18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-only 28c2ecf20Sopenharmony_ci/* 38c2ecf20Sopenharmony_ci * linux/arch/arm/mach-sa1100/cpu-sa1110.c 48c2ecf20Sopenharmony_ci * 58c2ecf20Sopenharmony_ci * Copyright (C) 2001 Russell King 68c2ecf20Sopenharmony_ci * 78c2ecf20Sopenharmony_ci * Note: there are two erratas that apply to the SA1110 here: 88c2ecf20Sopenharmony_ci * 7 - SDRAM auto-power-up failure (rev A0) 98c2ecf20Sopenharmony_ci * 13 - Corruption of internal register reads/writes following 108c2ecf20Sopenharmony_ci * SDRAM reads (rev A0, B0, B1) 118c2ecf20Sopenharmony_ci * 128c2ecf20Sopenharmony_ci * We ignore rev. A0 and B0 devices; I don't think they're worth supporting. 138c2ecf20Sopenharmony_ci * 148c2ecf20Sopenharmony_ci * The SDRAM type can be passed on the command line as cpu_sa1110.sdram=type 158c2ecf20Sopenharmony_ci */ 168c2ecf20Sopenharmony_ci#include <linux/cpufreq.h> 178c2ecf20Sopenharmony_ci#include <linux/delay.h> 188c2ecf20Sopenharmony_ci#include <linux/init.h> 198c2ecf20Sopenharmony_ci#include <linux/io.h> 208c2ecf20Sopenharmony_ci#include <linux/kernel.h> 218c2ecf20Sopenharmony_ci#include <linux/moduleparam.h> 228c2ecf20Sopenharmony_ci#include <linux/types.h> 238c2ecf20Sopenharmony_ci 248c2ecf20Sopenharmony_ci#include <asm/cputype.h> 258c2ecf20Sopenharmony_ci#include <asm/mach-types.h> 268c2ecf20Sopenharmony_ci 278c2ecf20Sopenharmony_ci#include <mach/generic.h> 288c2ecf20Sopenharmony_ci#include <mach/hardware.h> 298c2ecf20Sopenharmony_ci 308c2ecf20Sopenharmony_ci#undef DEBUG 318c2ecf20Sopenharmony_ci 328c2ecf20Sopenharmony_cistruct sdram_params { 338c2ecf20Sopenharmony_ci const char name[20]; 348c2ecf20Sopenharmony_ci u_char rows; /* bits */ 358c2ecf20Sopenharmony_ci u_char cas_latency; /* cycles */ 368c2ecf20Sopenharmony_ci u_char tck; /* clock cycle time (ns) */ 378c2ecf20Sopenharmony_ci u_char trcd; /* activate to r/w (ns) */ 388c2ecf20Sopenharmony_ci u_char trp; /* precharge to activate (ns) */ 398c2ecf20Sopenharmony_ci u_char twr; /* write recovery time (ns) */ 408c2ecf20Sopenharmony_ci u_short refresh; /* refresh time for array (us) */ 418c2ecf20Sopenharmony_ci}; 428c2ecf20Sopenharmony_ci 438c2ecf20Sopenharmony_cistruct sdram_info { 448c2ecf20Sopenharmony_ci u_int mdcnfg; 458c2ecf20Sopenharmony_ci u_int mdrefr; 468c2ecf20Sopenharmony_ci u_int mdcas[3]; 478c2ecf20Sopenharmony_ci}; 488c2ecf20Sopenharmony_ci 498c2ecf20Sopenharmony_cistatic struct sdram_params sdram_tbl[] __initdata = { 508c2ecf20Sopenharmony_ci { /* Toshiba TC59SM716 CL2 */ 518c2ecf20Sopenharmony_ci .name = "TC59SM716-CL2", 528c2ecf20Sopenharmony_ci .rows = 12, 538c2ecf20Sopenharmony_ci .tck = 10, 548c2ecf20Sopenharmony_ci .trcd = 20, 558c2ecf20Sopenharmony_ci .trp = 20, 568c2ecf20Sopenharmony_ci .twr = 10, 578c2ecf20Sopenharmony_ci .refresh = 64000, 588c2ecf20Sopenharmony_ci .cas_latency = 2, 598c2ecf20Sopenharmony_ci }, { /* Toshiba TC59SM716 CL3 */ 608c2ecf20Sopenharmony_ci .name = "TC59SM716-CL3", 618c2ecf20Sopenharmony_ci .rows = 12, 628c2ecf20Sopenharmony_ci .tck = 8, 638c2ecf20Sopenharmony_ci .trcd = 20, 648c2ecf20Sopenharmony_ci .trp = 20, 658c2ecf20Sopenharmony_ci .twr = 8, 668c2ecf20Sopenharmony_ci .refresh = 64000, 678c2ecf20Sopenharmony_ci .cas_latency = 3, 688c2ecf20Sopenharmony_ci }, { /* Samsung K4S641632D TC75 */ 698c2ecf20Sopenharmony_ci .name = "K4S641632D", 708c2ecf20Sopenharmony_ci .rows = 14, 718c2ecf20Sopenharmony_ci .tck = 9, 728c2ecf20Sopenharmony_ci .trcd = 27, 738c2ecf20Sopenharmony_ci .trp = 20, 748c2ecf20Sopenharmony_ci .twr = 9, 758c2ecf20Sopenharmony_ci .refresh = 64000, 768c2ecf20Sopenharmony_ci .cas_latency = 3, 778c2ecf20Sopenharmony_ci }, { /* Samsung K4S281632B-1H */ 788c2ecf20Sopenharmony_ci .name = "K4S281632B-1H", 798c2ecf20Sopenharmony_ci .rows = 12, 808c2ecf20Sopenharmony_ci .tck = 10, 818c2ecf20Sopenharmony_ci .trp = 20, 828c2ecf20Sopenharmony_ci .twr = 10, 838c2ecf20Sopenharmony_ci .refresh = 64000, 848c2ecf20Sopenharmony_ci .cas_latency = 3, 858c2ecf20Sopenharmony_ci }, { /* Samsung KM416S4030CT */ 868c2ecf20Sopenharmony_ci .name = "KM416S4030CT", 878c2ecf20Sopenharmony_ci .rows = 13, 888c2ecf20Sopenharmony_ci .tck = 8, 898c2ecf20Sopenharmony_ci .trcd = 24, /* 3 CLKs */ 908c2ecf20Sopenharmony_ci .trp = 24, /* 3 CLKs */ 918c2ecf20Sopenharmony_ci .twr = 16, /* Trdl: 2 CLKs */ 928c2ecf20Sopenharmony_ci .refresh = 64000, 938c2ecf20Sopenharmony_ci .cas_latency = 3, 948c2ecf20Sopenharmony_ci }, { /* Winbond W982516AH75L CL3 */ 958c2ecf20Sopenharmony_ci .name = "W982516AH75L", 968c2ecf20Sopenharmony_ci .rows = 16, 978c2ecf20Sopenharmony_ci .tck = 8, 988c2ecf20Sopenharmony_ci .trcd = 20, 998c2ecf20Sopenharmony_ci .trp = 20, 1008c2ecf20Sopenharmony_ci .twr = 8, 1018c2ecf20Sopenharmony_ci .refresh = 64000, 1028c2ecf20Sopenharmony_ci .cas_latency = 3, 1038c2ecf20Sopenharmony_ci }, { /* Micron MT48LC8M16A2TG-75 */ 1048c2ecf20Sopenharmony_ci .name = "MT48LC8M16A2TG-75", 1058c2ecf20Sopenharmony_ci .rows = 12, 1068c2ecf20Sopenharmony_ci .tck = 8, 1078c2ecf20Sopenharmony_ci .trcd = 20, 1088c2ecf20Sopenharmony_ci .trp = 20, 1098c2ecf20Sopenharmony_ci .twr = 8, 1108c2ecf20Sopenharmony_ci .refresh = 64000, 1118c2ecf20Sopenharmony_ci .cas_latency = 3, 1128c2ecf20Sopenharmony_ci }, 1138c2ecf20Sopenharmony_ci}; 1148c2ecf20Sopenharmony_ci 1158c2ecf20Sopenharmony_cistatic struct sdram_params sdram_params; 1168c2ecf20Sopenharmony_ci 1178c2ecf20Sopenharmony_ci/* 1188c2ecf20Sopenharmony_ci * Given a period in ns and frequency in khz, calculate the number of 1198c2ecf20Sopenharmony_ci * cycles of frequency in period. Note that we round up to the next 1208c2ecf20Sopenharmony_ci * cycle, even if we are only slightly over. 1218c2ecf20Sopenharmony_ci */ 1228c2ecf20Sopenharmony_cistatic inline u_int ns_to_cycles(u_int ns, u_int khz) 1238c2ecf20Sopenharmony_ci{ 1248c2ecf20Sopenharmony_ci return (ns * khz + 999999) / 1000000; 1258c2ecf20Sopenharmony_ci} 1268c2ecf20Sopenharmony_ci 1278c2ecf20Sopenharmony_ci/* 1288c2ecf20Sopenharmony_ci * Create the MDCAS register bit pattern. 1298c2ecf20Sopenharmony_ci */ 1308c2ecf20Sopenharmony_cistatic inline void set_mdcas(u_int *mdcas, int delayed, u_int rcd) 1318c2ecf20Sopenharmony_ci{ 1328c2ecf20Sopenharmony_ci u_int shift; 1338c2ecf20Sopenharmony_ci 1348c2ecf20Sopenharmony_ci rcd = 2 * rcd - 1; 1358c2ecf20Sopenharmony_ci shift = delayed + 1 + rcd; 1368c2ecf20Sopenharmony_ci 1378c2ecf20Sopenharmony_ci mdcas[0] = (1 << rcd) - 1; 1388c2ecf20Sopenharmony_ci mdcas[0] |= 0x55555555 << shift; 1398c2ecf20Sopenharmony_ci mdcas[1] = mdcas[2] = 0x55555555 << (shift & 1); 1408c2ecf20Sopenharmony_ci} 1418c2ecf20Sopenharmony_ci 1428c2ecf20Sopenharmony_cistatic void 1438c2ecf20Sopenharmony_cisdram_calculate_timing(struct sdram_info *sd, u_int cpu_khz, 1448c2ecf20Sopenharmony_ci struct sdram_params *sdram) 1458c2ecf20Sopenharmony_ci{ 1468c2ecf20Sopenharmony_ci u_int mem_khz, sd_khz, trp, twr; 1478c2ecf20Sopenharmony_ci 1488c2ecf20Sopenharmony_ci mem_khz = cpu_khz / 2; 1498c2ecf20Sopenharmony_ci sd_khz = mem_khz; 1508c2ecf20Sopenharmony_ci 1518c2ecf20Sopenharmony_ci /* 1528c2ecf20Sopenharmony_ci * If SDCLK would invalidate the SDRAM timings, 1538c2ecf20Sopenharmony_ci * run SDCLK at half speed. 1548c2ecf20Sopenharmony_ci * 1558c2ecf20Sopenharmony_ci * CPU steppings prior to B2 must either run the memory at 1568c2ecf20Sopenharmony_ci * half speed or use delayed read latching (errata 13). 1578c2ecf20Sopenharmony_ci */ 1588c2ecf20Sopenharmony_ci if ((ns_to_cycles(sdram->tck, sd_khz) > 1) || 1598c2ecf20Sopenharmony_ci (read_cpuid_revision() < ARM_CPU_REV_SA1110_B2 && sd_khz < 62000)) 1608c2ecf20Sopenharmony_ci sd_khz /= 2; 1618c2ecf20Sopenharmony_ci 1628c2ecf20Sopenharmony_ci sd->mdcnfg = MDCNFG & 0x007f007f; 1638c2ecf20Sopenharmony_ci 1648c2ecf20Sopenharmony_ci twr = ns_to_cycles(sdram->twr, mem_khz); 1658c2ecf20Sopenharmony_ci 1668c2ecf20Sopenharmony_ci /* trp should always be >1 */ 1678c2ecf20Sopenharmony_ci trp = ns_to_cycles(sdram->trp, mem_khz) - 1; 1688c2ecf20Sopenharmony_ci if (trp < 1) 1698c2ecf20Sopenharmony_ci trp = 1; 1708c2ecf20Sopenharmony_ci 1718c2ecf20Sopenharmony_ci sd->mdcnfg |= trp << 8; 1728c2ecf20Sopenharmony_ci sd->mdcnfg |= trp << 24; 1738c2ecf20Sopenharmony_ci sd->mdcnfg |= sdram->cas_latency << 12; 1748c2ecf20Sopenharmony_ci sd->mdcnfg |= sdram->cas_latency << 28; 1758c2ecf20Sopenharmony_ci sd->mdcnfg |= twr << 14; 1768c2ecf20Sopenharmony_ci sd->mdcnfg |= twr << 30; 1778c2ecf20Sopenharmony_ci 1788c2ecf20Sopenharmony_ci sd->mdrefr = MDREFR & 0xffbffff0; 1798c2ecf20Sopenharmony_ci sd->mdrefr |= 7; 1808c2ecf20Sopenharmony_ci 1818c2ecf20Sopenharmony_ci if (sd_khz != mem_khz) 1828c2ecf20Sopenharmony_ci sd->mdrefr |= MDREFR_K1DB2; 1838c2ecf20Sopenharmony_ci 1848c2ecf20Sopenharmony_ci /* initial number of '1's in MDCAS + 1 */ 1858c2ecf20Sopenharmony_ci set_mdcas(sd->mdcas, sd_khz >= 62000, 1868c2ecf20Sopenharmony_ci ns_to_cycles(sdram->trcd, mem_khz)); 1878c2ecf20Sopenharmony_ci 1888c2ecf20Sopenharmony_ci#ifdef DEBUG 1898c2ecf20Sopenharmony_ci printk(KERN_DEBUG "MDCNFG: %08x MDREFR: %08x MDCAS0: %08x MDCAS1: %08x MDCAS2: %08x\n", 1908c2ecf20Sopenharmony_ci sd->mdcnfg, sd->mdrefr, sd->mdcas[0], sd->mdcas[1], 1918c2ecf20Sopenharmony_ci sd->mdcas[2]); 1928c2ecf20Sopenharmony_ci#endif 1938c2ecf20Sopenharmony_ci} 1948c2ecf20Sopenharmony_ci 1958c2ecf20Sopenharmony_ci/* 1968c2ecf20Sopenharmony_ci * Set the SDRAM refresh rate. 1978c2ecf20Sopenharmony_ci */ 1988c2ecf20Sopenharmony_cistatic inline void sdram_set_refresh(u_int dri) 1998c2ecf20Sopenharmony_ci{ 2008c2ecf20Sopenharmony_ci MDREFR = (MDREFR & 0xffff000f) | (dri << 4); 2018c2ecf20Sopenharmony_ci (void) MDREFR; 2028c2ecf20Sopenharmony_ci} 2038c2ecf20Sopenharmony_ci 2048c2ecf20Sopenharmony_ci/* 2058c2ecf20Sopenharmony_ci * Update the refresh period. We do this such that we always refresh 2068c2ecf20Sopenharmony_ci * the SDRAMs within their permissible period. The refresh period is 2078c2ecf20Sopenharmony_ci * always a multiple of the memory clock (fixed at cpu_clock / 2). 2088c2ecf20Sopenharmony_ci * 2098c2ecf20Sopenharmony_ci * FIXME: we don't currently take account of burst accesses here, 2108c2ecf20Sopenharmony_ci * but neither do Intels DM nor Angel. 2118c2ecf20Sopenharmony_ci */ 2128c2ecf20Sopenharmony_cistatic void 2138c2ecf20Sopenharmony_cisdram_update_refresh(u_int cpu_khz, struct sdram_params *sdram) 2148c2ecf20Sopenharmony_ci{ 2158c2ecf20Sopenharmony_ci u_int ns_row = (sdram->refresh * 1000) >> sdram->rows; 2168c2ecf20Sopenharmony_ci u_int dri = ns_to_cycles(ns_row, cpu_khz / 2) / 32; 2178c2ecf20Sopenharmony_ci 2188c2ecf20Sopenharmony_ci#ifdef DEBUG 2198c2ecf20Sopenharmony_ci mdelay(250); 2208c2ecf20Sopenharmony_ci printk(KERN_DEBUG "new dri value = %d\n", dri); 2218c2ecf20Sopenharmony_ci#endif 2228c2ecf20Sopenharmony_ci 2238c2ecf20Sopenharmony_ci sdram_set_refresh(dri); 2248c2ecf20Sopenharmony_ci} 2258c2ecf20Sopenharmony_ci 2268c2ecf20Sopenharmony_ci/* 2278c2ecf20Sopenharmony_ci * Ok, set the CPU frequency. 2288c2ecf20Sopenharmony_ci */ 2298c2ecf20Sopenharmony_cistatic int sa1110_target(struct cpufreq_policy *policy, unsigned int ppcr) 2308c2ecf20Sopenharmony_ci{ 2318c2ecf20Sopenharmony_ci struct sdram_params *sdram = &sdram_params; 2328c2ecf20Sopenharmony_ci struct sdram_info sd; 2338c2ecf20Sopenharmony_ci unsigned long flags; 2348c2ecf20Sopenharmony_ci unsigned int unused; 2358c2ecf20Sopenharmony_ci 2368c2ecf20Sopenharmony_ci sdram_calculate_timing(&sd, sa11x0_freq_table[ppcr].frequency, sdram); 2378c2ecf20Sopenharmony_ci 2388c2ecf20Sopenharmony_ci#if 0 2398c2ecf20Sopenharmony_ci /* 2408c2ecf20Sopenharmony_ci * These values are wrong according to the SA1110 documentation 2418c2ecf20Sopenharmony_ci * and errata, but they seem to work. Need to get a storage 2428c2ecf20Sopenharmony_ci * scope on to the SDRAM signals to work out why. 2438c2ecf20Sopenharmony_ci */ 2448c2ecf20Sopenharmony_ci if (policy->max < 147500) { 2458c2ecf20Sopenharmony_ci sd.mdrefr |= MDREFR_K1DB2; 2468c2ecf20Sopenharmony_ci sd.mdcas[0] = 0xaaaaaa7f; 2478c2ecf20Sopenharmony_ci } else { 2488c2ecf20Sopenharmony_ci sd.mdrefr &= ~MDREFR_K1DB2; 2498c2ecf20Sopenharmony_ci sd.mdcas[0] = 0xaaaaaa9f; 2508c2ecf20Sopenharmony_ci } 2518c2ecf20Sopenharmony_ci sd.mdcas[1] = 0xaaaaaaaa; 2528c2ecf20Sopenharmony_ci sd.mdcas[2] = 0xaaaaaaaa; 2538c2ecf20Sopenharmony_ci#endif 2548c2ecf20Sopenharmony_ci 2558c2ecf20Sopenharmony_ci /* 2568c2ecf20Sopenharmony_ci * The clock could be going away for some time. Set the SDRAMs 2578c2ecf20Sopenharmony_ci * to refresh rapidly (every 64 memory clock cycles). To get 2588c2ecf20Sopenharmony_ci * through the whole array, we need to wait 262144 mclk cycles. 2598c2ecf20Sopenharmony_ci * We wait 20ms to be safe. 2608c2ecf20Sopenharmony_ci */ 2618c2ecf20Sopenharmony_ci sdram_set_refresh(2); 2628c2ecf20Sopenharmony_ci if (!irqs_disabled()) 2638c2ecf20Sopenharmony_ci msleep(20); 2648c2ecf20Sopenharmony_ci else 2658c2ecf20Sopenharmony_ci mdelay(20); 2668c2ecf20Sopenharmony_ci 2678c2ecf20Sopenharmony_ci /* 2688c2ecf20Sopenharmony_ci * Reprogram the DRAM timings with interrupts disabled, and 2698c2ecf20Sopenharmony_ci * ensure that we are doing this within a complete cache line. 2708c2ecf20Sopenharmony_ci * This means that we won't access SDRAM for the duration of 2718c2ecf20Sopenharmony_ci * the programming. 2728c2ecf20Sopenharmony_ci */ 2738c2ecf20Sopenharmony_ci local_irq_save(flags); 2748c2ecf20Sopenharmony_ci asm("mcr p15, 0, %0, c7, c10, 4" : : "r" (0)); 2758c2ecf20Sopenharmony_ci udelay(10); 2768c2ecf20Sopenharmony_ci __asm__ __volatile__("\n\ 2778c2ecf20Sopenharmony_ci b 2f \n\ 2788c2ecf20Sopenharmony_ci .align 5 \n\ 2798c2ecf20Sopenharmony_ci1: str %3, [%1, #0] @ MDCNFG \n\ 2808c2ecf20Sopenharmony_ci str %4, [%1, #28] @ MDREFR \n\ 2818c2ecf20Sopenharmony_ci str %5, [%1, #4] @ MDCAS0 \n\ 2828c2ecf20Sopenharmony_ci str %6, [%1, #8] @ MDCAS1 \n\ 2838c2ecf20Sopenharmony_ci str %7, [%1, #12] @ MDCAS2 \n\ 2848c2ecf20Sopenharmony_ci str %8, [%2, #0] @ PPCR \n\ 2858c2ecf20Sopenharmony_ci ldr %0, [%1, #0] \n\ 2868c2ecf20Sopenharmony_ci b 3f \n\ 2878c2ecf20Sopenharmony_ci2: b 1b \n\ 2888c2ecf20Sopenharmony_ci3: nop \n\ 2898c2ecf20Sopenharmony_ci nop" 2908c2ecf20Sopenharmony_ci : "=&r" (unused) 2918c2ecf20Sopenharmony_ci : "r" (&MDCNFG), "r" (&PPCR), "0" (sd.mdcnfg), 2928c2ecf20Sopenharmony_ci "r" (sd.mdrefr), "r" (sd.mdcas[0]), 2938c2ecf20Sopenharmony_ci "r" (sd.mdcas[1]), "r" (sd.mdcas[2]), "r" (ppcr)); 2948c2ecf20Sopenharmony_ci local_irq_restore(flags); 2958c2ecf20Sopenharmony_ci 2968c2ecf20Sopenharmony_ci /* 2978c2ecf20Sopenharmony_ci * Now, return the SDRAM refresh back to normal. 2988c2ecf20Sopenharmony_ci */ 2998c2ecf20Sopenharmony_ci sdram_update_refresh(sa11x0_freq_table[ppcr].frequency, sdram); 3008c2ecf20Sopenharmony_ci 3018c2ecf20Sopenharmony_ci return 0; 3028c2ecf20Sopenharmony_ci} 3038c2ecf20Sopenharmony_ci 3048c2ecf20Sopenharmony_cistatic int __init sa1110_cpu_init(struct cpufreq_policy *policy) 3058c2ecf20Sopenharmony_ci{ 3068c2ecf20Sopenharmony_ci cpufreq_generic_init(policy, sa11x0_freq_table, 0); 3078c2ecf20Sopenharmony_ci return 0; 3088c2ecf20Sopenharmony_ci} 3098c2ecf20Sopenharmony_ci 3108c2ecf20Sopenharmony_ci/* sa1110_driver needs __refdata because it must remain after init registers 3118c2ecf20Sopenharmony_ci * it with cpufreq_register_driver() */ 3128c2ecf20Sopenharmony_cistatic struct cpufreq_driver sa1110_driver __refdata = { 3138c2ecf20Sopenharmony_ci .flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK | 3148c2ecf20Sopenharmony_ci CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING, 3158c2ecf20Sopenharmony_ci .verify = cpufreq_generic_frequency_table_verify, 3168c2ecf20Sopenharmony_ci .target_index = sa1110_target, 3178c2ecf20Sopenharmony_ci .get = sa11x0_getspeed, 3188c2ecf20Sopenharmony_ci .init = sa1110_cpu_init, 3198c2ecf20Sopenharmony_ci .name = "sa1110", 3208c2ecf20Sopenharmony_ci}; 3218c2ecf20Sopenharmony_ci 3228c2ecf20Sopenharmony_cistatic struct sdram_params *sa1110_find_sdram(const char *name) 3238c2ecf20Sopenharmony_ci{ 3248c2ecf20Sopenharmony_ci struct sdram_params *sdram; 3258c2ecf20Sopenharmony_ci 3268c2ecf20Sopenharmony_ci for (sdram = sdram_tbl; sdram < sdram_tbl + ARRAY_SIZE(sdram_tbl); 3278c2ecf20Sopenharmony_ci sdram++) 3288c2ecf20Sopenharmony_ci if (strcmp(name, sdram->name) == 0) 3298c2ecf20Sopenharmony_ci return sdram; 3308c2ecf20Sopenharmony_ci 3318c2ecf20Sopenharmony_ci return NULL; 3328c2ecf20Sopenharmony_ci} 3338c2ecf20Sopenharmony_ci 3348c2ecf20Sopenharmony_cistatic char sdram_name[16]; 3358c2ecf20Sopenharmony_ci 3368c2ecf20Sopenharmony_cistatic int __init sa1110_clk_init(void) 3378c2ecf20Sopenharmony_ci{ 3388c2ecf20Sopenharmony_ci struct sdram_params *sdram; 3398c2ecf20Sopenharmony_ci const char *name = sdram_name; 3408c2ecf20Sopenharmony_ci 3418c2ecf20Sopenharmony_ci if (!cpu_is_sa1110()) 3428c2ecf20Sopenharmony_ci return -ENODEV; 3438c2ecf20Sopenharmony_ci 3448c2ecf20Sopenharmony_ci if (!name[0]) { 3458c2ecf20Sopenharmony_ci if (machine_is_assabet()) 3468c2ecf20Sopenharmony_ci name = "TC59SM716-CL3"; 3478c2ecf20Sopenharmony_ci if (machine_is_pt_system3()) 3488c2ecf20Sopenharmony_ci name = "K4S641632D"; 3498c2ecf20Sopenharmony_ci if (machine_is_h3100()) 3508c2ecf20Sopenharmony_ci name = "KM416S4030CT"; 3518c2ecf20Sopenharmony_ci if (machine_is_jornada720() || machine_is_h3600()) 3528c2ecf20Sopenharmony_ci name = "K4S281632B-1H"; 3538c2ecf20Sopenharmony_ci if (machine_is_nanoengine()) 3548c2ecf20Sopenharmony_ci name = "MT48LC8M16A2TG-75"; 3558c2ecf20Sopenharmony_ci } 3568c2ecf20Sopenharmony_ci 3578c2ecf20Sopenharmony_ci sdram = sa1110_find_sdram(name); 3588c2ecf20Sopenharmony_ci if (sdram) { 3598c2ecf20Sopenharmony_ci printk(KERN_DEBUG "SDRAM: tck: %d trcd: %d trp: %d" 3608c2ecf20Sopenharmony_ci " twr: %d refresh: %d cas_latency: %d\n", 3618c2ecf20Sopenharmony_ci sdram->tck, sdram->trcd, sdram->trp, 3628c2ecf20Sopenharmony_ci sdram->twr, sdram->refresh, sdram->cas_latency); 3638c2ecf20Sopenharmony_ci 3648c2ecf20Sopenharmony_ci memcpy(&sdram_params, sdram, sizeof(sdram_params)); 3658c2ecf20Sopenharmony_ci 3668c2ecf20Sopenharmony_ci return cpufreq_register_driver(&sa1110_driver); 3678c2ecf20Sopenharmony_ci } 3688c2ecf20Sopenharmony_ci 3698c2ecf20Sopenharmony_ci return 0; 3708c2ecf20Sopenharmony_ci} 3718c2ecf20Sopenharmony_ci 3728c2ecf20Sopenharmony_cimodule_param_string(sdram, sdram_name, sizeof(sdram_name), 0); 3738c2ecf20Sopenharmony_ciarch_initcall(sa1110_clk_init); 374