1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Timer events oriented CPU idle governor
4 *
5 * Copyright (C) 2018 Intel Corporation
6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 *
8 * The idea of this governor is based on the observation that on many systems
9 * timer events are two or more orders of magnitude more frequent than any
10 * other interrupts, so they are likely to be the most significant source of CPU
11 * wakeups from idle states.  Moreover, information about what happened in the
12 * (relatively recent) past can be used to estimate whether or not the deepest
13 * idle state with target residency within the time to the closest timer is
14 * likely to be suitable for the upcoming idle time of the CPU and, if not, then
15 * which of the shallower idle states to choose.
16 *
17 * Of course, non-timer wakeup sources are more important in some use cases and
18 * they can be covered by taking a few most recent idle time intervals of the
19 * CPU into account.  However, even in that case it is not necessary to consider
20 * idle duration values greater than the time till the closest timer, as the
21 * patterns that they may belong to produce average values close enough to
22 * the time till the closest timer (sleep length) anyway.
23 *
24 * Thus this governor estimates whether or not the upcoming idle time of the CPU
25 * is likely to be significantly shorter than the sleep length and selects an
26 * idle state for it in accordance with that, as follows:
27 *
28 * - Find an idle state on the basis of the sleep length and state statistics
29 *   collected over time:
30 *
31 *   o Find the deepest idle state whose target residency is less than or equal
32 *     to the sleep length.
33 *
34 *   o Select it if it matched both the sleep length and the observed idle
35 *     duration in the past more often than it matched the sleep length alone
36 *     (i.e. the observed idle duration was significantly shorter than the sleep
37 *     length matched by it).
38 *
39 *   o Otherwise, select the shallower state with the greatest matched "early"
40 *     wakeups metric.
41 *
42 * - If the majority of the most recent idle duration values are below the
43 *   target residency of the idle state selected so far, use those values to
44 *   compute the new expected idle duration and find an idle state matching it
45 *   (which has to be shallower than the one selected so far).
46 */
47
48#include <linux/cpuidle.h>
49#include <linux/jiffies.h>
50#include <linux/kernel.h>
51#include <linux/sched/clock.h>
52#include <linux/tick.h>
53
54/*
55 * The PULSE value is added to metrics when they grow and the DECAY_SHIFT value
56 * is used for decreasing metrics on a regular basis.
57 */
58#define PULSE		1024
59#define DECAY_SHIFT	3
60
61/*
62 * Number of the most recent idle duration values to take into consideration for
63 * the detection of wakeup patterns.
64 */
65#define INTERVALS	8
66
67/**
68 * struct teo_idle_state - Idle state data used by the TEO cpuidle governor.
69 * @early_hits: "Early" CPU wakeups "matching" this state.
70 * @hits: "On time" CPU wakeups "matching" this state.
71 * @misses: CPU wakeups "missing" this state.
72 *
73 * A CPU wakeup is "matched" by a given idle state if the idle duration measured
74 * after the wakeup is between the target residency of that state and the target
75 * residency of the next one (or if this is the deepest available idle state, it
76 * "matches" a CPU wakeup when the measured idle duration is at least equal to
77 * its target residency).
78 *
79 * Also, from the TEO governor perspective, a CPU wakeup from idle is "early" if
80 * it occurs significantly earlier than the closest expected timer event (that
81 * is, early enough to match an idle state shallower than the one matching the
82 * time till the closest timer event).  Otherwise, the wakeup is "on time", or
83 * it is a "hit".
84 *
85 * A "miss" occurs when the given state doesn't match the wakeup, but it matches
86 * the time till the closest timer event used for idle state selection.
87 */
88struct teo_idle_state {
89	unsigned int early_hits;
90	unsigned int hits;
91	unsigned int misses;
92};
93
94/**
95 * struct teo_cpu - CPU data used by the TEO cpuidle governor.
96 * @time_span_ns: Time between idle state selection and post-wakeup update.
97 * @sleep_length_ns: Time till the closest timer event (at the selection time).
98 * @states: Idle states data corresponding to this CPU.
99 * @interval_idx: Index of the most recent saved idle interval.
100 * @intervals: Saved idle duration values.
101 */
102struct teo_cpu {
103	u64 time_span_ns;
104	u64 sleep_length_ns;
105	struct teo_idle_state states[CPUIDLE_STATE_MAX];
106	int interval_idx;
107	u64 intervals[INTERVALS];
108};
109
110static DEFINE_PER_CPU(struct teo_cpu, teo_cpus);
111
112/**
113 * teo_update - Update CPU data after wakeup.
114 * @drv: cpuidle driver containing state data.
115 * @dev: Target CPU.
116 */
117static void teo_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
118{
119	struct teo_cpu *cpu_data = per_cpu_ptr(&teo_cpus, dev->cpu);
120	int i, idx_hit = -1, idx_timer = -1;
121	u64 measured_ns;
122
123	if (cpu_data->time_span_ns >= cpu_data->sleep_length_ns) {
124		/*
125		 * One of the safety nets has triggered or the wakeup was close
126		 * enough to the closest timer event expected at the idle state
127		 * selection time to be discarded.
128		 */
129		measured_ns = U64_MAX;
130	} else {
131		u64 lat_ns = drv->states[dev->last_state_idx].exit_latency_ns;
132
133		/*
134		 * The computations below are to determine whether or not the
135		 * (saved) time till the next timer event and the measured idle
136		 * duration fall into the same "bin", so use last_residency_ns
137		 * for that instead of time_span_ns which includes the cpuidle
138		 * overhead.
139		 */
140		measured_ns = dev->last_residency_ns;
141		/*
142		 * The delay between the wakeup and the first instruction
143		 * executed by the CPU is not likely to be worst-case every
144		 * time, so take 1/2 of the exit latency as a very rough
145		 * approximation of the average of it.
146		 */
147		if (measured_ns >= lat_ns)
148			measured_ns -= lat_ns / 2;
149		else
150			measured_ns /= 2;
151	}
152
153	/*
154	 * Decay the "early hits" metric for all of the states and find the
155	 * states matching the sleep length and the measured idle duration.
156	 */
157	for (i = 0; i < drv->state_count; i++) {
158		unsigned int early_hits = cpu_data->states[i].early_hits;
159
160		cpu_data->states[i].early_hits -= early_hits >> DECAY_SHIFT;
161
162		if (drv->states[i].target_residency_ns <= cpu_data->sleep_length_ns) {
163			idx_timer = i;
164			if (drv->states[i].target_residency_ns <= measured_ns)
165				idx_hit = i;
166		}
167	}
168
169	/*
170	 * Update the "hits" and "misses" data for the state matching the sleep
171	 * length.  If it matches the measured idle duration too, this is a hit,
172	 * so increase the "hits" metric for it then.  Otherwise, this is a
173	 * miss, so increase the "misses" metric for it.  In the latter case
174	 * also increase the "early hits" metric for the state that actually
175	 * matches the measured idle duration.
176	 */
177	if (idx_timer >= 0) {
178		unsigned int hits = cpu_data->states[idx_timer].hits;
179		unsigned int misses = cpu_data->states[idx_timer].misses;
180
181		hits -= hits >> DECAY_SHIFT;
182		misses -= misses >> DECAY_SHIFT;
183
184		if (idx_timer > idx_hit) {
185			misses += PULSE;
186			if (idx_hit >= 0)
187				cpu_data->states[idx_hit].early_hits += PULSE;
188		} else {
189			hits += PULSE;
190		}
191
192		cpu_data->states[idx_timer].misses = misses;
193		cpu_data->states[idx_timer].hits = hits;
194	}
195
196	/*
197	 * Save idle duration values corresponding to non-timer wakeups for
198	 * pattern detection.
199	 */
200	cpu_data->intervals[cpu_data->interval_idx++] = measured_ns;
201	if (cpu_data->interval_idx >= INTERVALS)
202		cpu_data->interval_idx = 0;
203}
204
205static bool teo_time_ok(u64 interval_ns)
206{
207	return !tick_nohz_tick_stopped() || interval_ns >= TICK_NSEC;
208}
209
210/**
211 * teo_find_shallower_state - Find shallower idle state matching given duration.
212 * @drv: cpuidle driver containing state data.
213 * @dev: Target CPU.
214 * @state_idx: Index of the capping idle state.
215 * @duration_ns: Idle duration value to match.
216 */
217static int teo_find_shallower_state(struct cpuidle_driver *drv,
218				    struct cpuidle_device *dev, int state_idx,
219				    u64 duration_ns)
220{
221	int i;
222
223	for (i = state_idx - 1; i >= 0; i--) {
224		if (dev->states_usage[i].disable)
225			continue;
226
227		state_idx = i;
228		if (drv->states[i].target_residency_ns <= duration_ns)
229			break;
230	}
231	return state_idx;
232}
233
234/**
235 * teo_select - Selects the next idle state to enter.
236 * @drv: cpuidle driver containing state data.
237 * @dev: Target CPU.
238 * @stop_tick: Indication on whether or not to stop the scheduler tick.
239 */
240static int teo_select(struct cpuidle_driver *drv, struct cpuidle_device *dev,
241		      bool *stop_tick)
242{
243	struct teo_cpu *cpu_data = per_cpu_ptr(&teo_cpus, dev->cpu);
244	s64 latency_req = cpuidle_governor_latency_req(dev->cpu);
245	u64 duration_ns;
246	unsigned int hits, misses, early_hits;
247	int max_early_idx, prev_max_early_idx, constraint_idx, idx, i;
248	ktime_t delta_tick;
249
250	if (dev->last_state_idx >= 0) {
251		teo_update(drv, dev);
252		dev->last_state_idx = -1;
253	}
254
255	cpu_data->time_span_ns = local_clock();
256
257	duration_ns = tick_nohz_get_sleep_length(&delta_tick);
258	cpu_data->sleep_length_ns = duration_ns;
259
260	hits = 0;
261	misses = 0;
262	early_hits = 0;
263	max_early_idx = -1;
264	prev_max_early_idx = -1;
265	constraint_idx = drv->state_count;
266	idx = -1;
267
268	for (i = 0; i < drv->state_count; i++) {
269		struct cpuidle_state *s = &drv->states[i];
270
271		if (dev->states_usage[i].disable) {
272			/*
273			 * Ignore disabled states with target residencies beyond
274			 * the anticipated idle duration.
275			 */
276			if (s->target_residency_ns > duration_ns)
277				continue;
278
279			/*
280			 * This state is disabled, so the range of idle duration
281			 * values corresponding to it is covered by the current
282			 * candidate state, but still the "hits" and "misses"
283			 * metrics of the disabled state need to be used to
284			 * decide whether or not the state covering the range in
285			 * question is good enough.
286			 */
287			hits = cpu_data->states[i].hits;
288			misses = cpu_data->states[i].misses;
289
290			if (early_hits >= cpu_data->states[i].early_hits ||
291			    idx < 0)
292				continue;
293
294			/*
295			 * If the current candidate state has been the one with
296			 * the maximum "early hits" metric so far, the "early
297			 * hits" metric of the disabled state replaces the
298			 * current "early hits" count to avoid selecting a
299			 * deeper state with lower "early hits" metric.
300			 */
301			if (max_early_idx == idx) {
302				early_hits = cpu_data->states[i].early_hits;
303				continue;
304			}
305
306			/*
307			 * The current candidate state is closer to the disabled
308			 * one than the current maximum "early hits" state, so
309			 * replace the latter with it, but in case the maximum
310			 * "early hits" state index has not been set so far,
311			 * check if the current candidate state is not too
312			 * shallow for that role.
313			 */
314			if (teo_time_ok(drv->states[idx].target_residency_ns)) {
315				prev_max_early_idx = max_early_idx;
316				early_hits = cpu_data->states[i].early_hits;
317				max_early_idx = idx;
318			}
319
320			continue;
321		}
322
323		if (idx < 0) {
324			idx = i; /* first enabled state */
325			hits = cpu_data->states[i].hits;
326			misses = cpu_data->states[i].misses;
327		}
328
329		if (s->target_residency_ns > duration_ns)
330			break;
331
332		if (s->exit_latency_ns > latency_req && constraint_idx > i)
333			constraint_idx = i;
334
335		idx = i;
336		hits = cpu_data->states[i].hits;
337		misses = cpu_data->states[i].misses;
338
339		if (early_hits < cpu_data->states[i].early_hits &&
340		    teo_time_ok(drv->states[i].target_residency_ns)) {
341			prev_max_early_idx = max_early_idx;
342			early_hits = cpu_data->states[i].early_hits;
343			max_early_idx = i;
344		}
345	}
346
347	/*
348	 * If the "hits" metric of the idle state matching the sleep length is
349	 * greater than its "misses" metric, that is the one to use.  Otherwise,
350	 * it is more likely that one of the shallower states will match the
351	 * idle duration observed after wakeup, so take the one with the maximum
352	 * "early hits" metric, but if that cannot be determined, just use the
353	 * state selected so far.
354	 */
355	if (hits <= misses) {
356		/*
357		 * The current candidate state is not suitable, so take the one
358		 * whose "early hits" metric is the maximum for the range of
359		 * shallower states.
360		 */
361		if (idx == max_early_idx)
362			max_early_idx = prev_max_early_idx;
363
364		if (max_early_idx >= 0) {
365			idx = max_early_idx;
366			duration_ns = drv->states[idx].target_residency_ns;
367		}
368	}
369
370	/*
371	 * If there is a latency constraint, it may be necessary to use a
372	 * shallower idle state than the one selected so far.
373	 */
374	if (constraint_idx < idx)
375		idx = constraint_idx;
376
377	if (idx < 0) {
378		idx = 0; /* No states enabled. Must use 0. */
379	} else if (idx > 0) {
380		unsigned int count = 0;
381		u64 sum = 0;
382
383		/*
384		 * Count and sum the most recent idle duration values less than
385		 * the current expected idle duration value.
386		 */
387		for (i = 0; i < INTERVALS; i++) {
388			u64 val = cpu_data->intervals[i];
389
390			if (val >= duration_ns)
391				continue;
392
393			count++;
394			sum += val;
395		}
396
397		/*
398		 * Give up unless the majority of the most recent idle duration
399		 * values are in the interesting range.
400		 */
401		if (count > INTERVALS / 2) {
402			u64 avg_ns = div64_u64(sum, count);
403
404			/*
405			 * Avoid spending too much time in an idle state that
406			 * would be too shallow.
407			 */
408			if (teo_time_ok(avg_ns)) {
409				duration_ns = avg_ns;
410				if (drv->states[idx].target_residency_ns > avg_ns)
411					idx = teo_find_shallower_state(drv, dev,
412								       idx, avg_ns);
413			}
414		}
415	}
416
417	/*
418	 * Don't stop the tick if the selected state is a polling one or if the
419	 * expected idle duration is shorter than the tick period length.
420	 */
421	if (((drv->states[idx].flags & CPUIDLE_FLAG_POLLING) ||
422	    duration_ns < TICK_NSEC) && !tick_nohz_tick_stopped()) {
423		*stop_tick = false;
424
425		/*
426		 * The tick is not going to be stopped, so if the target
427		 * residency of the state to be returned is not within the time
428		 * till the closest timer including the tick, try to correct
429		 * that.
430		 */
431		if (idx > 0 && drv->states[idx].target_residency_ns > delta_tick)
432			idx = teo_find_shallower_state(drv, dev, idx, delta_tick);
433	}
434
435	return idx;
436}
437
438/**
439 * teo_reflect - Note that governor data for the CPU need to be updated.
440 * @dev: Target CPU.
441 * @state: Entered state.
442 */
443static void teo_reflect(struct cpuidle_device *dev, int state)
444{
445	struct teo_cpu *cpu_data = per_cpu_ptr(&teo_cpus, dev->cpu);
446
447	dev->last_state_idx = state;
448	/*
449	 * If the wakeup was not "natural", but triggered by one of the safety
450	 * nets, assume that the CPU might have been idle for the entire sleep
451	 * length time.
452	 */
453	if (dev->poll_time_limit ||
454	    (tick_nohz_idle_got_tick() && cpu_data->sleep_length_ns > TICK_NSEC)) {
455		dev->poll_time_limit = false;
456		cpu_data->time_span_ns = cpu_data->sleep_length_ns;
457	} else {
458		cpu_data->time_span_ns = local_clock() - cpu_data->time_span_ns;
459	}
460}
461
462/**
463 * teo_enable_device - Initialize the governor's data for the target CPU.
464 * @drv: cpuidle driver (not used).
465 * @dev: Target CPU.
466 */
467static int teo_enable_device(struct cpuidle_driver *drv,
468			     struct cpuidle_device *dev)
469{
470	struct teo_cpu *cpu_data = per_cpu_ptr(&teo_cpus, dev->cpu);
471	int i;
472
473	memset(cpu_data, 0, sizeof(*cpu_data));
474
475	for (i = 0; i < INTERVALS; i++)
476		cpu_data->intervals[i] = U64_MAX;
477
478	return 0;
479}
480
481static struct cpuidle_governor teo_governor = {
482	.name =		"teo",
483	.rating =	19,
484	.enable =	teo_enable_device,
485	.select =	teo_select,
486	.reflect =	teo_reflect,
487};
488
489static int __init teo_governor_init(void)
490{
491	return cpuidle_register_governor(&teo_governor);
492}
493
494postcore_initcall(teo_governor_init);
495