18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-only
28c2ecf20Sopenharmony_ci/*
38c2ecf20Sopenharmony_ci * drivers/clocksource/arm_global_timer.c
48c2ecf20Sopenharmony_ci *
58c2ecf20Sopenharmony_ci * Copyright (C) 2013 STMicroelectronics (R&D) Limited.
68c2ecf20Sopenharmony_ci * Author: Stuart Menefy <stuart.menefy@st.com>
78c2ecf20Sopenharmony_ci * Author: Srinivas Kandagatla <srinivas.kandagatla@st.com>
88c2ecf20Sopenharmony_ci */
98c2ecf20Sopenharmony_ci
108c2ecf20Sopenharmony_ci#include <linux/init.h>
118c2ecf20Sopenharmony_ci#include <linux/interrupt.h>
128c2ecf20Sopenharmony_ci#include <linux/clocksource.h>
138c2ecf20Sopenharmony_ci#include <linux/clockchips.h>
148c2ecf20Sopenharmony_ci#include <linux/cpu.h>
158c2ecf20Sopenharmony_ci#include <linux/clk.h>
168c2ecf20Sopenharmony_ci#include <linux/delay.h>
178c2ecf20Sopenharmony_ci#include <linux/err.h>
188c2ecf20Sopenharmony_ci#include <linux/io.h>
198c2ecf20Sopenharmony_ci#include <linux/of.h>
208c2ecf20Sopenharmony_ci#include <linux/of_irq.h>
218c2ecf20Sopenharmony_ci#include <linux/of_address.h>
228c2ecf20Sopenharmony_ci#include <linux/sched_clock.h>
238c2ecf20Sopenharmony_ci
248c2ecf20Sopenharmony_ci#include <asm/cputype.h>
258c2ecf20Sopenharmony_ci
268c2ecf20Sopenharmony_ci#define GT_COUNTER0	0x00
278c2ecf20Sopenharmony_ci#define GT_COUNTER1	0x04
288c2ecf20Sopenharmony_ci
298c2ecf20Sopenharmony_ci#define GT_CONTROL	0x08
308c2ecf20Sopenharmony_ci#define GT_CONTROL_TIMER_ENABLE		BIT(0)  /* this bit is NOT banked */
318c2ecf20Sopenharmony_ci#define GT_CONTROL_COMP_ENABLE		BIT(1)	/* banked */
328c2ecf20Sopenharmony_ci#define GT_CONTROL_IRQ_ENABLE		BIT(2)	/* banked */
338c2ecf20Sopenharmony_ci#define GT_CONTROL_AUTO_INC		BIT(3)	/* banked */
348c2ecf20Sopenharmony_ci
358c2ecf20Sopenharmony_ci#define GT_INT_STATUS	0x0c
368c2ecf20Sopenharmony_ci#define GT_INT_STATUS_EVENT_FLAG	BIT(0)
378c2ecf20Sopenharmony_ci
388c2ecf20Sopenharmony_ci#define GT_COMP0	0x10
398c2ecf20Sopenharmony_ci#define GT_COMP1	0x14
408c2ecf20Sopenharmony_ci#define GT_AUTO_INC	0x18
418c2ecf20Sopenharmony_ci
428c2ecf20Sopenharmony_ci/*
438c2ecf20Sopenharmony_ci * We are expecting to be clocked by the ARM peripheral clock.
448c2ecf20Sopenharmony_ci *
458c2ecf20Sopenharmony_ci * Note: it is assumed we are using a prescaler value of zero, so this is
468c2ecf20Sopenharmony_ci * the units for all operations.
478c2ecf20Sopenharmony_ci */
488c2ecf20Sopenharmony_cistatic void __iomem *gt_base;
498c2ecf20Sopenharmony_cistatic unsigned long gt_clk_rate;
508c2ecf20Sopenharmony_cistatic int gt_ppi;
518c2ecf20Sopenharmony_cistatic struct clock_event_device __percpu *gt_evt;
528c2ecf20Sopenharmony_ci
538c2ecf20Sopenharmony_ci/*
548c2ecf20Sopenharmony_ci * To get the value from the Global Timer Counter register proceed as follows:
558c2ecf20Sopenharmony_ci * 1. Read the upper 32-bit timer counter register
568c2ecf20Sopenharmony_ci * 2. Read the lower 32-bit timer counter register
578c2ecf20Sopenharmony_ci * 3. Read the upper 32-bit timer counter register again. If the value is
588c2ecf20Sopenharmony_ci *  different to the 32-bit upper value read previously, go back to step 2.
598c2ecf20Sopenharmony_ci *  Otherwise the 64-bit timer counter value is correct.
608c2ecf20Sopenharmony_ci */
618c2ecf20Sopenharmony_cistatic u64 notrace _gt_counter_read(void)
628c2ecf20Sopenharmony_ci{
638c2ecf20Sopenharmony_ci	u64 counter;
648c2ecf20Sopenharmony_ci	u32 lower;
658c2ecf20Sopenharmony_ci	u32 upper, old_upper;
668c2ecf20Sopenharmony_ci
678c2ecf20Sopenharmony_ci	upper = readl_relaxed(gt_base + GT_COUNTER1);
688c2ecf20Sopenharmony_ci	do {
698c2ecf20Sopenharmony_ci		old_upper = upper;
708c2ecf20Sopenharmony_ci		lower = readl_relaxed(gt_base + GT_COUNTER0);
718c2ecf20Sopenharmony_ci		upper = readl_relaxed(gt_base + GT_COUNTER1);
728c2ecf20Sopenharmony_ci	} while (upper != old_upper);
738c2ecf20Sopenharmony_ci
748c2ecf20Sopenharmony_ci	counter = upper;
758c2ecf20Sopenharmony_ci	counter <<= 32;
768c2ecf20Sopenharmony_ci	counter |= lower;
778c2ecf20Sopenharmony_ci	return counter;
788c2ecf20Sopenharmony_ci}
798c2ecf20Sopenharmony_ci
808c2ecf20Sopenharmony_cistatic u64 gt_counter_read(void)
818c2ecf20Sopenharmony_ci{
828c2ecf20Sopenharmony_ci	return _gt_counter_read();
838c2ecf20Sopenharmony_ci}
848c2ecf20Sopenharmony_ci
858c2ecf20Sopenharmony_ci/**
868c2ecf20Sopenharmony_ci * To ensure that updates to comparator value register do not set the
878c2ecf20Sopenharmony_ci * Interrupt Status Register proceed as follows:
888c2ecf20Sopenharmony_ci * 1. Clear the Comp Enable bit in the Timer Control Register.
898c2ecf20Sopenharmony_ci * 2. Write the lower 32-bit Comparator Value Register.
908c2ecf20Sopenharmony_ci * 3. Write the upper 32-bit Comparator Value Register.
918c2ecf20Sopenharmony_ci * 4. Set the Comp Enable bit and, if necessary, the IRQ enable bit.
928c2ecf20Sopenharmony_ci */
938c2ecf20Sopenharmony_cistatic void gt_compare_set(unsigned long delta, int periodic)
948c2ecf20Sopenharmony_ci{
958c2ecf20Sopenharmony_ci	u64 counter = gt_counter_read();
968c2ecf20Sopenharmony_ci	unsigned long ctrl;
978c2ecf20Sopenharmony_ci
988c2ecf20Sopenharmony_ci	counter += delta;
998c2ecf20Sopenharmony_ci	ctrl = GT_CONTROL_TIMER_ENABLE;
1008c2ecf20Sopenharmony_ci	writel_relaxed(ctrl, gt_base + GT_CONTROL);
1018c2ecf20Sopenharmony_ci	writel_relaxed(lower_32_bits(counter), gt_base + GT_COMP0);
1028c2ecf20Sopenharmony_ci	writel_relaxed(upper_32_bits(counter), gt_base + GT_COMP1);
1038c2ecf20Sopenharmony_ci
1048c2ecf20Sopenharmony_ci	if (periodic) {
1058c2ecf20Sopenharmony_ci		writel_relaxed(delta, gt_base + GT_AUTO_INC);
1068c2ecf20Sopenharmony_ci		ctrl |= GT_CONTROL_AUTO_INC;
1078c2ecf20Sopenharmony_ci	}
1088c2ecf20Sopenharmony_ci
1098c2ecf20Sopenharmony_ci	ctrl |= GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE;
1108c2ecf20Sopenharmony_ci	writel_relaxed(ctrl, gt_base + GT_CONTROL);
1118c2ecf20Sopenharmony_ci}
1128c2ecf20Sopenharmony_ci
1138c2ecf20Sopenharmony_cistatic int gt_clockevent_shutdown(struct clock_event_device *evt)
1148c2ecf20Sopenharmony_ci{
1158c2ecf20Sopenharmony_ci	unsigned long ctrl;
1168c2ecf20Sopenharmony_ci
1178c2ecf20Sopenharmony_ci	ctrl = readl(gt_base + GT_CONTROL);
1188c2ecf20Sopenharmony_ci	ctrl &= ~(GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE |
1198c2ecf20Sopenharmony_ci		  GT_CONTROL_AUTO_INC);
1208c2ecf20Sopenharmony_ci	writel(ctrl, gt_base + GT_CONTROL);
1218c2ecf20Sopenharmony_ci	return 0;
1228c2ecf20Sopenharmony_ci}
1238c2ecf20Sopenharmony_ci
1248c2ecf20Sopenharmony_cistatic int gt_clockevent_set_periodic(struct clock_event_device *evt)
1258c2ecf20Sopenharmony_ci{
1268c2ecf20Sopenharmony_ci	gt_compare_set(DIV_ROUND_CLOSEST(gt_clk_rate, HZ), 1);
1278c2ecf20Sopenharmony_ci	return 0;
1288c2ecf20Sopenharmony_ci}
1298c2ecf20Sopenharmony_ci
1308c2ecf20Sopenharmony_cistatic int gt_clockevent_set_next_event(unsigned long evt,
1318c2ecf20Sopenharmony_ci					struct clock_event_device *unused)
1328c2ecf20Sopenharmony_ci{
1338c2ecf20Sopenharmony_ci	gt_compare_set(evt, 0);
1348c2ecf20Sopenharmony_ci	return 0;
1358c2ecf20Sopenharmony_ci}
1368c2ecf20Sopenharmony_ci
1378c2ecf20Sopenharmony_cistatic irqreturn_t gt_clockevent_interrupt(int irq, void *dev_id)
1388c2ecf20Sopenharmony_ci{
1398c2ecf20Sopenharmony_ci	struct clock_event_device *evt = dev_id;
1408c2ecf20Sopenharmony_ci
1418c2ecf20Sopenharmony_ci	if (!(readl_relaxed(gt_base + GT_INT_STATUS) &
1428c2ecf20Sopenharmony_ci				GT_INT_STATUS_EVENT_FLAG))
1438c2ecf20Sopenharmony_ci		return IRQ_NONE;
1448c2ecf20Sopenharmony_ci
1458c2ecf20Sopenharmony_ci	/**
1468c2ecf20Sopenharmony_ci	 * ERRATA 740657( Global Timer can send 2 interrupts for
1478c2ecf20Sopenharmony_ci	 * the same event in single-shot mode)
1488c2ecf20Sopenharmony_ci	 * Workaround:
1498c2ecf20Sopenharmony_ci	 *	Either disable single-shot mode.
1508c2ecf20Sopenharmony_ci	 *	Or
1518c2ecf20Sopenharmony_ci	 *	Modify the Interrupt Handler to avoid the
1528c2ecf20Sopenharmony_ci	 *	offending sequence. This is achieved by clearing
1538c2ecf20Sopenharmony_ci	 *	the Global Timer flag _after_ having incremented
1548c2ecf20Sopenharmony_ci	 *	the Comparator register	value to a higher value.
1558c2ecf20Sopenharmony_ci	 */
1568c2ecf20Sopenharmony_ci	if (clockevent_state_oneshot(evt))
1578c2ecf20Sopenharmony_ci		gt_compare_set(ULONG_MAX, 0);
1588c2ecf20Sopenharmony_ci
1598c2ecf20Sopenharmony_ci	writel_relaxed(GT_INT_STATUS_EVENT_FLAG, gt_base + GT_INT_STATUS);
1608c2ecf20Sopenharmony_ci	evt->event_handler(evt);
1618c2ecf20Sopenharmony_ci
1628c2ecf20Sopenharmony_ci	return IRQ_HANDLED;
1638c2ecf20Sopenharmony_ci}
1648c2ecf20Sopenharmony_ci
1658c2ecf20Sopenharmony_cistatic int gt_starting_cpu(unsigned int cpu)
1668c2ecf20Sopenharmony_ci{
1678c2ecf20Sopenharmony_ci	struct clock_event_device *clk = this_cpu_ptr(gt_evt);
1688c2ecf20Sopenharmony_ci
1698c2ecf20Sopenharmony_ci	clk->name = "arm_global_timer";
1708c2ecf20Sopenharmony_ci	clk->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT |
1718c2ecf20Sopenharmony_ci		CLOCK_EVT_FEAT_PERCPU;
1728c2ecf20Sopenharmony_ci	clk->set_state_shutdown = gt_clockevent_shutdown;
1738c2ecf20Sopenharmony_ci	clk->set_state_periodic = gt_clockevent_set_periodic;
1748c2ecf20Sopenharmony_ci	clk->set_state_oneshot = gt_clockevent_shutdown;
1758c2ecf20Sopenharmony_ci	clk->set_state_oneshot_stopped = gt_clockevent_shutdown;
1768c2ecf20Sopenharmony_ci	clk->set_next_event = gt_clockevent_set_next_event;
1778c2ecf20Sopenharmony_ci	clk->cpumask = cpumask_of(cpu);
1788c2ecf20Sopenharmony_ci	clk->rating = 300;
1798c2ecf20Sopenharmony_ci	clk->irq = gt_ppi;
1808c2ecf20Sopenharmony_ci	clockevents_config_and_register(clk, gt_clk_rate,
1818c2ecf20Sopenharmony_ci					1, 0xffffffff);
1828c2ecf20Sopenharmony_ci	enable_percpu_irq(clk->irq, IRQ_TYPE_NONE);
1838c2ecf20Sopenharmony_ci	return 0;
1848c2ecf20Sopenharmony_ci}
1858c2ecf20Sopenharmony_ci
1868c2ecf20Sopenharmony_cistatic int gt_dying_cpu(unsigned int cpu)
1878c2ecf20Sopenharmony_ci{
1888c2ecf20Sopenharmony_ci	struct clock_event_device *clk = this_cpu_ptr(gt_evt);
1898c2ecf20Sopenharmony_ci
1908c2ecf20Sopenharmony_ci	gt_clockevent_shutdown(clk);
1918c2ecf20Sopenharmony_ci	disable_percpu_irq(clk->irq);
1928c2ecf20Sopenharmony_ci	return 0;
1938c2ecf20Sopenharmony_ci}
1948c2ecf20Sopenharmony_ci
1958c2ecf20Sopenharmony_cistatic u64 gt_clocksource_read(struct clocksource *cs)
1968c2ecf20Sopenharmony_ci{
1978c2ecf20Sopenharmony_ci	return gt_counter_read();
1988c2ecf20Sopenharmony_ci}
1998c2ecf20Sopenharmony_ci
2008c2ecf20Sopenharmony_cistatic void gt_resume(struct clocksource *cs)
2018c2ecf20Sopenharmony_ci{
2028c2ecf20Sopenharmony_ci	unsigned long ctrl;
2038c2ecf20Sopenharmony_ci
2048c2ecf20Sopenharmony_ci	ctrl = readl(gt_base + GT_CONTROL);
2058c2ecf20Sopenharmony_ci	if (!(ctrl & GT_CONTROL_TIMER_ENABLE))
2068c2ecf20Sopenharmony_ci		/* re-enable timer on resume */
2078c2ecf20Sopenharmony_ci		writel(GT_CONTROL_TIMER_ENABLE, gt_base + GT_CONTROL);
2088c2ecf20Sopenharmony_ci}
2098c2ecf20Sopenharmony_ci
2108c2ecf20Sopenharmony_cistatic struct clocksource gt_clocksource = {
2118c2ecf20Sopenharmony_ci	.name	= "arm_global_timer",
2128c2ecf20Sopenharmony_ci	.rating	= 300,
2138c2ecf20Sopenharmony_ci	.read	= gt_clocksource_read,
2148c2ecf20Sopenharmony_ci	.mask	= CLOCKSOURCE_MASK(64),
2158c2ecf20Sopenharmony_ci	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
2168c2ecf20Sopenharmony_ci	.resume = gt_resume,
2178c2ecf20Sopenharmony_ci};
2188c2ecf20Sopenharmony_ci
2198c2ecf20Sopenharmony_ci#ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK
2208c2ecf20Sopenharmony_cistatic u64 notrace gt_sched_clock_read(void)
2218c2ecf20Sopenharmony_ci{
2228c2ecf20Sopenharmony_ci	return _gt_counter_read();
2238c2ecf20Sopenharmony_ci}
2248c2ecf20Sopenharmony_ci#endif
2258c2ecf20Sopenharmony_ci
2268c2ecf20Sopenharmony_cistatic unsigned long gt_read_long(void)
2278c2ecf20Sopenharmony_ci{
2288c2ecf20Sopenharmony_ci	return readl_relaxed(gt_base + GT_COUNTER0);
2298c2ecf20Sopenharmony_ci}
2308c2ecf20Sopenharmony_ci
2318c2ecf20Sopenharmony_cistatic struct delay_timer gt_delay_timer = {
2328c2ecf20Sopenharmony_ci	.read_current_timer = gt_read_long,
2338c2ecf20Sopenharmony_ci};
2348c2ecf20Sopenharmony_ci
2358c2ecf20Sopenharmony_cistatic void __init gt_delay_timer_init(void)
2368c2ecf20Sopenharmony_ci{
2378c2ecf20Sopenharmony_ci	gt_delay_timer.freq = gt_clk_rate;
2388c2ecf20Sopenharmony_ci	register_current_timer_delay(&gt_delay_timer);
2398c2ecf20Sopenharmony_ci}
2408c2ecf20Sopenharmony_ci
2418c2ecf20Sopenharmony_cistatic int __init gt_clocksource_init(void)
2428c2ecf20Sopenharmony_ci{
2438c2ecf20Sopenharmony_ci	writel(0, gt_base + GT_CONTROL);
2448c2ecf20Sopenharmony_ci	writel(0, gt_base + GT_COUNTER0);
2458c2ecf20Sopenharmony_ci	writel(0, gt_base + GT_COUNTER1);
2468c2ecf20Sopenharmony_ci	/* enables timer on all the cores */
2478c2ecf20Sopenharmony_ci	writel(GT_CONTROL_TIMER_ENABLE, gt_base + GT_CONTROL);
2488c2ecf20Sopenharmony_ci
2498c2ecf20Sopenharmony_ci#ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK
2508c2ecf20Sopenharmony_ci	sched_clock_register(gt_sched_clock_read, 64, gt_clk_rate);
2518c2ecf20Sopenharmony_ci#endif
2528c2ecf20Sopenharmony_ci	return clocksource_register_hz(&gt_clocksource, gt_clk_rate);
2538c2ecf20Sopenharmony_ci}
2548c2ecf20Sopenharmony_ci
2558c2ecf20Sopenharmony_cistatic int __init global_timer_of_register(struct device_node *np)
2568c2ecf20Sopenharmony_ci{
2578c2ecf20Sopenharmony_ci	struct clk *gt_clk;
2588c2ecf20Sopenharmony_ci	int err = 0;
2598c2ecf20Sopenharmony_ci
2608c2ecf20Sopenharmony_ci	/*
2618c2ecf20Sopenharmony_ci	 * In A9 r2p0 the comparators for each processor with the global timer
2628c2ecf20Sopenharmony_ci	 * fire when the timer value is greater than or equal to. In previous
2638c2ecf20Sopenharmony_ci	 * revisions the comparators fired when the timer value was equal to.
2648c2ecf20Sopenharmony_ci	 */
2658c2ecf20Sopenharmony_ci	if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A9
2668c2ecf20Sopenharmony_ci	    && (read_cpuid_id() & 0xf0000f) < 0x200000) {
2678c2ecf20Sopenharmony_ci		pr_warn("global-timer: non support for this cpu version.\n");
2688c2ecf20Sopenharmony_ci		return -ENOSYS;
2698c2ecf20Sopenharmony_ci	}
2708c2ecf20Sopenharmony_ci
2718c2ecf20Sopenharmony_ci	gt_ppi = irq_of_parse_and_map(np, 0);
2728c2ecf20Sopenharmony_ci	if (!gt_ppi) {
2738c2ecf20Sopenharmony_ci		pr_warn("global-timer: unable to parse irq\n");
2748c2ecf20Sopenharmony_ci		return -EINVAL;
2758c2ecf20Sopenharmony_ci	}
2768c2ecf20Sopenharmony_ci
2778c2ecf20Sopenharmony_ci	gt_base = of_iomap(np, 0);
2788c2ecf20Sopenharmony_ci	if (!gt_base) {
2798c2ecf20Sopenharmony_ci		pr_warn("global-timer: invalid base address\n");
2808c2ecf20Sopenharmony_ci		return -ENXIO;
2818c2ecf20Sopenharmony_ci	}
2828c2ecf20Sopenharmony_ci
2838c2ecf20Sopenharmony_ci	gt_clk = of_clk_get(np, 0);
2848c2ecf20Sopenharmony_ci	if (!IS_ERR(gt_clk)) {
2858c2ecf20Sopenharmony_ci		err = clk_prepare_enable(gt_clk);
2868c2ecf20Sopenharmony_ci		if (err)
2878c2ecf20Sopenharmony_ci			goto out_unmap;
2888c2ecf20Sopenharmony_ci	} else {
2898c2ecf20Sopenharmony_ci		pr_warn("global-timer: clk not found\n");
2908c2ecf20Sopenharmony_ci		err = -EINVAL;
2918c2ecf20Sopenharmony_ci		goto out_unmap;
2928c2ecf20Sopenharmony_ci	}
2938c2ecf20Sopenharmony_ci
2948c2ecf20Sopenharmony_ci	gt_clk_rate = clk_get_rate(gt_clk);
2958c2ecf20Sopenharmony_ci	gt_evt = alloc_percpu(struct clock_event_device);
2968c2ecf20Sopenharmony_ci	if (!gt_evt) {
2978c2ecf20Sopenharmony_ci		pr_warn("global-timer: can't allocate memory\n");
2988c2ecf20Sopenharmony_ci		err = -ENOMEM;
2998c2ecf20Sopenharmony_ci		goto out_clk;
3008c2ecf20Sopenharmony_ci	}
3018c2ecf20Sopenharmony_ci
3028c2ecf20Sopenharmony_ci	err = request_percpu_irq(gt_ppi, gt_clockevent_interrupt,
3038c2ecf20Sopenharmony_ci				 "gt", gt_evt);
3048c2ecf20Sopenharmony_ci	if (err) {
3058c2ecf20Sopenharmony_ci		pr_warn("global-timer: can't register interrupt %d (%d)\n",
3068c2ecf20Sopenharmony_ci			gt_ppi, err);
3078c2ecf20Sopenharmony_ci		goto out_free;
3088c2ecf20Sopenharmony_ci	}
3098c2ecf20Sopenharmony_ci
3108c2ecf20Sopenharmony_ci	/* Register and immediately configure the timer on the boot CPU */
3118c2ecf20Sopenharmony_ci	err = gt_clocksource_init();
3128c2ecf20Sopenharmony_ci	if (err)
3138c2ecf20Sopenharmony_ci		goto out_irq;
3148c2ecf20Sopenharmony_ci
3158c2ecf20Sopenharmony_ci	err = cpuhp_setup_state(CPUHP_AP_ARM_GLOBAL_TIMER_STARTING,
3168c2ecf20Sopenharmony_ci				"clockevents/arm/global_timer:starting",
3178c2ecf20Sopenharmony_ci				gt_starting_cpu, gt_dying_cpu);
3188c2ecf20Sopenharmony_ci	if (err)
3198c2ecf20Sopenharmony_ci		goto out_irq;
3208c2ecf20Sopenharmony_ci
3218c2ecf20Sopenharmony_ci	gt_delay_timer_init();
3228c2ecf20Sopenharmony_ci
3238c2ecf20Sopenharmony_ci	return 0;
3248c2ecf20Sopenharmony_ci
3258c2ecf20Sopenharmony_ciout_irq:
3268c2ecf20Sopenharmony_ci	free_percpu_irq(gt_ppi, gt_evt);
3278c2ecf20Sopenharmony_ciout_free:
3288c2ecf20Sopenharmony_ci	free_percpu(gt_evt);
3298c2ecf20Sopenharmony_ciout_clk:
3308c2ecf20Sopenharmony_ci	clk_disable_unprepare(gt_clk);
3318c2ecf20Sopenharmony_ciout_unmap:
3328c2ecf20Sopenharmony_ci	iounmap(gt_base);
3338c2ecf20Sopenharmony_ci	WARN(err, "ARM Global timer register failed (%d)\n", err);
3348c2ecf20Sopenharmony_ci
3358c2ecf20Sopenharmony_ci	return err;
3368c2ecf20Sopenharmony_ci}
3378c2ecf20Sopenharmony_ci
3388c2ecf20Sopenharmony_ci/* Only tested on r2p2 and r3p0  */
3398c2ecf20Sopenharmony_ciTIMER_OF_DECLARE(arm_gt, "arm,cortex-a9-global-timer",
3408c2ecf20Sopenharmony_ci			global_timer_of_register);
341