1// SPDX-License-Identifier: GPL-2.0-only
2/* linux/arch/arm/mach-exynos4/mct.c
3 *
4 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
5 *		http://www.samsung.com
6 *
7 * Exynos4 MCT(Multi-Core Timer) support
8*/
9
10#include <linux/interrupt.h>
11#include <linux/irq.h>
12#include <linux/err.h>
13#include <linux/clk.h>
14#include <linux/clockchips.h>
15#include <linux/cpu.h>
16#include <linux/delay.h>
17#include <linux/percpu.h>
18#include <linux/of.h>
19#include <linux/of_irq.h>
20#include <linux/of_address.h>
21#include <linux/clocksource.h>
22#include <linux/sched_clock.h>
23
24#define EXYNOS4_MCTREG(x)		(x)
25#define EXYNOS4_MCT_G_CNT_L		EXYNOS4_MCTREG(0x100)
26#define EXYNOS4_MCT_G_CNT_U		EXYNOS4_MCTREG(0x104)
27#define EXYNOS4_MCT_G_CNT_WSTAT		EXYNOS4_MCTREG(0x110)
28#define EXYNOS4_MCT_G_COMP0_L		EXYNOS4_MCTREG(0x200)
29#define EXYNOS4_MCT_G_COMP0_U		EXYNOS4_MCTREG(0x204)
30#define EXYNOS4_MCT_G_COMP0_ADD_INCR	EXYNOS4_MCTREG(0x208)
31#define EXYNOS4_MCT_G_TCON		EXYNOS4_MCTREG(0x240)
32#define EXYNOS4_MCT_G_INT_CSTAT		EXYNOS4_MCTREG(0x244)
33#define EXYNOS4_MCT_G_INT_ENB		EXYNOS4_MCTREG(0x248)
34#define EXYNOS4_MCT_G_WSTAT		EXYNOS4_MCTREG(0x24C)
35#define _EXYNOS4_MCT_L_BASE		EXYNOS4_MCTREG(0x300)
36#define EXYNOS4_MCT_L_BASE(x)		(_EXYNOS4_MCT_L_BASE + (0x100 * x))
37#define EXYNOS4_MCT_L_MASK		(0xffffff00)
38
39#define MCT_L_TCNTB_OFFSET		(0x00)
40#define MCT_L_ICNTB_OFFSET		(0x08)
41#define MCT_L_TCON_OFFSET		(0x20)
42#define MCT_L_INT_CSTAT_OFFSET		(0x30)
43#define MCT_L_INT_ENB_OFFSET		(0x34)
44#define MCT_L_WSTAT_OFFSET		(0x40)
45#define MCT_G_TCON_START		(1 << 8)
46#define MCT_G_TCON_COMP0_AUTO_INC	(1 << 1)
47#define MCT_G_TCON_COMP0_ENABLE		(1 << 0)
48#define MCT_L_TCON_INTERVAL_MODE	(1 << 2)
49#define MCT_L_TCON_INT_START		(1 << 1)
50#define MCT_L_TCON_TIMER_START		(1 << 0)
51
52#define TICK_BASE_CNT	1
53
54enum {
55	MCT_INT_SPI,
56	MCT_INT_PPI
57};
58
59enum {
60	MCT_G0_IRQ,
61	MCT_G1_IRQ,
62	MCT_G2_IRQ,
63	MCT_G3_IRQ,
64	MCT_L0_IRQ,
65	MCT_L1_IRQ,
66	MCT_L2_IRQ,
67	MCT_L3_IRQ,
68	MCT_L4_IRQ,
69	MCT_L5_IRQ,
70	MCT_L6_IRQ,
71	MCT_L7_IRQ,
72	MCT_NR_IRQS,
73};
74
75static void __iomem *reg_base;
76static unsigned long clk_rate;
77static unsigned int mct_int_type;
78static int mct_irqs[MCT_NR_IRQS];
79
80struct mct_clock_event_device {
81	struct clock_event_device evt;
82	unsigned long base;
83	char name[10];
84};
85
86static void exynos4_mct_write(unsigned int value, unsigned long offset)
87{
88	unsigned long stat_addr;
89	u32 mask;
90	u32 i;
91
92	writel_relaxed(value, reg_base + offset);
93
94	if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
95		stat_addr = (offset & EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
96		switch (offset & ~EXYNOS4_MCT_L_MASK) {
97		case MCT_L_TCON_OFFSET:
98			mask = 1 << 3;		/* L_TCON write status */
99			break;
100		case MCT_L_ICNTB_OFFSET:
101			mask = 1 << 1;		/* L_ICNTB write status */
102			break;
103		case MCT_L_TCNTB_OFFSET:
104			mask = 1 << 0;		/* L_TCNTB write status */
105			break;
106		default:
107			return;
108		}
109	} else {
110		switch (offset) {
111		case EXYNOS4_MCT_G_TCON:
112			stat_addr = EXYNOS4_MCT_G_WSTAT;
113			mask = 1 << 16;		/* G_TCON write status */
114			break;
115		case EXYNOS4_MCT_G_COMP0_L:
116			stat_addr = EXYNOS4_MCT_G_WSTAT;
117			mask = 1 << 0;		/* G_COMP0_L write status */
118			break;
119		case EXYNOS4_MCT_G_COMP0_U:
120			stat_addr = EXYNOS4_MCT_G_WSTAT;
121			mask = 1 << 1;		/* G_COMP0_U write status */
122			break;
123		case EXYNOS4_MCT_G_COMP0_ADD_INCR:
124			stat_addr = EXYNOS4_MCT_G_WSTAT;
125			mask = 1 << 2;		/* G_COMP0_ADD_INCR w status */
126			break;
127		case EXYNOS4_MCT_G_CNT_L:
128			stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
129			mask = 1 << 0;		/* G_CNT_L write status */
130			break;
131		case EXYNOS4_MCT_G_CNT_U:
132			stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
133			mask = 1 << 1;		/* G_CNT_U write status */
134			break;
135		default:
136			return;
137		}
138	}
139
140	/* Wait maximum 1 ms until written values are applied */
141	for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
142		if (readl_relaxed(reg_base + stat_addr) & mask) {
143			writel_relaxed(mask, reg_base + stat_addr);
144			return;
145		}
146
147	panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
148}
149
150/* Clocksource handling */
151static void exynos4_mct_frc_start(void)
152{
153	u32 reg;
154
155	reg = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
156	reg |= MCT_G_TCON_START;
157	exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
158}
159
160/**
161 * exynos4_read_count_64 - Read all 64-bits of the global counter
162 *
163 * This will read all 64-bits of the global counter taking care to make sure
164 * that the upper and lower half match.  Note that reading the MCT can be quite
165 * slow (hundreds of nanoseconds) so you should use the 32-bit (lower half
166 * only) version when possible.
167 *
168 * Returns the number of cycles in the global counter.
169 */
170static u64 exynos4_read_count_64(void)
171{
172	unsigned int lo, hi;
173	u32 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
174
175	do {
176		hi = hi2;
177		lo = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
178		hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
179	} while (hi != hi2);
180
181	return ((u64)hi << 32) | lo;
182}
183
184/**
185 * exynos4_read_count_32 - Read the lower 32-bits of the global counter
186 *
187 * This will read just the lower 32-bits of the global counter.  This is marked
188 * as notrace so it can be used by the scheduler clock.
189 *
190 * Returns the number of cycles in the global counter (lower 32 bits).
191 */
192static u32 notrace exynos4_read_count_32(void)
193{
194	return readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
195}
196
197static u64 exynos4_frc_read(struct clocksource *cs)
198{
199	return exynos4_read_count_32();
200}
201
202static void exynos4_frc_resume(struct clocksource *cs)
203{
204	exynos4_mct_frc_start();
205}
206
207static struct clocksource mct_frc = {
208	.name		= "mct-frc",
209	.rating		= 450,	/* use value higher than ARM arch timer */
210	.read		= exynos4_frc_read,
211	.mask		= CLOCKSOURCE_MASK(32),
212	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
213	.resume		= exynos4_frc_resume,
214};
215
216static u64 notrace exynos4_read_sched_clock(void)
217{
218	return exynos4_read_count_32();
219}
220
221#if defined(CONFIG_ARM)
222static struct delay_timer exynos4_delay_timer;
223
224static cycles_t exynos4_read_current_timer(void)
225{
226	BUILD_BUG_ON_MSG(sizeof(cycles_t) != sizeof(u32),
227			 "cycles_t needs to move to 32-bit for ARM64 usage");
228	return exynos4_read_count_32();
229}
230#endif
231
232static int __init exynos4_clocksource_init(void)
233{
234	exynos4_mct_frc_start();
235
236#if defined(CONFIG_ARM)
237	exynos4_delay_timer.read_current_timer = &exynos4_read_current_timer;
238	exynos4_delay_timer.freq = clk_rate;
239	register_current_timer_delay(&exynos4_delay_timer);
240#endif
241
242	if (clocksource_register_hz(&mct_frc, clk_rate))
243		panic("%s: can't register clocksource\n", mct_frc.name);
244
245	sched_clock_register(exynos4_read_sched_clock, 32, clk_rate);
246
247	return 0;
248}
249
250static void exynos4_mct_comp0_stop(void)
251{
252	unsigned int tcon;
253
254	tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
255	tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
256
257	exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
258	exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
259}
260
261static void exynos4_mct_comp0_start(bool periodic, unsigned long cycles)
262{
263	unsigned int tcon;
264	u64 comp_cycle;
265
266	tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
267
268	if (periodic) {
269		tcon |= MCT_G_TCON_COMP0_AUTO_INC;
270		exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
271	}
272
273	comp_cycle = exynos4_read_count_64() + cycles;
274	exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
275	exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
276
277	exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
278
279	tcon |= MCT_G_TCON_COMP0_ENABLE;
280	exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
281}
282
283static int exynos4_comp_set_next_event(unsigned long cycles,
284				       struct clock_event_device *evt)
285{
286	exynos4_mct_comp0_start(false, cycles);
287
288	return 0;
289}
290
291static int mct_set_state_shutdown(struct clock_event_device *evt)
292{
293	exynos4_mct_comp0_stop();
294	return 0;
295}
296
297static int mct_set_state_periodic(struct clock_event_device *evt)
298{
299	unsigned long cycles_per_jiffy;
300
301	cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
302			    >> evt->shift);
303	exynos4_mct_comp0_stop();
304	exynos4_mct_comp0_start(true, cycles_per_jiffy);
305	return 0;
306}
307
308static struct clock_event_device mct_comp_device = {
309	.name			= "mct-comp",
310	.features		= CLOCK_EVT_FEAT_PERIODIC |
311				  CLOCK_EVT_FEAT_ONESHOT,
312	.rating			= 250,
313	.set_next_event		= exynos4_comp_set_next_event,
314	.set_state_periodic	= mct_set_state_periodic,
315	.set_state_shutdown	= mct_set_state_shutdown,
316	.set_state_oneshot	= mct_set_state_shutdown,
317	.set_state_oneshot_stopped = mct_set_state_shutdown,
318	.tick_resume		= mct_set_state_shutdown,
319};
320
321static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
322{
323	struct clock_event_device *evt = dev_id;
324
325	exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
326
327	evt->event_handler(evt);
328
329	return IRQ_HANDLED;
330}
331
332static int exynos4_clockevent_init(void)
333{
334	mct_comp_device.cpumask = cpumask_of(0);
335	clockevents_config_and_register(&mct_comp_device, clk_rate,
336					0xf, 0xffffffff);
337	if (request_irq(mct_irqs[MCT_G0_IRQ], exynos4_mct_comp_isr,
338			IRQF_TIMER | IRQF_IRQPOLL, "mct_comp_irq",
339			&mct_comp_device))
340		pr_err("%s: request_irq() failed\n", "mct_comp_irq");
341
342	return 0;
343}
344
345static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
346
347/* Clock event handling */
348static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
349{
350	unsigned long tmp;
351	unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
352	unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
353
354	tmp = readl_relaxed(reg_base + offset);
355	if (tmp & mask) {
356		tmp &= ~mask;
357		exynos4_mct_write(tmp, offset);
358	}
359}
360
361static void exynos4_mct_tick_start(unsigned long cycles,
362				   struct mct_clock_event_device *mevt)
363{
364	unsigned long tmp;
365
366	exynos4_mct_tick_stop(mevt);
367
368	tmp = (1 << 31) | cycles;	/* MCT_L_UPDATE_ICNTB */
369
370	/* update interrupt count buffer */
371	exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
372
373	/* enable MCT tick interrupt */
374	exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
375
376	tmp = readl_relaxed(reg_base + mevt->base + MCT_L_TCON_OFFSET);
377	tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
378	       MCT_L_TCON_INTERVAL_MODE;
379	exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
380}
381
382static void exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
383{
384	/* Clear the MCT tick interrupt */
385	if (readl_relaxed(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1)
386		exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
387}
388
389static int exynos4_tick_set_next_event(unsigned long cycles,
390				       struct clock_event_device *evt)
391{
392	struct mct_clock_event_device *mevt;
393
394	mevt = container_of(evt, struct mct_clock_event_device, evt);
395	exynos4_mct_tick_start(cycles, mevt);
396	return 0;
397}
398
399static int set_state_shutdown(struct clock_event_device *evt)
400{
401	struct mct_clock_event_device *mevt;
402
403	mevt = container_of(evt, struct mct_clock_event_device, evt);
404	exynos4_mct_tick_stop(mevt);
405	exynos4_mct_tick_clear(mevt);
406	return 0;
407}
408
409static int set_state_periodic(struct clock_event_device *evt)
410{
411	struct mct_clock_event_device *mevt;
412	unsigned long cycles_per_jiffy;
413
414	mevt = container_of(evt, struct mct_clock_event_device, evt);
415	cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
416			    >> evt->shift);
417	exynos4_mct_tick_stop(mevt);
418	exynos4_mct_tick_start(cycles_per_jiffy, mevt);
419	return 0;
420}
421
422static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
423{
424	struct mct_clock_event_device *mevt = dev_id;
425	struct clock_event_device *evt = &mevt->evt;
426
427	/*
428	 * This is for supporting oneshot mode.
429	 * Mct would generate interrupt periodically
430	 * without explicit stopping.
431	 */
432	if (!clockevent_state_periodic(&mevt->evt))
433		exynos4_mct_tick_stop(mevt);
434
435	exynos4_mct_tick_clear(mevt);
436
437	evt->event_handler(evt);
438
439	return IRQ_HANDLED;
440}
441
442static int exynos4_mct_starting_cpu(unsigned int cpu)
443{
444	struct mct_clock_event_device *mevt =
445		per_cpu_ptr(&percpu_mct_tick, cpu);
446	struct clock_event_device *evt = &mevt->evt;
447
448	mevt->base = EXYNOS4_MCT_L_BASE(cpu);
449	snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu);
450
451	evt->name = mevt->name;
452	evt->cpumask = cpumask_of(cpu);
453	evt->set_next_event = exynos4_tick_set_next_event;
454	evt->set_state_periodic = set_state_periodic;
455	evt->set_state_shutdown = set_state_shutdown;
456	evt->set_state_oneshot = set_state_shutdown;
457	evt->set_state_oneshot_stopped = set_state_shutdown;
458	evt->tick_resume = set_state_shutdown;
459	evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
460	evt->rating = 500;	/* use value higher than ARM arch timer */
461
462	exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
463
464	if (mct_int_type == MCT_INT_SPI) {
465
466		if (evt->irq == -1)
467			return -EIO;
468
469		irq_force_affinity(evt->irq, cpumask_of(cpu));
470		enable_irq(evt->irq);
471	} else {
472		enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
473	}
474	clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
475					0xf, 0x7fffffff);
476
477	return 0;
478}
479
480static int exynos4_mct_dying_cpu(unsigned int cpu)
481{
482	struct mct_clock_event_device *mevt =
483		per_cpu_ptr(&percpu_mct_tick, cpu);
484	struct clock_event_device *evt = &mevt->evt;
485
486	evt->set_state_shutdown(evt);
487	if (mct_int_type == MCT_INT_SPI) {
488		if (evt->irq != -1)
489			disable_irq_nosync(evt->irq);
490		exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
491	} else {
492		disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
493	}
494	return 0;
495}
496
497static int __init exynos4_timer_resources(struct device_node *np)
498{
499	struct clk *mct_clk, *tick_clk;
500
501	reg_base = of_iomap(np, 0);
502	if (!reg_base)
503		panic("%s: unable to ioremap mct address space\n", __func__);
504
505	tick_clk = of_clk_get_by_name(np, "fin_pll");
506	if (IS_ERR(tick_clk))
507		panic("%s: unable to determine tick clock rate\n", __func__);
508	clk_rate = clk_get_rate(tick_clk);
509
510	mct_clk = of_clk_get_by_name(np, "mct");
511	if (IS_ERR(mct_clk))
512		panic("%s: unable to retrieve mct clock instance\n", __func__);
513	clk_prepare_enable(mct_clk);
514
515	return 0;
516}
517
518static int __init exynos4_timer_interrupts(struct device_node *np,
519					   unsigned int int_type)
520{
521	int nr_irqs, i, err, cpu;
522
523	mct_int_type = int_type;
524
525	/* This driver uses only one global timer interrupt */
526	mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
527
528	/*
529	 * Find out the number of local irqs specified. The local
530	 * timer irqs are specified after the four global timer
531	 * irqs are specified.
532	 */
533	nr_irqs = of_irq_count(np);
534	if (nr_irqs > ARRAY_SIZE(mct_irqs)) {
535		pr_err("exynos-mct: too many (%d) interrupts configured in DT\n",
536			nr_irqs);
537		nr_irqs = ARRAY_SIZE(mct_irqs);
538	}
539	for (i = MCT_L0_IRQ; i < nr_irqs; i++)
540		mct_irqs[i] = irq_of_parse_and_map(np, i);
541
542	if (mct_int_type == MCT_INT_PPI) {
543
544		err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
545					 exynos4_mct_tick_isr, "MCT",
546					 &percpu_mct_tick);
547		WARN(err, "MCT: can't request IRQ %d (%d)\n",
548		     mct_irqs[MCT_L0_IRQ], err);
549	} else {
550		for_each_possible_cpu(cpu) {
551			int mct_irq;
552			struct mct_clock_event_device *pcpu_mevt =
553				per_cpu_ptr(&percpu_mct_tick, cpu);
554
555			pcpu_mevt->evt.irq = -1;
556			if (MCT_L0_IRQ + cpu >= ARRAY_SIZE(mct_irqs))
557				break;
558			mct_irq = mct_irqs[MCT_L0_IRQ + cpu];
559
560			irq_set_status_flags(mct_irq, IRQ_NOAUTOEN);
561			if (request_irq(mct_irq,
562					exynos4_mct_tick_isr,
563					IRQF_TIMER | IRQF_NOBALANCING,
564					pcpu_mevt->name, pcpu_mevt)) {
565				pr_err("exynos-mct: cannot register IRQ (cpu%d)\n",
566									cpu);
567
568				continue;
569			}
570			pcpu_mevt->evt.irq = mct_irq;
571		}
572	}
573
574	/* Install hotplug callbacks which configure the timer on this CPU */
575	err = cpuhp_setup_state(CPUHP_AP_EXYNOS4_MCT_TIMER_STARTING,
576				"clockevents/exynos4/mct_timer:starting",
577				exynos4_mct_starting_cpu,
578				exynos4_mct_dying_cpu);
579	if (err)
580		goto out_irq;
581
582	return 0;
583
584out_irq:
585	if (mct_int_type == MCT_INT_PPI) {
586		free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
587	} else {
588		for_each_possible_cpu(cpu) {
589			struct mct_clock_event_device *pcpu_mevt =
590				per_cpu_ptr(&percpu_mct_tick, cpu);
591
592			if (pcpu_mevt->evt.irq != -1) {
593				free_irq(pcpu_mevt->evt.irq, pcpu_mevt);
594				pcpu_mevt->evt.irq = -1;
595			}
596		}
597	}
598	return err;
599}
600
601static int __init mct_init_dt(struct device_node *np, unsigned int int_type)
602{
603	int ret;
604
605	ret = exynos4_timer_resources(np);
606	if (ret)
607		return ret;
608
609	ret = exynos4_timer_interrupts(np, int_type);
610	if (ret)
611		return ret;
612
613	ret = exynos4_clocksource_init();
614	if (ret)
615		return ret;
616
617	return exynos4_clockevent_init();
618}
619
620
621static int __init mct_init_spi(struct device_node *np)
622{
623	return mct_init_dt(np, MCT_INT_SPI);
624}
625
626static int __init mct_init_ppi(struct device_node *np)
627{
628	return mct_init_dt(np, MCT_INT_PPI);
629}
630TIMER_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
631TIMER_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);
632