18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-only 28c2ecf20Sopenharmony_ci/* 38c2ecf20Sopenharmony_ci * drivers/clocksource/arm_global_timer.c 48c2ecf20Sopenharmony_ci * 58c2ecf20Sopenharmony_ci * Copyright (C) 2013 STMicroelectronics (R&D) Limited. 68c2ecf20Sopenharmony_ci * Author: Stuart Menefy <stuart.menefy@st.com> 78c2ecf20Sopenharmony_ci * Author: Srinivas Kandagatla <srinivas.kandagatla@st.com> 88c2ecf20Sopenharmony_ci */ 98c2ecf20Sopenharmony_ci 108c2ecf20Sopenharmony_ci#include <linux/init.h> 118c2ecf20Sopenharmony_ci#include <linux/interrupt.h> 128c2ecf20Sopenharmony_ci#include <linux/clocksource.h> 138c2ecf20Sopenharmony_ci#include <linux/clockchips.h> 148c2ecf20Sopenharmony_ci#include <linux/cpu.h> 158c2ecf20Sopenharmony_ci#include <linux/clk.h> 168c2ecf20Sopenharmony_ci#include <linux/delay.h> 178c2ecf20Sopenharmony_ci#include <linux/err.h> 188c2ecf20Sopenharmony_ci#include <linux/io.h> 198c2ecf20Sopenharmony_ci#include <linux/of.h> 208c2ecf20Sopenharmony_ci#include <linux/of_irq.h> 218c2ecf20Sopenharmony_ci#include <linux/of_address.h> 228c2ecf20Sopenharmony_ci#include <linux/sched_clock.h> 238c2ecf20Sopenharmony_ci 248c2ecf20Sopenharmony_ci#include <asm/cputype.h> 258c2ecf20Sopenharmony_ci 268c2ecf20Sopenharmony_ci#define GT_COUNTER0 0x00 278c2ecf20Sopenharmony_ci#define GT_COUNTER1 0x04 288c2ecf20Sopenharmony_ci 298c2ecf20Sopenharmony_ci#define GT_CONTROL 0x08 308c2ecf20Sopenharmony_ci#define GT_CONTROL_TIMER_ENABLE BIT(0) /* this bit is NOT banked */ 318c2ecf20Sopenharmony_ci#define GT_CONTROL_COMP_ENABLE BIT(1) /* banked */ 328c2ecf20Sopenharmony_ci#define GT_CONTROL_IRQ_ENABLE BIT(2) /* banked */ 338c2ecf20Sopenharmony_ci#define GT_CONTROL_AUTO_INC BIT(3) /* banked */ 348c2ecf20Sopenharmony_ci 358c2ecf20Sopenharmony_ci#define GT_INT_STATUS 0x0c 368c2ecf20Sopenharmony_ci#define GT_INT_STATUS_EVENT_FLAG BIT(0) 378c2ecf20Sopenharmony_ci 388c2ecf20Sopenharmony_ci#define GT_COMP0 0x10 398c2ecf20Sopenharmony_ci#define GT_COMP1 0x14 408c2ecf20Sopenharmony_ci#define GT_AUTO_INC 0x18 418c2ecf20Sopenharmony_ci 428c2ecf20Sopenharmony_ci/* 438c2ecf20Sopenharmony_ci * We are expecting to be clocked by the ARM peripheral clock. 448c2ecf20Sopenharmony_ci * 458c2ecf20Sopenharmony_ci * Note: it is assumed we are using a prescaler value of zero, so this is 468c2ecf20Sopenharmony_ci * the units for all operations. 478c2ecf20Sopenharmony_ci */ 488c2ecf20Sopenharmony_cistatic void __iomem *gt_base; 498c2ecf20Sopenharmony_cistatic unsigned long gt_clk_rate; 508c2ecf20Sopenharmony_cistatic int gt_ppi; 518c2ecf20Sopenharmony_cistatic struct clock_event_device __percpu *gt_evt; 528c2ecf20Sopenharmony_ci 538c2ecf20Sopenharmony_ci/* 548c2ecf20Sopenharmony_ci * To get the value from the Global Timer Counter register proceed as follows: 558c2ecf20Sopenharmony_ci * 1. Read the upper 32-bit timer counter register 568c2ecf20Sopenharmony_ci * 2. Read the lower 32-bit timer counter register 578c2ecf20Sopenharmony_ci * 3. Read the upper 32-bit timer counter register again. If the value is 588c2ecf20Sopenharmony_ci * different to the 32-bit upper value read previously, go back to step 2. 598c2ecf20Sopenharmony_ci * Otherwise the 64-bit timer counter value is correct. 608c2ecf20Sopenharmony_ci */ 618c2ecf20Sopenharmony_cistatic u64 notrace _gt_counter_read(void) 628c2ecf20Sopenharmony_ci{ 638c2ecf20Sopenharmony_ci u64 counter; 648c2ecf20Sopenharmony_ci u32 lower; 658c2ecf20Sopenharmony_ci u32 upper, old_upper; 668c2ecf20Sopenharmony_ci 678c2ecf20Sopenharmony_ci upper = readl_relaxed(gt_base + GT_COUNTER1); 688c2ecf20Sopenharmony_ci do { 698c2ecf20Sopenharmony_ci old_upper = upper; 708c2ecf20Sopenharmony_ci lower = readl_relaxed(gt_base + GT_COUNTER0); 718c2ecf20Sopenharmony_ci upper = readl_relaxed(gt_base + GT_COUNTER1); 728c2ecf20Sopenharmony_ci } while (upper != old_upper); 738c2ecf20Sopenharmony_ci 748c2ecf20Sopenharmony_ci counter = upper; 758c2ecf20Sopenharmony_ci counter <<= 32; 768c2ecf20Sopenharmony_ci counter |= lower; 778c2ecf20Sopenharmony_ci return counter; 788c2ecf20Sopenharmony_ci} 798c2ecf20Sopenharmony_ci 808c2ecf20Sopenharmony_cistatic u64 gt_counter_read(void) 818c2ecf20Sopenharmony_ci{ 828c2ecf20Sopenharmony_ci return _gt_counter_read(); 838c2ecf20Sopenharmony_ci} 848c2ecf20Sopenharmony_ci 858c2ecf20Sopenharmony_ci/** 868c2ecf20Sopenharmony_ci * To ensure that updates to comparator value register do not set the 878c2ecf20Sopenharmony_ci * Interrupt Status Register proceed as follows: 888c2ecf20Sopenharmony_ci * 1. Clear the Comp Enable bit in the Timer Control Register. 898c2ecf20Sopenharmony_ci * 2. Write the lower 32-bit Comparator Value Register. 908c2ecf20Sopenharmony_ci * 3. Write the upper 32-bit Comparator Value Register. 918c2ecf20Sopenharmony_ci * 4. Set the Comp Enable bit and, if necessary, the IRQ enable bit. 928c2ecf20Sopenharmony_ci */ 938c2ecf20Sopenharmony_cistatic void gt_compare_set(unsigned long delta, int periodic) 948c2ecf20Sopenharmony_ci{ 958c2ecf20Sopenharmony_ci u64 counter = gt_counter_read(); 968c2ecf20Sopenharmony_ci unsigned long ctrl; 978c2ecf20Sopenharmony_ci 988c2ecf20Sopenharmony_ci counter += delta; 998c2ecf20Sopenharmony_ci ctrl = GT_CONTROL_TIMER_ENABLE; 1008c2ecf20Sopenharmony_ci writel_relaxed(ctrl, gt_base + GT_CONTROL); 1018c2ecf20Sopenharmony_ci writel_relaxed(lower_32_bits(counter), gt_base + GT_COMP0); 1028c2ecf20Sopenharmony_ci writel_relaxed(upper_32_bits(counter), gt_base + GT_COMP1); 1038c2ecf20Sopenharmony_ci 1048c2ecf20Sopenharmony_ci if (periodic) { 1058c2ecf20Sopenharmony_ci writel_relaxed(delta, gt_base + GT_AUTO_INC); 1068c2ecf20Sopenharmony_ci ctrl |= GT_CONTROL_AUTO_INC; 1078c2ecf20Sopenharmony_ci } 1088c2ecf20Sopenharmony_ci 1098c2ecf20Sopenharmony_ci ctrl |= GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE; 1108c2ecf20Sopenharmony_ci writel_relaxed(ctrl, gt_base + GT_CONTROL); 1118c2ecf20Sopenharmony_ci} 1128c2ecf20Sopenharmony_ci 1138c2ecf20Sopenharmony_cistatic int gt_clockevent_shutdown(struct clock_event_device *evt) 1148c2ecf20Sopenharmony_ci{ 1158c2ecf20Sopenharmony_ci unsigned long ctrl; 1168c2ecf20Sopenharmony_ci 1178c2ecf20Sopenharmony_ci ctrl = readl(gt_base + GT_CONTROL); 1188c2ecf20Sopenharmony_ci ctrl &= ~(GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE | 1198c2ecf20Sopenharmony_ci GT_CONTROL_AUTO_INC); 1208c2ecf20Sopenharmony_ci writel(ctrl, gt_base + GT_CONTROL); 1218c2ecf20Sopenharmony_ci return 0; 1228c2ecf20Sopenharmony_ci} 1238c2ecf20Sopenharmony_ci 1248c2ecf20Sopenharmony_cistatic int gt_clockevent_set_periodic(struct clock_event_device *evt) 1258c2ecf20Sopenharmony_ci{ 1268c2ecf20Sopenharmony_ci gt_compare_set(DIV_ROUND_CLOSEST(gt_clk_rate, HZ), 1); 1278c2ecf20Sopenharmony_ci return 0; 1288c2ecf20Sopenharmony_ci} 1298c2ecf20Sopenharmony_ci 1308c2ecf20Sopenharmony_cistatic int gt_clockevent_set_next_event(unsigned long evt, 1318c2ecf20Sopenharmony_ci struct clock_event_device *unused) 1328c2ecf20Sopenharmony_ci{ 1338c2ecf20Sopenharmony_ci gt_compare_set(evt, 0); 1348c2ecf20Sopenharmony_ci return 0; 1358c2ecf20Sopenharmony_ci} 1368c2ecf20Sopenharmony_ci 1378c2ecf20Sopenharmony_cistatic irqreturn_t gt_clockevent_interrupt(int irq, void *dev_id) 1388c2ecf20Sopenharmony_ci{ 1398c2ecf20Sopenharmony_ci struct clock_event_device *evt = dev_id; 1408c2ecf20Sopenharmony_ci 1418c2ecf20Sopenharmony_ci if (!(readl_relaxed(gt_base + GT_INT_STATUS) & 1428c2ecf20Sopenharmony_ci GT_INT_STATUS_EVENT_FLAG)) 1438c2ecf20Sopenharmony_ci return IRQ_NONE; 1448c2ecf20Sopenharmony_ci 1458c2ecf20Sopenharmony_ci /** 1468c2ecf20Sopenharmony_ci * ERRATA 740657( Global Timer can send 2 interrupts for 1478c2ecf20Sopenharmony_ci * the same event in single-shot mode) 1488c2ecf20Sopenharmony_ci * Workaround: 1498c2ecf20Sopenharmony_ci * Either disable single-shot mode. 1508c2ecf20Sopenharmony_ci * Or 1518c2ecf20Sopenharmony_ci * Modify the Interrupt Handler to avoid the 1528c2ecf20Sopenharmony_ci * offending sequence. This is achieved by clearing 1538c2ecf20Sopenharmony_ci * the Global Timer flag _after_ having incremented 1548c2ecf20Sopenharmony_ci * the Comparator register value to a higher value. 1558c2ecf20Sopenharmony_ci */ 1568c2ecf20Sopenharmony_ci if (clockevent_state_oneshot(evt)) 1578c2ecf20Sopenharmony_ci gt_compare_set(ULONG_MAX, 0); 1588c2ecf20Sopenharmony_ci 1598c2ecf20Sopenharmony_ci writel_relaxed(GT_INT_STATUS_EVENT_FLAG, gt_base + GT_INT_STATUS); 1608c2ecf20Sopenharmony_ci evt->event_handler(evt); 1618c2ecf20Sopenharmony_ci 1628c2ecf20Sopenharmony_ci return IRQ_HANDLED; 1638c2ecf20Sopenharmony_ci} 1648c2ecf20Sopenharmony_ci 1658c2ecf20Sopenharmony_cistatic int gt_starting_cpu(unsigned int cpu) 1668c2ecf20Sopenharmony_ci{ 1678c2ecf20Sopenharmony_ci struct clock_event_device *clk = this_cpu_ptr(gt_evt); 1688c2ecf20Sopenharmony_ci 1698c2ecf20Sopenharmony_ci clk->name = "arm_global_timer"; 1708c2ecf20Sopenharmony_ci clk->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT | 1718c2ecf20Sopenharmony_ci CLOCK_EVT_FEAT_PERCPU; 1728c2ecf20Sopenharmony_ci clk->set_state_shutdown = gt_clockevent_shutdown; 1738c2ecf20Sopenharmony_ci clk->set_state_periodic = gt_clockevent_set_periodic; 1748c2ecf20Sopenharmony_ci clk->set_state_oneshot = gt_clockevent_shutdown; 1758c2ecf20Sopenharmony_ci clk->set_state_oneshot_stopped = gt_clockevent_shutdown; 1768c2ecf20Sopenharmony_ci clk->set_next_event = gt_clockevent_set_next_event; 1778c2ecf20Sopenharmony_ci clk->cpumask = cpumask_of(cpu); 1788c2ecf20Sopenharmony_ci clk->rating = 300; 1798c2ecf20Sopenharmony_ci clk->irq = gt_ppi; 1808c2ecf20Sopenharmony_ci clockevents_config_and_register(clk, gt_clk_rate, 1818c2ecf20Sopenharmony_ci 1, 0xffffffff); 1828c2ecf20Sopenharmony_ci enable_percpu_irq(clk->irq, IRQ_TYPE_NONE); 1838c2ecf20Sopenharmony_ci return 0; 1848c2ecf20Sopenharmony_ci} 1858c2ecf20Sopenharmony_ci 1868c2ecf20Sopenharmony_cistatic int gt_dying_cpu(unsigned int cpu) 1878c2ecf20Sopenharmony_ci{ 1888c2ecf20Sopenharmony_ci struct clock_event_device *clk = this_cpu_ptr(gt_evt); 1898c2ecf20Sopenharmony_ci 1908c2ecf20Sopenharmony_ci gt_clockevent_shutdown(clk); 1918c2ecf20Sopenharmony_ci disable_percpu_irq(clk->irq); 1928c2ecf20Sopenharmony_ci return 0; 1938c2ecf20Sopenharmony_ci} 1948c2ecf20Sopenharmony_ci 1958c2ecf20Sopenharmony_cistatic u64 gt_clocksource_read(struct clocksource *cs) 1968c2ecf20Sopenharmony_ci{ 1978c2ecf20Sopenharmony_ci return gt_counter_read(); 1988c2ecf20Sopenharmony_ci} 1998c2ecf20Sopenharmony_ci 2008c2ecf20Sopenharmony_cistatic void gt_resume(struct clocksource *cs) 2018c2ecf20Sopenharmony_ci{ 2028c2ecf20Sopenharmony_ci unsigned long ctrl; 2038c2ecf20Sopenharmony_ci 2048c2ecf20Sopenharmony_ci ctrl = readl(gt_base + GT_CONTROL); 2058c2ecf20Sopenharmony_ci if (!(ctrl & GT_CONTROL_TIMER_ENABLE)) 2068c2ecf20Sopenharmony_ci /* re-enable timer on resume */ 2078c2ecf20Sopenharmony_ci writel(GT_CONTROL_TIMER_ENABLE, gt_base + GT_CONTROL); 2088c2ecf20Sopenharmony_ci} 2098c2ecf20Sopenharmony_ci 2108c2ecf20Sopenharmony_cistatic struct clocksource gt_clocksource = { 2118c2ecf20Sopenharmony_ci .name = "arm_global_timer", 2128c2ecf20Sopenharmony_ci .rating = 300, 2138c2ecf20Sopenharmony_ci .read = gt_clocksource_read, 2148c2ecf20Sopenharmony_ci .mask = CLOCKSOURCE_MASK(64), 2158c2ecf20Sopenharmony_ci .flags = CLOCK_SOURCE_IS_CONTINUOUS, 2168c2ecf20Sopenharmony_ci .resume = gt_resume, 2178c2ecf20Sopenharmony_ci}; 2188c2ecf20Sopenharmony_ci 2198c2ecf20Sopenharmony_ci#ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK 2208c2ecf20Sopenharmony_cistatic u64 notrace gt_sched_clock_read(void) 2218c2ecf20Sopenharmony_ci{ 2228c2ecf20Sopenharmony_ci return _gt_counter_read(); 2238c2ecf20Sopenharmony_ci} 2248c2ecf20Sopenharmony_ci#endif 2258c2ecf20Sopenharmony_ci 2268c2ecf20Sopenharmony_cistatic unsigned long gt_read_long(void) 2278c2ecf20Sopenharmony_ci{ 2288c2ecf20Sopenharmony_ci return readl_relaxed(gt_base + GT_COUNTER0); 2298c2ecf20Sopenharmony_ci} 2308c2ecf20Sopenharmony_ci 2318c2ecf20Sopenharmony_cistatic struct delay_timer gt_delay_timer = { 2328c2ecf20Sopenharmony_ci .read_current_timer = gt_read_long, 2338c2ecf20Sopenharmony_ci}; 2348c2ecf20Sopenharmony_ci 2358c2ecf20Sopenharmony_cistatic void __init gt_delay_timer_init(void) 2368c2ecf20Sopenharmony_ci{ 2378c2ecf20Sopenharmony_ci gt_delay_timer.freq = gt_clk_rate; 2388c2ecf20Sopenharmony_ci register_current_timer_delay(>_delay_timer); 2398c2ecf20Sopenharmony_ci} 2408c2ecf20Sopenharmony_ci 2418c2ecf20Sopenharmony_cistatic int __init gt_clocksource_init(void) 2428c2ecf20Sopenharmony_ci{ 2438c2ecf20Sopenharmony_ci writel(0, gt_base + GT_CONTROL); 2448c2ecf20Sopenharmony_ci writel(0, gt_base + GT_COUNTER0); 2458c2ecf20Sopenharmony_ci writel(0, gt_base + GT_COUNTER1); 2468c2ecf20Sopenharmony_ci /* enables timer on all the cores */ 2478c2ecf20Sopenharmony_ci writel(GT_CONTROL_TIMER_ENABLE, gt_base + GT_CONTROL); 2488c2ecf20Sopenharmony_ci 2498c2ecf20Sopenharmony_ci#ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK 2508c2ecf20Sopenharmony_ci sched_clock_register(gt_sched_clock_read, 64, gt_clk_rate); 2518c2ecf20Sopenharmony_ci#endif 2528c2ecf20Sopenharmony_ci return clocksource_register_hz(>_clocksource, gt_clk_rate); 2538c2ecf20Sopenharmony_ci} 2548c2ecf20Sopenharmony_ci 2558c2ecf20Sopenharmony_cistatic int __init global_timer_of_register(struct device_node *np) 2568c2ecf20Sopenharmony_ci{ 2578c2ecf20Sopenharmony_ci struct clk *gt_clk; 2588c2ecf20Sopenharmony_ci int err = 0; 2598c2ecf20Sopenharmony_ci 2608c2ecf20Sopenharmony_ci /* 2618c2ecf20Sopenharmony_ci * In A9 r2p0 the comparators for each processor with the global timer 2628c2ecf20Sopenharmony_ci * fire when the timer value is greater than or equal to. In previous 2638c2ecf20Sopenharmony_ci * revisions the comparators fired when the timer value was equal to. 2648c2ecf20Sopenharmony_ci */ 2658c2ecf20Sopenharmony_ci if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A9 2668c2ecf20Sopenharmony_ci && (read_cpuid_id() & 0xf0000f) < 0x200000) { 2678c2ecf20Sopenharmony_ci pr_warn("global-timer: non support for this cpu version.\n"); 2688c2ecf20Sopenharmony_ci return -ENOSYS; 2698c2ecf20Sopenharmony_ci } 2708c2ecf20Sopenharmony_ci 2718c2ecf20Sopenharmony_ci gt_ppi = irq_of_parse_and_map(np, 0); 2728c2ecf20Sopenharmony_ci if (!gt_ppi) { 2738c2ecf20Sopenharmony_ci pr_warn("global-timer: unable to parse irq\n"); 2748c2ecf20Sopenharmony_ci return -EINVAL; 2758c2ecf20Sopenharmony_ci } 2768c2ecf20Sopenharmony_ci 2778c2ecf20Sopenharmony_ci gt_base = of_iomap(np, 0); 2788c2ecf20Sopenharmony_ci if (!gt_base) { 2798c2ecf20Sopenharmony_ci pr_warn("global-timer: invalid base address\n"); 2808c2ecf20Sopenharmony_ci return -ENXIO; 2818c2ecf20Sopenharmony_ci } 2828c2ecf20Sopenharmony_ci 2838c2ecf20Sopenharmony_ci gt_clk = of_clk_get(np, 0); 2848c2ecf20Sopenharmony_ci if (!IS_ERR(gt_clk)) { 2858c2ecf20Sopenharmony_ci err = clk_prepare_enable(gt_clk); 2868c2ecf20Sopenharmony_ci if (err) 2878c2ecf20Sopenharmony_ci goto out_unmap; 2888c2ecf20Sopenharmony_ci } else { 2898c2ecf20Sopenharmony_ci pr_warn("global-timer: clk not found\n"); 2908c2ecf20Sopenharmony_ci err = -EINVAL; 2918c2ecf20Sopenharmony_ci goto out_unmap; 2928c2ecf20Sopenharmony_ci } 2938c2ecf20Sopenharmony_ci 2948c2ecf20Sopenharmony_ci gt_clk_rate = clk_get_rate(gt_clk); 2958c2ecf20Sopenharmony_ci gt_evt = alloc_percpu(struct clock_event_device); 2968c2ecf20Sopenharmony_ci if (!gt_evt) { 2978c2ecf20Sopenharmony_ci pr_warn("global-timer: can't allocate memory\n"); 2988c2ecf20Sopenharmony_ci err = -ENOMEM; 2998c2ecf20Sopenharmony_ci goto out_clk; 3008c2ecf20Sopenharmony_ci } 3018c2ecf20Sopenharmony_ci 3028c2ecf20Sopenharmony_ci err = request_percpu_irq(gt_ppi, gt_clockevent_interrupt, 3038c2ecf20Sopenharmony_ci "gt", gt_evt); 3048c2ecf20Sopenharmony_ci if (err) { 3058c2ecf20Sopenharmony_ci pr_warn("global-timer: can't register interrupt %d (%d)\n", 3068c2ecf20Sopenharmony_ci gt_ppi, err); 3078c2ecf20Sopenharmony_ci goto out_free; 3088c2ecf20Sopenharmony_ci } 3098c2ecf20Sopenharmony_ci 3108c2ecf20Sopenharmony_ci /* Register and immediately configure the timer on the boot CPU */ 3118c2ecf20Sopenharmony_ci err = gt_clocksource_init(); 3128c2ecf20Sopenharmony_ci if (err) 3138c2ecf20Sopenharmony_ci goto out_irq; 3148c2ecf20Sopenharmony_ci 3158c2ecf20Sopenharmony_ci err = cpuhp_setup_state(CPUHP_AP_ARM_GLOBAL_TIMER_STARTING, 3168c2ecf20Sopenharmony_ci "clockevents/arm/global_timer:starting", 3178c2ecf20Sopenharmony_ci gt_starting_cpu, gt_dying_cpu); 3188c2ecf20Sopenharmony_ci if (err) 3198c2ecf20Sopenharmony_ci goto out_irq; 3208c2ecf20Sopenharmony_ci 3218c2ecf20Sopenharmony_ci gt_delay_timer_init(); 3228c2ecf20Sopenharmony_ci 3238c2ecf20Sopenharmony_ci return 0; 3248c2ecf20Sopenharmony_ci 3258c2ecf20Sopenharmony_ciout_irq: 3268c2ecf20Sopenharmony_ci free_percpu_irq(gt_ppi, gt_evt); 3278c2ecf20Sopenharmony_ciout_free: 3288c2ecf20Sopenharmony_ci free_percpu(gt_evt); 3298c2ecf20Sopenharmony_ciout_clk: 3308c2ecf20Sopenharmony_ci clk_disable_unprepare(gt_clk); 3318c2ecf20Sopenharmony_ciout_unmap: 3328c2ecf20Sopenharmony_ci iounmap(gt_base); 3338c2ecf20Sopenharmony_ci WARN(err, "ARM Global timer register failed (%d)\n", err); 3348c2ecf20Sopenharmony_ci 3358c2ecf20Sopenharmony_ci return err; 3368c2ecf20Sopenharmony_ci} 3378c2ecf20Sopenharmony_ci 3388c2ecf20Sopenharmony_ci/* Only tested on r2p2 and r3p0 */ 3398c2ecf20Sopenharmony_ciTIMER_OF_DECLARE(arm_gt, "arm,cortex-a9-global-timer", 3408c2ecf20Sopenharmony_ci global_timer_of_register); 341