg:%u mode:%u type %u\n",
1005		 hash_parms->alg, hash_parms->mode, hash_parms->type);
1006	flow_log("  digestsize: %u\n", hash_parms->digestsize);
1007	flow_log("  authkey: %d\n", hash_parms->key_len);
1008	flow_dump("  authkey: ", hash_parms->key_buf, hash_parms->key_len);
1009	flow_log("  assoc_size:%u\n", assoc_size);
1010	flow_log("  prebuf_len:%u\n", hash_parms->prebuf_len);
1011	flow_log("  data_size:%u\n", data_size);
1012	flow_log("  hash_pad_len:%u\n", hash_parms->pad_len);
1013	flow_log("  real_db_size:%u\n", real_db_size);
1014	flow_log("  cipher_offset:%u payload_len:%u\n",
1015		 cipher_offset, payload_len);
1016	flow_log("  aead_iv: %u\n", aead_parms->iv_len);
1017
1018	/* Convert to spu2 values for cipher alg, hash alg */
1019	err = spu2_cipher_xlate(cipher_parms->alg, cipher_parms->mode,
1020				cipher_parms->type,
1021				&spu2_ciph_type, &spu2_ciph_mode);
1022
1023	/* If we are doing GCM hashing only - either via rfc4543 transform
1024	 * or because we happen to do GCM with AAD only and no payload - we
1025	 * need to configure hardware to use hash key rather than cipher key
1026	 * and put data into payload.  This is because unlike SPU-M, running
1027	 * GCM cipher with 0 size payload is not permitted.
1028	 */
1029	if ((req_opts->is_rfc4543) ||
1030	    ((spu2_ciph_mode == SPU2_CIPHER_MODE_GCM) &&
1031	    (payload_len == 0))) {
1032		/* Use hashing (only) and set up hash key */
1033		spu2_ciph_type = SPU2_CIPHER_TYPE_NONE;
1034		hash_parms->key_len = cipher_parms->key_len;
1035		memcpy(hash_parms->key_buf, cipher_parms->key_buf,
1036		       cipher_parms->key_len);
1037		cipher_parms->key_len = 0;
1038
1039		if (req_opts->is_rfc4543)
1040			payload_len += assoc_size;
1041		else
1042			payload_len = assoc_size;
1043		cipher_offset = 0;
1044		assoc_size = 0;
1045	}
1046
1047	if (err)
1048		return 0;
1049
1050	flow_log("spu2 cipher type %s, cipher mode %s\n",
1051		 spu2_ciph_type_name(spu2_ciph_type),
1052		 spu2_ciph_mode_name(spu2_ciph_mode));
1053
1054	err = spu2_hash_xlate(hash_parms->alg, hash_parms->mode,
1055			      hash_parms->type,
1056			      cipher_parms->type,
1057			      &spu2_auth_type, &spu2_auth_mode);
1058	if (err)
1059		return 0;
1060
1061	flow_log("spu2 hash type %s, hash mode %s\n",
1062		 spu2_hash_type_name(spu2_auth_type),
1063		 spu2_hash_mode_name(spu2_auth_mode));
1064
1065	fmd = (struct SPU2_FMD *)spu_hdr;
1066
1067	spu2_fmd_ctrl0_write(fmd, req_opts->is_inbound, req_opts->auth_first,
1068			     proto, spu2_ciph_type, spu2_ciph_mode,
1069			     spu2_auth_type, spu2_auth_mode);
1070
1071	spu2_fmd_ctrl1_write(fmd, req_opts->is_inbound, assoc_size,
1072			     hash_parms->key_len, cipher_parms->key_len,
1073			     false, false,
1074			     aead_parms->return_iv, aead_parms->ret_iv_len,
1075			     aead_parms->ret_iv_off,
1076			     cipher_parms->iv_len, hash_parms->digestsize,
1077			     !req_opts->bd_suppress, return_md);
1078
1079	spu2_fmd_ctrl2_write(fmd, cipher_offset, hash_parms->key_len, 0,
1080			     cipher_parms->key_len, cipher_parms->iv_len);
1081
1082	spu2_fmd_ctrl3_write(fmd, payload_len);
1083
1084	ptr = (u8 *)(fmd + 1);
1085	buf_len = sizeof(struct SPU2_FMD);
1086
1087	/* Write OMD */
1088	if (hash_parms->key_len) {
1089		memcpy(ptr, hash_parms->key_buf, hash_parms->key_len);
1090		ptr += hash_parms->key_len;
1091		buf_len += hash_parms->key_len;
1092	}
1093	if (cipher_parms->key_len) {
1094		memcpy(ptr, cipher_parms->key_buf, cipher_parms->key_len);
1095		ptr += cipher_parms->key_len;
1096		buf_len += cipher_parms->key_len;
1097	}
1098	if (cipher_parms->iv_len) {
1099		memcpy(ptr, cipher_parms->iv_buf, cipher_parms->iv_len);
1100		ptr += cipher_parms->iv_len;
1101		buf_len += cipher_parms->iv_len;
1102	}
1103
1104	packet_dump("  SPU request header: ", spu_hdr, buf_len);
1105
1106	return buf_len;
1107}
1108
1109/**
1110 * spu_cipher_req_init() - Build an skcipher SPU2 request message header,
1111 * including FMD and OMD.
1112 * @spu_hdr:       Location of start of SPU request (FMD field)
1113 * @cipher_parms:  Parameters describing cipher request
1114 *
1115 * Called at setkey time to initialize a msg header that can be reused for all
1116 * subsequent skcipher requests. Construct the message starting at spu_hdr.
1117 * Caller should allocate this buffer in DMA-able memory at least
1118 * SPU_HEADER_ALLOC_LEN bytes long.
1119 *
1120 * Return: the total length of the SPU header (FMD and OMD) in bytes. 0 if an
1121 * error occurs.
1122 */
1123u16 spu2_cipher_req_init(u8 *spu_hdr, struct spu_cipher_parms *cipher_parms)
1124{
1125	struct SPU2_FMD *fmd;
1126	u8 *omd;
1127	enum spu2_cipher_type spu2_type = SPU2_CIPHER_TYPE_NONE;
1128	enum spu2_cipher_mode spu2_mode;
1129	int err;
1130
1131	flow_log("%s()\n", __func__);
1132	flow_log("  cipher alg:%u mode:%u type %u\n", cipher_parms->alg,
1133		 cipher_parms->mode, cipher_parms->type);
1134	flow_log("  cipher_iv_len: %u\n", cipher_parms->iv_len);
1135	flow_log("    key: %d\n", cipher_parms->key_len);
1136	flow_dump("    key: ", cipher_parms->key_buf, cipher_parms->key_len);
1137
1138	/* Convert to spu2 values */
1139	err = spu2_cipher_xlate(cipher_parms->alg, cipher_parms->mode,
1140				cipher_parms->type, &spu2_type, &spu2_mode);
1141	if (err)
1142		return 0;
1143
1144	flow_log("spu2 cipher type %s, cipher mode %s\n",
1145		 spu2_ciph_type_name(spu2_type),
1146		 spu2_ciph_mode_name(spu2_mode));
1147
1148	/* Construct the FMD header */
1149	fmd = (struct SPU2_FMD *)spu_hdr;
1150	err = spu2_fmd_init(fmd, spu2_type, spu2_mode, cipher_parms->key_len,
1151			    cipher_parms->iv_len);
1152	if (err)
1153		return 0;
1154
1155	/* Write cipher key to OMD */
1156	omd = (u8 *)(fmd + 1);
1157	if (cipher_parms->key_buf && cipher_parms->key_len)
1158		memcpy(omd, cipher_parms->key_buf, cipher_parms->key_len);
1159
1160	packet_dump("  SPU request header: ", spu_hdr,
1161		    FMD_SIZE + cipher_parms->key_len + cipher_parms->iv_len);
1162
1163	return FMD_SIZE + cipher_parms->key_len + cipher_parms->iv_len;
1164}
1165
1166/**
1167 * spu_cipher_req_finish() - Finish building a SPU request message header for a
1168 * block cipher request.
1169 * @spu_hdr:         Start of the request message header (MH field)
1170 * @spu_req_hdr_len: Length in bytes of the SPU request header
1171 * @isInbound:       0 encrypt, 1 decrypt
1172 * @cipher_parms:    Parameters describing cipher operation to be performed
1173 * @data_size:       Length of the data in the BD field
1174 *
1175 * Assumes much of the header was already filled in at setkey() time in
1176 * spu_cipher_req_init().
1177 * spu_cipher_req_init() fills in the encryption key.
1178 */
1179void spu2_cipher_req_finish(u8 *spu_hdr,
1180			    u16 spu_req_hdr_len,
1181			    unsigned int is_inbound,
1182			    struct spu_cipher_parms *cipher_parms,
1183			    unsigned int data_size)
1184{
1185	struct SPU2_FMD *fmd;
1186	u8 *omd;		/* start of optional metadata */
1187	u64 ctrl0;
1188	u64 ctrl3;
1189
1190	flow_log("%s()\n", __func__);
1191	flow_log(" in: %u\n", is_inbound);
1192	flow_log(" cipher alg: %u, cipher_type: %u\n", cipher_parms->alg,
1193		 cipher_parms->type);
1194	flow_log(" iv len: %d\n", cipher_parms->iv_len);
1195	flow_dump("    iv: ", cipher_parms->iv_buf, cipher_parms->iv_len);
1196	flow_log(" data_size: %u\n", data_size);
1197
1198	fmd = (struct SPU2_FMD *)spu_hdr;
1199	omd = (u8 *)(fmd + 1);
1200
1201	/*
1202	 * FMD ctrl0 was initialized at setkey time. update it to indicate
1203	 * whether we are encrypting or decrypting.
1204	 */
1205	ctrl0 = le64_to_cpu(fmd->ctrl0);
1206	if (is_inbound)
1207		ctrl0 &= ~SPU2_CIPH_ENCRYPT_EN;	/* decrypt */
1208	else
1209		ctrl0 |= SPU2_CIPH_ENCRYPT_EN;	/* encrypt */
1210	fmd->ctrl0 = cpu_to_le64(ctrl0);
1211
1212	if (cipher_parms->alg && cipher_parms->iv_buf && cipher_parms->iv_len) {
1213		/* cipher iv provided so put it in here */
1214		memcpy(omd + cipher_parms->key_len, cipher_parms->iv_buf,
1215		       cipher_parms->iv_len);
1216	}
1217
1218	ctrl3 = le64_to_cpu(fmd->ctrl3);
1219	data_size &= SPU2_PL_LEN;
1220	ctrl3 |= data_size;
1221	fmd->ctrl3 = cpu_to_le64(ctrl3);
1222
1223	packet_dump("  SPU request header: ", spu_hdr, spu_req_hdr_len);
1224}
1225
1226/**
1227 * spu_request_pad() - Create pad bytes at the end of the data.
1228 * @pad_start:      Start of buffer where pad bytes are to be written
1229 * @gcm_padding:    Length of GCM padding, in bytes
1230 * @hash_pad_len:   Number of bytes of padding extend data to full block
1231 * @auth_alg:       Authentication algorithm
1232 * @auth_mode:      Authentication mode
1233 * @total_sent:     Length inserted at end of hash pad
1234 * @status_padding: Number of bytes of padding to align STATUS word
1235 *
1236 * There may be three forms of pad:
1237 *  1. GCM pad - for GCM mode ciphers, pad to 16-byte alignment
1238 *  2. hash pad - pad to a block length, with 0x80 data terminator and
1239 *                size at the end
1240 *  3. STAT pad - to ensure the STAT field is 4-byte aligned
1241 */
1242void spu2_request_pad(u8 *pad_start, u32 gcm_padding, u32 hash_pad_len,
1243		      enum hash_alg auth_alg, enum hash_mode auth_mode,
1244		      unsigned int total_sent, u32 status_padding)
1245{
1246	u8 *ptr = pad_start;
1247
1248	/* fix data alignent for GCM */
1249	if (gcm_padding > 0) {
1250		flow_log("  GCM: padding to 16 byte alignment: %u bytes\n",
1251			 gcm_padding);
1252		memset(ptr, 0, gcm_padding);
1253		ptr += gcm_padding;
1254	}
1255
1256	if (hash_pad_len > 0) {
1257		/* clear the padding section */
1258		memset(ptr, 0, hash_pad_len);
1259
1260		/* terminate the data */
1261		*ptr = 0x80;
1262		ptr += (hash_pad_len - sizeof(u64));
1263
1264		/* add the size at the end as required per alg */
1265		if (auth_alg == HASH_ALG_MD5)
1266			*(u64 *)ptr = cpu_to_le64((u64)total_sent * 8);
1267		else		/* SHA1, SHA2-224, SHA2-256 */
1268			*(u64 *)ptr = cpu_to_be64((u64)total_sent * 8);
1269		ptr += sizeof(u64);
1270	}
1271
1272	/* pad to a 4byte alignment for STAT */
1273	if (status_padding > 0) {
1274		flow_log("  STAT: padding to 4 byte alignment: %u bytes\n",
1275			 status_padding);
1276
1277		memset(ptr, 0, status_padding);
1278		ptr += status_padding;
1279	}
1280}
1281
1282/**
1283 * spu2_xts_tweak_in_payload() - Indicate that SPU2 does NOT place the XTS
1284 * tweak field in the packet payload (it uses IV instead)
1285 *
1286 * Return: 0
1287 */
1288u8 spu2_xts_tweak_in_payload(void)
1289{
1290	return 0;
1291}
1292
1293/**
1294 * spu2_tx_status_len() - Return the length of the STATUS field in a SPU
1295 * response message.
1296 *
1297 * Return: Length of STATUS field in bytes.
1298 */
1299u8 spu2_tx_status_len(void)
1300{
1301	return SPU2_TX_STATUS_LEN;
1302}
1303
1304/**
1305 * spu2_rx_status_len() - Return the length of the STATUS field in a SPU
1306 * response message.
1307 *
1308 * Return: Length of STATUS field in bytes.
1309 */
1310u8 spu2_rx_status_len(void)
1311{
1312	return SPU2_RX_STATUS_LEN;
1313}
1314
1315/**
1316 * spu_status_process() - Process the status from a SPU response message.
1317 * @statp:  start of STATUS word
1318 *
1319 * Return:  0 - if status is good and response should be processed
1320 *         !0 - status indicates an error and response is invalid
1321 */
1322int spu2_status_process(u8 *statp)
1323{
1324	/* SPU2 status is 2 bytes by default - SPU_RX_STATUS_LEN */
1325	u16 status = le16_to_cpu(*(__le16 *)statp);
1326
1327	if (status == 0)
1328		return 0;
1329
1330	flow_log("rx status is %#x\n", status);
1331	if (status == SPU2_INVALID_ICV)
1332		return SPU_INVALID_ICV;
1333
1334	return -EBADMSG;
1335}
1336
1337/**
1338 * spu2_ccm_update_iv() - Update the IV as per the requirements for CCM mode.
1339 *
1340 * @digestsize:		Digest size of this request
1341 * @cipher_parms:	(pointer to) cipher parmaeters, includes IV buf & IV len
1342 * @assoclen:		Length of AAD data
1343 * @chunksize:		length of input data to be sent in this req
1344 * @is_encrypt:		true if this is an output/encrypt operation
1345 * @is_esp:		true if this is an ESP / RFC4309 operation
1346 *
1347 */
1348void spu2_ccm_update_iv(unsigned int digestsize,
1349			struct spu_cipher_parms *cipher_parms,
1350			unsigned int assoclen, unsigned int chunksize,
1351			bool is_encrypt, bool is_esp)
1352{
1353	int L;  /* size of length field, in bytes */
1354
1355	/*
1356	 * In RFC4309 mode, L is fixed at 4 bytes; otherwise, IV from
1357	 * testmgr contains (L-1) in bottom 3 bits of first byte,
1358	 * per RFC 3610.
1359	 */
1360	if (is_esp)
1361		L = CCM_ESP_L_VALUE;
1362	else
1363		L = ((cipher_parms->iv_buf[0] & CCM_B0_L_PRIME) >>
1364		      CCM_B0_L_PRIME_SHIFT) + 1;
1365
1366	/* SPU2 doesn't want these length bytes nor the first byte... */
1367	cipher_parms->iv_len -= (1 + L);
1368	memmove(cipher_parms->iv_buf, &cipher_parms->iv_buf[1],
1369		cipher_parms->iv_len);
1370}
1371
1372/**
1373 * spu2_wordalign_padlen() - SPU2 does not require padding.
1374 * @data_size: length of data field in bytes
1375 *
1376 * Return: length of status field padding, in bytes (always 0 on SPU2)
1377 */
1378u32 spu2_wordalign_padlen(u32 data_size)
1379{
1380	return 0;
1381}
1382