1/*
2 * cpuidle.c - core cpuidle infrastructure
3 *
4 * (C) 2006-2007 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
5 *               Shaohua Li <shaohua.li@intel.com>
6 *               Adam Belay <abelay@novell.com>
7 *
8 * This code is licenced under the GPL.
9 */
10
11#include <linux/clockchips.h>
12#include <linux/kernel.h>
13#include <linux/mutex.h>
14#include <linux/sched.h>
15#include <linux/sched/clock.h>
16#include <linux/notifier.h>
17#include <linux/pm_qos.h>
18#include <linux/cpu.h>
19#include <linux/cpuidle.h>
20#include <linux/ktime.h>
21#include <linux/hrtimer.h>
22#include <linux/module.h>
23#include <linux/suspend.h>
24#include <linux/tick.h>
25#include <linux/mmu_context.h>
26#include <trace/events/power.h>
27
28#include "cpuidle.h"
29
30DEFINE_PER_CPU(struct cpuidle_device *, cpuidle_devices);
31DEFINE_PER_CPU(struct cpuidle_device, cpuidle_dev);
32
33DEFINE_MUTEX(cpuidle_lock);
34LIST_HEAD(cpuidle_detected_devices);
35
36static int enabled_devices;
37static int off __read_mostly;
38static int initialized __read_mostly;
39
40int cpuidle_disabled(void)
41{
42	return off;
43}
44void disable_cpuidle(void)
45{
46	off = 1;
47}
48
49bool cpuidle_not_available(struct cpuidle_driver *drv,
50			   struct cpuidle_device *dev)
51{
52	return off || !initialized || !drv || !dev || !dev->enabled;
53}
54
55/**
56 * cpuidle_play_dead - cpu off-lining
57 *
58 * Returns in case of an error or no driver
59 */
60int cpuidle_play_dead(void)
61{
62	struct cpuidle_device *dev = __this_cpu_read(cpuidle_devices);
63	struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev);
64	int i;
65
66	if (!drv)
67		return -ENODEV;
68
69	/* Find lowest-power state that supports long-term idle */
70	for (i = drv->state_count - 1; i >= 0; i--)
71		if (drv->states[i].enter_dead)
72			return drv->states[i].enter_dead(dev, i);
73
74	return -ENODEV;
75}
76
77static int find_deepest_state(struct cpuidle_driver *drv,
78			      struct cpuidle_device *dev,
79			      u64 max_latency_ns,
80			      unsigned int forbidden_flags,
81			      bool s2idle)
82{
83	u64 latency_req = 0;
84	int i, ret = 0;
85
86	for (i = 1; i < drv->state_count; i++) {
87		struct cpuidle_state *s = &drv->states[i];
88
89		if (dev->states_usage[i].disable ||
90		    s->exit_latency_ns <= latency_req ||
91		    s->exit_latency_ns > max_latency_ns ||
92		    (s->flags & forbidden_flags) ||
93		    (s2idle && !s->enter_s2idle))
94			continue;
95
96		latency_req = s->exit_latency_ns;
97		ret = i;
98	}
99	return ret;
100}
101
102/**
103 * cpuidle_use_deepest_state - Set/unset governor override mode.
104 * @latency_limit_ns: Idle state exit latency limit (or no override if 0).
105 *
106 * If @latency_limit_ns is nonzero, set the current CPU to use the deepest idle
107 * state with exit latency within @latency_limit_ns (override governors going
108 * forward), or do not override governors if it is zero.
109 */
110void cpuidle_use_deepest_state(u64 latency_limit_ns)
111{
112	struct cpuidle_device *dev;
113
114	preempt_disable();
115	dev = cpuidle_get_device();
116	if (dev)
117		dev->forced_idle_latency_limit_ns = latency_limit_ns;
118	preempt_enable();
119}
120
121/**
122 * cpuidle_find_deepest_state - Find the deepest available idle state.
123 * @drv: cpuidle driver for the given CPU.
124 * @dev: cpuidle device for the given CPU.
125 * @latency_limit_ns: Idle state exit latency limit
126 *
127 * Return: the index of the deepest available idle state.
128 */
129int cpuidle_find_deepest_state(struct cpuidle_driver *drv,
130			       struct cpuidle_device *dev,
131			       u64 latency_limit_ns)
132{
133	return find_deepest_state(drv, dev, latency_limit_ns, 0, false);
134}
135
136#ifdef CONFIG_SUSPEND
137static void enter_s2idle_proper(struct cpuidle_driver *drv,
138				struct cpuidle_device *dev, int index)
139{
140	ktime_t time_start, time_end;
141	struct cpuidle_state *target_state = &drv->states[index];
142
143	time_start = ns_to_ktime(local_clock());
144
145	tick_freeze();
146	/*
147	 * The state used here cannot be a "coupled" one, because the "coupled"
148	 * cpuidle mechanism enables interrupts and doing that with timekeeping
149	 * suspended is generally unsafe.
150	 */
151	stop_critical_timings();
152	if (!(target_state->flags & CPUIDLE_FLAG_RCU_IDLE))
153		rcu_idle_enter();
154	target_state->enter_s2idle(dev, drv, index);
155	if (WARN_ON_ONCE(!irqs_disabled()))
156		local_irq_disable();
157	if (!(target_state->flags & CPUIDLE_FLAG_RCU_IDLE))
158		rcu_idle_exit();
159	tick_unfreeze();
160	start_critical_timings();
161
162	time_end = ns_to_ktime(local_clock());
163
164	dev->states_usage[index].s2idle_time += ktime_us_delta(time_end, time_start);
165	dev->states_usage[index].s2idle_usage++;
166}
167
168/**
169 * cpuidle_enter_s2idle - Enter an idle state suitable for suspend-to-idle.
170 * @drv: cpuidle driver for the given CPU.
171 * @dev: cpuidle device for the given CPU.
172 *
173 * If there are states with the ->enter_s2idle callback, find the deepest of
174 * them and enter it with frozen tick.
175 */
176int cpuidle_enter_s2idle(struct cpuidle_driver *drv, struct cpuidle_device *dev)
177{
178	int index;
179
180	/*
181	 * Find the deepest state with ->enter_s2idle present, which guarantees
182	 * that interrupts won't be enabled when it exits and allows the tick to
183	 * be frozen safely.
184	 */
185	index = find_deepest_state(drv, dev, U64_MAX, 0, true);
186	if (index > 0) {
187		enter_s2idle_proper(drv, dev, index);
188		local_irq_enable();
189	}
190	return index;
191}
192#endif /* CONFIG_SUSPEND */
193
194/**
195 * cpuidle_enter_state - enter the state and update stats
196 * @dev: cpuidle device for this cpu
197 * @drv: cpuidle driver for this cpu
198 * @index: index into the states table in @drv of the state to enter
199 */
200int cpuidle_enter_state(struct cpuidle_device *dev, struct cpuidle_driver *drv,
201			int index)
202{
203	int entered_state;
204
205	struct cpuidle_state *target_state = &drv->states[index];
206	bool broadcast = !!(target_state->flags & CPUIDLE_FLAG_TIMER_STOP);
207	ktime_t time_start, time_end;
208
209	/*
210	 * Tell the time framework to switch to a broadcast timer because our
211	 * local timer will be shut down.  If a local timer is used from another
212	 * CPU as a broadcast timer, this call may fail if it is not available.
213	 */
214	if (broadcast && tick_broadcast_enter()) {
215		index = find_deepest_state(drv, dev, target_state->exit_latency_ns,
216					   CPUIDLE_FLAG_TIMER_STOP, false);
217		if (index < 0) {
218			default_idle_call();
219			return -EBUSY;
220		}
221		target_state = &drv->states[index];
222		broadcast = false;
223	}
224
225	if (target_state->flags & CPUIDLE_FLAG_TLB_FLUSHED)
226		leave_mm(dev->cpu);
227
228	/* Take note of the planned idle state. */
229	sched_idle_set_state(target_state);
230
231	trace_cpu_idle(index, dev->cpu);
232	time_start = ns_to_ktime(local_clock());
233
234	stop_critical_timings();
235	if (!(target_state->flags & CPUIDLE_FLAG_RCU_IDLE))
236		rcu_idle_enter();
237	entered_state = target_state->enter(dev, drv, index);
238	if (!(target_state->flags & CPUIDLE_FLAG_RCU_IDLE))
239		rcu_idle_exit();
240	start_critical_timings();
241
242	sched_clock_idle_wakeup_event();
243	time_end = ns_to_ktime(local_clock());
244	trace_cpu_idle(PWR_EVENT_EXIT, dev->cpu);
245
246	/* The cpu is no longer idle or about to enter idle. */
247	sched_idle_set_state(NULL);
248
249	if (broadcast) {
250		if (WARN_ON_ONCE(!irqs_disabled()))
251			local_irq_disable();
252
253		tick_broadcast_exit();
254	}
255
256	if (!cpuidle_state_is_coupled(drv, index))
257		local_irq_enable();
258
259	if (entered_state >= 0) {
260		s64 diff, delay = drv->states[entered_state].exit_latency_ns;
261		int i;
262
263		/*
264		 * Update cpuidle counters
265		 * This can be moved to within driver enter routine,
266		 * but that results in multiple copies of same code.
267		 */
268		diff = ktime_sub(time_end, time_start);
269
270		dev->last_residency_ns = diff;
271		dev->states_usage[entered_state].time_ns += diff;
272		dev->states_usage[entered_state].usage++;
273
274		if (diff < drv->states[entered_state].target_residency_ns) {
275			for (i = entered_state - 1; i >= 0; i--) {
276				if (dev->states_usage[i].disable)
277					continue;
278
279				/* Shallower states are enabled, so update. */
280				dev->states_usage[entered_state].above++;
281				break;
282			}
283		} else if (diff > delay) {
284			for (i = entered_state + 1; i < drv->state_count; i++) {
285				if (dev->states_usage[i].disable)
286					continue;
287
288				/*
289				 * Update if a deeper state would have been a
290				 * better match for the observed idle duration.
291				 */
292				if (diff - delay >= drv->states[i].target_residency_ns)
293					dev->states_usage[entered_state].below++;
294
295				break;
296			}
297		}
298	} else {
299		dev->last_residency_ns = 0;
300		dev->states_usage[index].rejected++;
301	}
302
303	return entered_state;
304}
305
306/**
307 * cpuidle_select - ask the cpuidle framework to choose an idle state
308 *
309 * @drv: the cpuidle driver
310 * @dev: the cpuidle device
311 * @stop_tick: indication on whether or not to stop the tick
312 *
313 * Returns the index of the idle state.  The return value must not be negative.
314 *
315 * The memory location pointed to by @stop_tick is expected to be written the
316 * 'false' boolean value if the scheduler tick should not be stopped before
317 * entering the returned state.
318 */
319int cpuidle_select(struct cpuidle_driver *drv, struct cpuidle_device *dev,
320		   bool *stop_tick)
321{
322	return cpuidle_curr_governor->select(drv, dev, stop_tick);
323}
324
325/**
326 * cpuidle_enter - enter into the specified idle state
327 *
328 * @drv:   the cpuidle driver tied with the cpu
329 * @dev:   the cpuidle device
330 * @index: the index in the idle state table
331 *
332 * Returns the index in the idle state, < 0 in case of error.
333 * The error code depends on the backend driver
334 */
335int cpuidle_enter(struct cpuidle_driver *drv, struct cpuidle_device *dev,
336		  int index)
337{
338	int ret = 0;
339
340	/*
341	 * Store the next hrtimer, which becomes either next tick or the next
342	 * timer event, whatever expires first. Additionally, to make this data
343	 * useful for consumers outside cpuidle, we rely on that the governor's
344	 * ->select() callback have decided, whether to stop the tick or not.
345	 */
346	WRITE_ONCE(dev->next_hrtimer, tick_nohz_get_next_hrtimer());
347
348	if (cpuidle_state_is_coupled(drv, index))
349		ret = cpuidle_enter_state_coupled(dev, drv, index);
350	else
351		ret = cpuidle_enter_state(dev, drv, index);
352
353	WRITE_ONCE(dev->next_hrtimer, 0);
354	return ret;
355}
356
357/**
358 * cpuidle_reflect - tell the underlying governor what was the state
359 * we were in
360 *
361 * @dev  : the cpuidle device
362 * @index: the index in the idle state table
363 *
364 */
365void cpuidle_reflect(struct cpuidle_device *dev, int index)
366{
367	if (cpuidle_curr_governor->reflect && index >= 0)
368		cpuidle_curr_governor->reflect(dev, index);
369}
370
371/**
372 * cpuidle_poll_time - return amount of time to poll for,
373 * governors can override dev->poll_limit_ns if necessary
374 *
375 * @drv:   the cpuidle driver tied with the cpu
376 * @dev:   the cpuidle device
377 *
378 */
379u64 cpuidle_poll_time(struct cpuidle_driver *drv,
380		      struct cpuidle_device *dev)
381{
382	int i;
383	u64 limit_ns;
384
385	if (dev->poll_limit_ns)
386		return dev->poll_limit_ns;
387
388	limit_ns = TICK_NSEC;
389	for (i = 1; i < drv->state_count; i++) {
390		if (dev->states_usage[i].disable)
391			continue;
392
393		limit_ns = drv->states[i].target_residency_ns;
394		break;
395	}
396
397	dev->poll_limit_ns = limit_ns;
398
399	return dev->poll_limit_ns;
400}
401
402/**
403 * cpuidle_install_idle_handler - installs the cpuidle idle loop handler
404 */
405void cpuidle_install_idle_handler(void)
406{
407	if (enabled_devices) {
408		/* Make sure all changes finished before we switch to new idle */
409		smp_wmb();
410		initialized = 1;
411	}
412}
413
414/**
415 * cpuidle_uninstall_idle_handler - uninstalls the cpuidle idle loop handler
416 */
417void cpuidle_uninstall_idle_handler(void)
418{
419	if (enabled_devices) {
420		initialized = 0;
421		wake_up_all_idle_cpus();
422	}
423
424	/*
425	 * Make sure external observers (such as the scheduler)
426	 * are done looking at pointed idle states.
427	 */
428	synchronize_rcu();
429}
430
431/**
432 * cpuidle_pause_and_lock - temporarily disables CPUIDLE
433 */
434void cpuidle_pause_and_lock(void)
435{
436	mutex_lock(&cpuidle_lock);
437	cpuidle_uninstall_idle_handler();
438}
439
440EXPORT_SYMBOL_GPL(cpuidle_pause_and_lock);
441
442/**
443 * cpuidle_resume_and_unlock - resumes CPUIDLE operation
444 */
445void cpuidle_resume_and_unlock(void)
446{
447	cpuidle_install_idle_handler();
448	mutex_unlock(&cpuidle_lock);
449}
450
451EXPORT_SYMBOL_GPL(cpuidle_resume_and_unlock);
452
453/* Currently used in suspend/resume path to suspend cpuidle */
454void cpuidle_pause(void)
455{
456	mutex_lock(&cpuidle_lock);
457	cpuidle_uninstall_idle_handler();
458	mutex_unlock(&cpuidle_lock);
459}
460
461/* Currently used in suspend/resume path to resume cpuidle */
462void cpuidle_resume(void)
463{
464	mutex_lock(&cpuidle_lock);
465	cpuidle_install_idle_handler();
466	mutex_unlock(&cpuidle_lock);
467}
468
469/**
470 * cpuidle_enable_device - enables idle PM for a CPU
471 * @dev: the CPU
472 *
473 * This function must be called between cpuidle_pause_and_lock and
474 * cpuidle_resume_and_unlock when used externally.
475 */
476int cpuidle_enable_device(struct cpuidle_device *dev)
477{
478	int ret;
479	struct cpuidle_driver *drv;
480
481	if (!dev)
482		return -EINVAL;
483
484	if (dev->enabled)
485		return 0;
486
487	if (!cpuidle_curr_governor)
488		return -EIO;
489
490	drv = cpuidle_get_cpu_driver(dev);
491
492	if (!drv)
493		return -EIO;
494
495	if (!dev->registered)
496		return -EINVAL;
497
498	ret = cpuidle_add_device_sysfs(dev);
499	if (ret)
500		return ret;
501
502	if (cpuidle_curr_governor->enable) {
503		ret = cpuidle_curr_governor->enable(drv, dev);
504		if (ret)
505			goto fail_sysfs;
506	}
507
508	smp_wmb();
509
510	dev->enabled = 1;
511
512	enabled_devices++;
513	return 0;
514
515fail_sysfs:
516	cpuidle_remove_device_sysfs(dev);
517
518	return ret;
519}
520
521EXPORT_SYMBOL_GPL(cpuidle_enable_device);
522
523/**
524 * cpuidle_disable_device - disables idle PM for a CPU
525 * @dev: the CPU
526 *
527 * This function must be called between cpuidle_pause_and_lock and
528 * cpuidle_resume_and_unlock when used externally.
529 */
530void cpuidle_disable_device(struct cpuidle_device *dev)
531{
532	struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev);
533
534	if (!dev || !dev->enabled)
535		return;
536
537	if (!drv || !cpuidle_curr_governor)
538		return;
539
540	dev->enabled = 0;
541
542	if (cpuidle_curr_governor->disable)
543		cpuidle_curr_governor->disable(drv, dev);
544
545	cpuidle_remove_device_sysfs(dev);
546	enabled_devices--;
547}
548
549EXPORT_SYMBOL_GPL(cpuidle_disable_device);
550
551static void __cpuidle_unregister_device(struct cpuidle_device *dev)
552{
553	struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev);
554
555	list_del(&dev->device_list);
556	per_cpu(cpuidle_devices, dev->cpu) = NULL;
557	module_put(drv->owner);
558
559	dev->registered = 0;
560}
561
562static void __cpuidle_device_init(struct cpuidle_device *dev)
563{
564	memset(dev->states_usage, 0, sizeof(dev->states_usage));
565	dev->last_residency_ns = 0;
566	dev->next_hrtimer = 0;
567}
568
569/**
570 * __cpuidle_register_device - internal register function called before register
571 * and enable routines
572 * @dev: the cpu
573 *
574 * cpuidle_lock mutex must be held before this is called
575 */
576static int __cpuidle_register_device(struct cpuidle_device *dev)
577{
578	struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev);
579	int i, ret;
580
581	if (!try_module_get(drv->owner))
582		return -EINVAL;
583
584	for (i = 0; i < drv->state_count; i++) {
585		if (drv->states[i].flags & CPUIDLE_FLAG_UNUSABLE)
586			dev->states_usage[i].disable |= CPUIDLE_STATE_DISABLED_BY_DRIVER;
587
588		if (drv->states[i].flags & CPUIDLE_FLAG_OFF)
589			dev->states_usage[i].disable |= CPUIDLE_STATE_DISABLED_BY_USER;
590	}
591
592	per_cpu(cpuidle_devices, dev->cpu) = dev;
593	list_add(&dev->device_list, &cpuidle_detected_devices);
594
595	ret = cpuidle_coupled_register_device(dev);
596	if (ret)
597		__cpuidle_unregister_device(dev);
598	else
599		dev->registered = 1;
600
601	return ret;
602}
603
604/**
605 * cpuidle_register_device - registers a CPU's idle PM feature
606 * @dev: the cpu
607 */
608int cpuidle_register_device(struct cpuidle_device *dev)
609{
610	int ret = -EBUSY;
611
612	if (!dev)
613		return -EINVAL;
614
615	mutex_lock(&cpuidle_lock);
616
617	if (dev->registered)
618		goto out_unlock;
619
620	__cpuidle_device_init(dev);
621
622	ret = __cpuidle_register_device(dev);
623	if (ret)
624		goto out_unlock;
625
626	ret = cpuidle_add_sysfs(dev);
627	if (ret)
628		goto out_unregister;
629
630	ret = cpuidle_enable_device(dev);
631	if (ret)
632		goto out_sysfs;
633
634	cpuidle_install_idle_handler();
635
636out_unlock:
637	mutex_unlock(&cpuidle_lock);
638
639	return ret;
640
641out_sysfs:
642	cpuidle_remove_sysfs(dev);
643out_unregister:
644	__cpuidle_unregister_device(dev);
645	goto out_unlock;
646}
647
648EXPORT_SYMBOL_GPL(cpuidle_register_device);
649
650/**
651 * cpuidle_unregister_device - unregisters a CPU's idle PM feature
652 * @dev: the cpu
653 */
654void cpuidle_unregister_device(struct cpuidle_device *dev)
655{
656	if (!dev || dev->registered == 0)
657		return;
658
659	cpuidle_pause_and_lock();
660
661	cpuidle_disable_device(dev);
662
663	cpuidle_remove_sysfs(dev);
664
665	__cpuidle_unregister_device(dev);
666
667	cpuidle_coupled_unregister_device(dev);
668
669	cpuidle_resume_and_unlock();
670}
671
672EXPORT_SYMBOL_GPL(cpuidle_unregister_device);
673
674/**
675 * cpuidle_unregister: unregister a driver and the devices. This function
676 * can be used only if the driver has been previously registered through
677 * the cpuidle_register function.
678 *
679 * @drv: a valid pointer to a struct cpuidle_driver
680 */
681void cpuidle_unregister(struct cpuidle_driver *drv)
682{
683	int cpu;
684	struct cpuidle_device *device;
685
686	for_each_cpu(cpu, drv->cpumask) {
687		device = &per_cpu(cpuidle_dev, cpu);
688		cpuidle_unregister_device(device);
689	}
690
691	cpuidle_unregister_driver(drv);
692}
693EXPORT_SYMBOL_GPL(cpuidle_unregister);
694
695/**
696 * cpuidle_register: registers the driver and the cpu devices with the
697 * coupled_cpus passed as parameter. This function is used for all common
698 * initialization pattern there are in the arch specific drivers. The
699 * devices is globally defined in this file.
700 *
701 * @drv         : a valid pointer to a struct cpuidle_driver
702 * @coupled_cpus: a cpumask for the coupled states
703 *
704 * Returns 0 on success, < 0 otherwise
705 */
706int cpuidle_register(struct cpuidle_driver *drv,
707		     const struct cpumask *const coupled_cpus)
708{
709	int ret, cpu;
710	struct cpuidle_device *device;
711
712	ret = cpuidle_register_driver(drv);
713	if (ret) {
714		pr_err("failed to register cpuidle driver\n");
715		return ret;
716	}
717
718	for_each_cpu(cpu, drv->cpumask) {
719		device = &per_cpu(cpuidle_dev, cpu);
720		device->cpu = cpu;
721
722#ifdef CONFIG_ARCH_NEEDS_CPU_IDLE_COUPLED
723		/*
724		 * On multiplatform for ARM, the coupled idle states could be
725		 * enabled in the kernel even if the cpuidle driver does not
726		 * use it. Note, coupled_cpus is a struct copy.
727		 */
728		if (coupled_cpus)
729			device->coupled_cpus = *coupled_cpus;
730#endif
731		ret = cpuidle_register_device(device);
732		if (!ret)
733			continue;
734
735		pr_err("Failed to register cpuidle device for cpu%d\n", cpu);
736
737		cpuidle_unregister(drv);
738		break;
739	}
740
741	return ret;
742}
743EXPORT_SYMBOL_GPL(cpuidle_register);
744
745/**
746 * cpuidle_init - core initializer
747 */
748static int __init cpuidle_init(void)
749{
750	if (cpuidle_disabled())
751		return -ENODEV;
752
753	return cpuidle_add_interface(cpu_subsys.dev_root);
754}
755
756module_param(off, int, 0444);
757module_param_string(governor, param_governor, CPUIDLE_NAME_LEN, 0444);
758core_initcall(cpuidle_init);
759