18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-or-later
28c2ecf20Sopenharmony_ci/*
38c2ecf20Sopenharmony_ci * Copyright 2012-2013 Freescale Semiconductor, Inc.
48c2ecf20Sopenharmony_ci */
58c2ecf20Sopenharmony_ci
68c2ecf20Sopenharmony_ci#include <linux/interrupt.h>
78c2ecf20Sopenharmony_ci#include <linux/clockchips.h>
88c2ecf20Sopenharmony_ci#include <linux/clk.h>
98c2ecf20Sopenharmony_ci#include <linux/of_address.h>
108c2ecf20Sopenharmony_ci#include <linux/of_irq.h>
118c2ecf20Sopenharmony_ci#include <linux/sched_clock.h>
128c2ecf20Sopenharmony_ci
138c2ecf20Sopenharmony_ci/*
148c2ecf20Sopenharmony_ci * Each pit takes 0x10 Bytes register space
158c2ecf20Sopenharmony_ci */
168c2ecf20Sopenharmony_ci#define PITMCR		0x00
178c2ecf20Sopenharmony_ci#define PIT0_OFFSET	0x100
188c2ecf20Sopenharmony_ci#define PITn_OFFSET(n)	(PIT0_OFFSET + 0x10 * (n))
198c2ecf20Sopenharmony_ci#define PITLDVAL	0x00
208c2ecf20Sopenharmony_ci#define PITCVAL		0x04
218c2ecf20Sopenharmony_ci#define PITTCTRL	0x08
228c2ecf20Sopenharmony_ci#define PITTFLG		0x0c
238c2ecf20Sopenharmony_ci
248c2ecf20Sopenharmony_ci#define PITMCR_MDIS	(0x1 << 1)
258c2ecf20Sopenharmony_ci
268c2ecf20Sopenharmony_ci#define PITTCTRL_TEN	(0x1 << 0)
278c2ecf20Sopenharmony_ci#define PITTCTRL_TIE	(0x1 << 1)
288c2ecf20Sopenharmony_ci#define PITCTRL_CHN	(0x1 << 2)
298c2ecf20Sopenharmony_ci
308c2ecf20Sopenharmony_ci#define PITTFLG_TIF	0x1
318c2ecf20Sopenharmony_ci
328c2ecf20Sopenharmony_cistatic void __iomem *clksrc_base;
338c2ecf20Sopenharmony_cistatic void __iomem *clkevt_base;
348c2ecf20Sopenharmony_cistatic unsigned long cycle_per_jiffy;
358c2ecf20Sopenharmony_ci
368c2ecf20Sopenharmony_cistatic inline void pit_timer_enable(void)
378c2ecf20Sopenharmony_ci{
388c2ecf20Sopenharmony_ci	__raw_writel(PITTCTRL_TEN | PITTCTRL_TIE, clkevt_base + PITTCTRL);
398c2ecf20Sopenharmony_ci}
408c2ecf20Sopenharmony_ci
418c2ecf20Sopenharmony_cistatic inline void pit_timer_disable(void)
428c2ecf20Sopenharmony_ci{
438c2ecf20Sopenharmony_ci	__raw_writel(0, clkevt_base + PITTCTRL);
448c2ecf20Sopenharmony_ci}
458c2ecf20Sopenharmony_ci
468c2ecf20Sopenharmony_cistatic inline void pit_irq_acknowledge(void)
478c2ecf20Sopenharmony_ci{
488c2ecf20Sopenharmony_ci	__raw_writel(PITTFLG_TIF, clkevt_base + PITTFLG);
498c2ecf20Sopenharmony_ci}
508c2ecf20Sopenharmony_ci
518c2ecf20Sopenharmony_cistatic u64 notrace pit_read_sched_clock(void)
528c2ecf20Sopenharmony_ci{
538c2ecf20Sopenharmony_ci	return ~__raw_readl(clksrc_base + PITCVAL);
548c2ecf20Sopenharmony_ci}
558c2ecf20Sopenharmony_ci
568c2ecf20Sopenharmony_cistatic int __init pit_clocksource_init(unsigned long rate)
578c2ecf20Sopenharmony_ci{
588c2ecf20Sopenharmony_ci	/* set the max load value and start the clock source counter */
598c2ecf20Sopenharmony_ci	__raw_writel(0, clksrc_base + PITTCTRL);
608c2ecf20Sopenharmony_ci	__raw_writel(~0UL, clksrc_base + PITLDVAL);
618c2ecf20Sopenharmony_ci	__raw_writel(PITTCTRL_TEN, clksrc_base + PITTCTRL);
628c2ecf20Sopenharmony_ci
638c2ecf20Sopenharmony_ci	sched_clock_register(pit_read_sched_clock, 32, rate);
648c2ecf20Sopenharmony_ci	return clocksource_mmio_init(clksrc_base + PITCVAL, "vf-pit", rate,
658c2ecf20Sopenharmony_ci			300, 32, clocksource_mmio_readl_down);
668c2ecf20Sopenharmony_ci}
678c2ecf20Sopenharmony_ci
688c2ecf20Sopenharmony_cistatic int pit_set_next_event(unsigned long delta,
698c2ecf20Sopenharmony_ci				struct clock_event_device *unused)
708c2ecf20Sopenharmony_ci{
718c2ecf20Sopenharmony_ci	/*
728c2ecf20Sopenharmony_ci	 * set a new value to PITLDVAL register will not restart the timer,
738c2ecf20Sopenharmony_ci	 * to abort the current cycle and start a timer period with the new
748c2ecf20Sopenharmony_ci	 * value, the timer must be disabled and enabled again.
758c2ecf20Sopenharmony_ci	 * and the PITLAVAL should be set to delta minus one according to pit
768c2ecf20Sopenharmony_ci	 * hardware requirement.
778c2ecf20Sopenharmony_ci	 */
788c2ecf20Sopenharmony_ci	pit_timer_disable();
798c2ecf20Sopenharmony_ci	__raw_writel(delta - 1, clkevt_base + PITLDVAL);
808c2ecf20Sopenharmony_ci	pit_timer_enable();
818c2ecf20Sopenharmony_ci
828c2ecf20Sopenharmony_ci	return 0;
838c2ecf20Sopenharmony_ci}
848c2ecf20Sopenharmony_ci
858c2ecf20Sopenharmony_cistatic int pit_shutdown(struct clock_event_device *evt)
868c2ecf20Sopenharmony_ci{
878c2ecf20Sopenharmony_ci	pit_timer_disable();
888c2ecf20Sopenharmony_ci	return 0;
898c2ecf20Sopenharmony_ci}
908c2ecf20Sopenharmony_ci
918c2ecf20Sopenharmony_cistatic int pit_set_periodic(struct clock_event_device *evt)
928c2ecf20Sopenharmony_ci{
938c2ecf20Sopenharmony_ci	pit_set_next_event(cycle_per_jiffy, evt);
948c2ecf20Sopenharmony_ci	return 0;
958c2ecf20Sopenharmony_ci}
968c2ecf20Sopenharmony_ci
978c2ecf20Sopenharmony_cistatic irqreturn_t pit_timer_interrupt(int irq, void *dev_id)
988c2ecf20Sopenharmony_ci{
998c2ecf20Sopenharmony_ci	struct clock_event_device *evt = dev_id;
1008c2ecf20Sopenharmony_ci
1018c2ecf20Sopenharmony_ci	pit_irq_acknowledge();
1028c2ecf20Sopenharmony_ci
1038c2ecf20Sopenharmony_ci	/*
1048c2ecf20Sopenharmony_ci	 * pit hardware doesn't support oneshot, it will generate an interrupt
1058c2ecf20Sopenharmony_ci	 * and reload the counter value from PITLDVAL when PITCVAL reach zero,
1068c2ecf20Sopenharmony_ci	 * and start the counter again. So software need to disable the timer
1078c2ecf20Sopenharmony_ci	 * to stop the counter loop in ONESHOT mode.
1088c2ecf20Sopenharmony_ci	 */
1098c2ecf20Sopenharmony_ci	if (likely(clockevent_state_oneshot(evt)))
1108c2ecf20Sopenharmony_ci		pit_timer_disable();
1118c2ecf20Sopenharmony_ci
1128c2ecf20Sopenharmony_ci	evt->event_handler(evt);
1138c2ecf20Sopenharmony_ci
1148c2ecf20Sopenharmony_ci	return IRQ_HANDLED;
1158c2ecf20Sopenharmony_ci}
1168c2ecf20Sopenharmony_ci
1178c2ecf20Sopenharmony_cistatic struct clock_event_device clockevent_pit = {
1188c2ecf20Sopenharmony_ci	.name		= "VF pit timer",
1198c2ecf20Sopenharmony_ci	.features	= CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
1208c2ecf20Sopenharmony_ci	.set_state_shutdown = pit_shutdown,
1218c2ecf20Sopenharmony_ci	.set_state_periodic = pit_set_periodic,
1228c2ecf20Sopenharmony_ci	.set_next_event	= pit_set_next_event,
1238c2ecf20Sopenharmony_ci	.rating		= 300,
1248c2ecf20Sopenharmony_ci};
1258c2ecf20Sopenharmony_ci
1268c2ecf20Sopenharmony_cistatic int __init pit_clockevent_init(unsigned long rate, int irq)
1278c2ecf20Sopenharmony_ci{
1288c2ecf20Sopenharmony_ci	__raw_writel(0, clkevt_base + PITTCTRL);
1298c2ecf20Sopenharmony_ci	__raw_writel(PITTFLG_TIF, clkevt_base + PITTFLG);
1308c2ecf20Sopenharmony_ci
1318c2ecf20Sopenharmony_ci	BUG_ON(request_irq(irq, pit_timer_interrupt, IRQF_TIMER | IRQF_IRQPOLL,
1328c2ecf20Sopenharmony_ci			   "VF pit timer", &clockevent_pit));
1338c2ecf20Sopenharmony_ci
1348c2ecf20Sopenharmony_ci	clockevent_pit.cpumask = cpumask_of(0);
1358c2ecf20Sopenharmony_ci	clockevent_pit.irq = irq;
1368c2ecf20Sopenharmony_ci	/*
1378c2ecf20Sopenharmony_ci	 * The value for the LDVAL register trigger is calculated as:
1388c2ecf20Sopenharmony_ci	 * LDVAL trigger = (period / clock period) - 1
1398c2ecf20Sopenharmony_ci	 * The pit is a 32-bit down count timer, when the conter value
1408c2ecf20Sopenharmony_ci	 * reaches 0, it will generate an interrupt, thus the minimal
1418c2ecf20Sopenharmony_ci	 * LDVAL trigger value is 1. And then the min_delta is
1428c2ecf20Sopenharmony_ci	 * minimal LDVAL trigger value + 1, and the max_delta is full 32-bit.
1438c2ecf20Sopenharmony_ci	 */
1448c2ecf20Sopenharmony_ci	clockevents_config_and_register(&clockevent_pit, rate, 2, 0xffffffff);
1458c2ecf20Sopenharmony_ci
1468c2ecf20Sopenharmony_ci	return 0;
1478c2ecf20Sopenharmony_ci}
1488c2ecf20Sopenharmony_ci
1498c2ecf20Sopenharmony_cistatic int __init pit_timer_init(struct device_node *np)
1508c2ecf20Sopenharmony_ci{
1518c2ecf20Sopenharmony_ci	struct clk *pit_clk;
1528c2ecf20Sopenharmony_ci	void __iomem *timer_base;
1538c2ecf20Sopenharmony_ci	unsigned long clk_rate;
1548c2ecf20Sopenharmony_ci	int irq, ret;
1558c2ecf20Sopenharmony_ci
1568c2ecf20Sopenharmony_ci	timer_base = of_iomap(np, 0);
1578c2ecf20Sopenharmony_ci	if (!timer_base) {
1588c2ecf20Sopenharmony_ci		pr_err("Failed to iomap\n");
1598c2ecf20Sopenharmony_ci		return -ENXIO;
1608c2ecf20Sopenharmony_ci	}
1618c2ecf20Sopenharmony_ci
1628c2ecf20Sopenharmony_ci	/*
1638c2ecf20Sopenharmony_ci	 * PIT0 and PIT1 can be chained to build a 64-bit timer,
1648c2ecf20Sopenharmony_ci	 * so choose PIT2 as clocksource, PIT3 as clockevent device,
1658c2ecf20Sopenharmony_ci	 * and leave PIT0 and PIT1 unused for anyone else who needs them.
1668c2ecf20Sopenharmony_ci	 */
1678c2ecf20Sopenharmony_ci	clksrc_base = timer_base + PITn_OFFSET(2);
1688c2ecf20Sopenharmony_ci	clkevt_base = timer_base + PITn_OFFSET(3);
1698c2ecf20Sopenharmony_ci
1708c2ecf20Sopenharmony_ci	irq = irq_of_parse_and_map(np, 0);
1718c2ecf20Sopenharmony_ci	if (irq <= 0)
1728c2ecf20Sopenharmony_ci		return -EINVAL;
1738c2ecf20Sopenharmony_ci
1748c2ecf20Sopenharmony_ci	pit_clk = of_clk_get(np, 0);
1758c2ecf20Sopenharmony_ci	if (IS_ERR(pit_clk))
1768c2ecf20Sopenharmony_ci		return PTR_ERR(pit_clk);
1778c2ecf20Sopenharmony_ci
1788c2ecf20Sopenharmony_ci	ret = clk_prepare_enable(pit_clk);
1798c2ecf20Sopenharmony_ci	if (ret)
1808c2ecf20Sopenharmony_ci		return ret;
1818c2ecf20Sopenharmony_ci
1828c2ecf20Sopenharmony_ci	clk_rate = clk_get_rate(pit_clk);
1838c2ecf20Sopenharmony_ci	cycle_per_jiffy = clk_rate / (HZ);
1848c2ecf20Sopenharmony_ci
1858c2ecf20Sopenharmony_ci	/* enable the pit module */
1868c2ecf20Sopenharmony_ci	__raw_writel(~PITMCR_MDIS, timer_base + PITMCR);
1878c2ecf20Sopenharmony_ci
1888c2ecf20Sopenharmony_ci	ret = pit_clocksource_init(clk_rate);
1898c2ecf20Sopenharmony_ci	if (ret)
1908c2ecf20Sopenharmony_ci		return ret;
1918c2ecf20Sopenharmony_ci
1928c2ecf20Sopenharmony_ci	return pit_clockevent_init(clk_rate, irq);
1938c2ecf20Sopenharmony_ci}
1948c2ecf20Sopenharmony_ciTIMER_OF_DECLARE(vf610, "fsl,vf610-pit", pit_timer_init);
195