1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Cryptographic API.
4 *
5 * Support for ATMEL AES HW acceleration.
6 *
7 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
8 * Author: Nicolas Royer <nicolas@eukrea.com>
9 *
10 * Some ideas are from omap-aes.c driver.
11 */
12
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/err.h>
18#include <linux/clk.h>
19#include <linux/io.h>
20#include <linux/hw_random.h>
21#include <linux/platform_device.h>
22
23#include <linux/device.h>
24#include <linux/dmaengine.h>
25#include <linux/init.h>
26#include <linux/errno.h>
27#include <linux/interrupt.h>
28#include <linux/irq.h>
29#include <linux/scatterlist.h>
30#include <linux/dma-mapping.h>
31#include <linux/of_device.h>
32#include <linux/delay.h>
33#include <linux/crypto.h>
34#include <crypto/scatterwalk.h>
35#include <crypto/algapi.h>
36#include <crypto/aes.h>
37#include <crypto/gcm.h>
38#include <crypto/xts.h>
39#include <crypto/internal/aead.h>
40#include <crypto/internal/skcipher.h>
41#include "atmel-aes-regs.h"
42#include "atmel-authenc.h"
43
44#define ATMEL_AES_PRIORITY	300
45
46#define ATMEL_AES_BUFFER_ORDER	2
47#define ATMEL_AES_BUFFER_SIZE	(PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
48
49#define CFB8_BLOCK_SIZE		1
50#define CFB16_BLOCK_SIZE	2
51#define CFB32_BLOCK_SIZE	4
52#define CFB64_BLOCK_SIZE	8
53
54#define SIZE_IN_WORDS(x)	((x) >> 2)
55
56/* AES flags */
57/* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
58#define AES_FLAGS_ENCRYPT	AES_MR_CYPHER_ENC
59#define AES_FLAGS_GTAGEN	AES_MR_GTAGEN
60#define AES_FLAGS_OPMODE_MASK	(AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
61#define AES_FLAGS_ECB		AES_MR_OPMOD_ECB
62#define AES_FLAGS_CBC		AES_MR_OPMOD_CBC
63#define AES_FLAGS_OFB		AES_MR_OPMOD_OFB
64#define AES_FLAGS_CFB128	(AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
65#define AES_FLAGS_CFB64		(AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
66#define AES_FLAGS_CFB32		(AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
67#define AES_FLAGS_CFB16		(AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
68#define AES_FLAGS_CFB8		(AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
69#define AES_FLAGS_CTR		AES_MR_OPMOD_CTR
70#define AES_FLAGS_GCM		AES_MR_OPMOD_GCM
71#define AES_FLAGS_XTS		AES_MR_OPMOD_XTS
72
73#define AES_FLAGS_MODE_MASK	(AES_FLAGS_OPMODE_MASK |	\
74				 AES_FLAGS_ENCRYPT |		\
75				 AES_FLAGS_GTAGEN)
76
77#define AES_FLAGS_BUSY		BIT(3)
78#define AES_FLAGS_DUMP_REG	BIT(4)
79#define AES_FLAGS_OWN_SHA	BIT(5)
80
81#define AES_FLAGS_PERSISTENT	AES_FLAGS_BUSY
82
83#define ATMEL_AES_QUEUE_LENGTH	50
84
85#define ATMEL_AES_DMA_THRESHOLD		256
86
87
88struct atmel_aes_caps {
89	bool			has_dualbuff;
90	bool			has_cfb64;
91	bool			has_gcm;
92	bool			has_xts;
93	bool			has_authenc;
94	u32			max_burst_size;
95};
96
97struct atmel_aes_dev;
98
99
100typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
101
102
103struct atmel_aes_base_ctx {
104	struct atmel_aes_dev	*dd;
105	atmel_aes_fn_t		start;
106	int			keylen;
107	u32			key[AES_KEYSIZE_256 / sizeof(u32)];
108	u16			block_size;
109	bool			is_aead;
110};
111
112struct atmel_aes_ctx {
113	struct atmel_aes_base_ctx	base;
114};
115
116struct atmel_aes_ctr_ctx {
117	struct atmel_aes_base_ctx	base;
118
119	__be32			iv[AES_BLOCK_SIZE / sizeof(u32)];
120	size_t			offset;
121	struct scatterlist	src[2];
122	struct scatterlist	dst[2];
123	u32			blocks;
124};
125
126struct atmel_aes_gcm_ctx {
127	struct atmel_aes_base_ctx	base;
128
129	struct scatterlist	src[2];
130	struct scatterlist	dst[2];
131
132	__be32			j0[AES_BLOCK_SIZE / sizeof(u32)];
133	u32			tag[AES_BLOCK_SIZE / sizeof(u32)];
134	__be32			ghash[AES_BLOCK_SIZE / sizeof(u32)];
135	size_t			textlen;
136
137	const __be32		*ghash_in;
138	__be32			*ghash_out;
139	atmel_aes_fn_t		ghash_resume;
140};
141
142struct atmel_aes_xts_ctx {
143	struct atmel_aes_base_ctx	base;
144
145	u32			key2[AES_KEYSIZE_256 / sizeof(u32)];
146};
147
148#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
149struct atmel_aes_authenc_ctx {
150	struct atmel_aes_base_ctx	base;
151	struct atmel_sha_authenc_ctx	*auth;
152};
153#endif
154
155struct atmel_aes_reqctx {
156	unsigned long		mode;
157	u8			lastc[AES_BLOCK_SIZE];
158};
159
160#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
161struct atmel_aes_authenc_reqctx {
162	struct atmel_aes_reqctx	base;
163
164	struct scatterlist	src[2];
165	struct scatterlist	dst[2];
166	size_t			textlen;
167	u32			digest[SHA512_DIGEST_SIZE / sizeof(u32)];
168
169	/* auth_req MUST be place last. */
170	struct ahash_request	auth_req;
171};
172#endif
173
174struct atmel_aes_dma {
175	struct dma_chan		*chan;
176	struct scatterlist	*sg;
177	int			nents;
178	unsigned int		remainder;
179	unsigned int		sg_len;
180};
181
182struct atmel_aes_dev {
183	struct list_head	list;
184	unsigned long		phys_base;
185	void __iomem		*io_base;
186
187	struct crypto_async_request	*areq;
188	struct atmel_aes_base_ctx	*ctx;
189
190	bool			is_async;
191	atmel_aes_fn_t		resume;
192	atmel_aes_fn_t		cpu_transfer_complete;
193
194	struct device		*dev;
195	struct clk		*iclk;
196	int			irq;
197
198	unsigned long		flags;
199
200	spinlock_t		lock;
201	struct crypto_queue	queue;
202
203	struct tasklet_struct	done_task;
204	struct tasklet_struct	queue_task;
205
206	size_t			total;
207	size_t			datalen;
208	u32			*data;
209
210	struct atmel_aes_dma	src;
211	struct atmel_aes_dma	dst;
212
213	size_t			buflen;
214	void			*buf;
215	struct scatterlist	aligned_sg;
216	struct scatterlist	*real_dst;
217
218	struct atmel_aes_caps	caps;
219
220	u32			hw_version;
221};
222
223struct atmel_aes_drv {
224	struct list_head	dev_list;
225	spinlock_t		lock;
226};
227
228static struct atmel_aes_drv atmel_aes = {
229	.dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
230	.lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
231};
232
233#ifdef VERBOSE_DEBUG
234static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
235{
236	switch (offset) {
237	case AES_CR:
238		return "CR";
239
240	case AES_MR:
241		return "MR";
242
243	case AES_ISR:
244		return "ISR";
245
246	case AES_IMR:
247		return "IMR";
248
249	case AES_IER:
250		return "IER";
251
252	case AES_IDR:
253		return "IDR";
254
255	case AES_KEYWR(0):
256	case AES_KEYWR(1):
257	case AES_KEYWR(2):
258	case AES_KEYWR(3):
259	case AES_KEYWR(4):
260	case AES_KEYWR(5):
261	case AES_KEYWR(6):
262	case AES_KEYWR(7):
263		snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
264		break;
265
266	case AES_IDATAR(0):
267	case AES_IDATAR(1):
268	case AES_IDATAR(2):
269	case AES_IDATAR(3):
270		snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
271		break;
272
273	case AES_ODATAR(0):
274	case AES_ODATAR(1):
275	case AES_ODATAR(2):
276	case AES_ODATAR(3):
277		snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
278		break;
279
280	case AES_IVR(0):
281	case AES_IVR(1):
282	case AES_IVR(2):
283	case AES_IVR(3):
284		snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
285		break;
286
287	case AES_AADLENR:
288		return "AADLENR";
289
290	case AES_CLENR:
291		return "CLENR";
292
293	case AES_GHASHR(0):
294	case AES_GHASHR(1):
295	case AES_GHASHR(2):
296	case AES_GHASHR(3):
297		snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
298		break;
299
300	case AES_TAGR(0):
301	case AES_TAGR(1):
302	case AES_TAGR(2):
303	case AES_TAGR(3):
304		snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
305		break;
306
307	case AES_CTRR:
308		return "CTRR";
309
310	case AES_GCMHR(0):
311	case AES_GCMHR(1):
312	case AES_GCMHR(2):
313	case AES_GCMHR(3):
314		snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
315		break;
316
317	case AES_EMR:
318		return "EMR";
319
320	case AES_TWR(0):
321	case AES_TWR(1):
322	case AES_TWR(2):
323	case AES_TWR(3):
324		snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
325		break;
326
327	case AES_ALPHAR(0):
328	case AES_ALPHAR(1):
329	case AES_ALPHAR(2):
330	case AES_ALPHAR(3):
331		snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
332		break;
333
334	default:
335		snprintf(tmp, sz, "0x%02x", offset);
336		break;
337	}
338
339	return tmp;
340}
341#endif /* VERBOSE_DEBUG */
342
343/* Shared functions */
344
345static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
346{
347	u32 value = readl_relaxed(dd->io_base + offset);
348
349#ifdef VERBOSE_DEBUG
350	if (dd->flags & AES_FLAGS_DUMP_REG) {
351		char tmp[16];
352
353		dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
354			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
355	}
356#endif /* VERBOSE_DEBUG */
357
358	return value;
359}
360
361static inline void atmel_aes_write(struct atmel_aes_dev *dd,
362					u32 offset, u32 value)
363{
364#ifdef VERBOSE_DEBUG
365	if (dd->flags & AES_FLAGS_DUMP_REG) {
366		char tmp[16];
367
368		dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
369			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
370	}
371#endif /* VERBOSE_DEBUG */
372
373	writel_relaxed(value, dd->io_base + offset);
374}
375
376static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
377					u32 *value, int count)
378{
379	for (; count--; value++, offset += 4)
380		*value = atmel_aes_read(dd, offset);
381}
382
383static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
384			      const u32 *value, int count)
385{
386	for (; count--; value++, offset += 4)
387		atmel_aes_write(dd, offset, *value);
388}
389
390static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
391					void *value)
392{
393	atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
394}
395
396static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
397					 const void *value)
398{
399	atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
400}
401
402static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
403						atmel_aes_fn_t resume)
404{
405	u32 isr = atmel_aes_read(dd, AES_ISR);
406
407	if (unlikely(isr & AES_INT_DATARDY))
408		return resume(dd);
409
410	dd->resume = resume;
411	atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
412	return -EINPROGRESS;
413}
414
415static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
416{
417	len &= block_size - 1;
418	return len ? block_size - len : 0;
419}
420
421static struct atmel_aes_dev *atmel_aes_find_dev(struct atmel_aes_base_ctx *ctx)
422{
423	struct atmel_aes_dev *aes_dd = NULL;
424	struct atmel_aes_dev *tmp;
425
426	spin_lock_bh(&atmel_aes.lock);
427	if (!ctx->dd) {
428		list_for_each_entry(tmp, &atmel_aes.dev_list, list) {
429			aes_dd = tmp;
430			break;
431		}
432		ctx->dd = aes_dd;
433	} else {
434		aes_dd = ctx->dd;
435	}
436
437	spin_unlock_bh(&atmel_aes.lock);
438
439	return aes_dd;
440}
441
442static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
443{
444	int err;
445
446	err = clk_enable(dd->iclk);
447	if (err)
448		return err;
449
450	atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
451	atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
452
453	return 0;
454}
455
456static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
457{
458	return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
459}
460
461static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
462{
463	int err;
464
465	err = atmel_aes_hw_init(dd);
466	if (err)
467		return err;
468
469	dd->hw_version = atmel_aes_get_version(dd);
470
471	dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
472
473	clk_disable(dd->iclk);
474	return 0;
475}
476
477static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
478				      const struct atmel_aes_reqctx *rctx)
479{
480	/* Clear all but persistent flags and set request flags. */
481	dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
482}
483
484static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
485{
486	return (dd->flags & AES_FLAGS_ENCRYPT);
487}
488
489#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
490static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
491#endif
492
493static void atmel_aes_set_iv_as_last_ciphertext_block(struct atmel_aes_dev *dd)
494{
495	struct skcipher_request *req = skcipher_request_cast(dd->areq);
496	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
497	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
498	unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
499
500	if (req->cryptlen < ivsize)
501		return;
502
503	if (rctx->mode & AES_FLAGS_ENCRYPT) {
504		scatterwalk_map_and_copy(req->iv, req->dst,
505					 req->cryptlen - ivsize, ivsize, 0);
506	} else {
507		if (req->src == req->dst)
508			memcpy(req->iv, rctx->lastc, ivsize);
509		else
510			scatterwalk_map_and_copy(req->iv, req->src,
511						 req->cryptlen - ivsize,
512						 ivsize, 0);
513	}
514}
515
516static inline struct atmel_aes_ctr_ctx *
517atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
518{
519	return container_of(ctx, struct atmel_aes_ctr_ctx, base);
520}
521
522static void atmel_aes_ctr_update_req_iv(struct atmel_aes_dev *dd)
523{
524	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
525	struct skcipher_request *req = skcipher_request_cast(dd->areq);
526	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
527	unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
528	int i;
529
530	/*
531	 * The CTR transfer works in fragments of data of maximum 1 MByte
532	 * because of the 16 bit CTR counter embedded in the IP. When reaching
533	 * here, ctx->blocks contains the number of blocks of the last fragment
534	 * processed, there is no need to explicit cast it to u16.
535	 */
536	for (i = 0; i < ctx->blocks; i++)
537		crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
538
539	memcpy(req->iv, ctx->iv, ivsize);
540}
541
542static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
543{
544	struct skcipher_request *req = skcipher_request_cast(dd->areq);
545	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
546
547#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
548	if (dd->ctx->is_aead)
549		atmel_aes_authenc_complete(dd, err);
550#endif
551
552	clk_disable(dd->iclk);
553	dd->flags &= ~AES_FLAGS_BUSY;
554
555	if (!err && !dd->ctx->is_aead &&
556	    (rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_ECB) {
557		if ((rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_CTR)
558			atmel_aes_set_iv_as_last_ciphertext_block(dd);
559		else
560			atmel_aes_ctr_update_req_iv(dd);
561	}
562
563	if (dd->is_async)
564		dd->areq->complete(dd->areq, err);
565
566	tasklet_schedule(&dd->queue_task);
567
568	return err;
569}
570
571static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
572				     const __be32 *iv, const u32 *key, int keylen)
573{
574	u32 valmr = 0;
575
576	/* MR register must be set before IV registers */
577	if (keylen == AES_KEYSIZE_128)
578		valmr |= AES_MR_KEYSIZE_128;
579	else if (keylen == AES_KEYSIZE_192)
580		valmr |= AES_MR_KEYSIZE_192;
581	else
582		valmr |= AES_MR_KEYSIZE_256;
583
584	valmr |= dd->flags & AES_FLAGS_MODE_MASK;
585
586	if (use_dma) {
587		valmr |= AES_MR_SMOD_IDATAR0;
588		if (dd->caps.has_dualbuff)
589			valmr |= AES_MR_DUALBUFF;
590	} else {
591		valmr |= AES_MR_SMOD_AUTO;
592	}
593
594	atmel_aes_write(dd, AES_MR, valmr);
595
596	atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
597
598	if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
599		atmel_aes_write_block(dd, AES_IVR(0), iv);
600}
601
602static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
603					const __be32 *iv)
604
605{
606	atmel_aes_write_ctrl_key(dd, use_dma, iv,
607				 dd->ctx->key, dd->ctx->keylen);
608}
609
610/* CPU transfer */
611
612static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
613{
614	int err = 0;
615	u32 isr;
616
617	for (;;) {
618		atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
619		dd->data += 4;
620		dd->datalen -= AES_BLOCK_SIZE;
621
622		if (dd->datalen < AES_BLOCK_SIZE)
623			break;
624
625		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
626
627		isr = atmel_aes_read(dd, AES_ISR);
628		if (!(isr & AES_INT_DATARDY)) {
629			dd->resume = atmel_aes_cpu_transfer;
630			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
631			return -EINPROGRESS;
632		}
633	}
634
635	if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
636				 dd->buf, dd->total))
637		err = -EINVAL;
638
639	if (err)
640		return atmel_aes_complete(dd, err);
641
642	return dd->cpu_transfer_complete(dd);
643}
644
645static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
646			       struct scatterlist *src,
647			       struct scatterlist *dst,
648			       size_t len,
649			       atmel_aes_fn_t resume)
650{
651	size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
652
653	if (unlikely(len == 0))
654		return -EINVAL;
655
656	sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
657
658	dd->total = len;
659	dd->real_dst = dst;
660	dd->cpu_transfer_complete = resume;
661	dd->datalen = len + padlen;
662	dd->data = (u32 *)dd->buf;
663	atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
664	return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
665}
666
667
668/* DMA transfer */
669
670static void atmel_aes_dma_callback(void *data);
671
672static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
673				    struct scatterlist *sg,
674				    size_t len,
675				    struct atmel_aes_dma *dma)
676{
677	int nents;
678
679	if (!IS_ALIGNED(len, dd->ctx->block_size))
680		return false;
681
682	for (nents = 0; sg; sg = sg_next(sg), ++nents) {
683		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
684			return false;
685
686		if (len <= sg->length) {
687			if (!IS_ALIGNED(len, dd->ctx->block_size))
688				return false;
689
690			dma->nents = nents+1;
691			dma->remainder = sg->length - len;
692			sg->length = len;
693			return true;
694		}
695
696		if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
697			return false;
698
699		len -= sg->length;
700	}
701
702	return false;
703}
704
705static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
706{
707	struct scatterlist *sg = dma->sg;
708	int nents = dma->nents;
709
710	if (!dma->remainder)
711		return;
712
713	while (--nents > 0 && sg)
714		sg = sg_next(sg);
715
716	if (!sg)
717		return;
718
719	sg->length += dma->remainder;
720}
721
722static int atmel_aes_map(struct atmel_aes_dev *dd,
723			 struct scatterlist *src,
724			 struct scatterlist *dst,
725			 size_t len)
726{
727	bool src_aligned, dst_aligned;
728	size_t padlen;
729
730	dd->total = len;
731	dd->src.sg = src;
732	dd->dst.sg = dst;
733	dd->real_dst = dst;
734
735	src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
736	if (src == dst)
737		dst_aligned = src_aligned;
738	else
739		dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
740	if (!src_aligned || !dst_aligned) {
741		padlen = atmel_aes_padlen(len, dd->ctx->block_size);
742
743		if (dd->buflen < len + padlen)
744			return -ENOMEM;
745
746		if (!src_aligned) {
747			sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
748			dd->src.sg = &dd->aligned_sg;
749			dd->src.nents = 1;
750			dd->src.remainder = 0;
751		}
752
753		if (!dst_aligned) {
754			dd->dst.sg = &dd->aligned_sg;
755			dd->dst.nents = 1;
756			dd->dst.remainder = 0;
757		}
758
759		sg_init_table(&dd->aligned_sg, 1);
760		sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
761	}
762
763	if (dd->src.sg == dd->dst.sg) {
764		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
765					    DMA_BIDIRECTIONAL);
766		dd->dst.sg_len = dd->src.sg_len;
767		if (!dd->src.sg_len)
768			return -EFAULT;
769	} else {
770		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
771					    DMA_TO_DEVICE);
772		if (!dd->src.sg_len)
773			return -EFAULT;
774
775		dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
776					    DMA_FROM_DEVICE);
777		if (!dd->dst.sg_len) {
778			dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
779				     DMA_TO_DEVICE);
780			return -EFAULT;
781		}
782	}
783
784	return 0;
785}
786
787static void atmel_aes_unmap(struct atmel_aes_dev *dd)
788{
789	if (dd->src.sg == dd->dst.sg) {
790		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
791			     DMA_BIDIRECTIONAL);
792
793		if (dd->src.sg != &dd->aligned_sg)
794			atmel_aes_restore_sg(&dd->src);
795	} else {
796		dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
797			     DMA_FROM_DEVICE);
798
799		if (dd->dst.sg != &dd->aligned_sg)
800			atmel_aes_restore_sg(&dd->dst);
801
802		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
803			     DMA_TO_DEVICE);
804
805		if (dd->src.sg != &dd->aligned_sg)
806			atmel_aes_restore_sg(&dd->src);
807	}
808
809	if (dd->dst.sg == &dd->aligned_sg)
810		sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
811				    dd->buf, dd->total);
812}
813
814static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
815					enum dma_slave_buswidth addr_width,
816					enum dma_transfer_direction dir,
817					u32 maxburst)
818{
819	struct dma_async_tx_descriptor *desc;
820	struct dma_slave_config config;
821	dma_async_tx_callback callback;
822	struct atmel_aes_dma *dma;
823	int err;
824
825	memset(&config, 0, sizeof(config));
826	config.src_addr_width = addr_width;
827	config.dst_addr_width = addr_width;
828	config.src_maxburst = maxburst;
829	config.dst_maxburst = maxburst;
830
831	switch (dir) {
832	case DMA_MEM_TO_DEV:
833		dma = &dd->src;
834		callback = NULL;
835		config.dst_addr = dd->phys_base + AES_IDATAR(0);
836		break;
837
838	case DMA_DEV_TO_MEM:
839		dma = &dd->dst;
840		callback = atmel_aes_dma_callback;
841		config.src_addr = dd->phys_base + AES_ODATAR(0);
842		break;
843
844	default:
845		return -EINVAL;
846	}
847
848	err = dmaengine_slave_config(dma->chan, &config);
849	if (err)
850		return err;
851
852	desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
853				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
854	if (!desc)
855		return -ENOMEM;
856
857	desc->callback = callback;
858	desc->callback_param = dd;
859	dmaengine_submit(desc);
860	dma_async_issue_pending(dma->chan);
861
862	return 0;
863}
864
865static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
866			       struct scatterlist *src,
867			       struct scatterlist *dst,
868			       size_t len,
869			       atmel_aes_fn_t resume)
870{
871	enum dma_slave_buswidth addr_width;
872	u32 maxburst;
873	int err;
874
875	switch (dd->ctx->block_size) {
876	case CFB8_BLOCK_SIZE:
877		addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
878		maxburst = 1;
879		break;
880
881	case CFB16_BLOCK_SIZE:
882		addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
883		maxburst = 1;
884		break;
885
886	case CFB32_BLOCK_SIZE:
887	case CFB64_BLOCK_SIZE:
888		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
889		maxburst = 1;
890		break;
891
892	case AES_BLOCK_SIZE:
893		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
894		maxburst = dd->caps.max_burst_size;
895		break;
896
897	default:
898		err = -EINVAL;
899		goto exit;
900	}
901
902	err = atmel_aes_map(dd, src, dst, len);
903	if (err)
904		goto exit;
905
906	dd->resume = resume;
907
908	/* Set output DMA transfer first */
909	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
910					   maxburst);
911	if (err)
912		goto unmap;
913
914	/* Then set input DMA transfer */
915	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
916					   maxburst);
917	if (err)
918		goto output_transfer_stop;
919
920	return -EINPROGRESS;
921
922output_transfer_stop:
923	dmaengine_terminate_sync(dd->dst.chan);
924unmap:
925	atmel_aes_unmap(dd);
926exit:
927	return atmel_aes_complete(dd, err);
928}
929
930static void atmel_aes_dma_callback(void *data)
931{
932	struct atmel_aes_dev *dd = data;
933
934	atmel_aes_unmap(dd);
935	dd->is_async = true;
936	(void)dd->resume(dd);
937}
938
939static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
940				  struct crypto_async_request *new_areq)
941{
942	struct crypto_async_request *areq, *backlog;
943	struct atmel_aes_base_ctx *ctx;
944	unsigned long flags;
945	bool start_async;
946	int err, ret = 0;
947
948	spin_lock_irqsave(&dd->lock, flags);
949	if (new_areq)
950		ret = crypto_enqueue_request(&dd->queue, new_areq);
951	if (dd->flags & AES_FLAGS_BUSY) {
952		spin_unlock_irqrestore(&dd->lock, flags);
953		return ret;
954	}
955	backlog = crypto_get_backlog(&dd->queue);
956	areq = crypto_dequeue_request(&dd->queue);
957	if (areq)
958		dd->flags |= AES_FLAGS_BUSY;
959	spin_unlock_irqrestore(&dd->lock, flags);
960
961	if (!areq)
962		return ret;
963
964	if (backlog)
965		backlog->complete(backlog, -EINPROGRESS);
966
967	ctx = crypto_tfm_ctx(areq->tfm);
968
969	dd->areq = areq;
970	dd->ctx = ctx;
971	start_async = (areq != new_areq);
972	dd->is_async = start_async;
973
974	/* WARNING: ctx->start() MAY change dd->is_async. */
975	err = ctx->start(dd);
976	return (start_async) ? ret : err;
977}
978
979
980/* AES async block ciphers */
981
982static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
983{
984	return atmel_aes_complete(dd, 0);
985}
986
987static int atmel_aes_start(struct atmel_aes_dev *dd)
988{
989	struct skcipher_request *req = skcipher_request_cast(dd->areq);
990	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
991	bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD ||
992			dd->ctx->block_size != AES_BLOCK_SIZE);
993	int err;
994
995	atmel_aes_set_mode(dd, rctx);
996
997	err = atmel_aes_hw_init(dd);
998	if (err)
999		return atmel_aes_complete(dd, err);
1000
1001	atmel_aes_write_ctrl(dd, use_dma, (void *)req->iv);
1002	if (use_dma)
1003		return atmel_aes_dma_start(dd, req->src, req->dst,
1004					   req->cryptlen,
1005					   atmel_aes_transfer_complete);
1006
1007	return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1008				   atmel_aes_transfer_complete);
1009}
1010
1011static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
1012{
1013	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1014	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1015	struct scatterlist *src, *dst;
1016	size_t datalen;
1017	u32 ctr;
1018	u16 start, end;
1019	bool use_dma, fragmented = false;
1020
1021	/* Check for transfer completion. */
1022	ctx->offset += dd->total;
1023	if (ctx->offset >= req->cryptlen)
1024		return atmel_aes_transfer_complete(dd);
1025
1026	/* Compute data length. */
1027	datalen = req->cryptlen - ctx->offset;
1028	ctx->blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
1029	ctr = be32_to_cpu(ctx->iv[3]);
1030
1031	/* Check 16bit counter overflow. */
1032	start = ctr & 0xffff;
1033	end = start + ctx->blocks - 1;
1034
1035	if (ctx->blocks >> 16 || end < start) {
1036		ctr |= 0xffff;
1037		datalen = AES_BLOCK_SIZE * (0x10000 - start);
1038		fragmented = true;
1039	}
1040
1041	use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
1042
1043	/* Jump to offset. */
1044	src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
1045	dst = ((req->src == req->dst) ? src :
1046	       scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
1047
1048	/* Configure hardware. */
1049	atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
1050	if (unlikely(fragmented)) {
1051		/*
1052		 * Increment the counter manually to cope with the hardware
1053		 * counter overflow.
1054		 */
1055		ctx->iv[3] = cpu_to_be32(ctr);
1056		crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
1057	}
1058
1059	if (use_dma)
1060		return atmel_aes_dma_start(dd, src, dst, datalen,
1061					   atmel_aes_ctr_transfer);
1062
1063	return atmel_aes_cpu_start(dd, src, dst, datalen,
1064				   atmel_aes_ctr_transfer);
1065}
1066
1067static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
1068{
1069	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1070	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1071	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1072	int err;
1073
1074	atmel_aes_set_mode(dd, rctx);
1075
1076	err = atmel_aes_hw_init(dd);
1077	if (err)
1078		return atmel_aes_complete(dd, err);
1079
1080	memcpy(ctx->iv, req->iv, AES_BLOCK_SIZE);
1081	ctx->offset = 0;
1082	dd->total = 0;
1083	return atmel_aes_ctr_transfer(dd);
1084}
1085
1086static int atmel_aes_crypt(struct skcipher_request *req, unsigned long mode)
1087{
1088	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
1089	struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(skcipher);
1090	struct atmel_aes_reqctx *rctx;
1091	struct atmel_aes_dev *dd;
1092
1093	switch (mode & AES_FLAGS_OPMODE_MASK) {
1094	case AES_FLAGS_CFB8:
1095		ctx->block_size = CFB8_BLOCK_SIZE;
1096		break;
1097
1098	case AES_FLAGS_CFB16:
1099		ctx->block_size = CFB16_BLOCK_SIZE;
1100		break;
1101
1102	case AES_FLAGS_CFB32:
1103		ctx->block_size = CFB32_BLOCK_SIZE;
1104		break;
1105
1106	case AES_FLAGS_CFB64:
1107		ctx->block_size = CFB64_BLOCK_SIZE;
1108		break;
1109
1110	default:
1111		ctx->block_size = AES_BLOCK_SIZE;
1112		break;
1113	}
1114	ctx->is_aead = false;
1115
1116	dd = atmel_aes_find_dev(ctx);
1117	if (!dd)
1118		return -ENODEV;
1119
1120	rctx = skcipher_request_ctx(req);
1121	rctx->mode = mode;
1122
1123	if ((mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_ECB &&
1124	    !(mode & AES_FLAGS_ENCRYPT) && req->src == req->dst) {
1125		unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
1126
1127		if (req->cryptlen >= ivsize)
1128			scatterwalk_map_and_copy(rctx->lastc, req->src,
1129						 req->cryptlen - ivsize,
1130						 ivsize, 0);
1131	}
1132
1133	return atmel_aes_handle_queue(dd, &req->base);
1134}
1135
1136static int atmel_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
1137			   unsigned int keylen)
1138{
1139	struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(tfm);
1140
1141	if (keylen != AES_KEYSIZE_128 &&
1142	    keylen != AES_KEYSIZE_192 &&
1143	    keylen != AES_KEYSIZE_256)
1144		return -EINVAL;
1145
1146	memcpy(ctx->key, key, keylen);
1147	ctx->keylen = keylen;
1148
1149	return 0;
1150}
1151
1152static int atmel_aes_ecb_encrypt(struct skcipher_request *req)
1153{
1154	return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1155}
1156
1157static int atmel_aes_ecb_decrypt(struct skcipher_request *req)
1158{
1159	return atmel_aes_crypt(req, AES_FLAGS_ECB);
1160}
1161
1162static int atmel_aes_cbc_encrypt(struct skcipher_request *req)
1163{
1164	return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1165}
1166
1167static int atmel_aes_cbc_decrypt(struct skcipher_request *req)
1168{
1169	return atmel_aes_crypt(req, AES_FLAGS_CBC);
1170}
1171
1172static int atmel_aes_ofb_encrypt(struct skcipher_request *req)
1173{
1174	return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
1175}
1176
1177static int atmel_aes_ofb_decrypt(struct skcipher_request *req)
1178{
1179	return atmel_aes_crypt(req, AES_FLAGS_OFB);
1180}
1181
1182static int atmel_aes_cfb_encrypt(struct skcipher_request *req)
1183{
1184	return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
1185}
1186
1187static int atmel_aes_cfb_decrypt(struct skcipher_request *req)
1188{
1189	return atmel_aes_crypt(req, AES_FLAGS_CFB128);
1190}
1191
1192static int atmel_aes_cfb64_encrypt(struct skcipher_request *req)
1193{
1194	return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
1195}
1196
1197static int atmel_aes_cfb64_decrypt(struct skcipher_request *req)
1198{
1199	return atmel_aes_crypt(req, AES_FLAGS_CFB64);
1200}
1201
1202static int atmel_aes_cfb32_encrypt(struct skcipher_request *req)
1203{
1204	return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
1205}
1206
1207static int atmel_aes_cfb32_decrypt(struct skcipher_request *req)
1208{
1209	return atmel_aes_crypt(req, AES_FLAGS_CFB32);
1210}
1211
1212static int atmel_aes_cfb16_encrypt(struct skcipher_request *req)
1213{
1214	return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
1215}
1216
1217static int atmel_aes_cfb16_decrypt(struct skcipher_request *req)
1218{
1219	return atmel_aes_crypt(req, AES_FLAGS_CFB16);
1220}
1221
1222static int atmel_aes_cfb8_encrypt(struct skcipher_request *req)
1223{
1224	return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
1225}
1226
1227static int atmel_aes_cfb8_decrypt(struct skcipher_request *req)
1228{
1229	return atmel_aes_crypt(req, AES_FLAGS_CFB8);
1230}
1231
1232static int atmel_aes_ctr_encrypt(struct skcipher_request *req)
1233{
1234	return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1235}
1236
1237static int atmel_aes_ctr_decrypt(struct skcipher_request *req)
1238{
1239	return atmel_aes_crypt(req, AES_FLAGS_CTR);
1240}
1241
1242static int atmel_aes_init_tfm(struct crypto_skcipher *tfm)
1243{
1244	struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1245
1246	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1247	ctx->base.start = atmel_aes_start;
1248
1249	return 0;
1250}
1251
1252static int atmel_aes_ctr_init_tfm(struct crypto_skcipher *tfm)
1253{
1254	struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1255
1256	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1257	ctx->base.start = atmel_aes_ctr_start;
1258
1259	return 0;
1260}
1261
1262static struct skcipher_alg aes_algs[] = {
1263{
1264	.base.cra_name		= "ecb(aes)",
1265	.base.cra_driver_name	= "atmel-ecb-aes",
1266	.base.cra_blocksize	= AES_BLOCK_SIZE,
1267	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1268
1269	.init			= atmel_aes_init_tfm,
1270	.min_keysize		= AES_MIN_KEY_SIZE,
1271	.max_keysize		= AES_MAX_KEY_SIZE,
1272	.setkey			= atmel_aes_setkey,
1273	.encrypt		= atmel_aes_ecb_encrypt,
1274	.decrypt		= atmel_aes_ecb_decrypt,
1275},
1276{
1277	.base.cra_name		= "cbc(aes)",
1278	.base.cra_driver_name	= "atmel-cbc-aes",
1279	.base.cra_blocksize	= AES_BLOCK_SIZE,
1280	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1281
1282	.init			= atmel_aes_init_tfm,
1283	.min_keysize		= AES_MIN_KEY_SIZE,
1284	.max_keysize		= AES_MAX_KEY_SIZE,
1285	.setkey			= atmel_aes_setkey,
1286	.encrypt		= atmel_aes_cbc_encrypt,
1287	.decrypt		= atmel_aes_cbc_decrypt,
1288	.ivsize			= AES_BLOCK_SIZE,
1289},
1290{
1291	.base.cra_name		= "ofb(aes)",
1292	.base.cra_driver_name	= "atmel-ofb-aes",
1293	.base.cra_blocksize	= AES_BLOCK_SIZE,
1294	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1295
1296	.init			= atmel_aes_init_tfm,
1297	.min_keysize		= AES_MIN_KEY_SIZE,
1298	.max_keysize		= AES_MAX_KEY_SIZE,
1299	.setkey			= atmel_aes_setkey,
1300	.encrypt		= atmel_aes_ofb_encrypt,
1301	.decrypt		= atmel_aes_ofb_decrypt,
1302	.ivsize			= AES_BLOCK_SIZE,
1303},
1304{
1305	.base.cra_name		= "cfb(aes)",
1306	.base.cra_driver_name	= "atmel-cfb-aes",
1307	.base.cra_blocksize	= AES_BLOCK_SIZE,
1308	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1309
1310	.init			= atmel_aes_init_tfm,
1311	.min_keysize		= AES_MIN_KEY_SIZE,
1312	.max_keysize		= AES_MAX_KEY_SIZE,
1313	.setkey			= atmel_aes_setkey,
1314	.encrypt		= atmel_aes_cfb_encrypt,
1315	.decrypt		= atmel_aes_cfb_decrypt,
1316	.ivsize			= AES_BLOCK_SIZE,
1317},
1318{
1319	.base.cra_name		= "cfb32(aes)",
1320	.base.cra_driver_name	= "atmel-cfb32-aes",
1321	.base.cra_blocksize	= CFB32_BLOCK_SIZE,
1322	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1323
1324	.init			= atmel_aes_init_tfm,
1325	.min_keysize		= AES_MIN_KEY_SIZE,
1326	.max_keysize		= AES_MAX_KEY_SIZE,
1327	.setkey			= atmel_aes_setkey,
1328	.encrypt		= atmel_aes_cfb32_encrypt,
1329	.decrypt		= atmel_aes_cfb32_decrypt,
1330	.ivsize			= AES_BLOCK_SIZE,
1331},
1332{
1333	.base.cra_name		= "cfb16(aes)",
1334	.base.cra_driver_name	= "atmel-cfb16-aes",
1335	.base.cra_blocksize	= CFB16_BLOCK_SIZE,
1336	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1337
1338	.init			= atmel_aes_init_tfm,
1339	.min_keysize		= AES_MIN_KEY_SIZE,
1340	.max_keysize		= AES_MAX_KEY_SIZE,
1341	.setkey			= atmel_aes_setkey,
1342	.encrypt		= atmel_aes_cfb16_encrypt,
1343	.decrypt		= atmel_aes_cfb16_decrypt,
1344	.ivsize			= AES_BLOCK_SIZE,
1345},
1346{
1347	.base.cra_name		= "cfb8(aes)",
1348	.base.cra_driver_name	= "atmel-cfb8-aes",
1349	.base.cra_blocksize	= CFB8_BLOCK_SIZE,
1350	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1351
1352	.init			= atmel_aes_init_tfm,
1353	.min_keysize		= AES_MIN_KEY_SIZE,
1354	.max_keysize		= AES_MAX_KEY_SIZE,
1355	.setkey			= atmel_aes_setkey,
1356	.encrypt		= atmel_aes_cfb8_encrypt,
1357	.decrypt		= atmel_aes_cfb8_decrypt,
1358	.ivsize			= AES_BLOCK_SIZE,
1359},
1360{
1361	.base.cra_name		= "ctr(aes)",
1362	.base.cra_driver_name	= "atmel-ctr-aes",
1363	.base.cra_blocksize	= 1,
1364	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctr_ctx),
1365
1366	.init			= atmel_aes_ctr_init_tfm,
1367	.min_keysize		= AES_MIN_KEY_SIZE,
1368	.max_keysize		= AES_MAX_KEY_SIZE,
1369	.setkey			= atmel_aes_setkey,
1370	.encrypt		= atmel_aes_ctr_encrypt,
1371	.decrypt		= atmel_aes_ctr_decrypt,
1372	.ivsize			= AES_BLOCK_SIZE,
1373},
1374};
1375
1376static struct skcipher_alg aes_cfb64_alg = {
1377	.base.cra_name		= "cfb64(aes)",
1378	.base.cra_driver_name	= "atmel-cfb64-aes",
1379	.base.cra_blocksize	= CFB64_BLOCK_SIZE,
1380	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1381
1382	.init			= atmel_aes_init_tfm,
1383	.min_keysize		= AES_MIN_KEY_SIZE,
1384	.max_keysize		= AES_MAX_KEY_SIZE,
1385	.setkey			= atmel_aes_setkey,
1386	.encrypt		= atmel_aes_cfb64_encrypt,
1387	.decrypt		= atmel_aes_cfb64_decrypt,
1388	.ivsize			= AES_BLOCK_SIZE,
1389};
1390
1391
1392/* gcm aead functions */
1393
1394static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1395			       const u32 *data, size_t datalen,
1396			       const __be32 *ghash_in, __be32 *ghash_out,
1397			       atmel_aes_fn_t resume);
1398static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1399static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1400
1401static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1402static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1403static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1404static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1405static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1406static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1407static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1408
1409static inline struct atmel_aes_gcm_ctx *
1410atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1411{
1412	return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1413}
1414
1415static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1416			       const u32 *data, size_t datalen,
1417			       const __be32 *ghash_in, __be32 *ghash_out,
1418			       atmel_aes_fn_t resume)
1419{
1420	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1421
1422	dd->data = (u32 *)data;
1423	dd->datalen = datalen;
1424	ctx->ghash_in = ghash_in;
1425	ctx->ghash_out = ghash_out;
1426	ctx->ghash_resume = resume;
1427
1428	atmel_aes_write_ctrl(dd, false, NULL);
1429	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1430}
1431
1432static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1433{
1434	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1435
1436	/* Set the data length. */
1437	atmel_aes_write(dd, AES_AADLENR, dd->total);
1438	atmel_aes_write(dd, AES_CLENR, 0);
1439
1440	/* If needed, overwrite the GCM Intermediate Hash Word Registers */
1441	if (ctx->ghash_in)
1442		atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1443
1444	return atmel_aes_gcm_ghash_finalize(dd);
1445}
1446
1447static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1448{
1449	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1450	u32 isr;
1451
1452	/* Write data into the Input Data Registers. */
1453	while (dd->datalen > 0) {
1454		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1455		dd->data += 4;
1456		dd->datalen -= AES_BLOCK_SIZE;
1457
1458		isr = atmel_aes_read(dd, AES_ISR);
1459		if (!(isr & AES_INT_DATARDY)) {
1460			dd->resume = atmel_aes_gcm_ghash_finalize;
1461			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1462			return -EINPROGRESS;
1463		}
1464	}
1465
1466	/* Read the computed hash from GHASHRx. */
1467	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1468
1469	return ctx->ghash_resume(dd);
1470}
1471
1472
1473static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1474{
1475	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1476	struct aead_request *req = aead_request_cast(dd->areq);
1477	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1478	struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1479	size_t ivsize = crypto_aead_ivsize(tfm);
1480	size_t datalen, padlen;
1481	const void *iv = req->iv;
1482	u8 *data = dd->buf;
1483	int err;
1484
1485	atmel_aes_set_mode(dd, rctx);
1486
1487	err = atmel_aes_hw_init(dd);
1488	if (err)
1489		return atmel_aes_complete(dd, err);
1490
1491	if (likely(ivsize == GCM_AES_IV_SIZE)) {
1492		memcpy(ctx->j0, iv, ivsize);
1493		ctx->j0[3] = cpu_to_be32(1);
1494		return atmel_aes_gcm_process(dd);
1495	}
1496
1497	padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1498	datalen = ivsize + padlen + AES_BLOCK_SIZE;
1499	if (datalen > dd->buflen)
1500		return atmel_aes_complete(dd, -EINVAL);
1501
1502	memcpy(data, iv, ivsize);
1503	memset(data + ivsize, 0, padlen + sizeof(u64));
1504	((__be64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1505
1506	return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1507				   NULL, ctx->j0, atmel_aes_gcm_process);
1508}
1509
1510static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1511{
1512	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1513	struct aead_request *req = aead_request_cast(dd->areq);
1514	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1515	bool enc = atmel_aes_is_encrypt(dd);
1516	u32 authsize;
1517
1518	/* Compute text length. */
1519	authsize = crypto_aead_authsize(tfm);
1520	ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1521
1522	/*
1523	 * According to tcrypt test suite, the GCM Automatic Tag Generation
1524	 * fails when both the message and its associated data are empty.
1525	 */
1526	if (likely(req->assoclen != 0 || ctx->textlen != 0))
1527		dd->flags |= AES_FLAGS_GTAGEN;
1528
1529	atmel_aes_write_ctrl(dd, false, NULL);
1530	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1531}
1532
1533static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1534{
1535	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1536	struct aead_request *req = aead_request_cast(dd->areq);
1537	__be32 j0_lsw, *j0 = ctx->j0;
1538	size_t padlen;
1539
1540	/* Write incr32(J0) into IV. */
1541	j0_lsw = j0[3];
1542	be32_add_cpu(&j0[3], 1);
1543	atmel_aes_write_block(dd, AES_IVR(0), j0);
1544	j0[3] = j0_lsw;
1545
1546	/* Set aad and text lengths. */
1547	atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1548	atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1549
1550	/* Check whether AAD are present. */
1551	if (unlikely(req->assoclen == 0)) {
1552		dd->datalen = 0;
1553		return atmel_aes_gcm_data(dd);
1554	}
1555
1556	/* Copy assoc data and add padding. */
1557	padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1558	if (unlikely(req->assoclen + padlen > dd->buflen))
1559		return atmel_aes_complete(dd, -EINVAL);
1560	sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1561
1562	/* Write assoc data into the Input Data register. */
1563	dd->data = (u32 *)dd->buf;
1564	dd->datalen = req->assoclen + padlen;
1565	return atmel_aes_gcm_data(dd);
1566}
1567
1568static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1569{
1570	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1571	struct aead_request *req = aead_request_cast(dd->areq);
1572	bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1573	struct scatterlist *src, *dst;
1574	u32 isr, mr;
1575
1576	/* Write AAD first. */
1577	while (dd->datalen > 0) {
1578		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1579		dd->data += 4;
1580		dd->datalen -= AES_BLOCK_SIZE;
1581
1582		isr = atmel_aes_read(dd, AES_ISR);
1583		if (!(isr & AES_INT_DATARDY)) {
1584			dd->resume = atmel_aes_gcm_data;
1585			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1586			return -EINPROGRESS;
1587		}
1588	}
1589
1590	/* GMAC only. */
1591	if (unlikely(ctx->textlen == 0))
1592		return atmel_aes_gcm_tag_init(dd);
1593
1594	/* Prepare src and dst scatter lists to transfer cipher/plain texts */
1595	src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1596	dst = ((req->src == req->dst) ? src :
1597	       scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1598
1599	if (use_dma) {
1600		/* Update the Mode Register for DMA transfers. */
1601		mr = atmel_aes_read(dd, AES_MR);
1602		mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1603		mr |= AES_MR_SMOD_IDATAR0;
1604		if (dd->caps.has_dualbuff)
1605			mr |= AES_MR_DUALBUFF;
1606		atmel_aes_write(dd, AES_MR, mr);
1607
1608		return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1609					   atmel_aes_gcm_tag_init);
1610	}
1611
1612	return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1613				   atmel_aes_gcm_tag_init);
1614}
1615
1616static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1617{
1618	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1619	struct aead_request *req = aead_request_cast(dd->areq);
1620	__be64 *data = dd->buf;
1621
1622	if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1623		if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1624			dd->resume = atmel_aes_gcm_tag_init;
1625			atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1626			return -EINPROGRESS;
1627		}
1628
1629		return atmel_aes_gcm_finalize(dd);
1630	}
1631
1632	/* Read the GCM Intermediate Hash Word Registers. */
1633	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1634
1635	data[0] = cpu_to_be64(req->assoclen * 8);
1636	data[1] = cpu_to_be64(ctx->textlen * 8);
1637
1638	return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1639				   ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1640}
1641
1642static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1643{
1644	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1645	unsigned long flags;
1646
1647	/*
1648	 * Change mode to CTR to complete the tag generation.
1649	 * Use J0 as Initialization Vector.
1650	 */
1651	flags = dd->flags;
1652	dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1653	dd->flags |= AES_FLAGS_CTR;
1654	atmel_aes_write_ctrl(dd, false, ctx->j0);
1655	dd->flags = flags;
1656
1657	atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1658	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1659}
1660
1661static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1662{
1663	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1664	struct aead_request *req = aead_request_cast(dd->areq);
1665	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1666	bool enc = atmel_aes_is_encrypt(dd);
1667	u32 offset, authsize, itag[4], *otag = ctx->tag;
1668	int err;
1669
1670	/* Read the computed tag. */
1671	if (likely(dd->flags & AES_FLAGS_GTAGEN))
1672		atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1673	else
1674		atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1675
1676	offset = req->assoclen + ctx->textlen;
1677	authsize = crypto_aead_authsize(tfm);
1678	if (enc) {
1679		scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1680		err = 0;
1681	} else {
1682		scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1683		err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1684	}
1685
1686	return atmel_aes_complete(dd, err);
1687}
1688
1689static int atmel_aes_gcm_crypt(struct aead_request *req,
1690			       unsigned long mode)
1691{
1692	struct atmel_aes_base_ctx *ctx;
1693	struct atmel_aes_reqctx *rctx;
1694	struct atmel_aes_dev *dd;
1695
1696	ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1697	ctx->block_size = AES_BLOCK_SIZE;
1698	ctx->is_aead = true;
1699
1700	dd = atmel_aes_find_dev(ctx);
1701	if (!dd)
1702		return -ENODEV;
1703
1704	rctx = aead_request_ctx(req);
1705	rctx->mode = AES_FLAGS_GCM | mode;
1706
1707	return atmel_aes_handle_queue(dd, &req->base);
1708}
1709
1710static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1711				unsigned int keylen)
1712{
1713	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1714
1715	if (keylen != AES_KEYSIZE_256 &&
1716	    keylen != AES_KEYSIZE_192 &&
1717	    keylen != AES_KEYSIZE_128)
1718		return -EINVAL;
1719
1720	memcpy(ctx->key, key, keylen);
1721	ctx->keylen = keylen;
1722
1723	return 0;
1724}
1725
1726static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1727				     unsigned int authsize)
1728{
1729	return crypto_gcm_check_authsize(authsize);
1730}
1731
1732static int atmel_aes_gcm_encrypt(struct aead_request *req)
1733{
1734	return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1735}
1736
1737static int atmel_aes_gcm_decrypt(struct aead_request *req)
1738{
1739	return atmel_aes_gcm_crypt(req, 0);
1740}
1741
1742static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1743{
1744	struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
1745
1746	crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1747	ctx->base.start = atmel_aes_gcm_start;
1748
1749	return 0;
1750}
1751
1752static struct aead_alg aes_gcm_alg = {
1753	.setkey		= atmel_aes_gcm_setkey,
1754	.setauthsize	= atmel_aes_gcm_setauthsize,
1755	.encrypt	= atmel_aes_gcm_encrypt,
1756	.decrypt	= atmel_aes_gcm_decrypt,
1757	.init		= atmel_aes_gcm_init,
1758	.ivsize		= GCM_AES_IV_SIZE,
1759	.maxauthsize	= AES_BLOCK_SIZE,
1760
1761	.base = {
1762		.cra_name		= "gcm(aes)",
1763		.cra_driver_name	= "atmel-gcm-aes",
1764		.cra_blocksize		= 1,
1765		.cra_ctxsize		= sizeof(struct atmel_aes_gcm_ctx),
1766	},
1767};
1768
1769
1770/* xts functions */
1771
1772static inline struct atmel_aes_xts_ctx *
1773atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
1774{
1775	return container_of(ctx, struct atmel_aes_xts_ctx, base);
1776}
1777
1778static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
1779
1780static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
1781{
1782	struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
1783	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1784	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1785	unsigned long flags;
1786	int err;
1787
1788	atmel_aes_set_mode(dd, rctx);
1789
1790	err = atmel_aes_hw_init(dd);
1791	if (err)
1792		return atmel_aes_complete(dd, err);
1793
1794	/* Compute the tweak value from req->iv with ecb(aes). */
1795	flags = dd->flags;
1796	dd->flags &= ~AES_FLAGS_MODE_MASK;
1797	dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1798	atmel_aes_write_ctrl_key(dd, false, NULL,
1799				 ctx->key2, ctx->base.keylen);
1800	dd->flags = flags;
1801
1802	atmel_aes_write_block(dd, AES_IDATAR(0), req->iv);
1803	return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
1804}
1805
1806static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
1807{
1808	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1809	bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD);
1810	u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
1811	static const __le32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
1812	u8 *tweak_bytes = (u8 *)tweak;
1813	int i;
1814
1815	/* Read the computed ciphered tweak value. */
1816	atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
1817	/*
1818	 * Hardware quirk:
1819	 * the order of the ciphered tweak bytes need to be reversed before
1820	 * writing them into the ODATARx registers.
1821	 */
1822	for (i = 0; i < AES_BLOCK_SIZE/2; ++i) {
1823		u8 tmp = tweak_bytes[AES_BLOCK_SIZE - 1 - i];
1824
1825		tweak_bytes[AES_BLOCK_SIZE - 1 - i] = tweak_bytes[i];
1826		tweak_bytes[i] = tmp;
1827	}
1828
1829	/* Process the data. */
1830	atmel_aes_write_ctrl(dd, use_dma, NULL);
1831	atmel_aes_write_block(dd, AES_TWR(0), tweak);
1832	atmel_aes_write_block(dd, AES_ALPHAR(0), one);
1833	if (use_dma)
1834		return atmel_aes_dma_start(dd, req->src, req->dst,
1835					   req->cryptlen,
1836					   atmel_aes_transfer_complete);
1837
1838	return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1839				   atmel_aes_transfer_complete);
1840}
1841
1842static int atmel_aes_xts_setkey(struct crypto_skcipher *tfm, const u8 *key,
1843				unsigned int keylen)
1844{
1845	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1846	int err;
1847
1848	err = xts_check_key(crypto_skcipher_tfm(tfm), key, keylen);
1849	if (err)
1850		return err;
1851
1852	memcpy(ctx->base.key, key, keylen/2);
1853	memcpy(ctx->key2, key + keylen/2, keylen/2);
1854	ctx->base.keylen = keylen/2;
1855
1856	return 0;
1857}
1858
1859static int atmel_aes_xts_encrypt(struct skcipher_request *req)
1860{
1861	return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
1862}
1863
1864static int atmel_aes_xts_decrypt(struct skcipher_request *req)
1865{
1866	return atmel_aes_crypt(req, AES_FLAGS_XTS);
1867}
1868
1869static int atmel_aes_xts_init_tfm(struct crypto_skcipher *tfm)
1870{
1871	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1872
1873	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1874	ctx->base.start = atmel_aes_xts_start;
1875
1876	return 0;
1877}
1878
1879static struct skcipher_alg aes_xts_alg = {
1880	.base.cra_name		= "xts(aes)",
1881	.base.cra_driver_name	= "atmel-xts-aes",
1882	.base.cra_blocksize	= AES_BLOCK_SIZE,
1883	.base.cra_ctxsize	= sizeof(struct atmel_aes_xts_ctx),
1884
1885	.min_keysize		= 2 * AES_MIN_KEY_SIZE,
1886	.max_keysize		= 2 * AES_MAX_KEY_SIZE,
1887	.ivsize			= AES_BLOCK_SIZE,
1888	.setkey			= atmel_aes_xts_setkey,
1889	.encrypt		= atmel_aes_xts_encrypt,
1890	.decrypt		= atmel_aes_xts_decrypt,
1891	.init			= atmel_aes_xts_init_tfm,
1892};
1893
1894#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
1895/* authenc aead functions */
1896
1897static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
1898static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1899				  bool is_async);
1900static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1901				      bool is_async);
1902static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
1903static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1904				   bool is_async);
1905
1906static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
1907{
1908	struct aead_request *req = aead_request_cast(dd->areq);
1909	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1910
1911	if (err && (dd->flags & AES_FLAGS_OWN_SHA))
1912		atmel_sha_authenc_abort(&rctx->auth_req);
1913	dd->flags &= ~AES_FLAGS_OWN_SHA;
1914}
1915
1916static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
1917{
1918	struct aead_request *req = aead_request_cast(dd->areq);
1919	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1920	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1921	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1922	int err;
1923
1924	atmel_aes_set_mode(dd, &rctx->base);
1925
1926	err = atmel_aes_hw_init(dd);
1927	if (err)
1928		return atmel_aes_complete(dd, err);
1929
1930	return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
1931					  atmel_aes_authenc_init, dd);
1932}
1933
1934static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1935				  bool is_async)
1936{
1937	struct aead_request *req = aead_request_cast(dd->areq);
1938	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1939
1940	if (is_async)
1941		dd->is_async = true;
1942	if (err)
1943		return atmel_aes_complete(dd, err);
1944
1945	/* If here, we've got the ownership of the SHA device. */
1946	dd->flags |= AES_FLAGS_OWN_SHA;
1947
1948	/* Configure the SHA device. */
1949	return atmel_sha_authenc_init(&rctx->auth_req,
1950				      req->src, req->assoclen,
1951				      rctx->textlen,
1952				      atmel_aes_authenc_transfer, dd);
1953}
1954
1955static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1956				      bool is_async)
1957{
1958	struct aead_request *req = aead_request_cast(dd->areq);
1959	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1960	bool enc = atmel_aes_is_encrypt(dd);
1961	struct scatterlist *src, *dst;
1962	__be32 iv[AES_BLOCK_SIZE / sizeof(u32)];
1963	u32 emr;
1964
1965	if (is_async)
1966		dd->is_async = true;
1967	if (err)
1968		return atmel_aes_complete(dd, err);
1969
1970	/* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
1971	src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
1972	dst = src;
1973
1974	if (req->src != req->dst)
1975		dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
1976
1977	/* Configure the AES device. */
1978	memcpy(iv, req->iv, sizeof(iv));
1979
1980	/*
1981	 * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
1982	 * 'true' even if the data transfer is actually performed by the CPU (so
1983	 * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
1984	 * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
1985	 * must be set to *_MR_SMOD_IDATAR0.
1986	 */
1987	atmel_aes_write_ctrl(dd, true, iv);
1988	emr = AES_EMR_PLIPEN;
1989	if (!enc)
1990		emr |= AES_EMR_PLIPD;
1991	atmel_aes_write(dd, AES_EMR, emr);
1992
1993	/* Transfer data. */
1994	return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
1995				   atmel_aes_authenc_digest);
1996}
1997
1998static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
1999{
2000	struct aead_request *req = aead_request_cast(dd->areq);
2001	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2002
2003	/* atmel_sha_authenc_final() releases the SHA device. */
2004	dd->flags &= ~AES_FLAGS_OWN_SHA;
2005	return atmel_sha_authenc_final(&rctx->auth_req,
2006				       rctx->digest, sizeof(rctx->digest),
2007				       atmel_aes_authenc_final, dd);
2008}
2009
2010static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
2011				   bool is_async)
2012{
2013	struct aead_request *req = aead_request_cast(dd->areq);
2014	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2015	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2016	bool enc = atmel_aes_is_encrypt(dd);
2017	u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
2018	u32 offs, authsize;
2019
2020	if (is_async)
2021		dd->is_async = true;
2022	if (err)
2023		goto complete;
2024
2025	offs = req->assoclen + rctx->textlen;
2026	authsize = crypto_aead_authsize(tfm);
2027	if (enc) {
2028		scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
2029	} else {
2030		scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
2031		if (crypto_memneq(idigest, odigest, authsize))
2032			err = -EBADMSG;
2033	}
2034
2035complete:
2036	return atmel_aes_complete(dd, err);
2037}
2038
2039static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
2040				    unsigned int keylen)
2041{
2042	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2043	struct crypto_authenc_keys keys;
2044	int err;
2045
2046	if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
2047		goto badkey;
2048
2049	if (keys.enckeylen > sizeof(ctx->base.key))
2050		goto badkey;
2051
2052	/* Save auth key. */
2053	err = atmel_sha_authenc_setkey(ctx->auth,
2054				       keys.authkey, keys.authkeylen,
2055				       crypto_aead_get_flags(tfm));
2056	if (err) {
2057		memzero_explicit(&keys, sizeof(keys));
2058		return err;
2059	}
2060
2061	/* Save enc key. */
2062	ctx->base.keylen = keys.enckeylen;
2063	memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
2064
2065	memzero_explicit(&keys, sizeof(keys));
2066	return 0;
2067
2068badkey:
2069	memzero_explicit(&keys, sizeof(keys));
2070	return -EINVAL;
2071}
2072
2073static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
2074				      unsigned long auth_mode)
2075{
2076	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2077	unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
2078
2079	ctx->auth = atmel_sha_authenc_spawn(auth_mode);
2080	if (IS_ERR(ctx->auth))
2081		return PTR_ERR(ctx->auth);
2082
2083	crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
2084				      auth_reqsize));
2085	ctx->base.start = atmel_aes_authenc_start;
2086
2087	return 0;
2088}
2089
2090static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
2091{
2092	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
2093}
2094
2095static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
2096{
2097	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
2098}
2099
2100static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
2101{
2102	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
2103}
2104
2105static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
2106{
2107	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
2108}
2109
2110static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
2111{
2112	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
2113}
2114
2115static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
2116{
2117	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2118
2119	atmel_sha_authenc_free(ctx->auth);
2120}
2121
2122static int atmel_aes_authenc_crypt(struct aead_request *req,
2123				   unsigned long mode)
2124{
2125	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2126	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2127	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
2128	u32 authsize = crypto_aead_authsize(tfm);
2129	bool enc = (mode & AES_FLAGS_ENCRYPT);
2130	struct atmel_aes_dev *dd;
2131
2132	/* Compute text length. */
2133	if (!enc && req->cryptlen < authsize)
2134		return -EINVAL;
2135	rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
2136
2137	/*
2138	 * Currently, empty messages are not supported yet:
2139	 * the SHA auto-padding can be used only on non-empty messages.
2140	 * Hence a special case needs to be implemented for empty message.
2141	 */
2142	if (!rctx->textlen && !req->assoclen)
2143		return -EINVAL;
2144
2145	rctx->base.mode = mode;
2146	ctx->block_size = AES_BLOCK_SIZE;
2147	ctx->is_aead = true;
2148
2149	dd = atmel_aes_find_dev(ctx);
2150	if (!dd)
2151		return -ENODEV;
2152
2153	return atmel_aes_handle_queue(dd, &req->base);
2154}
2155
2156static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
2157{
2158	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
2159}
2160
2161static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
2162{
2163	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
2164}
2165
2166static struct aead_alg aes_authenc_algs[] = {
2167{
2168	.setkey		= atmel_aes_authenc_setkey,
2169	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2170	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2171	.init		= atmel_aes_authenc_hmac_sha1_init_tfm,
2172	.exit		= atmel_aes_authenc_exit_tfm,
2173	.ivsize		= AES_BLOCK_SIZE,
2174	.maxauthsize	= SHA1_DIGEST_SIZE,
2175
2176	.base = {
2177		.cra_name		= "authenc(hmac(sha1),cbc(aes))",
2178		.cra_driver_name	= "atmel-authenc-hmac-sha1-cbc-aes",
2179		.cra_blocksize		= AES_BLOCK_SIZE,
2180		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2181	},
2182},
2183{
2184	.setkey		= atmel_aes_authenc_setkey,
2185	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2186	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2187	.init		= atmel_aes_authenc_hmac_sha224_init_tfm,
2188	.exit		= atmel_aes_authenc_exit_tfm,
2189	.ivsize		= AES_BLOCK_SIZE,
2190	.maxauthsize	= SHA224_DIGEST_SIZE,
2191
2192	.base = {
2193		.cra_name		= "authenc(hmac(sha224),cbc(aes))",
2194		.cra_driver_name	= "atmel-authenc-hmac-sha224-cbc-aes",
2195		.cra_blocksize		= AES_BLOCK_SIZE,
2196		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2197	},
2198},
2199{
2200	.setkey		= atmel_aes_authenc_setkey,
2201	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2202	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2203	.init		= atmel_aes_authenc_hmac_sha256_init_tfm,
2204	.exit		= atmel_aes_authenc_exit_tfm,
2205	.ivsize		= AES_BLOCK_SIZE,
2206	.maxauthsize	= SHA256_DIGEST_SIZE,
2207
2208	.base = {
2209		.cra_name		= "authenc(hmac(sha256),cbc(aes))",
2210		.cra_driver_name	= "atmel-authenc-hmac-sha256-cbc-aes",
2211		.cra_blocksize		= AES_BLOCK_SIZE,
2212		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2213	},
2214},
2215{
2216	.setkey		= atmel_aes_authenc_setkey,
2217	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2218	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2219	.init		= atmel_aes_authenc_hmac_sha384_init_tfm,
2220	.exit		= atmel_aes_authenc_exit_tfm,
2221	.ivsize		= AES_BLOCK_SIZE,
2222	.maxauthsize	= SHA384_DIGEST_SIZE,
2223
2224	.base = {
2225		.cra_name		= "authenc(hmac(sha384),cbc(aes))",
2226		.cra_driver_name	= "atmel-authenc-hmac-sha384-cbc-aes",
2227		.cra_blocksize		= AES_BLOCK_SIZE,
2228		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2229	},
2230},
2231{
2232	.setkey		= atmel_aes_authenc_setkey,
2233	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2234	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2235	.init		= atmel_aes_authenc_hmac_sha512_init_tfm,
2236	.exit		= atmel_aes_authenc_exit_tfm,
2237	.ivsize		= AES_BLOCK_SIZE,
2238	.maxauthsize	= SHA512_DIGEST_SIZE,
2239
2240	.base = {
2241		.cra_name		= "authenc(hmac(sha512),cbc(aes))",
2242		.cra_driver_name	= "atmel-authenc-hmac-sha512-cbc-aes",
2243		.cra_blocksize		= AES_BLOCK_SIZE,
2244		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2245	},
2246},
2247};
2248#endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2249
2250/* Probe functions */
2251
2252static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
2253{
2254	dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
2255	dd->buflen = ATMEL_AES_BUFFER_SIZE;
2256	dd->buflen &= ~(AES_BLOCK_SIZE - 1);
2257
2258	if (!dd->buf) {
2259		dev_err(dd->dev, "unable to alloc pages.\n");
2260		return -ENOMEM;
2261	}
2262
2263	return 0;
2264}
2265
2266static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
2267{
2268	free_page((unsigned long)dd->buf);
2269}
2270
2271static int atmel_aes_dma_init(struct atmel_aes_dev *dd)
2272{
2273	int ret;
2274
2275	/* Try to grab 2 DMA channels */
2276	dd->src.chan = dma_request_chan(dd->dev, "tx");
2277	if (IS_ERR(dd->src.chan)) {
2278		ret = PTR_ERR(dd->src.chan);
2279		goto err_dma_in;
2280	}
2281
2282	dd->dst.chan = dma_request_chan(dd->dev, "rx");
2283	if (IS_ERR(dd->dst.chan)) {
2284		ret = PTR_ERR(dd->dst.chan);
2285		goto err_dma_out;
2286	}
2287
2288	return 0;
2289
2290err_dma_out:
2291	dma_release_channel(dd->src.chan);
2292err_dma_in:
2293	dev_err(dd->dev, "no DMA channel available\n");
2294	return ret;
2295}
2296
2297static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
2298{
2299	dma_release_channel(dd->dst.chan);
2300	dma_release_channel(dd->src.chan);
2301}
2302
2303static void atmel_aes_queue_task(unsigned long data)
2304{
2305	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2306
2307	atmel_aes_handle_queue(dd, NULL);
2308}
2309
2310static void atmel_aes_done_task(unsigned long data)
2311{
2312	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2313
2314	dd->is_async = true;
2315	(void)dd->resume(dd);
2316}
2317
2318static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
2319{
2320	struct atmel_aes_dev *aes_dd = dev_id;
2321	u32 reg;
2322
2323	reg = atmel_aes_read(aes_dd, AES_ISR);
2324	if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
2325		atmel_aes_write(aes_dd, AES_IDR, reg);
2326		if (AES_FLAGS_BUSY & aes_dd->flags)
2327			tasklet_schedule(&aes_dd->done_task);
2328		else
2329			dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
2330		return IRQ_HANDLED;
2331	}
2332
2333	return IRQ_NONE;
2334}
2335
2336static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
2337{
2338	int i;
2339
2340#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2341	if (dd->caps.has_authenc)
2342		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
2343			crypto_unregister_aead(&aes_authenc_algs[i]);
2344#endif
2345
2346	if (dd->caps.has_xts)
2347		crypto_unregister_skcipher(&aes_xts_alg);
2348
2349	if (dd->caps.has_gcm)
2350		crypto_unregister_aead(&aes_gcm_alg);
2351
2352	if (dd->caps.has_cfb64)
2353		crypto_unregister_skcipher(&aes_cfb64_alg);
2354
2355	for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
2356		crypto_unregister_skcipher(&aes_algs[i]);
2357}
2358
2359static void atmel_aes_crypto_alg_init(struct crypto_alg *alg)
2360{
2361	alg->cra_flags = CRYPTO_ALG_ASYNC;
2362	alg->cra_alignmask = 0xf;
2363	alg->cra_priority = ATMEL_AES_PRIORITY;
2364	alg->cra_module = THIS_MODULE;
2365}
2366
2367static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
2368{
2369	int err, i, j;
2370
2371	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
2372		atmel_aes_crypto_alg_init(&aes_algs[i].base);
2373
2374		err = crypto_register_skcipher(&aes_algs[i]);
2375		if (err)
2376			goto err_aes_algs;
2377	}
2378
2379	if (dd->caps.has_cfb64) {
2380		atmel_aes_crypto_alg_init(&aes_cfb64_alg.base);
2381
2382		err = crypto_register_skcipher(&aes_cfb64_alg);
2383		if (err)
2384			goto err_aes_cfb64_alg;
2385	}
2386
2387	if (dd->caps.has_gcm) {
2388		atmel_aes_crypto_alg_init(&aes_gcm_alg.base);
2389
2390		err = crypto_register_aead(&aes_gcm_alg);
2391		if (err)
2392			goto err_aes_gcm_alg;
2393	}
2394
2395	if (dd->caps.has_xts) {
2396		atmel_aes_crypto_alg_init(&aes_xts_alg.base);
2397
2398		err = crypto_register_skcipher(&aes_xts_alg);
2399		if (err)
2400			goto err_aes_xts_alg;
2401	}
2402
2403#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2404	if (dd->caps.has_authenc) {
2405		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
2406			atmel_aes_crypto_alg_init(&aes_authenc_algs[i].base);
2407
2408			err = crypto_register_aead(&aes_authenc_algs[i]);
2409			if (err)
2410				goto err_aes_authenc_alg;
2411		}
2412	}
2413#endif
2414
2415	return 0;
2416
2417#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2418	/* i = ARRAY_SIZE(aes_authenc_algs); */
2419err_aes_authenc_alg:
2420	for (j = 0; j < i; j++)
2421		crypto_unregister_aead(&aes_authenc_algs[j]);
2422	crypto_unregister_skcipher(&aes_xts_alg);
2423#endif
2424err_aes_xts_alg:
2425	crypto_unregister_aead(&aes_gcm_alg);
2426err_aes_gcm_alg:
2427	crypto_unregister_skcipher(&aes_cfb64_alg);
2428err_aes_cfb64_alg:
2429	i = ARRAY_SIZE(aes_algs);
2430err_aes_algs:
2431	for (j = 0; j < i; j++)
2432		crypto_unregister_skcipher(&aes_algs[j]);
2433
2434	return err;
2435}
2436
2437static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
2438{
2439	dd->caps.has_dualbuff = 0;
2440	dd->caps.has_cfb64 = 0;
2441	dd->caps.has_gcm = 0;
2442	dd->caps.has_xts = 0;
2443	dd->caps.has_authenc = 0;
2444	dd->caps.max_burst_size = 1;
2445
2446	/* keep only major version number */
2447	switch (dd->hw_version & 0xff0) {
2448	case 0x500:
2449		dd->caps.has_dualbuff = 1;
2450		dd->caps.has_cfb64 = 1;
2451		dd->caps.has_gcm = 1;
2452		dd->caps.has_xts = 1;
2453		dd->caps.has_authenc = 1;
2454		dd->caps.max_burst_size = 4;
2455		break;
2456	case 0x200:
2457		dd->caps.has_dualbuff = 1;
2458		dd->caps.has_cfb64 = 1;
2459		dd->caps.has_gcm = 1;
2460		dd->caps.max_burst_size = 4;
2461		break;
2462	case 0x130:
2463		dd->caps.has_dualbuff = 1;
2464		dd->caps.has_cfb64 = 1;
2465		dd->caps.max_burst_size = 4;
2466		break;
2467	case 0x120:
2468		break;
2469	default:
2470		dev_warn(dd->dev,
2471				"Unmanaged aes version, set minimum capabilities\n");
2472		break;
2473	}
2474}
2475
2476#if defined(CONFIG_OF)
2477static const struct of_device_id atmel_aes_dt_ids[] = {
2478	{ .compatible = "atmel,at91sam9g46-aes" },
2479	{ /* sentinel */ }
2480};
2481MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
2482#endif
2483
2484static int atmel_aes_probe(struct platform_device *pdev)
2485{
2486	struct atmel_aes_dev *aes_dd;
2487	struct device *dev = &pdev->dev;
2488	struct resource *aes_res;
2489	int err;
2490
2491	aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2492	if (!aes_dd)
2493		return -ENOMEM;
2494
2495	aes_dd->dev = dev;
2496
2497	platform_set_drvdata(pdev, aes_dd);
2498
2499	INIT_LIST_HEAD(&aes_dd->list);
2500	spin_lock_init(&aes_dd->lock);
2501
2502	tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2503					(unsigned long)aes_dd);
2504	tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2505					(unsigned long)aes_dd);
2506
2507	crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2508
2509	/* Get the base address */
2510	aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2511	if (!aes_res) {
2512		dev_err(dev, "no MEM resource info\n");
2513		err = -ENODEV;
2514		goto err_tasklet_kill;
2515	}
2516	aes_dd->phys_base = aes_res->start;
2517
2518	/* Get the IRQ */
2519	aes_dd->irq = platform_get_irq(pdev,  0);
2520	if (aes_dd->irq < 0) {
2521		err = aes_dd->irq;
2522		goto err_tasklet_kill;
2523	}
2524
2525	err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2526			       IRQF_SHARED, "atmel-aes", aes_dd);
2527	if (err) {
2528		dev_err(dev, "unable to request aes irq.\n");
2529		goto err_tasklet_kill;
2530	}
2531
2532	/* Initializing the clock */
2533	aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2534	if (IS_ERR(aes_dd->iclk)) {
2535		dev_err(dev, "clock initialization failed.\n");
2536		err = PTR_ERR(aes_dd->iclk);
2537		goto err_tasklet_kill;
2538	}
2539
2540	aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
2541	if (IS_ERR(aes_dd->io_base)) {
2542		dev_err(dev, "can't ioremap\n");
2543		err = PTR_ERR(aes_dd->io_base);
2544		goto err_tasklet_kill;
2545	}
2546
2547	err = clk_prepare(aes_dd->iclk);
2548	if (err)
2549		goto err_tasklet_kill;
2550
2551	err = atmel_aes_hw_version_init(aes_dd);
2552	if (err)
2553		goto err_iclk_unprepare;
2554
2555	atmel_aes_get_cap(aes_dd);
2556
2557#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2558	if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
2559		err = -EPROBE_DEFER;
2560		goto err_iclk_unprepare;
2561	}
2562#endif
2563
2564	err = atmel_aes_buff_init(aes_dd);
2565	if (err)
2566		goto err_iclk_unprepare;
2567
2568	err = atmel_aes_dma_init(aes_dd);
2569	if (err)
2570		goto err_buff_cleanup;
2571
2572	spin_lock(&atmel_aes.lock);
2573	list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2574	spin_unlock(&atmel_aes.lock);
2575
2576	err = atmel_aes_register_algs(aes_dd);
2577	if (err)
2578		goto err_algs;
2579
2580	dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2581			dma_chan_name(aes_dd->src.chan),
2582			dma_chan_name(aes_dd->dst.chan));
2583
2584	return 0;
2585
2586err_algs:
2587	spin_lock(&atmel_aes.lock);
2588	list_del(&aes_dd->list);
2589	spin_unlock(&atmel_aes.lock);
2590	atmel_aes_dma_cleanup(aes_dd);
2591err_buff_cleanup:
2592	atmel_aes_buff_cleanup(aes_dd);
2593err_iclk_unprepare:
2594	clk_unprepare(aes_dd->iclk);
2595err_tasklet_kill:
2596	tasklet_kill(&aes_dd->done_task);
2597	tasklet_kill(&aes_dd->queue_task);
2598
2599	return err;
2600}
2601
2602static int atmel_aes_remove(struct platform_device *pdev)
2603{
2604	struct atmel_aes_dev *aes_dd;
2605
2606	aes_dd = platform_get_drvdata(pdev);
2607	if (!aes_dd)
2608		return -ENODEV;
2609	spin_lock(&atmel_aes.lock);
2610	list_del(&aes_dd->list);
2611	spin_unlock(&atmel_aes.lock);
2612
2613	atmel_aes_unregister_algs(aes_dd);
2614
2615	tasklet_kill(&aes_dd->done_task);
2616	tasklet_kill(&aes_dd->queue_task);
2617
2618	atmel_aes_dma_cleanup(aes_dd);
2619	atmel_aes_buff_cleanup(aes_dd);
2620
2621	clk_unprepare(aes_dd->iclk);
2622
2623	return 0;
2624}
2625
2626static struct platform_driver atmel_aes_driver = {
2627	.probe		= atmel_aes_probe,
2628	.remove		= atmel_aes_remove,
2629	.driver		= {
2630		.name	= "atmel_aes",
2631		.of_match_table = of_match_ptr(atmel_aes_dt_ids),
2632	},
2633};
2634
2635module_platform_driver(atmel_aes_driver);
2636
2637MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2638MODULE_LICENSE("GPL v2");
2639MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
2640