1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * sun4i-ss-hash.c - hardware cryptographic accelerator for Allwinner A20 SoC
4 *
5 * Copyright (C) 2013-2015 Corentin LABBE <clabbe.montjoie@gmail.com>
6 *
7 * This file add support for MD5 and SHA1.
8 *
9 * You could find the datasheet in Documentation/arm/sunxi.rst
10 */
11#include "sun4i-ss.h"
12#include <asm/unaligned.h>
13#include <linux/scatterlist.h>
14
15/* This is a totally arbitrary value */
16#define SS_TIMEOUT 100
17
18int sun4i_hash_crainit(struct crypto_tfm *tfm)
19{
20	struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm);
21	struct ahash_alg *alg = __crypto_ahash_alg(tfm->__crt_alg);
22	struct sun4i_ss_alg_template *algt;
23	int err;
24
25	memset(op, 0, sizeof(struct sun4i_tfm_ctx));
26
27	algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
28	op->ss = algt->ss;
29
30	err = pm_runtime_get_sync(op->ss->dev);
31	if (err < 0)
32		return err;
33
34	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
35				 sizeof(struct sun4i_req_ctx));
36	return 0;
37}
38
39void sun4i_hash_craexit(struct crypto_tfm *tfm)
40{
41	struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm);
42
43	pm_runtime_put(op->ss->dev);
44}
45
46/* sun4i_hash_init: initialize request context */
47int sun4i_hash_init(struct ahash_request *areq)
48{
49	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
50	struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
51	struct ahash_alg *alg = __crypto_ahash_alg(tfm->base.__crt_alg);
52	struct sun4i_ss_alg_template *algt;
53
54	memset(op, 0, sizeof(struct sun4i_req_ctx));
55
56	algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
57	op->mode = algt->mode;
58
59	return 0;
60}
61
62int sun4i_hash_export_md5(struct ahash_request *areq, void *out)
63{
64	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
65	struct md5_state *octx = out;
66	int i;
67
68	octx->byte_count = op->byte_count + op->len;
69
70	memcpy(octx->block, op->buf, op->len);
71
72	if (op->byte_count) {
73		for (i = 0; i < 4; i++)
74			octx->hash[i] = op->hash[i];
75	} else {
76		octx->hash[0] = SHA1_H0;
77		octx->hash[1] = SHA1_H1;
78		octx->hash[2] = SHA1_H2;
79		octx->hash[3] = SHA1_H3;
80	}
81
82	return 0;
83}
84
85int sun4i_hash_import_md5(struct ahash_request *areq, const void *in)
86{
87	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
88	const struct md5_state *ictx = in;
89	int i;
90
91	sun4i_hash_init(areq);
92
93	op->byte_count = ictx->byte_count & ~0x3F;
94	op->len = ictx->byte_count & 0x3F;
95
96	memcpy(op->buf, ictx->block, op->len);
97
98	for (i = 0; i < 4; i++)
99		op->hash[i] = ictx->hash[i];
100
101	return 0;
102}
103
104int sun4i_hash_export_sha1(struct ahash_request *areq, void *out)
105{
106	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
107	struct sha1_state *octx = out;
108	int i;
109
110	octx->count = op->byte_count + op->len;
111
112	memcpy(octx->buffer, op->buf, op->len);
113
114	if (op->byte_count) {
115		for (i = 0; i < 5; i++)
116			octx->state[i] = op->hash[i];
117	} else {
118		octx->state[0] = SHA1_H0;
119		octx->state[1] = SHA1_H1;
120		octx->state[2] = SHA1_H2;
121		octx->state[3] = SHA1_H3;
122		octx->state[4] = SHA1_H4;
123	}
124
125	return 0;
126}
127
128int sun4i_hash_import_sha1(struct ahash_request *areq, const void *in)
129{
130	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
131	const struct sha1_state *ictx = in;
132	int i;
133
134	sun4i_hash_init(areq);
135
136	op->byte_count = ictx->count & ~0x3F;
137	op->len = ictx->count & 0x3F;
138
139	memcpy(op->buf, ictx->buffer, op->len);
140
141	for (i = 0; i < 5; i++)
142		op->hash[i] = ictx->state[i];
143
144	return 0;
145}
146
147#define SS_HASH_UPDATE 1
148#define SS_HASH_FINAL 2
149
150/*
151 * sun4i_hash_update: update hash engine
152 *
153 * Could be used for both SHA1 and MD5
154 * Write data by step of 32bits and put then in the SS.
155 *
156 * Since we cannot leave partial data and hash state in the engine,
157 * we need to get the hash state at the end of this function.
158 * We can get the hash state every 64 bytes
159 *
160 * So the first work is to get the number of bytes to write to SS modulo 64
161 * The extra bytes will go to a temporary buffer op->buf storing op->len bytes
162 *
163 * So at the begin of update()
164 * if op->len + areq->nbytes < 64
165 * => all data will be written to wait buffer (op->buf) and end=0
166 * if not, write all data from op->buf to the device and position end to
167 * complete to 64bytes
168 *
169 * example 1:
170 * update1 60o => op->len=60
171 * update2 60o => need one more word to have 64 bytes
172 * end=4
173 * so write all data from op->buf and one word of SGs
174 * write remaining data in op->buf
175 * final state op->len=56
176 */
177static int sun4i_hash(struct ahash_request *areq)
178{
179	/*
180	 * i is the total bytes read from SGs, to be compared to areq->nbytes
181	 * i is important because we cannot rely on SG length since the sum of
182	 * SG->length could be greater than areq->nbytes
183	 *
184	 * end is the position when we need to stop writing to the device,
185	 * to be compared to i
186	 *
187	 * in_i: advancement in the current SG
188	 */
189	unsigned int i = 0, end, fill, min_fill, nwait, nbw = 0, j = 0, todo;
190	unsigned int in_i = 0;
191	u32 spaces, rx_cnt = SS_RX_DEFAULT, bf[32] = {0}, v, ivmode = 0;
192	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
193	struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
194	struct sun4i_tfm_ctx *tfmctx = crypto_ahash_ctx(tfm);
195	struct sun4i_ss_ctx *ss = tfmctx->ss;
196	struct scatterlist *in_sg = areq->src;
197	struct sg_mapping_iter mi;
198	int in_r, err = 0;
199	size_t copied = 0;
200	u32 wb = 0;
201
202	dev_dbg(ss->dev, "%s %s bc=%llu len=%u mode=%x wl=%u h0=%0x",
203		__func__, crypto_tfm_alg_name(areq->base.tfm),
204		op->byte_count, areq->nbytes, op->mode,
205		op->len, op->hash[0]);
206
207	if (unlikely(!areq->nbytes) && !(op->flags & SS_HASH_FINAL))
208		return 0;
209
210	/* protect against overflow */
211	if (unlikely(areq->nbytes > UINT_MAX - op->len)) {
212		dev_err(ss->dev, "Cannot process too large request\n");
213		return -EINVAL;
214	}
215
216	if (op->len + areq->nbytes < 64 && !(op->flags & SS_HASH_FINAL)) {
217		/* linearize data to op->buf */
218		copied = sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
219					    op->buf + op->len, areq->nbytes, 0);
220		op->len += copied;
221		return 0;
222	}
223
224	spin_lock_bh(&ss->slock);
225
226	/*
227	 * if some data have been processed before,
228	 * we need to restore the partial hash state
229	 */
230	if (op->byte_count) {
231		ivmode = SS_IV_ARBITRARY;
232		for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++)
233			writel(op->hash[i], ss->base + SS_IV0 + i * 4);
234	}
235	/* Enable the device */
236	writel(op->mode | SS_ENABLED | ivmode, ss->base + SS_CTL);
237
238	if (!(op->flags & SS_HASH_UPDATE))
239		goto hash_final;
240
241	/* start of handling data */
242	if (!(op->flags & SS_HASH_FINAL)) {
243		end = ((areq->nbytes + op->len) / 64) * 64 - op->len;
244
245		if (end > areq->nbytes || areq->nbytes - end > 63) {
246			dev_err(ss->dev, "ERROR: Bound error %u %u\n",
247				end, areq->nbytes);
248			err = -EINVAL;
249			goto release_ss;
250		}
251	} else {
252		/* Since we have the flag final, we can go up to modulo 4 */
253		if (areq->nbytes < 4)
254			end = 0;
255		else
256			end = ((areq->nbytes + op->len) / 4) * 4 - op->len;
257	}
258
259	/* TODO if SGlen % 4 and !op->len then DMA */
260	i = 1;
261	while (in_sg && i == 1) {
262		if (in_sg->length % 4)
263			i = 0;
264		in_sg = sg_next(in_sg);
265	}
266	if (i == 1 && !op->len && areq->nbytes)
267		dev_dbg(ss->dev, "We can DMA\n");
268
269	i = 0;
270	sg_miter_start(&mi, areq->src, sg_nents(areq->src),
271		       SG_MITER_FROM_SG | SG_MITER_ATOMIC);
272	sg_miter_next(&mi);
273	in_i = 0;
274
275	do {
276		/*
277		 * we need to linearize in two case:
278		 * - the buffer is already used
279		 * - the SG does not have enough byte remaining ( < 4)
280		 */
281		if (op->len || (mi.length - in_i) < 4) {
282			/*
283			 * if we have entered here we have two reason to stop
284			 * - the buffer is full
285			 * - reach the end
286			 */
287			while (op->len < 64 && i < end) {
288				/* how many bytes we can read from current SG */
289				in_r = min(end - i, 64 - op->len);
290				in_r = min_t(size_t, mi.length - in_i, in_r);
291				memcpy(op->buf + op->len, mi.addr + in_i, in_r);
292				op->len += in_r;
293				i += in_r;
294				in_i += in_r;
295				if (in_i == mi.length) {
296					sg_miter_next(&mi);
297					in_i = 0;
298				}
299			}
300			if (op->len > 3 && !(op->len % 4)) {
301				/* write buf to the device */
302				writesl(ss->base + SS_RXFIFO, op->buf,
303					op->len / 4);
304				op->byte_count += op->len;
305				op->len = 0;
306			}
307		}
308		if (mi.length - in_i > 3 && i < end) {
309			/* how many bytes we can read from current SG */
310			in_r = min_t(size_t, mi.length - in_i, areq->nbytes - i);
311			in_r = min_t(size_t, ((mi.length - in_i) / 4) * 4, in_r);
312			/* how many bytes we can write in the device*/
313			todo = min3((u32)(end - i) / 4, rx_cnt, (u32)in_r / 4);
314			writesl(ss->base + SS_RXFIFO, mi.addr + in_i, todo);
315			op->byte_count += todo * 4;
316			i += todo * 4;
317			in_i += todo * 4;
318			rx_cnt -= todo;
319			if (!rx_cnt) {
320				spaces = readl(ss->base + SS_FCSR);
321				rx_cnt = SS_RXFIFO_SPACES(spaces);
322			}
323			if (in_i == mi.length) {
324				sg_miter_next(&mi);
325				in_i = 0;
326			}
327		}
328	} while (i < end);
329
330	/*
331	 * Now we have written to the device all that we can,
332	 * store the remaining bytes in op->buf
333	 */
334	if ((areq->nbytes - i) < 64) {
335		while (i < areq->nbytes && in_i < mi.length && op->len < 64) {
336			/* how many bytes we can read from current SG */
337			in_r = min(areq->nbytes - i, 64 - op->len);
338			in_r = min_t(size_t, mi.length - in_i, in_r);
339			memcpy(op->buf + op->len, mi.addr + in_i, in_r);
340			op->len += in_r;
341			i += in_r;
342			in_i += in_r;
343			if (in_i == mi.length) {
344				sg_miter_next(&mi);
345				in_i = 0;
346			}
347		}
348	}
349
350	sg_miter_stop(&mi);
351
352	/*
353	 * End of data process
354	 * Now if we have the flag final go to finalize part
355	 * If not, store the partial hash
356	 */
357	if (op->flags & SS_HASH_FINAL)
358		goto hash_final;
359
360	writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
361	i = 0;
362	do {
363		v = readl(ss->base + SS_CTL);
364		i++;
365	} while (i < SS_TIMEOUT && (v & SS_DATA_END));
366	if (unlikely(i >= SS_TIMEOUT)) {
367		dev_err_ratelimited(ss->dev,
368				    "ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
369				    i, SS_TIMEOUT, v, areq->nbytes);
370		err = -EIO;
371		goto release_ss;
372	}
373
374	/*
375	 * The datasheet isn't very clear about when to retrieve the digest. The
376	 * bit SS_DATA_END is cleared when the engine has processed the data and
377	 * when the digest is computed *but* it doesn't mean the digest is
378	 * available in the digest registers. Hence the delay to be sure we can
379	 * read it.
380	 */
381	ndelay(1);
382
383	for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++)
384		op->hash[i] = readl(ss->base + SS_MD0 + i * 4);
385
386	goto release_ss;
387
388/*
389 * hash_final: finalize hashing operation
390 *
391 * If we have some remaining bytes, we write them.
392 * Then ask the SS for finalizing the hashing operation
393 *
394 * I do not check RX FIFO size in this function since the size is 32
395 * after each enabling and this function neither write more than 32 words.
396 * If we come from the update part, we cannot have more than
397 * 3 remaining bytes to write and SS is fast enough to not care about it.
398 */
399
400hash_final:
401
402	/* write the remaining words of the wait buffer */
403	if (op->len) {
404		nwait = op->len / 4;
405		if (nwait) {
406			writesl(ss->base + SS_RXFIFO, op->buf, nwait);
407			op->byte_count += 4 * nwait;
408		}
409
410		nbw = op->len - 4 * nwait;
411		if (nbw) {
412			wb = le32_to_cpup((__le32 *)(op->buf + nwait * 4));
413			wb &= GENMASK((nbw * 8) - 1, 0);
414
415			op->byte_count += nbw;
416		}
417	}
418
419	/* write the remaining bytes of the nbw buffer */
420	wb |= ((1 << 7) << (nbw * 8));
421	((__le32 *)bf)[j++] = cpu_to_le32(wb);
422
423	/*
424	 * number of space to pad to obtain 64o minus 8(size) minus 4 (final 1)
425	 * I take the operations from other MD5/SHA1 implementations
426	 */
427
428	/* last block size */
429	fill = 64 - (op->byte_count % 64);
430	min_fill = 2 * sizeof(u32) + (nbw ? 0 : sizeof(u32));
431
432	/* if we can't fill all data, jump to the next 64 block */
433	if (fill < min_fill)
434		fill += 64;
435
436	j += (fill - min_fill) / sizeof(u32);
437
438	/* write the length of data */
439	if (op->mode == SS_OP_SHA1) {
440		__be64 *bits = (__be64 *)&bf[j];
441		*bits = cpu_to_be64(op->byte_count << 3);
442		j += 2;
443	} else {
444		__le64 *bits = (__le64 *)&bf[j];
445		*bits = cpu_to_le64(op->byte_count << 3);
446		j += 2;
447	}
448	writesl(ss->base + SS_RXFIFO, bf, j);
449
450	/* Tell the SS to stop the hashing */
451	writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
452
453	/*
454	 * Wait for SS to finish the hash.
455	 * The timeout could happen only in case of bad overclocking
456	 * or driver bug.
457	 */
458	i = 0;
459	do {
460		v = readl(ss->base + SS_CTL);
461		i++;
462	} while (i < SS_TIMEOUT && (v & SS_DATA_END));
463	if (unlikely(i >= SS_TIMEOUT)) {
464		dev_err_ratelimited(ss->dev,
465				    "ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
466				    i, SS_TIMEOUT, v, areq->nbytes);
467		err = -EIO;
468		goto release_ss;
469	}
470
471	/*
472	 * The datasheet isn't very clear about when to retrieve the digest. The
473	 * bit SS_DATA_END is cleared when the engine has processed the data and
474	 * when the digest is computed *but* it doesn't mean the digest is
475	 * available in the digest registers. Hence the delay to be sure we can
476	 * read it.
477	 */
478	ndelay(1);
479
480	/* Get the hash from the device */
481	if (op->mode == SS_OP_SHA1) {
482		for (i = 0; i < 5; i++) {
483			v = readl(ss->base + SS_MD0 + i * 4);
484			if (ss->variant->sha1_in_be)
485				put_unaligned_le32(v, areq->result + i * 4);
486			else
487				put_unaligned_be32(v, areq->result + i * 4);
488		}
489	} else {
490		for (i = 0; i < 4; i++) {
491			v = readl(ss->base + SS_MD0 + i * 4);
492			put_unaligned_le32(v, areq->result + i * 4);
493		}
494	}
495
496release_ss:
497	writel(0, ss->base + SS_CTL);
498	spin_unlock_bh(&ss->slock);
499	return err;
500}
501
502int sun4i_hash_final(struct ahash_request *areq)
503{
504	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
505
506	op->flags = SS_HASH_FINAL;
507	return sun4i_hash(areq);
508}
509
510int sun4i_hash_update(struct ahash_request *areq)
511{
512	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
513
514	op->flags = SS_HASH_UPDATE;
515	return sun4i_hash(areq);
516}
517
518/* sun4i_hash_finup: finalize hashing operation after an update */
519int sun4i_hash_finup(struct ahash_request *areq)
520{
521	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
522
523	op->flags = SS_HASH_UPDATE | SS_HASH_FINAL;
524	return sun4i_hash(areq);
525}
526
527/* combo of init/update/final functions */
528int sun4i_hash_digest(struct ahash_request *areq)
529{
530	int err;
531	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
532
533	err = sun4i_hash_init(areq);
534	if (err)
535		return err;
536
537	op->flags = SS_HASH_UPDATE | SS_HASH_FINAL;
538	return sun4i_hash(areq);
539}
540