18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0 28c2ecf20Sopenharmony_ci/* 38c2ecf20Sopenharmony_ci * i8253 PIT clocksource 48c2ecf20Sopenharmony_ci */ 58c2ecf20Sopenharmony_ci#include <linux/clockchips.h> 68c2ecf20Sopenharmony_ci#include <linux/init.h> 78c2ecf20Sopenharmony_ci#include <linux/io.h> 88c2ecf20Sopenharmony_ci#include <linux/spinlock.h> 98c2ecf20Sopenharmony_ci#include <linux/timex.h> 108c2ecf20Sopenharmony_ci#include <linux/module.h> 118c2ecf20Sopenharmony_ci#include <linux/i8253.h> 128c2ecf20Sopenharmony_ci#include <linux/smp.h> 138c2ecf20Sopenharmony_ci 148c2ecf20Sopenharmony_ci/* 158c2ecf20Sopenharmony_ci * Protects access to I/O ports 168c2ecf20Sopenharmony_ci * 178c2ecf20Sopenharmony_ci * 0040-0043 : timer0, i8253 / i8254 188c2ecf20Sopenharmony_ci * 0061-0061 : NMI Control Register which contains two speaker control bits. 198c2ecf20Sopenharmony_ci */ 208c2ecf20Sopenharmony_ciDEFINE_RAW_SPINLOCK(i8253_lock); 218c2ecf20Sopenharmony_ciEXPORT_SYMBOL(i8253_lock); 228c2ecf20Sopenharmony_ci 238c2ecf20Sopenharmony_ci/* 248c2ecf20Sopenharmony_ci * Handle PIT quirk in pit_shutdown() where zeroing the counter register 258c2ecf20Sopenharmony_ci * restarts the PIT, negating the shutdown. On platforms with the quirk, 268c2ecf20Sopenharmony_ci * platform specific code can set this to false. 278c2ecf20Sopenharmony_ci */ 288c2ecf20Sopenharmony_cibool i8253_clear_counter_on_shutdown __ro_after_init = true; 298c2ecf20Sopenharmony_ci 308c2ecf20Sopenharmony_ci#ifdef CONFIG_CLKSRC_I8253 318c2ecf20Sopenharmony_ci/* 328c2ecf20Sopenharmony_ci * Since the PIT overflows every tick, its not very useful 338c2ecf20Sopenharmony_ci * to just read by itself. So use jiffies to emulate a free 348c2ecf20Sopenharmony_ci * running counter: 358c2ecf20Sopenharmony_ci */ 368c2ecf20Sopenharmony_cistatic u64 i8253_read(struct clocksource *cs) 378c2ecf20Sopenharmony_ci{ 388c2ecf20Sopenharmony_ci static int old_count; 398c2ecf20Sopenharmony_ci static u32 old_jifs; 408c2ecf20Sopenharmony_ci unsigned long flags; 418c2ecf20Sopenharmony_ci int count; 428c2ecf20Sopenharmony_ci u32 jifs; 438c2ecf20Sopenharmony_ci 448c2ecf20Sopenharmony_ci raw_spin_lock_irqsave(&i8253_lock, flags); 458c2ecf20Sopenharmony_ci /* 468c2ecf20Sopenharmony_ci * Although our caller may have the read side of jiffies_lock, 478c2ecf20Sopenharmony_ci * this is now a seqlock, and we are cheating in this routine 488c2ecf20Sopenharmony_ci * by having side effects on state that we cannot undo if 498c2ecf20Sopenharmony_ci * there is a collision on the seqlock and our caller has to 508c2ecf20Sopenharmony_ci * retry. (Namely, old_jifs and old_count.) So we must treat 518c2ecf20Sopenharmony_ci * jiffies as volatile despite the lock. We read jiffies 528c2ecf20Sopenharmony_ci * before latching the timer count to guarantee that although 538c2ecf20Sopenharmony_ci * the jiffies value might be older than the count (that is, 548c2ecf20Sopenharmony_ci * the counter may underflow between the last point where 558c2ecf20Sopenharmony_ci * jiffies was incremented and the point where we latch the 568c2ecf20Sopenharmony_ci * count), it cannot be newer. 578c2ecf20Sopenharmony_ci */ 588c2ecf20Sopenharmony_ci jifs = jiffies; 598c2ecf20Sopenharmony_ci outb_p(0x00, PIT_MODE); /* latch the count ASAP */ 608c2ecf20Sopenharmony_ci count = inb_p(PIT_CH0); /* read the latched count */ 618c2ecf20Sopenharmony_ci count |= inb_p(PIT_CH0) << 8; 628c2ecf20Sopenharmony_ci 638c2ecf20Sopenharmony_ci /* VIA686a test code... reset the latch if count > max + 1 */ 648c2ecf20Sopenharmony_ci if (count > PIT_LATCH) { 658c2ecf20Sopenharmony_ci outb_p(0x34, PIT_MODE); 668c2ecf20Sopenharmony_ci outb_p(PIT_LATCH & 0xff, PIT_CH0); 678c2ecf20Sopenharmony_ci outb_p(PIT_LATCH >> 8, PIT_CH0); 688c2ecf20Sopenharmony_ci count = PIT_LATCH - 1; 698c2ecf20Sopenharmony_ci } 708c2ecf20Sopenharmony_ci 718c2ecf20Sopenharmony_ci /* 728c2ecf20Sopenharmony_ci * It's possible for count to appear to go the wrong way for a 738c2ecf20Sopenharmony_ci * couple of reasons: 748c2ecf20Sopenharmony_ci * 758c2ecf20Sopenharmony_ci * 1. The timer counter underflows, but we haven't handled the 768c2ecf20Sopenharmony_ci * resulting interrupt and incremented jiffies yet. 778c2ecf20Sopenharmony_ci * 2. Hardware problem with the timer, not giving us continuous time, 788c2ecf20Sopenharmony_ci * the counter does small "jumps" upwards on some Pentium systems, 798c2ecf20Sopenharmony_ci * (see c't 95/10 page 335 for Neptun bug.) 808c2ecf20Sopenharmony_ci * 818c2ecf20Sopenharmony_ci * Previous attempts to handle these cases intelligently were 828c2ecf20Sopenharmony_ci * buggy, so we just do the simple thing now. 838c2ecf20Sopenharmony_ci */ 848c2ecf20Sopenharmony_ci if (count > old_count && jifs == old_jifs) 858c2ecf20Sopenharmony_ci count = old_count; 868c2ecf20Sopenharmony_ci 878c2ecf20Sopenharmony_ci old_count = count; 888c2ecf20Sopenharmony_ci old_jifs = jifs; 898c2ecf20Sopenharmony_ci 908c2ecf20Sopenharmony_ci raw_spin_unlock_irqrestore(&i8253_lock, flags); 918c2ecf20Sopenharmony_ci 928c2ecf20Sopenharmony_ci count = (PIT_LATCH - 1) - count; 938c2ecf20Sopenharmony_ci 948c2ecf20Sopenharmony_ci return (u64)(jifs * PIT_LATCH) + count; 958c2ecf20Sopenharmony_ci} 968c2ecf20Sopenharmony_ci 978c2ecf20Sopenharmony_cistatic struct clocksource i8253_cs = { 988c2ecf20Sopenharmony_ci .name = "pit", 998c2ecf20Sopenharmony_ci .rating = 110, 1008c2ecf20Sopenharmony_ci .read = i8253_read, 1018c2ecf20Sopenharmony_ci .mask = CLOCKSOURCE_MASK(32), 1028c2ecf20Sopenharmony_ci}; 1038c2ecf20Sopenharmony_ci 1048c2ecf20Sopenharmony_ciint __init clocksource_i8253_init(void) 1058c2ecf20Sopenharmony_ci{ 1068c2ecf20Sopenharmony_ci return clocksource_register_hz(&i8253_cs, PIT_TICK_RATE); 1078c2ecf20Sopenharmony_ci} 1088c2ecf20Sopenharmony_ci#endif 1098c2ecf20Sopenharmony_ci 1108c2ecf20Sopenharmony_ci#ifdef CONFIG_CLKEVT_I8253 1118c2ecf20Sopenharmony_cistatic int pit_shutdown(struct clock_event_device *evt) 1128c2ecf20Sopenharmony_ci{ 1138c2ecf20Sopenharmony_ci if (!clockevent_state_oneshot(evt) && !clockevent_state_periodic(evt)) 1148c2ecf20Sopenharmony_ci return 0; 1158c2ecf20Sopenharmony_ci 1168c2ecf20Sopenharmony_ci raw_spin_lock(&i8253_lock); 1178c2ecf20Sopenharmony_ci 1188c2ecf20Sopenharmony_ci outb_p(0x30, PIT_MODE); 1198c2ecf20Sopenharmony_ci 1208c2ecf20Sopenharmony_ci if (i8253_clear_counter_on_shutdown) { 1218c2ecf20Sopenharmony_ci outb_p(0, PIT_CH0); 1228c2ecf20Sopenharmony_ci outb_p(0, PIT_CH0); 1238c2ecf20Sopenharmony_ci } 1248c2ecf20Sopenharmony_ci 1258c2ecf20Sopenharmony_ci raw_spin_unlock(&i8253_lock); 1268c2ecf20Sopenharmony_ci return 0; 1278c2ecf20Sopenharmony_ci} 1288c2ecf20Sopenharmony_ci 1298c2ecf20Sopenharmony_cistatic int pit_set_oneshot(struct clock_event_device *evt) 1308c2ecf20Sopenharmony_ci{ 1318c2ecf20Sopenharmony_ci raw_spin_lock(&i8253_lock); 1328c2ecf20Sopenharmony_ci outb_p(0x38, PIT_MODE); 1338c2ecf20Sopenharmony_ci raw_spin_unlock(&i8253_lock); 1348c2ecf20Sopenharmony_ci return 0; 1358c2ecf20Sopenharmony_ci} 1368c2ecf20Sopenharmony_ci 1378c2ecf20Sopenharmony_cistatic int pit_set_periodic(struct clock_event_device *evt) 1388c2ecf20Sopenharmony_ci{ 1398c2ecf20Sopenharmony_ci raw_spin_lock(&i8253_lock); 1408c2ecf20Sopenharmony_ci 1418c2ecf20Sopenharmony_ci /* binary, mode 2, LSB/MSB, ch 0 */ 1428c2ecf20Sopenharmony_ci outb_p(0x34, PIT_MODE); 1438c2ecf20Sopenharmony_ci outb_p(PIT_LATCH & 0xff, PIT_CH0); /* LSB */ 1448c2ecf20Sopenharmony_ci outb_p(PIT_LATCH >> 8, PIT_CH0); /* MSB */ 1458c2ecf20Sopenharmony_ci 1468c2ecf20Sopenharmony_ci raw_spin_unlock(&i8253_lock); 1478c2ecf20Sopenharmony_ci return 0; 1488c2ecf20Sopenharmony_ci} 1498c2ecf20Sopenharmony_ci 1508c2ecf20Sopenharmony_ci/* 1518c2ecf20Sopenharmony_ci * Program the next event in oneshot mode 1528c2ecf20Sopenharmony_ci * 1538c2ecf20Sopenharmony_ci * Delta is given in PIT ticks 1548c2ecf20Sopenharmony_ci */ 1558c2ecf20Sopenharmony_cistatic int pit_next_event(unsigned long delta, struct clock_event_device *evt) 1568c2ecf20Sopenharmony_ci{ 1578c2ecf20Sopenharmony_ci raw_spin_lock(&i8253_lock); 1588c2ecf20Sopenharmony_ci outb_p(delta & 0xff , PIT_CH0); /* LSB */ 1598c2ecf20Sopenharmony_ci outb_p(delta >> 8 , PIT_CH0); /* MSB */ 1608c2ecf20Sopenharmony_ci raw_spin_unlock(&i8253_lock); 1618c2ecf20Sopenharmony_ci 1628c2ecf20Sopenharmony_ci return 0; 1638c2ecf20Sopenharmony_ci} 1648c2ecf20Sopenharmony_ci 1658c2ecf20Sopenharmony_ci/* 1668c2ecf20Sopenharmony_ci * On UP the PIT can serve all of the possible timer functions. On SMP systems 1678c2ecf20Sopenharmony_ci * it can be solely used for the global tick. 1688c2ecf20Sopenharmony_ci */ 1698c2ecf20Sopenharmony_cistruct clock_event_device i8253_clockevent = { 1708c2ecf20Sopenharmony_ci .name = "pit", 1718c2ecf20Sopenharmony_ci .features = CLOCK_EVT_FEAT_PERIODIC, 1728c2ecf20Sopenharmony_ci .set_state_shutdown = pit_shutdown, 1738c2ecf20Sopenharmony_ci .set_state_periodic = pit_set_periodic, 1748c2ecf20Sopenharmony_ci .set_next_event = pit_next_event, 1758c2ecf20Sopenharmony_ci}; 1768c2ecf20Sopenharmony_ci 1778c2ecf20Sopenharmony_ci/* 1788c2ecf20Sopenharmony_ci * Initialize the conversion factor and the min/max deltas of the clock event 1798c2ecf20Sopenharmony_ci * structure and register the clock event source with the framework. 1808c2ecf20Sopenharmony_ci */ 1818c2ecf20Sopenharmony_civoid __init clockevent_i8253_init(bool oneshot) 1828c2ecf20Sopenharmony_ci{ 1838c2ecf20Sopenharmony_ci if (oneshot) { 1848c2ecf20Sopenharmony_ci i8253_clockevent.features |= CLOCK_EVT_FEAT_ONESHOT; 1858c2ecf20Sopenharmony_ci i8253_clockevent.set_state_oneshot = pit_set_oneshot; 1868c2ecf20Sopenharmony_ci } 1878c2ecf20Sopenharmony_ci /* 1888c2ecf20Sopenharmony_ci * Start pit with the boot cpu mask. x86 might make it global 1898c2ecf20Sopenharmony_ci * when it is used as broadcast device later. 1908c2ecf20Sopenharmony_ci */ 1918c2ecf20Sopenharmony_ci i8253_clockevent.cpumask = cpumask_of(smp_processor_id()); 1928c2ecf20Sopenharmony_ci 1938c2ecf20Sopenharmony_ci clockevents_config_and_register(&i8253_clockevent, PIT_TICK_RATE, 1948c2ecf20Sopenharmony_ci 0xF, 0x7FFF); 1958c2ecf20Sopenharmony_ci} 1968c2ecf20Sopenharmony_ci#endif 197