18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0
28c2ecf20Sopenharmony_ci/*
38c2ecf20Sopenharmony_ci * Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved
48c2ecf20Sopenharmony_ci */
58c2ecf20Sopenharmony_ci
68c2ecf20Sopenharmony_ci#include <linux/cpu.h>
78c2ecf20Sopenharmony_ci#include <linux/cpufreq.h>
88c2ecf20Sopenharmony_ci#include <linux/delay.h>
98c2ecf20Sopenharmony_ci#include <linux/dma-mapping.h>
108c2ecf20Sopenharmony_ci#include <linux/module.h>
118c2ecf20Sopenharmony_ci#include <linux/of.h>
128c2ecf20Sopenharmony_ci#include <linux/of_platform.h>
138c2ecf20Sopenharmony_ci#include <linux/platform_device.h>
148c2ecf20Sopenharmony_ci#include <linux/slab.h>
158c2ecf20Sopenharmony_ci
168c2ecf20Sopenharmony_ci#include <asm/smp_plat.h>
178c2ecf20Sopenharmony_ci
188c2ecf20Sopenharmony_ci#include <soc/tegra/bpmp.h>
198c2ecf20Sopenharmony_ci#include <soc/tegra/bpmp-abi.h>
208c2ecf20Sopenharmony_ci
218c2ecf20Sopenharmony_ci#define KHZ                     1000
228c2ecf20Sopenharmony_ci#define REF_CLK_MHZ             408 /* 408 MHz */
238c2ecf20Sopenharmony_ci#define US_DELAY                500
248c2ecf20Sopenharmony_ci#define US_DELAY_MIN            2
258c2ecf20Sopenharmony_ci#define CPUFREQ_TBL_STEP_HZ     (50 * KHZ * KHZ)
268c2ecf20Sopenharmony_ci#define MAX_CNT                 ~0U
278c2ecf20Sopenharmony_ci
288c2ecf20Sopenharmony_ci/* cpufreq transisition latency */
298c2ecf20Sopenharmony_ci#define TEGRA_CPUFREQ_TRANSITION_LATENCY (300 * 1000) /* unit in nanoseconds */
308c2ecf20Sopenharmony_ci
318c2ecf20Sopenharmony_cienum cluster {
328c2ecf20Sopenharmony_ci	CLUSTER0,
338c2ecf20Sopenharmony_ci	CLUSTER1,
348c2ecf20Sopenharmony_ci	CLUSTER2,
358c2ecf20Sopenharmony_ci	CLUSTER3,
368c2ecf20Sopenharmony_ci	MAX_CLUSTERS,
378c2ecf20Sopenharmony_ci};
388c2ecf20Sopenharmony_ci
398c2ecf20Sopenharmony_cistruct tegra194_cpufreq_data {
408c2ecf20Sopenharmony_ci	void __iomem *regs;
418c2ecf20Sopenharmony_ci	size_t num_clusters;
428c2ecf20Sopenharmony_ci	struct cpufreq_frequency_table **tables;
438c2ecf20Sopenharmony_ci};
448c2ecf20Sopenharmony_ci
458c2ecf20Sopenharmony_cistruct tegra_cpu_ctr {
468c2ecf20Sopenharmony_ci	u32 cpu;
478c2ecf20Sopenharmony_ci	u32 delay;
488c2ecf20Sopenharmony_ci	u32 coreclk_cnt, last_coreclk_cnt;
498c2ecf20Sopenharmony_ci	u32 refclk_cnt, last_refclk_cnt;
508c2ecf20Sopenharmony_ci};
518c2ecf20Sopenharmony_ci
528c2ecf20Sopenharmony_cistruct read_counters_work {
538c2ecf20Sopenharmony_ci	struct work_struct work;
548c2ecf20Sopenharmony_ci	struct tegra_cpu_ctr c;
558c2ecf20Sopenharmony_ci};
568c2ecf20Sopenharmony_ci
578c2ecf20Sopenharmony_cistatic struct workqueue_struct *read_counters_wq;
588c2ecf20Sopenharmony_ci
598c2ecf20Sopenharmony_cistatic void get_cpu_cluster(void *cluster)
608c2ecf20Sopenharmony_ci{
618c2ecf20Sopenharmony_ci	u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
628c2ecf20Sopenharmony_ci
638c2ecf20Sopenharmony_ci	*((uint32_t *)cluster) = MPIDR_AFFINITY_LEVEL(mpidr, 1);
648c2ecf20Sopenharmony_ci}
658c2ecf20Sopenharmony_ci
668c2ecf20Sopenharmony_ci/*
678c2ecf20Sopenharmony_ci * Read per-core Read-only system register NVFREQ_FEEDBACK_EL1.
688c2ecf20Sopenharmony_ci * The register provides frequency feedback information to
698c2ecf20Sopenharmony_ci * determine the average actual frequency a core has run at over
708c2ecf20Sopenharmony_ci * a period of time.
718c2ecf20Sopenharmony_ci *	[31:0] PLLP counter: Counts at fixed frequency (408 MHz)
728c2ecf20Sopenharmony_ci *	[63:32] Core clock counter: counts on every core clock cycle
738c2ecf20Sopenharmony_ci *			where the core is architecturally clocking
748c2ecf20Sopenharmony_ci */
758c2ecf20Sopenharmony_cistatic u64 read_freq_feedback(void)
768c2ecf20Sopenharmony_ci{
778c2ecf20Sopenharmony_ci	u64 val = 0;
788c2ecf20Sopenharmony_ci
798c2ecf20Sopenharmony_ci	asm volatile("mrs %0, s3_0_c15_c0_5" : "=r" (val) : );
808c2ecf20Sopenharmony_ci
818c2ecf20Sopenharmony_ci	return val;
828c2ecf20Sopenharmony_ci}
838c2ecf20Sopenharmony_ci
848c2ecf20Sopenharmony_cistatic inline u32 map_ndiv_to_freq(struct mrq_cpu_ndiv_limits_response
858c2ecf20Sopenharmony_ci				   *nltbl, u16 ndiv)
868c2ecf20Sopenharmony_ci{
878c2ecf20Sopenharmony_ci	return nltbl->ref_clk_hz / KHZ * ndiv / (nltbl->pdiv * nltbl->mdiv);
888c2ecf20Sopenharmony_ci}
898c2ecf20Sopenharmony_ci
908c2ecf20Sopenharmony_cistatic void tegra_read_counters(struct work_struct *work)
918c2ecf20Sopenharmony_ci{
928c2ecf20Sopenharmony_ci	struct read_counters_work *read_counters_work;
938c2ecf20Sopenharmony_ci	struct tegra_cpu_ctr *c;
948c2ecf20Sopenharmony_ci	u64 val;
958c2ecf20Sopenharmony_ci
968c2ecf20Sopenharmony_ci	/*
978c2ecf20Sopenharmony_ci	 * ref_clk_counter(32 bit counter) runs on constant clk,
988c2ecf20Sopenharmony_ci	 * pll_p(408MHz).
998c2ecf20Sopenharmony_ci	 * It will take = 2 ^ 32 / 408 MHz to overflow ref clk counter
1008c2ecf20Sopenharmony_ci	 *              = 10526880 usec = 10.527 sec to overflow
1018c2ecf20Sopenharmony_ci	 *
1028c2ecf20Sopenharmony_ci	 * Like wise core_clk_counter(32 bit counter) runs on core clock.
1038c2ecf20Sopenharmony_ci	 * It's synchronized to crab_clk (cpu_crab_clk) which runs at
1048c2ecf20Sopenharmony_ci	 * freq of cluster. Assuming max cluster clock ~2000MHz,
1058c2ecf20Sopenharmony_ci	 * It will take = 2 ^ 32 / 2000 MHz to overflow core clk counter
1068c2ecf20Sopenharmony_ci	 *              = ~2.147 sec to overflow
1078c2ecf20Sopenharmony_ci	 */
1088c2ecf20Sopenharmony_ci	read_counters_work = container_of(work, struct read_counters_work,
1098c2ecf20Sopenharmony_ci					  work);
1108c2ecf20Sopenharmony_ci	c = &read_counters_work->c;
1118c2ecf20Sopenharmony_ci
1128c2ecf20Sopenharmony_ci	val = read_freq_feedback();
1138c2ecf20Sopenharmony_ci	c->last_refclk_cnt = lower_32_bits(val);
1148c2ecf20Sopenharmony_ci	c->last_coreclk_cnt = upper_32_bits(val);
1158c2ecf20Sopenharmony_ci	udelay(c->delay);
1168c2ecf20Sopenharmony_ci	val = read_freq_feedback();
1178c2ecf20Sopenharmony_ci	c->refclk_cnt = lower_32_bits(val);
1188c2ecf20Sopenharmony_ci	c->coreclk_cnt = upper_32_bits(val);
1198c2ecf20Sopenharmony_ci}
1208c2ecf20Sopenharmony_ci
1218c2ecf20Sopenharmony_ci/*
1228c2ecf20Sopenharmony_ci * Return instantaneous cpu speed
1238c2ecf20Sopenharmony_ci * Instantaneous freq is calculated as -
1248c2ecf20Sopenharmony_ci * -Takes sample on every query of getting the freq.
1258c2ecf20Sopenharmony_ci *	- Read core and ref clock counters;
1268c2ecf20Sopenharmony_ci *	- Delay for X us
1278c2ecf20Sopenharmony_ci *	- Read above cycle counters again
1288c2ecf20Sopenharmony_ci *	- Calculates freq by subtracting current and previous counters
1298c2ecf20Sopenharmony_ci *	  divided by the delay time or eqv. of ref_clk_counter in delta time
1308c2ecf20Sopenharmony_ci *	- Return Kcycles/second, freq in KHz
1318c2ecf20Sopenharmony_ci *
1328c2ecf20Sopenharmony_ci *	delta time period = x sec
1338c2ecf20Sopenharmony_ci *			  = delta ref_clk_counter / (408 * 10^6) sec
1348c2ecf20Sopenharmony_ci *	freq in Hz = cycles/sec
1358c2ecf20Sopenharmony_ci *		   = (delta cycles / x sec
1368c2ecf20Sopenharmony_ci *		   = (delta cycles * 408 * 10^6) / delta ref_clk_counter
1378c2ecf20Sopenharmony_ci *	in KHz	   = (delta cycles * 408 * 10^3) / delta ref_clk_counter
1388c2ecf20Sopenharmony_ci *
1398c2ecf20Sopenharmony_ci * @cpu - logical cpu whose freq to be updated
1408c2ecf20Sopenharmony_ci * Returns freq in KHz on success, 0 if cpu is offline
1418c2ecf20Sopenharmony_ci */
1428c2ecf20Sopenharmony_cistatic unsigned int tegra194_get_speed_common(u32 cpu, u32 delay)
1438c2ecf20Sopenharmony_ci{
1448c2ecf20Sopenharmony_ci	struct read_counters_work read_counters_work;
1458c2ecf20Sopenharmony_ci	struct tegra_cpu_ctr c;
1468c2ecf20Sopenharmony_ci	u32 delta_refcnt;
1478c2ecf20Sopenharmony_ci	u32 delta_ccnt;
1488c2ecf20Sopenharmony_ci	u32 rate_mhz;
1498c2ecf20Sopenharmony_ci
1508c2ecf20Sopenharmony_ci	/*
1518c2ecf20Sopenharmony_ci	 * udelay() is required to reconstruct cpu frequency over an
1528c2ecf20Sopenharmony_ci	 * observation window. Using workqueue to call udelay() with
1538c2ecf20Sopenharmony_ci	 * interrupts enabled.
1548c2ecf20Sopenharmony_ci	 */
1558c2ecf20Sopenharmony_ci	read_counters_work.c.cpu = cpu;
1568c2ecf20Sopenharmony_ci	read_counters_work.c.delay = delay;
1578c2ecf20Sopenharmony_ci	INIT_WORK_ONSTACK(&read_counters_work.work, tegra_read_counters);
1588c2ecf20Sopenharmony_ci	queue_work_on(cpu, read_counters_wq, &read_counters_work.work);
1598c2ecf20Sopenharmony_ci	flush_work(&read_counters_work.work);
1608c2ecf20Sopenharmony_ci	c = read_counters_work.c;
1618c2ecf20Sopenharmony_ci
1628c2ecf20Sopenharmony_ci	if (c.coreclk_cnt < c.last_coreclk_cnt)
1638c2ecf20Sopenharmony_ci		delta_ccnt = c.coreclk_cnt + (MAX_CNT - c.last_coreclk_cnt);
1648c2ecf20Sopenharmony_ci	else
1658c2ecf20Sopenharmony_ci		delta_ccnt = c.coreclk_cnt - c.last_coreclk_cnt;
1668c2ecf20Sopenharmony_ci	if (!delta_ccnt)
1678c2ecf20Sopenharmony_ci		return 0;
1688c2ecf20Sopenharmony_ci
1698c2ecf20Sopenharmony_ci	/* ref clock is 32 bits */
1708c2ecf20Sopenharmony_ci	if (c.refclk_cnt < c.last_refclk_cnt)
1718c2ecf20Sopenharmony_ci		delta_refcnt = c.refclk_cnt + (MAX_CNT - c.last_refclk_cnt);
1728c2ecf20Sopenharmony_ci	else
1738c2ecf20Sopenharmony_ci		delta_refcnt = c.refclk_cnt - c.last_refclk_cnt;
1748c2ecf20Sopenharmony_ci	if (!delta_refcnt) {
1758c2ecf20Sopenharmony_ci		pr_debug("cpufreq: %d is idle, delta_refcnt: 0\n", cpu);
1768c2ecf20Sopenharmony_ci		return 0;
1778c2ecf20Sopenharmony_ci	}
1788c2ecf20Sopenharmony_ci	rate_mhz = ((unsigned long)(delta_ccnt * REF_CLK_MHZ)) / delta_refcnt;
1798c2ecf20Sopenharmony_ci
1808c2ecf20Sopenharmony_ci	return (rate_mhz * KHZ); /* in KHz */
1818c2ecf20Sopenharmony_ci}
1828c2ecf20Sopenharmony_ci
1838c2ecf20Sopenharmony_cistatic unsigned int tegra194_get_speed(u32 cpu)
1848c2ecf20Sopenharmony_ci{
1858c2ecf20Sopenharmony_ci	return tegra194_get_speed_common(cpu, US_DELAY);
1868c2ecf20Sopenharmony_ci}
1878c2ecf20Sopenharmony_ci
1888c2ecf20Sopenharmony_cistatic int tegra194_cpufreq_init(struct cpufreq_policy *policy)
1898c2ecf20Sopenharmony_ci{
1908c2ecf20Sopenharmony_ci	struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
1918c2ecf20Sopenharmony_ci	u32 cpu;
1928c2ecf20Sopenharmony_ci	u32 cl;
1938c2ecf20Sopenharmony_ci
1948c2ecf20Sopenharmony_ci	smp_call_function_single(policy->cpu, get_cpu_cluster, &cl, true);
1958c2ecf20Sopenharmony_ci
1968c2ecf20Sopenharmony_ci	if (cl >= data->num_clusters)
1978c2ecf20Sopenharmony_ci		return -EINVAL;
1988c2ecf20Sopenharmony_ci
1998c2ecf20Sopenharmony_ci	/* boot freq */
2008c2ecf20Sopenharmony_ci	policy->cur = tegra194_get_speed_common(policy->cpu, US_DELAY_MIN);
2018c2ecf20Sopenharmony_ci
2028c2ecf20Sopenharmony_ci	/* set same policy for all cpus in a cluster */
2038c2ecf20Sopenharmony_ci	for (cpu = (cl * 2); cpu < ((cl + 1) * 2); cpu++)
2048c2ecf20Sopenharmony_ci		cpumask_set_cpu(cpu, policy->cpus);
2058c2ecf20Sopenharmony_ci
2068c2ecf20Sopenharmony_ci	policy->freq_table = data->tables[cl];
2078c2ecf20Sopenharmony_ci	policy->cpuinfo.transition_latency = TEGRA_CPUFREQ_TRANSITION_LATENCY;
2088c2ecf20Sopenharmony_ci
2098c2ecf20Sopenharmony_ci	return 0;
2108c2ecf20Sopenharmony_ci}
2118c2ecf20Sopenharmony_ci
2128c2ecf20Sopenharmony_cistatic void set_cpu_ndiv(void *data)
2138c2ecf20Sopenharmony_ci{
2148c2ecf20Sopenharmony_ci	struct cpufreq_frequency_table *tbl = data;
2158c2ecf20Sopenharmony_ci	u64 ndiv_val = (u64)tbl->driver_data;
2168c2ecf20Sopenharmony_ci
2178c2ecf20Sopenharmony_ci	asm volatile("msr s3_0_c15_c0_4, %0" : : "r" (ndiv_val));
2188c2ecf20Sopenharmony_ci}
2198c2ecf20Sopenharmony_ci
2208c2ecf20Sopenharmony_cistatic int tegra194_cpufreq_set_target(struct cpufreq_policy *policy,
2218c2ecf20Sopenharmony_ci				       unsigned int index)
2228c2ecf20Sopenharmony_ci{
2238c2ecf20Sopenharmony_ci	struct cpufreq_frequency_table *tbl = policy->freq_table + index;
2248c2ecf20Sopenharmony_ci
2258c2ecf20Sopenharmony_ci	/*
2268c2ecf20Sopenharmony_ci	 * Each core writes frequency in per core register. Then both cores
2278c2ecf20Sopenharmony_ci	 * in a cluster run at same frequency which is the maximum frequency
2288c2ecf20Sopenharmony_ci	 * request out of the values requested by both cores in that cluster.
2298c2ecf20Sopenharmony_ci	 */
2308c2ecf20Sopenharmony_ci	on_each_cpu_mask(policy->cpus, set_cpu_ndiv, tbl, true);
2318c2ecf20Sopenharmony_ci
2328c2ecf20Sopenharmony_ci	return 0;
2338c2ecf20Sopenharmony_ci}
2348c2ecf20Sopenharmony_ci
2358c2ecf20Sopenharmony_cistatic struct cpufreq_driver tegra194_cpufreq_driver = {
2368c2ecf20Sopenharmony_ci	.name = "tegra194",
2378c2ecf20Sopenharmony_ci	.flags = CPUFREQ_STICKY | CPUFREQ_CONST_LOOPS |
2388c2ecf20Sopenharmony_ci		CPUFREQ_NEED_INITIAL_FREQ_CHECK,
2398c2ecf20Sopenharmony_ci	.verify = cpufreq_generic_frequency_table_verify,
2408c2ecf20Sopenharmony_ci	.target_index = tegra194_cpufreq_set_target,
2418c2ecf20Sopenharmony_ci	.get = tegra194_get_speed,
2428c2ecf20Sopenharmony_ci	.init = tegra194_cpufreq_init,
2438c2ecf20Sopenharmony_ci	.attr = cpufreq_generic_attr,
2448c2ecf20Sopenharmony_ci};
2458c2ecf20Sopenharmony_ci
2468c2ecf20Sopenharmony_cistatic void tegra194_cpufreq_free_resources(void)
2478c2ecf20Sopenharmony_ci{
2488c2ecf20Sopenharmony_ci	destroy_workqueue(read_counters_wq);
2498c2ecf20Sopenharmony_ci}
2508c2ecf20Sopenharmony_ci
2518c2ecf20Sopenharmony_cistatic struct cpufreq_frequency_table *
2528c2ecf20Sopenharmony_ciinit_freq_table(struct platform_device *pdev, struct tegra_bpmp *bpmp,
2538c2ecf20Sopenharmony_ci		unsigned int cluster_id)
2548c2ecf20Sopenharmony_ci{
2558c2ecf20Sopenharmony_ci	struct cpufreq_frequency_table *freq_table;
2568c2ecf20Sopenharmony_ci	struct mrq_cpu_ndiv_limits_response resp;
2578c2ecf20Sopenharmony_ci	unsigned int num_freqs, ndiv, delta_ndiv;
2588c2ecf20Sopenharmony_ci	struct mrq_cpu_ndiv_limits_request req;
2598c2ecf20Sopenharmony_ci	struct tegra_bpmp_message msg;
2608c2ecf20Sopenharmony_ci	u16 freq_table_step_size;
2618c2ecf20Sopenharmony_ci	int err, index;
2628c2ecf20Sopenharmony_ci
2638c2ecf20Sopenharmony_ci	memset(&req, 0, sizeof(req));
2648c2ecf20Sopenharmony_ci	req.cluster_id = cluster_id;
2658c2ecf20Sopenharmony_ci
2668c2ecf20Sopenharmony_ci	memset(&msg, 0, sizeof(msg));
2678c2ecf20Sopenharmony_ci	msg.mrq = MRQ_CPU_NDIV_LIMITS;
2688c2ecf20Sopenharmony_ci	msg.tx.data = &req;
2698c2ecf20Sopenharmony_ci	msg.tx.size = sizeof(req);
2708c2ecf20Sopenharmony_ci	msg.rx.data = &resp;
2718c2ecf20Sopenharmony_ci	msg.rx.size = sizeof(resp);
2728c2ecf20Sopenharmony_ci
2738c2ecf20Sopenharmony_ci	err = tegra_bpmp_transfer(bpmp, &msg);
2748c2ecf20Sopenharmony_ci	if (err)
2758c2ecf20Sopenharmony_ci		return ERR_PTR(err);
2768c2ecf20Sopenharmony_ci
2778c2ecf20Sopenharmony_ci	/*
2788c2ecf20Sopenharmony_ci	 * Make sure frequency table step is a multiple of mdiv to match
2798c2ecf20Sopenharmony_ci	 * vhint table granularity.
2808c2ecf20Sopenharmony_ci	 */
2818c2ecf20Sopenharmony_ci	freq_table_step_size = resp.mdiv *
2828c2ecf20Sopenharmony_ci			DIV_ROUND_UP(CPUFREQ_TBL_STEP_HZ, resp.ref_clk_hz);
2838c2ecf20Sopenharmony_ci
2848c2ecf20Sopenharmony_ci	dev_dbg(&pdev->dev, "cluster %d: frequency table step size: %d\n",
2858c2ecf20Sopenharmony_ci		cluster_id, freq_table_step_size);
2868c2ecf20Sopenharmony_ci
2878c2ecf20Sopenharmony_ci	delta_ndiv = resp.ndiv_max - resp.ndiv_min;
2888c2ecf20Sopenharmony_ci
2898c2ecf20Sopenharmony_ci	if (unlikely(delta_ndiv == 0)) {
2908c2ecf20Sopenharmony_ci		num_freqs = 1;
2918c2ecf20Sopenharmony_ci	} else {
2928c2ecf20Sopenharmony_ci		/* We store both ndiv_min and ndiv_max hence the +1 */
2938c2ecf20Sopenharmony_ci		num_freqs = delta_ndiv / freq_table_step_size + 1;
2948c2ecf20Sopenharmony_ci	}
2958c2ecf20Sopenharmony_ci
2968c2ecf20Sopenharmony_ci	num_freqs += (delta_ndiv % freq_table_step_size) ? 1 : 0;
2978c2ecf20Sopenharmony_ci
2988c2ecf20Sopenharmony_ci	freq_table = devm_kcalloc(&pdev->dev, num_freqs + 1,
2998c2ecf20Sopenharmony_ci				  sizeof(*freq_table), GFP_KERNEL);
3008c2ecf20Sopenharmony_ci	if (!freq_table)
3018c2ecf20Sopenharmony_ci		return ERR_PTR(-ENOMEM);
3028c2ecf20Sopenharmony_ci
3038c2ecf20Sopenharmony_ci	for (index = 0, ndiv = resp.ndiv_min;
3048c2ecf20Sopenharmony_ci			ndiv < resp.ndiv_max;
3058c2ecf20Sopenharmony_ci			index++, ndiv += freq_table_step_size) {
3068c2ecf20Sopenharmony_ci		freq_table[index].driver_data = ndiv;
3078c2ecf20Sopenharmony_ci		freq_table[index].frequency = map_ndiv_to_freq(&resp, ndiv);
3088c2ecf20Sopenharmony_ci	}
3098c2ecf20Sopenharmony_ci
3108c2ecf20Sopenharmony_ci	freq_table[index].driver_data = resp.ndiv_max;
3118c2ecf20Sopenharmony_ci	freq_table[index++].frequency = map_ndiv_to_freq(&resp, resp.ndiv_max);
3128c2ecf20Sopenharmony_ci	freq_table[index].frequency = CPUFREQ_TABLE_END;
3138c2ecf20Sopenharmony_ci
3148c2ecf20Sopenharmony_ci	return freq_table;
3158c2ecf20Sopenharmony_ci}
3168c2ecf20Sopenharmony_ci
3178c2ecf20Sopenharmony_cistatic int tegra194_cpufreq_probe(struct platform_device *pdev)
3188c2ecf20Sopenharmony_ci{
3198c2ecf20Sopenharmony_ci	struct tegra194_cpufreq_data *data;
3208c2ecf20Sopenharmony_ci	struct tegra_bpmp *bpmp;
3218c2ecf20Sopenharmony_ci	int err, i;
3228c2ecf20Sopenharmony_ci
3238c2ecf20Sopenharmony_ci	data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
3248c2ecf20Sopenharmony_ci	if (!data)
3258c2ecf20Sopenharmony_ci		return -ENOMEM;
3268c2ecf20Sopenharmony_ci
3278c2ecf20Sopenharmony_ci	data->num_clusters = MAX_CLUSTERS;
3288c2ecf20Sopenharmony_ci	data->tables = devm_kcalloc(&pdev->dev, data->num_clusters,
3298c2ecf20Sopenharmony_ci				    sizeof(*data->tables), GFP_KERNEL);
3308c2ecf20Sopenharmony_ci	if (!data->tables)
3318c2ecf20Sopenharmony_ci		return -ENOMEM;
3328c2ecf20Sopenharmony_ci
3338c2ecf20Sopenharmony_ci	platform_set_drvdata(pdev, data);
3348c2ecf20Sopenharmony_ci
3358c2ecf20Sopenharmony_ci	bpmp = tegra_bpmp_get(&pdev->dev);
3368c2ecf20Sopenharmony_ci	if (IS_ERR(bpmp))
3378c2ecf20Sopenharmony_ci		return PTR_ERR(bpmp);
3388c2ecf20Sopenharmony_ci
3398c2ecf20Sopenharmony_ci	read_counters_wq = alloc_workqueue("read_counters_wq", __WQ_LEGACY, 1);
3408c2ecf20Sopenharmony_ci	if (!read_counters_wq) {
3418c2ecf20Sopenharmony_ci		dev_err(&pdev->dev, "fail to create_workqueue\n");
3428c2ecf20Sopenharmony_ci		err = -EINVAL;
3438c2ecf20Sopenharmony_ci		goto put_bpmp;
3448c2ecf20Sopenharmony_ci	}
3458c2ecf20Sopenharmony_ci
3468c2ecf20Sopenharmony_ci	for (i = 0; i < data->num_clusters; i++) {
3478c2ecf20Sopenharmony_ci		data->tables[i] = init_freq_table(pdev, bpmp, i);
3488c2ecf20Sopenharmony_ci		if (IS_ERR(data->tables[i])) {
3498c2ecf20Sopenharmony_ci			err = PTR_ERR(data->tables[i]);
3508c2ecf20Sopenharmony_ci			goto err_free_res;
3518c2ecf20Sopenharmony_ci		}
3528c2ecf20Sopenharmony_ci	}
3538c2ecf20Sopenharmony_ci
3548c2ecf20Sopenharmony_ci	tegra194_cpufreq_driver.driver_data = data;
3558c2ecf20Sopenharmony_ci
3568c2ecf20Sopenharmony_ci	err = cpufreq_register_driver(&tegra194_cpufreq_driver);
3578c2ecf20Sopenharmony_ci	if (!err)
3588c2ecf20Sopenharmony_ci		goto put_bpmp;
3598c2ecf20Sopenharmony_ci
3608c2ecf20Sopenharmony_cierr_free_res:
3618c2ecf20Sopenharmony_ci	tegra194_cpufreq_free_resources();
3628c2ecf20Sopenharmony_ciput_bpmp:
3638c2ecf20Sopenharmony_ci	tegra_bpmp_put(bpmp);
3648c2ecf20Sopenharmony_ci	return err;
3658c2ecf20Sopenharmony_ci}
3668c2ecf20Sopenharmony_ci
3678c2ecf20Sopenharmony_cistatic int tegra194_cpufreq_remove(struct platform_device *pdev)
3688c2ecf20Sopenharmony_ci{
3698c2ecf20Sopenharmony_ci	cpufreq_unregister_driver(&tegra194_cpufreq_driver);
3708c2ecf20Sopenharmony_ci	tegra194_cpufreq_free_resources();
3718c2ecf20Sopenharmony_ci
3728c2ecf20Sopenharmony_ci	return 0;
3738c2ecf20Sopenharmony_ci}
3748c2ecf20Sopenharmony_ci
3758c2ecf20Sopenharmony_cistatic const struct of_device_id tegra194_cpufreq_of_match[] = {
3768c2ecf20Sopenharmony_ci	{ .compatible = "nvidia,tegra194-ccplex", },
3778c2ecf20Sopenharmony_ci	{ /* sentinel */ }
3788c2ecf20Sopenharmony_ci};
3798c2ecf20Sopenharmony_ciMODULE_DEVICE_TABLE(of, tegra194_cpufreq_of_match);
3808c2ecf20Sopenharmony_ci
3818c2ecf20Sopenharmony_cistatic struct platform_driver tegra194_ccplex_driver = {
3828c2ecf20Sopenharmony_ci	.driver = {
3838c2ecf20Sopenharmony_ci		.name = "tegra194-cpufreq",
3848c2ecf20Sopenharmony_ci		.of_match_table = tegra194_cpufreq_of_match,
3858c2ecf20Sopenharmony_ci	},
3868c2ecf20Sopenharmony_ci	.probe = tegra194_cpufreq_probe,
3878c2ecf20Sopenharmony_ci	.remove = tegra194_cpufreq_remove,
3888c2ecf20Sopenharmony_ci};
3898c2ecf20Sopenharmony_cimodule_platform_driver(tegra194_ccplex_driver);
3908c2ecf20Sopenharmony_ci
3918c2ecf20Sopenharmony_ciMODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>");
3928c2ecf20Sopenharmony_ciMODULE_AUTHOR("Sumit Gupta <sumitg@nvidia.com>");
3938c2ecf20Sopenharmony_ciMODULE_DESCRIPTION("NVIDIA Tegra194 cpufreq driver");
3948c2ecf20Sopenharmony_ciMODULE_LICENSE("GPL v2");
395