1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * clk-dfll.c - Tegra DFLL clock source common code
4 *
5 * Copyright (C) 2012-2019 NVIDIA Corporation. All rights reserved.
6 *
7 * Aleksandr Frid <afrid@nvidia.com>
8 * Paul Walmsley <pwalmsley@nvidia.com>
9 *
10 * This library is for the DVCO and DFLL IP blocks on the Tegra124
11 * SoC. These IP blocks together are also known at NVIDIA as
12 * "CL-DVFS". To try to avoid confusion, this code refers to them
13 * collectively as the "DFLL."
14 *
15 * The DFLL is a root clocksource which tolerates some amount of
16 * supply voltage noise. Tegra124 uses it to clock the fast CPU
17 * complex when the target CPU speed is above a particular rate. The
18 * DFLL can be operated in either open-loop mode or closed-loop mode.
19 * In open-loop mode, the DFLL generates an output clock appropriate
20 * to the supply voltage. In closed-loop mode, when configured with a
21 * target frequency, the DFLL minimizes supply voltage while
22 * delivering an average frequency equal to the target.
23 *
24 * Devices clocked by the DFLL must be able to tolerate frequency
25 * variation. In the case of the CPU, it's important to note that the
26 * CPU cycle time will vary. This has implications for
27 * performance-measurement code and any code that relies on the CPU
28 * cycle time to delay for a certain length of time.
29 */
30
31#include <linux/clk.h>
32#include <linux/clk-provider.h>
33#include <linux/debugfs.h>
34#include <linux/device.h>
35#include <linux/err.h>
36#include <linux/i2c.h>
37#include <linux/io.h>
38#include <linux/kernel.h>
39#include <linux/module.h>
40#include <linux/of.h>
41#include <linux/pinctrl/consumer.h>
42#include <linux/pm_opp.h>
43#include <linux/pm_runtime.h>
44#include <linux/regmap.h>
45#include <linux/regulator/consumer.h>
46#include <linux/reset.h>
47#include <linux/seq_file.h>
48
49#include "clk-dfll.h"
50#include "cvb.h"
51
52/*
53 * DFLL control registers - access via dfll_{readl,writel}
54 */
55
56/* DFLL_CTRL: DFLL control register */
57#define DFLL_CTRL			0x00
58#define DFLL_CTRL_MODE_MASK		0x03
59
60/* DFLL_CONFIG: DFLL sample rate control */
61#define DFLL_CONFIG			0x04
62#define DFLL_CONFIG_DIV_MASK		0xff
63#define DFLL_CONFIG_DIV_PRESCALE	32
64
65/* DFLL_PARAMS: tuning coefficients for closed loop integrator */
66#define DFLL_PARAMS			0x08
67#define DFLL_PARAMS_CG_SCALE		(0x1 << 24)
68#define DFLL_PARAMS_FORCE_MODE_SHIFT	22
69#define DFLL_PARAMS_FORCE_MODE_MASK	(0x3 << DFLL_PARAMS_FORCE_MODE_SHIFT)
70#define DFLL_PARAMS_CF_PARAM_SHIFT	16
71#define DFLL_PARAMS_CF_PARAM_MASK	(0x3f << DFLL_PARAMS_CF_PARAM_SHIFT)
72#define DFLL_PARAMS_CI_PARAM_SHIFT	8
73#define DFLL_PARAMS_CI_PARAM_MASK	(0x7 << DFLL_PARAMS_CI_PARAM_SHIFT)
74#define DFLL_PARAMS_CG_PARAM_SHIFT	0
75#define DFLL_PARAMS_CG_PARAM_MASK	(0xff << DFLL_PARAMS_CG_PARAM_SHIFT)
76
77/* DFLL_TUNE0: delay line configuration register 0 */
78#define DFLL_TUNE0			0x0c
79
80/* DFLL_TUNE1: delay line configuration register 1 */
81#define DFLL_TUNE1			0x10
82
83/* DFLL_FREQ_REQ: target DFLL frequency control */
84#define DFLL_FREQ_REQ			0x14
85#define DFLL_FREQ_REQ_FORCE_ENABLE	(0x1 << 28)
86#define DFLL_FREQ_REQ_FORCE_SHIFT	16
87#define DFLL_FREQ_REQ_FORCE_MASK	(0xfff << DFLL_FREQ_REQ_FORCE_SHIFT)
88#define FORCE_MAX			2047
89#define FORCE_MIN			-2048
90#define DFLL_FREQ_REQ_SCALE_SHIFT	8
91#define DFLL_FREQ_REQ_SCALE_MASK	(0xff << DFLL_FREQ_REQ_SCALE_SHIFT)
92#define DFLL_FREQ_REQ_SCALE_MAX		256
93#define DFLL_FREQ_REQ_FREQ_VALID	(0x1 << 7)
94#define DFLL_FREQ_REQ_MULT_SHIFT	0
95#define DFLL_FREQ_REG_MULT_MASK		(0x7f << DFLL_FREQ_REQ_MULT_SHIFT)
96#define FREQ_MAX			127
97
98/* DFLL_DROOP_CTRL: droop prevention control */
99#define DFLL_DROOP_CTRL			0x1c
100
101/* DFLL_OUTPUT_CFG: closed loop mode control registers */
102/* NOTE: access via dfll_i2c_{readl,writel} */
103#define DFLL_OUTPUT_CFG			0x20
104#define DFLL_OUTPUT_CFG_I2C_ENABLE	(0x1 << 30)
105#define OUT_MASK			0x3f
106#define DFLL_OUTPUT_CFG_SAFE_SHIFT	24
107#define DFLL_OUTPUT_CFG_SAFE_MASK	\
108		(OUT_MASK << DFLL_OUTPUT_CFG_SAFE_SHIFT)
109#define DFLL_OUTPUT_CFG_MAX_SHIFT	16
110#define DFLL_OUTPUT_CFG_MAX_MASK	\
111		(OUT_MASK << DFLL_OUTPUT_CFG_MAX_SHIFT)
112#define DFLL_OUTPUT_CFG_MIN_SHIFT	8
113#define DFLL_OUTPUT_CFG_MIN_MASK	\
114		(OUT_MASK << DFLL_OUTPUT_CFG_MIN_SHIFT)
115#define DFLL_OUTPUT_CFG_PWM_DELTA	(0x1 << 7)
116#define DFLL_OUTPUT_CFG_PWM_ENABLE	(0x1 << 6)
117#define DFLL_OUTPUT_CFG_PWM_DIV_SHIFT	0
118#define DFLL_OUTPUT_CFG_PWM_DIV_MASK	\
119		(OUT_MASK << DFLL_OUTPUT_CFG_PWM_DIV_SHIFT)
120
121/* DFLL_OUTPUT_FORCE: closed loop mode voltage forcing control */
122#define DFLL_OUTPUT_FORCE		0x24
123#define DFLL_OUTPUT_FORCE_ENABLE	(0x1 << 6)
124#define DFLL_OUTPUT_FORCE_VALUE_SHIFT	0
125#define DFLL_OUTPUT_FORCE_VALUE_MASK	\
126		(OUT_MASK << DFLL_OUTPUT_FORCE_VALUE_SHIFT)
127
128/* DFLL_MONITOR_CTRL: internal monitor data source control */
129#define DFLL_MONITOR_CTRL		0x28
130#define DFLL_MONITOR_CTRL_FREQ		6
131
132/* DFLL_MONITOR_DATA: internal monitor data output */
133#define DFLL_MONITOR_DATA		0x2c
134#define DFLL_MONITOR_DATA_NEW_MASK	(0x1 << 16)
135#define DFLL_MONITOR_DATA_VAL_SHIFT	0
136#define DFLL_MONITOR_DATA_VAL_MASK	(0xFFFF << DFLL_MONITOR_DATA_VAL_SHIFT)
137
138/*
139 * I2C output control registers - access via dfll_i2c_{readl,writel}
140 */
141
142/* DFLL_I2C_CFG: I2C controller configuration register */
143#define DFLL_I2C_CFG			0x40
144#define DFLL_I2C_CFG_ARB_ENABLE		(0x1 << 20)
145#define DFLL_I2C_CFG_HS_CODE_SHIFT	16
146#define DFLL_I2C_CFG_HS_CODE_MASK	(0x7 << DFLL_I2C_CFG_HS_CODE_SHIFT)
147#define DFLL_I2C_CFG_PACKET_ENABLE	(0x1 << 15)
148#define DFLL_I2C_CFG_SIZE_SHIFT		12
149#define DFLL_I2C_CFG_SIZE_MASK		(0x7 << DFLL_I2C_CFG_SIZE_SHIFT)
150#define DFLL_I2C_CFG_SLAVE_ADDR_10	(0x1 << 10)
151#define DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_7BIT	1
152#define DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_10BIT	0
153
154/* DFLL_I2C_VDD_REG_ADDR: PMIC I2C address for closed loop mode */
155#define DFLL_I2C_VDD_REG_ADDR		0x44
156
157/* DFLL_I2C_STS: I2C controller status */
158#define DFLL_I2C_STS			0x48
159#define DFLL_I2C_STS_I2C_LAST_SHIFT	1
160#define DFLL_I2C_STS_I2C_REQ_PENDING	0x1
161
162/* DFLL_INTR_STS: DFLL interrupt status register */
163#define DFLL_INTR_STS			0x5c
164
165/* DFLL_INTR_EN: DFLL interrupt enable register */
166#define DFLL_INTR_EN			0x60
167#define DFLL_INTR_MIN_MASK		0x1
168#define DFLL_INTR_MAX_MASK		0x2
169
170/*
171 * Integrated I2C controller registers - relative to td->i2c_controller_base
172 */
173
174/* DFLL_I2C_CLK_DIVISOR: I2C controller clock divisor */
175#define DFLL_I2C_CLK_DIVISOR		0x6c
176#define DFLL_I2C_CLK_DIVISOR_MASK	0xffff
177#define DFLL_I2C_CLK_DIVISOR_FS_SHIFT	16
178#define DFLL_I2C_CLK_DIVISOR_HS_SHIFT	0
179#define DFLL_I2C_CLK_DIVISOR_PREDIV	8
180#define DFLL_I2C_CLK_DIVISOR_HSMODE_PREDIV	12
181
182/*
183 * Other constants
184 */
185
186/* MAX_DFLL_VOLTAGES: number of LUT entries in the DFLL IP block */
187#define MAX_DFLL_VOLTAGES		33
188
189/*
190 * REF_CLK_CYC_PER_DVCO_SAMPLE: the number of ref_clk cycles that the hardware
191 *    integrates the DVCO counter over - used for debug rate monitoring and
192 *    droop control
193 */
194#define REF_CLK_CYC_PER_DVCO_SAMPLE	4
195
196/*
197 * REF_CLOCK_RATE: the DFLL reference clock rate currently supported by this
198 * driver, in Hz
199 */
200#define REF_CLOCK_RATE			51000000UL
201
202#define DVCO_RATE_TO_MULT(rate, ref_rate)	((rate) / ((ref_rate) / 2))
203#define MULT_TO_DVCO_RATE(mult, ref_rate)	((mult) * ((ref_rate) / 2))
204
205/**
206 * enum dfll_ctrl_mode - DFLL hardware operating mode
207 * @DFLL_UNINITIALIZED: (uninitialized state - not in hardware bitfield)
208 * @DFLL_DISABLED: DFLL not generating an output clock
209 * @DFLL_OPEN_LOOP: DVCO running, but DFLL not adjusting voltage
210 * @DFLL_CLOSED_LOOP: DVCO running, and DFLL adjusting voltage to match
211 *		      the requested rate
212 *
213 * The integer corresponding to the last two states, minus one, is
214 * written to the DFLL hardware to change operating modes.
215 */
216enum dfll_ctrl_mode {
217	DFLL_UNINITIALIZED = 0,
218	DFLL_DISABLED = 1,
219	DFLL_OPEN_LOOP = 2,
220	DFLL_CLOSED_LOOP = 3,
221};
222
223/**
224 * enum dfll_tune_range - voltage range that the driver believes it's in
225 * @DFLL_TUNE_UNINITIALIZED: DFLL tuning not yet programmed
226 * @DFLL_TUNE_LOW: DFLL in the low-voltage range (or open-loop mode)
227 *
228 * Some DFLL tuning parameters may need to change depending on the
229 * DVCO's voltage; these states represent the ranges that the driver
230 * supports. These are software states; these values are never
231 * written into registers.
232 */
233enum dfll_tune_range {
234	DFLL_TUNE_UNINITIALIZED = 0,
235	DFLL_TUNE_LOW = 1,
236};
237
238
239enum tegra_dfll_pmu_if {
240	TEGRA_DFLL_PMU_I2C = 0,
241	TEGRA_DFLL_PMU_PWM = 1,
242};
243
244/**
245 * struct dfll_rate_req - target DFLL rate request data
246 * @rate: target frequency, after the postscaling
247 * @dvco_target_rate: target frequency, after the postscaling
248 * @lut_index: LUT index at which voltage the dvco_target_rate will be reached
249 * @mult_bits: value to program to the MULT bits of the DFLL_FREQ_REQ register
250 * @scale_bits: value to program to the SCALE bits of the DFLL_FREQ_REQ register
251 */
252struct dfll_rate_req {
253	unsigned long rate;
254	unsigned long dvco_target_rate;
255	int lut_index;
256	u8 mult_bits;
257	u8 scale_bits;
258};
259
260struct tegra_dfll {
261	struct device			*dev;
262	struct tegra_dfll_soc_data	*soc;
263
264	void __iomem			*base;
265	void __iomem			*i2c_base;
266	void __iomem			*i2c_controller_base;
267	void __iomem			*lut_base;
268
269	struct regulator		*vdd_reg;
270	struct clk			*soc_clk;
271	struct clk			*ref_clk;
272	struct clk			*i2c_clk;
273	struct clk			*dfll_clk;
274	struct reset_control		*dvco_rst;
275	unsigned long			ref_rate;
276	unsigned long			i2c_clk_rate;
277	unsigned long			dvco_rate_min;
278
279	enum dfll_ctrl_mode		mode;
280	enum dfll_tune_range		tune_range;
281	struct dentry			*debugfs_dir;
282	struct clk_hw			dfll_clk_hw;
283	const char			*output_clock_name;
284	struct dfll_rate_req		last_req;
285	unsigned long			last_unrounded_rate;
286
287	/* Parameters from DT */
288	u32				droop_ctrl;
289	u32				sample_rate;
290	u32				force_mode;
291	u32				cf;
292	u32				ci;
293	u32				cg;
294	bool				cg_scale;
295
296	/* I2C interface parameters */
297	u32				i2c_fs_rate;
298	u32				i2c_reg;
299	u32				i2c_slave_addr;
300
301	/* lut array entries are regulator framework selectors or PWM values*/
302	unsigned			lut[MAX_DFLL_VOLTAGES];
303	unsigned long			lut_uv[MAX_DFLL_VOLTAGES];
304	int				lut_size;
305	u8				lut_bottom, lut_min, lut_max, lut_safe;
306
307	/* PWM interface */
308	enum tegra_dfll_pmu_if		pmu_if;
309	unsigned long			pwm_rate;
310	struct pinctrl			*pwm_pin;
311	struct pinctrl_state		*pwm_enable_state;
312	struct pinctrl_state		*pwm_disable_state;
313	u32				reg_init_uV;
314};
315
316#define clk_hw_to_dfll(_hw) container_of(_hw, struct tegra_dfll, dfll_clk_hw)
317
318/* mode_name: map numeric DFLL modes to names for friendly console messages */
319static const char * const mode_name[] = {
320	[DFLL_UNINITIALIZED] = "uninitialized",
321	[DFLL_DISABLED] = "disabled",
322	[DFLL_OPEN_LOOP] = "open_loop",
323	[DFLL_CLOSED_LOOP] = "closed_loop",
324};
325
326/*
327 * Register accessors
328 */
329
330static inline u32 dfll_readl(struct tegra_dfll *td, u32 offs)
331{
332	return __raw_readl(td->base + offs);
333}
334
335static inline void dfll_writel(struct tegra_dfll *td, u32 val, u32 offs)
336{
337	WARN_ON(offs >= DFLL_I2C_CFG);
338	__raw_writel(val, td->base + offs);
339}
340
341static inline void dfll_wmb(struct tegra_dfll *td)
342{
343	dfll_readl(td, DFLL_CTRL);
344}
345
346/* I2C output control registers - for addresses above DFLL_I2C_CFG */
347
348static inline u32 dfll_i2c_readl(struct tegra_dfll *td, u32 offs)
349{
350	return __raw_readl(td->i2c_base + offs);
351}
352
353static inline void dfll_i2c_writel(struct tegra_dfll *td, u32 val, u32 offs)
354{
355	__raw_writel(val, td->i2c_base + offs);
356}
357
358static inline void dfll_i2c_wmb(struct tegra_dfll *td)
359{
360	dfll_i2c_readl(td, DFLL_I2C_CFG);
361}
362
363/**
364 * dfll_is_running - is the DFLL currently generating a clock?
365 * @td: DFLL instance
366 *
367 * If the DFLL is currently generating an output clock signal, return
368 * true; otherwise return false.
369 */
370static bool dfll_is_running(struct tegra_dfll *td)
371{
372	return td->mode >= DFLL_OPEN_LOOP;
373}
374
375/*
376 * Runtime PM suspend/resume callbacks
377 */
378
379/**
380 * tegra_dfll_runtime_resume - enable all clocks needed by the DFLL
381 * @dev: DFLL device *
382 *
383 * Enable all clocks needed by the DFLL. Assumes that clk_prepare()
384 * has already been called on all the clocks.
385 *
386 * XXX Should also handle context restore when returning from off.
387 */
388int tegra_dfll_runtime_resume(struct device *dev)
389{
390	struct tegra_dfll *td = dev_get_drvdata(dev);
391	int ret;
392
393	ret = clk_enable(td->ref_clk);
394	if (ret) {
395		dev_err(dev, "could not enable ref clock: %d\n", ret);
396		return ret;
397	}
398
399	ret = clk_enable(td->soc_clk);
400	if (ret) {
401		dev_err(dev, "could not enable register clock: %d\n", ret);
402		clk_disable(td->ref_clk);
403		return ret;
404	}
405
406	ret = clk_enable(td->i2c_clk);
407	if (ret) {
408		dev_err(dev, "could not enable i2c clock: %d\n", ret);
409		clk_disable(td->soc_clk);
410		clk_disable(td->ref_clk);
411		return ret;
412	}
413
414	return 0;
415}
416EXPORT_SYMBOL(tegra_dfll_runtime_resume);
417
418/**
419 * tegra_dfll_runtime_suspend - disable all clocks needed by the DFLL
420 * @dev: DFLL device *
421 *
422 * Disable all clocks needed by the DFLL. Assumes that other code
423 * will later call clk_unprepare().
424 */
425int tegra_dfll_runtime_suspend(struct device *dev)
426{
427	struct tegra_dfll *td = dev_get_drvdata(dev);
428
429	clk_disable(td->ref_clk);
430	clk_disable(td->soc_clk);
431	clk_disable(td->i2c_clk);
432
433	return 0;
434}
435EXPORT_SYMBOL(tegra_dfll_runtime_suspend);
436
437/*
438 * DFLL tuning operations (per-voltage-range tuning settings)
439 */
440
441/**
442 * dfll_tune_low - tune to DFLL and CPU settings valid for any voltage
443 * @td: DFLL instance
444 *
445 * Tune the DFLL oscillator parameters and the CPU clock shaper for
446 * the low-voltage range. These settings are valid for any voltage,
447 * but may not be optimal.
448 */
449static void dfll_tune_low(struct tegra_dfll *td)
450{
451	td->tune_range = DFLL_TUNE_LOW;
452
453	dfll_writel(td, td->soc->cvb->cpu_dfll_data.tune0_low, DFLL_TUNE0);
454	dfll_writel(td, td->soc->cvb->cpu_dfll_data.tune1, DFLL_TUNE1);
455	dfll_wmb(td);
456
457	if (td->soc->set_clock_trimmers_low)
458		td->soc->set_clock_trimmers_low();
459}
460
461/*
462 * Output clock scaler helpers
463 */
464
465/**
466 * dfll_scale_dvco_rate - calculate scaled rate from the DVCO rate
467 * @scale_bits: clock scaler value (bits in the DFLL_FREQ_REQ_SCALE field)
468 * @dvco_rate: the DVCO rate
469 *
470 * Apply the same scaling formula that the DFLL hardware uses to scale
471 * the DVCO rate.
472 */
473static unsigned long dfll_scale_dvco_rate(int scale_bits,
474					  unsigned long dvco_rate)
475{
476	return (u64)dvco_rate * (scale_bits + 1) / DFLL_FREQ_REQ_SCALE_MAX;
477}
478
479/*
480 * DFLL mode switching
481 */
482
483/**
484 * dfll_set_mode - change the DFLL control mode
485 * @td: DFLL instance
486 * @mode: DFLL control mode (see enum dfll_ctrl_mode)
487 *
488 * Change the DFLL's operating mode between disabled, open-loop mode,
489 * and closed-loop mode, or vice versa.
490 */
491static void dfll_set_mode(struct tegra_dfll *td,
492			  enum dfll_ctrl_mode mode)
493{
494	td->mode = mode;
495	dfll_writel(td, mode - 1, DFLL_CTRL);
496	dfll_wmb(td);
497}
498
499/*
500 * DVCO rate control
501 */
502
503static unsigned long get_dvco_rate_below(struct tegra_dfll *td, u8 out_min)
504{
505	struct dev_pm_opp *opp;
506	unsigned long rate, prev_rate;
507	unsigned long uv, min_uv;
508
509	min_uv = td->lut_uv[out_min];
510	for (rate = 0, prev_rate = 0; ; rate++) {
511		opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate);
512		if (IS_ERR(opp))
513			break;
514
515		uv = dev_pm_opp_get_voltage(opp);
516		dev_pm_opp_put(opp);
517
518		if (uv && uv > min_uv)
519			return prev_rate;
520
521		prev_rate = rate;
522	}
523
524	return prev_rate;
525}
526
527/*
528 * DFLL-to-I2C controller interface
529 */
530
531/**
532 * dfll_i2c_set_output_enabled - enable/disable I2C PMIC voltage requests
533 * @td: DFLL instance
534 * @enable: whether to enable or disable the I2C voltage requests
535 *
536 * Set the master enable control for I2C control value updates. If disabled,
537 * then I2C control messages are inhibited, regardless of the DFLL mode.
538 */
539static int dfll_i2c_set_output_enabled(struct tegra_dfll *td, bool enable)
540{
541	u32 val;
542
543	val = dfll_i2c_readl(td, DFLL_OUTPUT_CFG);
544
545	if (enable)
546		val |= DFLL_OUTPUT_CFG_I2C_ENABLE;
547	else
548		val &= ~DFLL_OUTPUT_CFG_I2C_ENABLE;
549
550	dfll_i2c_writel(td, val, DFLL_OUTPUT_CFG);
551	dfll_i2c_wmb(td);
552
553	return 0;
554}
555
556
557/*
558 * DFLL-to-PWM controller interface
559 */
560
561/**
562 * dfll_pwm_set_output_enabled - enable/disable PWM voltage requests
563 * @td: DFLL instance
564 * @enable: whether to enable or disable the PWM voltage requests
565 *
566 * Set the master enable control for PWM control value updates. If disabled,
567 * then the PWM signal is not driven. Also configure the PWM output pad
568 * to the appropriate state.
569 */
570static int dfll_pwm_set_output_enabled(struct tegra_dfll *td, bool enable)
571{
572	int ret;
573	u32 val, div;
574
575	if (enable) {
576		ret = pinctrl_select_state(td->pwm_pin, td->pwm_enable_state);
577		if (ret < 0) {
578			dev_err(td->dev, "setting enable state failed\n");
579			return -EINVAL;
580		}
581		val = dfll_readl(td, DFLL_OUTPUT_CFG);
582		val &= ~DFLL_OUTPUT_CFG_PWM_DIV_MASK;
583		div = DIV_ROUND_UP(td->ref_rate, td->pwm_rate);
584		val |= (div << DFLL_OUTPUT_CFG_PWM_DIV_SHIFT)
585				& DFLL_OUTPUT_CFG_PWM_DIV_MASK;
586		dfll_writel(td, val, DFLL_OUTPUT_CFG);
587		dfll_wmb(td);
588
589		val |= DFLL_OUTPUT_CFG_PWM_ENABLE;
590		dfll_writel(td, val, DFLL_OUTPUT_CFG);
591		dfll_wmb(td);
592	} else {
593		ret = pinctrl_select_state(td->pwm_pin, td->pwm_disable_state);
594		if (ret < 0)
595			dev_warn(td->dev, "setting disable state failed\n");
596
597		val = dfll_readl(td, DFLL_OUTPUT_CFG);
598		val &= ~DFLL_OUTPUT_CFG_PWM_ENABLE;
599		dfll_writel(td, val, DFLL_OUTPUT_CFG);
600		dfll_wmb(td);
601	}
602
603	return 0;
604}
605
606/**
607 * dfll_set_force_output_value - set fixed value for force output
608 * @td: DFLL instance
609 * @out_val: value to force output
610 *
611 * Set the fixed value for force output, DFLL will output this value when
612 * force output is enabled.
613 */
614static u32 dfll_set_force_output_value(struct tegra_dfll *td, u8 out_val)
615{
616	u32 val = dfll_readl(td, DFLL_OUTPUT_FORCE);
617
618	val = (val & DFLL_OUTPUT_FORCE_ENABLE) | (out_val & OUT_MASK);
619	dfll_writel(td, val, DFLL_OUTPUT_FORCE);
620	dfll_wmb(td);
621
622	return dfll_readl(td, DFLL_OUTPUT_FORCE);
623}
624
625/**
626 * dfll_set_force_output_enabled - enable/disable force output
627 * @td: DFLL instance
628 * @enable: whether to enable or disable the force output
629 *
630 * Set the enable control for fouce output with fixed value.
631 */
632static void dfll_set_force_output_enabled(struct tegra_dfll *td, bool enable)
633{
634	u32 val = dfll_readl(td, DFLL_OUTPUT_FORCE);
635
636	if (enable)
637		val |= DFLL_OUTPUT_FORCE_ENABLE;
638	else
639		val &= ~DFLL_OUTPUT_FORCE_ENABLE;
640
641	dfll_writel(td, val, DFLL_OUTPUT_FORCE);
642	dfll_wmb(td);
643}
644
645/**
646 * dfll_force_output - force output a fixed value
647 * @td: DFLL instance
648 * @out_sel: value to force output
649 *
650 * Set the fixed value for force output, DFLL will output this value.
651 */
652static int dfll_force_output(struct tegra_dfll *td, unsigned int out_sel)
653{
654	u32 val;
655
656	if (out_sel > OUT_MASK)
657		return -EINVAL;
658
659	val = dfll_set_force_output_value(td, out_sel);
660	if ((td->mode < DFLL_CLOSED_LOOP) &&
661	    !(val & DFLL_OUTPUT_FORCE_ENABLE)) {
662		dfll_set_force_output_enabled(td, true);
663	}
664
665	return 0;
666}
667
668/**
669 * dfll_load_lut - load the voltage lookup table
670 * @td: struct tegra_dfll *
671 *
672 * Load the voltage-to-PMIC register value lookup table into the DFLL
673 * IP block memory. Look-up tables can be loaded at any time.
674 */
675static void dfll_load_i2c_lut(struct tegra_dfll *td)
676{
677	int i, lut_index;
678	u32 val;
679
680	for (i = 0; i < MAX_DFLL_VOLTAGES; i++) {
681		if (i < td->lut_min)
682			lut_index = td->lut_min;
683		else if (i > td->lut_max)
684			lut_index = td->lut_max;
685		else
686			lut_index = i;
687
688		val = regulator_list_hardware_vsel(td->vdd_reg,
689						     td->lut[lut_index]);
690		__raw_writel(val, td->lut_base + i * 4);
691	}
692
693	dfll_i2c_wmb(td);
694}
695
696/**
697 * dfll_init_i2c_if - set up the DFLL's DFLL-I2C interface
698 * @td: DFLL instance
699 *
700 * During DFLL driver initialization, program the DFLL-I2C interface
701 * with the PMU slave address, vdd register offset, and transfer mode.
702 * This data is used by the DFLL to automatically construct I2C
703 * voltage-set commands, which are then passed to the DFLL's internal
704 * I2C controller.
705 */
706static void dfll_init_i2c_if(struct tegra_dfll *td)
707{
708	u32 val;
709
710	if (td->i2c_slave_addr > 0x7f) {
711		val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_10BIT;
712		val |= DFLL_I2C_CFG_SLAVE_ADDR_10;
713	} else {
714		val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_7BIT;
715	}
716	val |= DFLL_I2C_CFG_SIZE_MASK;
717	val |= DFLL_I2C_CFG_ARB_ENABLE;
718	dfll_i2c_writel(td, val, DFLL_I2C_CFG);
719
720	dfll_i2c_writel(td, td->i2c_reg, DFLL_I2C_VDD_REG_ADDR);
721
722	val = DIV_ROUND_UP(td->i2c_clk_rate, td->i2c_fs_rate * 8);
723	BUG_ON(!val || (val > DFLL_I2C_CLK_DIVISOR_MASK));
724	val = (val - 1) << DFLL_I2C_CLK_DIVISOR_FS_SHIFT;
725
726	/* default hs divisor just in case */
727	val |= 1 << DFLL_I2C_CLK_DIVISOR_HS_SHIFT;
728	__raw_writel(val, td->i2c_controller_base + DFLL_I2C_CLK_DIVISOR);
729	dfll_i2c_wmb(td);
730}
731
732/**
733 * dfll_init_out_if - prepare DFLL-to-PMIC interface
734 * @td: DFLL instance
735 *
736 * During DFLL driver initialization or resume from context loss,
737 * disable the I2C command output to the PMIC, set safe voltage and
738 * output limits, and disable and clear limit interrupts.
739 */
740static void dfll_init_out_if(struct tegra_dfll *td)
741{
742	u32 val;
743
744	td->lut_min = td->lut_bottom;
745	td->lut_max = td->lut_size - 1;
746	td->lut_safe = td->lut_min + (td->lut_min < td->lut_max ? 1 : 0);
747
748	/* clear DFLL_OUTPUT_CFG before setting new value */
749	dfll_writel(td, 0, DFLL_OUTPUT_CFG);
750	dfll_wmb(td);
751
752	val = (td->lut_safe << DFLL_OUTPUT_CFG_SAFE_SHIFT) |
753	      (td->lut_max << DFLL_OUTPUT_CFG_MAX_SHIFT) |
754	      (td->lut_min << DFLL_OUTPUT_CFG_MIN_SHIFT);
755	dfll_writel(td, val, DFLL_OUTPUT_CFG);
756	dfll_wmb(td);
757
758	dfll_writel(td, 0, DFLL_OUTPUT_FORCE);
759	dfll_i2c_writel(td, 0, DFLL_INTR_EN);
760	dfll_i2c_writel(td, DFLL_INTR_MAX_MASK | DFLL_INTR_MIN_MASK,
761			DFLL_INTR_STS);
762
763	if (td->pmu_if == TEGRA_DFLL_PMU_PWM) {
764		u32 vinit = td->reg_init_uV;
765		int vstep = td->soc->alignment.step_uv;
766		unsigned long vmin = td->lut_uv[0];
767
768		/* set initial voltage */
769		if ((vinit >= vmin) && vstep) {
770			unsigned int vsel;
771
772			vsel = DIV_ROUND_UP((vinit - vmin), vstep);
773			dfll_force_output(td, vsel);
774		}
775	} else {
776		dfll_load_i2c_lut(td);
777		dfll_init_i2c_if(td);
778	}
779}
780
781/*
782 * Set/get the DFLL's targeted output clock rate
783 */
784
785/**
786 * find_lut_index_for_rate - determine I2C LUT index for given DFLL rate
787 * @td: DFLL instance
788 * @rate: clock rate
789 *
790 * Determines the index of a I2C LUT entry for a voltage that approximately
791 * produces the given DFLL clock rate. This is used when forcing a value
792 * to the integrator during rate changes. Returns -ENOENT if a suitable
793 * LUT index is not found.
794 */
795static int find_lut_index_for_rate(struct tegra_dfll *td, unsigned long rate)
796{
797	struct dev_pm_opp *opp;
798	int i, align_step;
799
800	opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate);
801	if (IS_ERR(opp))
802		return PTR_ERR(opp);
803
804	align_step = dev_pm_opp_get_voltage(opp) / td->soc->alignment.step_uv;
805	dev_pm_opp_put(opp);
806
807	for (i = td->lut_bottom; i < td->lut_size; i++) {
808		if ((td->lut_uv[i] / td->soc->alignment.step_uv) >= align_step)
809			return i;
810	}
811
812	return -ENOENT;
813}
814
815/**
816 * dfll_calculate_rate_request - calculate DFLL parameters for a given rate
817 * @td: DFLL instance
818 * @req: DFLL-rate-request structure
819 * @rate: the desired DFLL rate
820 *
821 * Populate the DFLL-rate-request record @req fields with the scale_bits
822 * and mult_bits fields, based on the target input rate. Returns 0 upon
823 * success, or -EINVAL if the requested rate in req->rate is too high
824 * or low for the DFLL to generate.
825 */
826static int dfll_calculate_rate_request(struct tegra_dfll *td,
827				       struct dfll_rate_req *req,
828				       unsigned long rate)
829{
830	u32 val;
831
832	/*
833	 * If requested rate is below the minimum DVCO rate, active the scaler.
834	 * In the future the DVCO minimum voltage should be selected based on
835	 * chip temperature and the actual minimum rate should be calibrated
836	 * at runtime.
837	 */
838	req->scale_bits = DFLL_FREQ_REQ_SCALE_MAX - 1;
839	if (rate < td->dvco_rate_min) {
840		int scale;
841
842		scale = DIV_ROUND_CLOSEST(rate / 1000 * DFLL_FREQ_REQ_SCALE_MAX,
843					  td->dvco_rate_min / 1000);
844		if (!scale) {
845			dev_err(td->dev, "%s: Rate %lu is too low\n",
846				__func__, rate);
847			return -EINVAL;
848		}
849		req->scale_bits = scale - 1;
850		rate = td->dvco_rate_min;
851	}
852
853	/* Convert requested rate into frequency request and scale settings */
854	val = DVCO_RATE_TO_MULT(rate, td->ref_rate);
855	if (val > FREQ_MAX) {
856		dev_err(td->dev, "%s: Rate %lu is above dfll range\n",
857			__func__, rate);
858		return -EINVAL;
859	}
860	req->mult_bits = val;
861	req->dvco_target_rate = MULT_TO_DVCO_RATE(req->mult_bits, td->ref_rate);
862	req->rate = dfll_scale_dvco_rate(req->scale_bits,
863					 req->dvco_target_rate);
864	req->lut_index = find_lut_index_for_rate(td, req->dvco_target_rate);
865	if (req->lut_index < 0)
866		return req->lut_index;
867
868	return 0;
869}
870
871/**
872 * dfll_set_frequency_request - start the frequency change operation
873 * @td: DFLL instance
874 * @req: rate request structure
875 *
876 * Tell the DFLL to try to change its output frequency to the
877 * frequency represented by @req. DFLL must be in closed-loop mode.
878 */
879static void dfll_set_frequency_request(struct tegra_dfll *td,
880				       struct dfll_rate_req *req)
881{
882	u32 val = 0;
883	int force_val;
884	int coef = 128; /* FIXME: td->cg_scale? */;
885
886	force_val = (req->lut_index - td->lut_safe) * coef / td->cg;
887	force_val = clamp(force_val, FORCE_MIN, FORCE_MAX);
888
889	val |= req->mult_bits << DFLL_FREQ_REQ_MULT_SHIFT;
890	val |= req->scale_bits << DFLL_FREQ_REQ_SCALE_SHIFT;
891	val |= ((u32)force_val << DFLL_FREQ_REQ_FORCE_SHIFT) &
892		DFLL_FREQ_REQ_FORCE_MASK;
893	val |= DFLL_FREQ_REQ_FREQ_VALID | DFLL_FREQ_REQ_FORCE_ENABLE;
894
895	dfll_writel(td, val, DFLL_FREQ_REQ);
896	dfll_wmb(td);
897}
898
899/**
900 * tegra_dfll_request_rate - set the next rate for the DFLL to tune to
901 * @td: DFLL instance
902 * @rate: clock rate to target
903 *
904 * Convert the requested clock rate @rate into the DFLL control logic
905 * settings. In closed-loop mode, update new settings immediately to
906 * adjust DFLL output rate accordingly. Otherwise, just save them
907 * until the next switch to closed loop. Returns 0 upon success,
908 * -EPERM if the DFLL driver has not yet been initialized, or -EINVAL
909 * if @rate is outside the DFLL's tunable range.
910 */
911static int dfll_request_rate(struct tegra_dfll *td, unsigned long rate)
912{
913	int ret;
914	struct dfll_rate_req req;
915
916	if (td->mode == DFLL_UNINITIALIZED) {
917		dev_err(td->dev, "%s: Cannot set DFLL rate in %s mode\n",
918			__func__, mode_name[td->mode]);
919		return -EPERM;
920	}
921
922	ret = dfll_calculate_rate_request(td, &req, rate);
923	if (ret)
924		return ret;
925
926	td->last_unrounded_rate = rate;
927	td->last_req = req;
928
929	if (td->mode == DFLL_CLOSED_LOOP)
930		dfll_set_frequency_request(td, &td->last_req);
931
932	return 0;
933}
934
935/*
936 * DFLL enable/disable & open-loop <-> closed-loop transitions
937 */
938
939/**
940 * dfll_disable - switch from open-loop mode to disabled mode
941 * @td: DFLL instance
942 *
943 * Switch from OPEN_LOOP state to DISABLED state. Returns 0 upon success
944 * or -EPERM if the DFLL is not currently in open-loop mode.
945 */
946static int dfll_disable(struct tegra_dfll *td)
947{
948	if (td->mode != DFLL_OPEN_LOOP) {
949		dev_err(td->dev, "cannot disable DFLL in %s mode\n",
950			mode_name[td->mode]);
951		return -EINVAL;
952	}
953
954	dfll_set_mode(td, DFLL_DISABLED);
955	pm_runtime_put_sync(td->dev);
956
957	return 0;
958}
959
960/**
961 * dfll_enable - switch a disabled DFLL to open-loop mode
962 * @td: DFLL instance
963 *
964 * Switch from DISABLED state to OPEN_LOOP state. Returns 0 upon success
965 * or -EPERM if the DFLL is not currently disabled.
966 */
967static int dfll_enable(struct tegra_dfll *td)
968{
969	if (td->mode != DFLL_DISABLED) {
970		dev_err(td->dev, "cannot enable DFLL in %s mode\n",
971			mode_name[td->mode]);
972		return -EPERM;
973	}
974
975	pm_runtime_get_sync(td->dev);
976	dfll_set_mode(td, DFLL_OPEN_LOOP);
977
978	return 0;
979}
980
981/**
982 * dfll_set_open_loop_config - prepare to switch to open-loop mode
983 * @td: DFLL instance
984 *
985 * Prepare to switch the DFLL to open-loop mode. This switches the
986 * DFLL to the low-voltage tuning range, ensures that I2C output
987 * forcing is disabled, and disables the output clock rate scaler.
988 * The DFLL's low-voltage tuning range parameters must be
989 * characterized to keep the downstream device stable at any DVCO
990 * input voltage. No return value.
991 */
992static void dfll_set_open_loop_config(struct tegra_dfll *td)
993{
994	u32 val;
995
996	/* always tune low (safe) in open loop */
997	if (td->tune_range != DFLL_TUNE_LOW)
998		dfll_tune_low(td);
999
1000	val = dfll_readl(td, DFLL_FREQ_REQ);
1001	val |= DFLL_FREQ_REQ_SCALE_MASK;
1002	val &= ~DFLL_FREQ_REQ_FORCE_ENABLE;
1003	dfll_writel(td, val, DFLL_FREQ_REQ);
1004	dfll_wmb(td);
1005}
1006
1007/**
1008 * tegra_dfll_lock - switch from open-loop to closed-loop mode
1009 * @td: DFLL instance
1010 *
1011 * Switch from OPEN_LOOP state to CLOSED_LOOP state. Returns 0 upon success,
1012 * -EINVAL if the DFLL's target rate hasn't been set yet, or -EPERM if the
1013 * DFLL is not currently in open-loop mode.
1014 */
1015static int dfll_lock(struct tegra_dfll *td)
1016{
1017	struct dfll_rate_req *req = &td->last_req;
1018
1019	switch (td->mode) {
1020	case DFLL_CLOSED_LOOP:
1021		return 0;
1022
1023	case DFLL_OPEN_LOOP:
1024		if (req->rate == 0) {
1025			dev_err(td->dev, "%s: Cannot lock DFLL at rate 0\n",
1026				__func__);
1027			return -EINVAL;
1028		}
1029
1030		if (td->pmu_if == TEGRA_DFLL_PMU_PWM)
1031			dfll_pwm_set_output_enabled(td, true);
1032		else
1033			dfll_i2c_set_output_enabled(td, true);
1034
1035		dfll_set_mode(td, DFLL_CLOSED_LOOP);
1036		dfll_set_frequency_request(td, req);
1037		dfll_set_force_output_enabled(td, false);
1038		return 0;
1039
1040	default:
1041		BUG_ON(td->mode > DFLL_CLOSED_LOOP);
1042		dev_err(td->dev, "%s: Cannot lock DFLL in %s mode\n",
1043			__func__, mode_name[td->mode]);
1044		return -EPERM;
1045	}
1046}
1047
1048/**
1049 * tegra_dfll_unlock - switch from closed-loop to open-loop mode
1050 * @td: DFLL instance
1051 *
1052 * Switch from CLOSED_LOOP state to OPEN_LOOP state. Returns 0 upon success,
1053 * or -EPERM if the DFLL is not currently in open-loop mode.
1054 */
1055static int dfll_unlock(struct tegra_dfll *td)
1056{
1057	switch (td->mode) {
1058	case DFLL_CLOSED_LOOP:
1059		dfll_set_open_loop_config(td);
1060		dfll_set_mode(td, DFLL_OPEN_LOOP);
1061		if (td->pmu_if == TEGRA_DFLL_PMU_PWM)
1062			dfll_pwm_set_output_enabled(td, false);
1063		else
1064			dfll_i2c_set_output_enabled(td, false);
1065		return 0;
1066
1067	case DFLL_OPEN_LOOP:
1068		return 0;
1069
1070	default:
1071		BUG_ON(td->mode > DFLL_CLOSED_LOOP);
1072		dev_err(td->dev, "%s: Cannot unlock DFLL in %s mode\n",
1073			__func__, mode_name[td->mode]);
1074		return -EPERM;
1075	}
1076}
1077
1078/*
1079 * Clock framework integration
1080 *
1081 * When the DFLL is being controlled by the CCF, always enter closed loop
1082 * mode when the clk is enabled. This requires that a DFLL rate request
1083 * has been set beforehand, which implies that a clk_set_rate() call is
1084 * always required before a clk_enable().
1085 */
1086
1087static int dfll_clk_is_enabled(struct clk_hw *hw)
1088{
1089	struct tegra_dfll *td = clk_hw_to_dfll(hw);
1090
1091	return dfll_is_running(td);
1092}
1093
1094static int dfll_clk_enable(struct clk_hw *hw)
1095{
1096	struct tegra_dfll *td = clk_hw_to_dfll(hw);
1097	int ret;
1098
1099	ret = dfll_enable(td);
1100	if (ret)
1101		return ret;
1102
1103	ret = dfll_lock(td);
1104	if (ret)
1105		dfll_disable(td);
1106
1107	return ret;
1108}
1109
1110static void dfll_clk_disable(struct clk_hw *hw)
1111{
1112	struct tegra_dfll *td = clk_hw_to_dfll(hw);
1113	int ret;
1114
1115	ret = dfll_unlock(td);
1116	if (!ret)
1117		dfll_disable(td);
1118}
1119
1120static unsigned long dfll_clk_recalc_rate(struct clk_hw *hw,
1121					  unsigned long parent_rate)
1122{
1123	struct tegra_dfll *td = clk_hw_to_dfll(hw);
1124
1125	return td->last_unrounded_rate;
1126}
1127
1128/* Must use determine_rate since it allows for rates exceeding 2^31-1 */
1129static int dfll_clk_determine_rate(struct clk_hw *hw,
1130				   struct clk_rate_request *clk_req)
1131{
1132	struct tegra_dfll *td = clk_hw_to_dfll(hw);
1133	struct dfll_rate_req req;
1134	int ret;
1135
1136	ret = dfll_calculate_rate_request(td, &req, clk_req->rate);
1137	if (ret)
1138		return ret;
1139
1140	/*
1141	 * Don't set the rounded rate, since it doesn't really matter as
1142	 * the output rate will be voltage controlled anyway, and cpufreq
1143	 * freaks out if any rounding happens.
1144	 */
1145
1146	return 0;
1147}
1148
1149static int dfll_clk_set_rate(struct clk_hw *hw, unsigned long rate,
1150			     unsigned long parent_rate)
1151{
1152	struct tegra_dfll *td = clk_hw_to_dfll(hw);
1153
1154	return dfll_request_rate(td, rate);
1155}
1156
1157static const struct clk_ops dfll_clk_ops = {
1158	.is_enabled	= dfll_clk_is_enabled,
1159	.enable		= dfll_clk_enable,
1160	.disable	= dfll_clk_disable,
1161	.recalc_rate	= dfll_clk_recalc_rate,
1162	.determine_rate	= dfll_clk_determine_rate,
1163	.set_rate	= dfll_clk_set_rate,
1164};
1165
1166static struct clk_init_data dfll_clk_init_data = {
1167	.ops		= &dfll_clk_ops,
1168	.num_parents	= 0,
1169};
1170
1171/**
1172 * dfll_register_clk - register the DFLL output clock with the clock framework
1173 * @td: DFLL instance
1174 *
1175 * Register the DFLL's output clock with the Linux clock framework and register
1176 * the DFLL driver as an OF clock provider. Returns 0 upon success or -EINVAL
1177 * or -ENOMEM upon failure.
1178 */
1179static int dfll_register_clk(struct tegra_dfll *td)
1180{
1181	int ret;
1182
1183	dfll_clk_init_data.name = td->output_clock_name;
1184	td->dfll_clk_hw.init = &dfll_clk_init_data;
1185
1186	td->dfll_clk = clk_register(td->dev, &td->dfll_clk_hw);
1187	if (IS_ERR(td->dfll_clk)) {
1188		dev_err(td->dev, "DFLL clock registration error\n");
1189		return -EINVAL;
1190	}
1191
1192	ret = of_clk_add_provider(td->dev->of_node, of_clk_src_simple_get,
1193				  td->dfll_clk);
1194	if (ret) {
1195		dev_err(td->dev, "of_clk_add_provider() failed\n");
1196
1197		clk_unregister(td->dfll_clk);
1198		return ret;
1199	}
1200
1201	return 0;
1202}
1203
1204/**
1205 * dfll_unregister_clk - unregister the DFLL output clock
1206 * @td: DFLL instance
1207 *
1208 * Unregister the DFLL's output clock from the Linux clock framework
1209 * and from clkdev. No return value.
1210 */
1211static void dfll_unregister_clk(struct tegra_dfll *td)
1212{
1213	of_clk_del_provider(td->dev->of_node);
1214	clk_unregister(td->dfll_clk);
1215	td->dfll_clk = NULL;
1216}
1217
1218/*
1219 * Debugfs interface
1220 */
1221
1222#ifdef CONFIG_DEBUG_FS
1223/*
1224 * Monitor control
1225 */
1226
1227/**
1228 * dfll_calc_monitored_rate - convert DFLL_MONITOR_DATA_VAL rate into real freq
1229 * @monitor_data: value read from the DFLL_MONITOR_DATA_VAL bitfield
1230 * @ref_rate: DFLL reference clock rate
1231 *
1232 * Convert @monitor_data from DFLL_MONITOR_DATA_VAL units into cycles
1233 * per second. Returns the converted value.
1234 */
1235static u64 dfll_calc_monitored_rate(u32 monitor_data,
1236				    unsigned long ref_rate)
1237{
1238	return monitor_data * (ref_rate / REF_CLK_CYC_PER_DVCO_SAMPLE);
1239}
1240
1241/**
1242 * dfll_read_monitor_rate - return the DFLL's output rate from internal monitor
1243 * @td: DFLL instance
1244 *
1245 * If the DFLL is enabled, return the last rate reported by the DFLL's
1246 * internal monitoring hardware. This works in both open-loop and
1247 * closed-loop mode, and takes the output scaler setting into account.
1248 * Assumes that the monitor was programmed to monitor frequency before
1249 * the sample period started. If the driver believes that the DFLL is
1250 * currently uninitialized or disabled, it will return 0, since
1251 * otherwise the DFLL monitor data register will return the last
1252 * measured rate from when the DFLL was active.
1253 */
1254static u64 dfll_read_monitor_rate(struct tegra_dfll *td)
1255{
1256	u32 v, s;
1257	u64 pre_scaler_rate, post_scaler_rate;
1258
1259	if (!dfll_is_running(td))
1260		return 0;
1261
1262	v = dfll_readl(td, DFLL_MONITOR_DATA);
1263	v = (v & DFLL_MONITOR_DATA_VAL_MASK) >> DFLL_MONITOR_DATA_VAL_SHIFT;
1264	pre_scaler_rate = dfll_calc_monitored_rate(v, td->ref_rate);
1265
1266	s = dfll_readl(td, DFLL_FREQ_REQ);
1267	s = (s & DFLL_FREQ_REQ_SCALE_MASK) >> DFLL_FREQ_REQ_SCALE_SHIFT;
1268	post_scaler_rate = dfll_scale_dvco_rate(s, pre_scaler_rate);
1269
1270	return post_scaler_rate;
1271}
1272
1273static int attr_enable_get(void *data, u64 *val)
1274{
1275	struct tegra_dfll *td = data;
1276
1277	*val = dfll_is_running(td);
1278
1279	return 0;
1280}
1281static int attr_enable_set(void *data, u64 val)
1282{
1283	struct tegra_dfll *td = data;
1284
1285	return val ? dfll_enable(td) : dfll_disable(td);
1286}
1287DEFINE_DEBUGFS_ATTRIBUTE(enable_fops, attr_enable_get, attr_enable_set,
1288			 "%llu\n");
1289
1290static int attr_lock_get(void *data, u64 *val)
1291{
1292	struct tegra_dfll *td = data;
1293
1294	*val = (td->mode == DFLL_CLOSED_LOOP);
1295
1296	return 0;
1297}
1298static int attr_lock_set(void *data, u64 val)
1299{
1300	struct tegra_dfll *td = data;
1301
1302	return val ? dfll_lock(td) :  dfll_unlock(td);
1303}
1304DEFINE_DEBUGFS_ATTRIBUTE(lock_fops, attr_lock_get, attr_lock_set, "%llu\n");
1305
1306static int attr_rate_get(void *data, u64 *val)
1307{
1308	struct tegra_dfll *td = data;
1309
1310	*val = dfll_read_monitor_rate(td);
1311
1312	return 0;
1313}
1314
1315static int attr_rate_set(void *data, u64 val)
1316{
1317	struct tegra_dfll *td = data;
1318
1319	return dfll_request_rate(td, val);
1320}
1321DEFINE_DEBUGFS_ATTRIBUTE(rate_fops, attr_rate_get, attr_rate_set, "%llu\n");
1322
1323static int attr_registers_show(struct seq_file *s, void *data)
1324{
1325	u32 val, offs;
1326	struct tegra_dfll *td = s->private;
1327
1328	seq_puts(s, "CONTROL REGISTERS:\n");
1329	for (offs = 0; offs <= DFLL_MONITOR_DATA; offs += 4) {
1330		if (offs == DFLL_OUTPUT_CFG)
1331			val = dfll_i2c_readl(td, offs);
1332		else
1333			val = dfll_readl(td, offs);
1334		seq_printf(s, "[0x%02x] = 0x%08x\n", offs, val);
1335	}
1336
1337	seq_puts(s, "\nI2C and INTR REGISTERS:\n");
1338	for (offs = DFLL_I2C_CFG; offs <= DFLL_I2C_STS; offs += 4)
1339		seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1340			   dfll_i2c_readl(td, offs));
1341	for (offs = DFLL_INTR_STS; offs <= DFLL_INTR_EN; offs += 4)
1342		seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1343			   dfll_i2c_readl(td, offs));
1344
1345	if (td->pmu_if == TEGRA_DFLL_PMU_I2C) {
1346		seq_puts(s, "\nINTEGRATED I2C CONTROLLER REGISTERS:\n");
1347		offs = DFLL_I2C_CLK_DIVISOR;
1348		seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1349			   __raw_readl(td->i2c_controller_base + offs));
1350
1351		seq_puts(s, "\nLUT:\n");
1352		for (offs = 0; offs <  4 * MAX_DFLL_VOLTAGES; offs += 4)
1353			seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1354				   __raw_readl(td->lut_base + offs));
1355	}
1356
1357	return 0;
1358}
1359
1360DEFINE_SHOW_ATTRIBUTE(attr_registers);
1361
1362static void dfll_debug_init(struct tegra_dfll *td)
1363{
1364	struct dentry *root;
1365
1366	if (!td || (td->mode == DFLL_UNINITIALIZED))
1367		return;
1368
1369	root = debugfs_create_dir("tegra_dfll_fcpu", NULL);
1370	td->debugfs_dir = root;
1371
1372	debugfs_create_file_unsafe("enable", 0644, root, td,
1373				   &enable_fops);
1374	debugfs_create_file_unsafe("lock", 0444, root, td, &lock_fops);
1375	debugfs_create_file_unsafe("rate", 0444, root, td, &rate_fops);
1376	debugfs_create_file("registers", 0444, root, td, &attr_registers_fops);
1377}
1378
1379#else
1380static void inline dfll_debug_init(struct tegra_dfll *td) { }
1381#endif /* CONFIG_DEBUG_FS */
1382
1383/*
1384 * DFLL initialization
1385 */
1386
1387/**
1388 * dfll_set_default_params - program non-output related DFLL parameters
1389 * @td: DFLL instance
1390 *
1391 * During DFLL driver initialization or resume from context loss,
1392 * program parameters for the closed loop integrator, DVCO tuning,
1393 * voltage droop control and monitor control.
1394 */
1395static void dfll_set_default_params(struct tegra_dfll *td)
1396{
1397	u32 val;
1398
1399	val = DIV_ROUND_UP(td->ref_rate, td->sample_rate * 32);
1400	BUG_ON(val > DFLL_CONFIG_DIV_MASK);
1401	dfll_writel(td, val, DFLL_CONFIG);
1402
1403	val = (td->force_mode << DFLL_PARAMS_FORCE_MODE_SHIFT) |
1404		(td->cf << DFLL_PARAMS_CF_PARAM_SHIFT) |
1405		(td->ci << DFLL_PARAMS_CI_PARAM_SHIFT) |
1406		(td->cg << DFLL_PARAMS_CG_PARAM_SHIFT) |
1407		(td->cg_scale ? DFLL_PARAMS_CG_SCALE : 0);
1408	dfll_writel(td, val, DFLL_PARAMS);
1409
1410	dfll_tune_low(td);
1411	dfll_writel(td, td->droop_ctrl, DFLL_DROOP_CTRL);
1412	dfll_writel(td, DFLL_MONITOR_CTRL_FREQ, DFLL_MONITOR_CTRL);
1413}
1414
1415/**
1416 * dfll_init_clks - clk_get() the DFLL source clocks
1417 * @td: DFLL instance
1418 *
1419 * Call clk_get() on the DFLL source clocks and save the pointers for later
1420 * use. Returns 0 upon success or error (see devm_clk_get) if one or more
1421 * of the clocks couldn't be looked up.
1422 */
1423static int dfll_init_clks(struct tegra_dfll *td)
1424{
1425	td->ref_clk = devm_clk_get(td->dev, "ref");
1426	if (IS_ERR(td->ref_clk)) {
1427		dev_err(td->dev, "missing ref clock\n");
1428		return PTR_ERR(td->ref_clk);
1429	}
1430
1431	td->soc_clk = devm_clk_get(td->dev, "soc");
1432	if (IS_ERR(td->soc_clk)) {
1433		dev_err(td->dev, "missing soc clock\n");
1434		return PTR_ERR(td->soc_clk);
1435	}
1436
1437	td->i2c_clk = devm_clk_get(td->dev, "i2c");
1438	if (IS_ERR(td->i2c_clk)) {
1439		dev_err(td->dev, "missing i2c clock\n");
1440		return PTR_ERR(td->i2c_clk);
1441	}
1442	td->i2c_clk_rate = clk_get_rate(td->i2c_clk);
1443
1444	return 0;
1445}
1446
1447/**
1448 * dfll_init - Prepare the DFLL IP block for use
1449 * @td: DFLL instance
1450 *
1451 * Do everything necessary to prepare the DFLL IP block for use. The
1452 * DFLL will be left in DISABLED state. Called by dfll_probe().
1453 * Returns 0 upon success, or passes along the error from whatever
1454 * function returned it.
1455 */
1456static int dfll_init(struct tegra_dfll *td)
1457{
1458	int ret;
1459
1460	td->ref_rate = clk_get_rate(td->ref_clk);
1461	if (td->ref_rate != REF_CLOCK_RATE) {
1462		dev_err(td->dev, "unexpected ref clk rate %lu, expecting %lu",
1463			td->ref_rate, REF_CLOCK_RATE);
1464		return -EINVAL;
1465	}
1466
1467	reset_control_deassert(td->dvco_rst);
1468
1469	ret = clk_prepare(td->ref_clk);
1470	if (ret) {
1471		dev_err(td->dev, "failed to prepare ref_clk\n");
1472		return ret;
1473	}
1474
1475	ret = clk_prepare(td->soc_clk);
1476	if (ret) {
1477		dev_err(td->dev, "failed to prepare soc_clk\n");
1478		goto di_err1;
1479	}
1480
1481	ret = clk_prepare(td->i2c_clk);
1482	if (ret) {
1483		dev_err(td->dev, "failed to prepare i2c_clk\n");
1484		goto di_err2;
1485	}
1486
1487	td->last_unrounded_rate = 0;
1488
1489	pm_runtime_enable(td->dev);
1490	pm_runtime_get_sync(td->dev);
1491
1492	dfll_set_mode(td, DFLL_DISABLED);
1493	dfll_set_default_params(td);
1494
1495	if (td->soc->init_clock_trimmers)
1496		td->soc->init_clock_trimmers();
1497
1498	dfll_set_open_loop_config(td);
1499
1500	dfll_init_out_if(td);
1501
1502	pm_runtime_put_sync(td->dev);
1503
1504	return 0;
1505
1506di_err2:
1507	clk_unprepare(td->soc_clk);
1508di_err1:
1509	clk_unprepare(td->ref_clk);
1510
1511	reset_control_assert(td->dvco_rst);
1512
1513	return ret;
1514}
1515
1516/**
1517 * tegra_dfll_suspend - check DFLL is disabled
1518 * @dev: DFLL instance
1519 *
1520 * DFLL clock should be disabled by the CPUFreq driver. So, make
1521 * sure it is disabled and disable all clocks needed by the DFLL.
1522 */
1523int tegra_dfll_suspend(struct device *dev)
1524{
1525	struct tegra_dfll *td = dev_get_drvdata(dev);
1526
1527	if (dfll_is_running(td)) {
1528		dev_err(td->dev, "DFLL still enabled while suspending\n");
1529		return -EBUSY;
1530	}
1531
1532	reset_control_assert(td->dvco_rst);
1533
1534	return 0;
1535}
1536EXPORT_SYMBOL(tegra_dfll_suspend);
1537
1538/**
1539 * tegra_dfll_resume - reinitialize DFLL on resume
1540 * @dev: DFLL instance
1541 *
1542 * DFLL is disabled and reset during suspend and resume.
1543 * So, reinitialize the DFLL IP block back for use.
1544 * DFLL clock is enabled later in closed loop mode by CPUFreq
1545 * driver before switching its clock source to DFLL output.
1546 */
1547int tegra_dfll_resume(struct device *dev)
1548{
1549	struct tegra_dfll *td = dev_get_drvdata(dev);
1550
1551	reset_control_deassert(td->dvco_rst);
1552
1553	pm_runtime_get_sync(td->dev);
1554
1555	dfll_set_mode(td, DFLL_DISABLED);
1556	dfll_set_default_params(td);
1557
1558	if (td->soc->init_clock_trimmers)
1559		td->soc->init_clock_trimmers();
1560
1561	dfll_set_open_loop_config(td);
1562
1563	dfll_init_out_if(td);
1564
1565	pm_runtime_put_sync(td->dev);
1566
1567	return 0;
1568}
1569EXPORT_SYMBOL(tegra_dfll_resume);
1570
1571/*
1572 * DT data fetch
1573 */
1574
1575/*
1576 * Find a PMIC voltage register-to-voltage mapping for the given voltage.
1577 * An exact voltage match is required.
1578 */
1579static int find_vdd_map_entry_exact(struct tegra_dfll *td, int uV)
1580{
1581	int i, n_voltages, reg_uV,reg_volt_id, align_step;
1582
1583	if (WARN_ON(td->pmu_if == TEGRA_DFLL_PMU_PWM))
1584		return -EINVAL;
1585
1586	align_step = uV / td->soc->alignment.step_uv;
1587	n_voltages = regulator_count_voltages(td->vdd_reg);
1588	for (i = 0; i < n_voltages; i++) {
1589		reg_uV = regulator_list_voltage(td->vdd_reg, i);
1590		if (reg_uV < 0)
1591			break;
1592
1593		reg_volt_id = reg_uV / td->soc->alignment.step_uv;
1594
1595		if (align_step == reg_volt_id)
1596			return i;
1597	}
1598
1599	dev_err(td->dev, "no voltage map entry for %d uV\n", uV);
1600	return -EINVAL;
1601}
1602
1603/*
1604 * Find a PMIC voltage register-to-voltage mapping for the given voltage,
1605 * rounding up to the closest supported voltage.
1606 * */
1607static int find_vdd_map_entry_min(struct tegra_dfll *td, int uV)
1608{
1609	int i, n_voltages, reg_uV, reg_volt_id, align_step;
1610
1611	if (WARN_ON(td->pmu_if == TEGRA_DFLL_PMU_PWM))
1612		return -EINVAL;
1613
1614	align_step = uV / td->soc->alignment.step_uv;
1615	n_voltages = regulator_count_voltages(td->vdd_reg);
1616	for (i = 0; i < n_voltages; i++) {
1617		reg_uV = regulator_list_voltage(td->vdd_reg, i);
1618		if (reg_uV < 0)
1619			break;
1620
1621		reg_volt_id = reg_uV / td->soc->alignment.step_uv;
1622
1623		if (align_step <= reg_volt_id)
1624			return i;
1625	}
1626
1627	dev_err(td->dev, "no voltage map entry rounding to %d uV\n", uV);
1628	return -EINVAL;
1629}
1630
1631/*
1632 * dfll_build_pwm_lut - build the PWM regulator lookup table
1633 * @td: DFLL instance
1634 * @v_max: Vmax from OPP table
1635 *
1636 * Look-up table in h/w is ignored when PWM is used as DFLL interface to PMIC.
1637 * In this case closed loop output is controlling duty cycle directly. The s/w
1638 * look-up that maps PWM duty cycle to voltage is still built by this function.
1639 */
1640static int dfll_build_pwm_lut(struct tegra_dfll *td, unsigned long v_max)
1641{
1642	int i;
1643	unsigned long rate, reg_volt;
1644	u8 lut_bottom = MAX_DFLL_VOLTAGES;
1645	int v_min = td->soc->cvb->min_millivolts * 1000;
1646
1647	for (i = 0; i < MAX_DFLL_VOLTAGES; i++) {
1648		reg_volt = td->lut_uv[i];
1649
1650		/* since opp voltage is exact mv */
1651		reg_volt = (reg_volt / 1000) * 1000;
1652		if (reg_volt > v_max)
1653			break;
1654
1655		td->lut[i] = i;
1656		if ((lut_bottom == MAX_DFLL_VOLTAGES) && (reg_volt >= v_min))
1657			lut_bottom = i;
1658	}
1659
1660	/* determine voltage boundaries */
1661	td->lut_size = i;
1662	if ((lut_bottom == MAX_DFLL_VOLTAGES) ||
1663	    (lut_bottom + 1 >= td->lut_size)) {
1664		dev_err(td->dev, "no voltage above DFLL minimum %d mV\n",
1665			td->soc->cvb->min_millivolts);
1666		return -EINVAL;
1667	}
1668	td->lut_bottom = lut_bottom;
1669
1670	/* determine rate boundaries */
1671	rate = get_dvco_rate_below(td, td->lut_bottom);
1672	if (!rate) {
1673		dev_err(td->dev, "no opp below DFLL minimum voltage %d mV\n",
1674			td->soc->cvb->min_millivolts);
1675		return -EINVAL;
1676	}
1677	td->dvco_rate_min = rate;
1678
1679	return 0;
1680}
1681
1682/**
1683 * dfll_build_i2c_lut - build the I2C voltage register lookup table
1684 * @td: DFLL instance
1685 * @v_max: Vmax from OPP table
1686 *
1687 * The DFLL hardware has 33 bytes of look-up table RAM that must be filled with
1688 * PMIC voltage register values that span the entire DFLL operating range.
1689 * This function builds the look-up table based on the OPP table provided by
1690 * the soc-specific platform driver (td->soc->opp_dev) and the PMIC
1691 * register-to-voltage mapping queried from the regulator framework.
1692 *
1693 * On success, fills in td->lut and returns 0, or -err on failure.
1694 */
1695static int dfll_build_i2c_lut(struct tegra_dfll *td, unsigned long v_max)
1696{
1697	unsigned long rate, v, v_opp;
1698	int ret = -EINVAL;
1699	int j, selector, lut;
1700
1701	v = td->soc->cvb->min_millivolts * 1000;
1702	lut = find_vdd_map_entry_exact(td, v);
1703	if (lut < 0)
1704		goto out;
1705	td->lut[0] = lut;
1706	td->lut_bottom = 0;
1707
1708	for (j = 1, rate = 0; ; rate++) {
1709		struct dev_pm_opp *opp;
1710
1711		opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate);
1712		if (IS_ERR(opp))
1713			break;
1714		v_opp = dev_pm_opp_get_voltage(opp);
1715
1716		if (v_opp <= td->soc->cvb->min_millivolts * 1000)
1717			td->dvco_rate_min = dev_pm_opp_get_freq(opp);
1718
1719		dev_pm_opp_put(opp);
1720
1721		for (;;) {
1722			v += max(1UL, (v_max - v) / (MAX_DFLL_VOLTAGES - j));
1723			if (v >= v_opp)
1724				break;
1725
1726			selector = find_vdd_map_entry_min(td, v);
1727			if (selector < 0)
1728				goto out;
1729			if (selector != td->lut[j - 1])
1730				td->lut[j++] = selector;
1731		}
1732
1733		v = (j == MAX_DFLL_VOLTAGES - 1) ? v_max : v_opp;
1734		selector = find_vdd_map_entry_exact(td, v);
1735		if (selector < 0)
1736			goto out;
1737		if (selector != td->lut[j - 1])
1738			td->lut[j++] = selector;
1739
1740		if (v >= v_max)
1741			break;
1742	}
1743	td->lut_size = j;
1744
1745	if (!td->dvco_rate_min)
1746		dev_err(td->dev, "no opp above DFLL minimum voltage %d mV\n",
1747			td->soc->cvb->min_millivolts);
1748	else {
1749		ret = 0;
1750		for (j = 0; j < td->lut_size; j++)
1751			td->lut_uv[j] =
1752				regulator_list_voltage(td->vdd_reg,
1753						       td->lut[j]);
1754	}
1755
1756out:
1757	return ret;
1758}
1759
1760static int dfll_build_lut(struct tegra_dfll *td)
1761{
1762	unsigned long rate, v_max;
1763	struct dev_pm_opp *opp;
1764
1765	rate = ULONG_MAX;
1766	opp = dev_pm_opp_find_freq_floor(td->soc->dev, &rate);
1767	if (IS_ERR(opp)) {
1768		dev_err(td->dev, "couldn't get vmax opp, empty opp table?\n");
1769		return -EINVAL;
1770	}
1771	v_max = dev_pm_opp_get_voltage(opp);
1772	dev_pm_opp_put(opp);
1773
1774	if (td->pmu_if == TEGRA_DFLL_PMU_PWM)
1775		return dfll_build_pwm_lut(td, v_max);
1776	else
1777		return dfll_build_i2c_lut(td, v_max);
1778}
1779
1780/**
1781 * read_dt_param - helper function for reading required parameters from the DT
1782 * @td: DFLL instance
1783 * @param: DT property name
1784 * @dest: output pointer for the value read
1785 *
1786 * Read a required numeric parameter from the DFLL device node, or complain
1787 * if the property doesn't exist. Returns a boolean indicating success for
1788 * easy chaining of multiple calls to this function.
1789 */
1790static bool read_dt_param(struct tegra_dfll *td, const char *param, u32 *dest)
1791{
1792	int err = of_property_read_u32(td->dev->of_node, param, dest);
1793
1794	if (err < 0) {
1795		dev_err(td->dev, "failed to read DT parameter %s: %d\n",
1796			param, err);
1797		return false;
1798	}
1799
1800	return true;
1801}
1802
1803/**
1804 * dfll_fetch_i2c_params - query PMIC I2C params from DT & regulator subsystem
1805 * @td: DFLL instance
1806 *
1807 * Read all the parameters required for operation in I2C mode. The parameters
1808 * can originate from the device tree or the regulator subsystem.
1809 * Returns 0 on success or -err on failure.
1810 */
1811static int dfll_fetch_i2c_params(struct tegra_dfll *td)
1812{
1813	struct regmap *regmap;
1814	struct device *i2c_dev;
1815	struct i2c_client *i2c_client;
1816	int vsel_reg, vsel_mask;
1817	int ret;
1818
1819	if (!read_dt_param(td, "nvidia,i2c-fs-rate", &td->i2c_fs_rate))
1820		return -EINVAL;
1821
1822	regmap = regulator_get_regmap(td->vdd_reg);
1823	i2c_dev = regmap_get_device(regmap);
1824	i2c_client = to_i2c_client(i2c_dev);
1825
1826	td->i2c_slave_addr = i2c_client->addr;
1827
1828	ret = regulator_get_hardware_vsel_register(td->vdd_reg,
1829						   &vsel_reg,
1830						   &vsel_mask);
1831	if (ret < 0) {
1832		dev_err(td->dev,
1833			"regulator unsuitable for DFLL I2C operation\n");
1834		return -EINVAL;
1835	}
1836	td->i2c_reg = vsel_reg;
1837
1838	return 0;
1839}
1840
1841static int dfll_fetch_pwm_params(struct tegra_dfll *td)
1842{
1843	int ret, i;
1844	u32 pwm_period;
1845
1846	if (!td->soc->alignment.step_uv || !td->soc->alignment.offset_uv) {
1847		dev_err(td->dev,
1848			"Missing step or alignment info for PWM regulator");
1849		return -EINVAL;
1850	}
1851	for (i = 0; i < MAX_DFLL_VOLTAGES; i++)
1852		td->lut_uv[i] = td->soc->alignment.offset_uv +
1853				i * td->soc->alignment.step_uv;
1854
1855	ret = read_dt_param(td, "nvidia,pwm-tristate-microvolts",
1856			    &td->reg_init_uV);
1857	if (!ret) {
1858		dev_err(td->dev, "couldn't get initialized voltage\n");
1859		return -EINVAL;
1860	}
1861
1862	ret = read_dt_param(td, "nvidia,pwm-period-nanoseconds", &pwm_period);
1863	if (!ret) {
1864		dev_err(td->dev, "couldn't get PWM period\n");
1865		return -EINVAL;
1866	}
1867	td->pwm_rate = (NSEC_PER_SEC / pwm_period) * (MAX_DFLL_VOLTAGES - 1);
1868
1869	td->pwm_pin = devm_pinctrl_get(td->dev);
1870	if (IS_ERR(td->pwm_pin)) {
1871		dev_err(td->dev, "DT: missing pinctrl device\n");
1872		return PTR_ERR(td->pwm_pin);
1873	}
1874
1875	td->pwm_enable_state = pinctrl_lookup_state(td->pwm_pin,
1876						    "dvfs_pwm_enable");
1877	if (IS_ERR(td->pwm_enable_state)) {
1878		dev_err(td->dev, "DT: missing pwm enabled state\n");
1879		return PTR_ERR(td->pwm_enable_state);
1880	}
1881
1882	td->pwm_disable_state = pinctrl_lookup_state(td->pwm_pin,
1883						     "dvfs_pwm_disable");
1884	if (IS_ERR(td->pwm_disable_state)) {
1885		dev_err(td->dev, "DT: missing pwm disabled state\n");
1886		return PTR_ERR(td->pwm_disable_state);
1887	}
1888
1889	return 0;
1890}
1891
1892/**
1893 * dfll_fetch_common_params - read DFLL parameters from the device tree
1894 * @td: DFLL instance
1895 *
1896 * Read all the DT parameters that are common to both I2C and PWM operation.
1897 * Returns 0 on success or -EINVAL on any failure.
1898 */
1899static int dfll_fetch_common_params(struct tegra_dfll *td)
1900{
1901	bool ok = true;
1902
1903	ok &= read_dt_param(td, "nvidia,droop-ctrl", &td->droop_ctrl);
1904	ok &= read_dt_param(td, "nvidia,sample-rate", &td->sample_rate);
1905	ok &= read_dt_param(td, "nvidia,force-mode", &td->force_mode);
1906	ok &= read_dt_param(td, "nvidia,cf", &td->cf);
1907	ok &= read_dt_param(td, "nvidia,ci", &td->ci);
1908	ok &= read_dt_param(td, "nvidia,cg", &td->cg);
1909	td->cg_scale = of_property_read_bool(td->dev->of_node,
1910					     "nvidia,cg-scale");
1911
1912	if (of_property_read_string(td->dev->of_node, "clock-output-names",
1913				    &td->output_clock_name)) {
1914		dev_err(td->dev, "missing clock-output-names property\n");
1915		ok = false;
1916	}
1917
1918	return ok ? 0 : -EINVAL;
1919}
1920
1921/*
1922 * API exported to per-SoC platform drivers
1923 */
1924
1925/**
1926 * tegra_dfll_register - probe a Tegra DFLL device
1927 * @pdev: DFLL platform_device *
1928 * @soc: Per-SoC integration and characterization data for this DFLL instance
1929 *
1930 * Probe and initialize a DFLL device instance. Intended to be called
1931 * by a SoC-specific shim driver that passes in per-SoC integration
1932 * and configuration data via @soc. Returns 0 on success or -err on failure.
1933 */
1934int tegra_dfll_register(struct platform_device *pdev,
1935			struct tegra_dfll_soc_data *soc)
1936{
1937	struct resource *mem;
1938	struct tegra_dfll *td;
1939	int ret;
1940
1941	if (!soc) {
1942		dev_err(&pdev->dev, "no tegra_dfll_soc_data provided\n");
1943		return -EINVAL;
1944	}
1945
1946	td = devm_kzalloc(&pdev->dev, sizeof(*td), GFP_KERNEL);
1947	if (!td)
1948		return -ENOMEM;
1949	td->dev = &pdev->dev;
1950	platform_set_drvdata(pdev, td);
1951
1952	td->soc = soc;
1953
1954	td->dvco_rst = devm_reset_control_get(td->dev, "dvco");
1955	if (IS_ERR(td->dvco_rst)) {
1956		dev_err(td->dev, "couldn't get dvco reset\n");
1957		return PTR_ERR(td->dvco_rst);
1958	}
1959
1960	ret = dfll_fetch_common_params(td);
1961	if (ret) {
1962		dev_err(td->dev, "couldn't parse device tree parameters\n");
1963		return ret;
1964	}
1965
1966	if (of_property_read_bool(td->dev->of_node, "nvidia,pwm-to-pmic")) {
1967		td->pmu_if = TEGRA_DFLL_PMU_PWM;
1968		ret = dfll_fetch_pwm_params(td);
1969	} else  {
1970		td->vdd_reg = devm_regulator_get(td->dev, "vdd-cpu");
1971		if (IS_ERR(td->vdd_reg)) {
1972			dev_err(td->dev, "couldn't get vdd_cpu regulator\n");
1973			return PTR_ERR(td->vdd_reg);
1974		}
1975		td->pmu_if = TEGRA_DFLL_PMU_I2C;
1976		ret = dfll_fetch_i2c_params(td);
1977	}
1978	if (ret)
1979		return ret;
1980
1981	ret = dfll_build_lut(td);
1982	if (ret) {
1983		dev_err(td->dev, "couldn't build LUT\n");
1984		return ret;
1985	}
1986
1987	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1988	if (!mem) {
1989		dev_err(td->dev, "no control register resource\n");
1990		return -ENODEV;
1991	}
1992
1993	td->base = devm_ioremap(td->dev, mem->start, resource_size(mem));
1994	if (!td->base) {
1995		dev_err(td->dev, "couldn't ioremap DFLL control registers\n");
1996		return -ENODEV;
1997	}
1998
1999	mem = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2000	if (!mem) {
2001		dev_err(td->dev, "no i2c_base resource\n");
2002		return -ENODEV;
2003	}
2004
2005	td->i2c_base = devm_ioremap(td->dev, mem->start, resource_size(mem));
2006	if (!td->i2c_base) {
2007		dev_err(td->dev, "couldn't ioremap i2c_base resource\n");
2008		return -ENODEV;
2009	}
2010
2011	mem = platform_get_resource(pdev, IORESOURCE_MEM, 2);
2012	if (!mem) {
2013		dev_err(td->dev, "no i2c_controller_base resource\n");
2014		return -ENODEV;
2015	}
2016
2017	td->i2c_controller_base = devm_ioremap(td->dev, mem->start,
2018					       resource_size(mem));
2019	if (!td->i2c_controller_base) {
2020		dev_err(td->dev,
2021			"couldn't ioremap i2c_controller_base resource\n");
2022		return -ENODEV;
2023	}
2024
2025	mem = platform_get_resource(pdev, IORESOURCE_MEM, 3);
2026	if (!mem) {
2027		dev_err(td->dev, "no lut_base resource\n");
2028		return -ENODEV;
2029	}
2030
2031	td->lut_base = devm_ioremap(td->dev, mem->start, resource_size(mem));
2032	if (!td->lut_base) {
2033		dev_err(td->dev,
2034			"couldn't ioremap lut_base resource\n");
2035		return -ENODEV;
2036	}
2037
2038	ret = dfll_init_clks(td);
2039	if (ret) {
2040		dev_err(&pdev->dev, "DFLL clock init error\n");
2041		return ret;
2042	}
2043
2044	/* Enable the clocks and set the device up */
2045	ret = dfll_init(td);
2046	if (ret)
2047		return ret;
2048
2049	ret = dfll_register_clk(td);
2050	if (ret) {
2051		dev_err(&pdev->dev, "DFLL clk registration failed\n");
2052		return ret;
2053	}
2054
2055	dfll_debug_init(td);
2056
2057	return 0;
2058}
2059EXPORT_SYMBOL(tegra_dfll_register);
2060
2061/**
2062 * tegra_dfll_unregister - release all of the DFLL driver resources for a device
2063 * @pdev: DFLL platform_device *
2064 *
2065 * Unbind this driver from the DFLL hardware device represented by
2066 * @pdev. The DFLL must be disabled for this to succeed. Returns a
2067 * soc pointer upon success or -EBUSY if the DFLL is still active.
2068 */
2069struct tegra_dfll_soc_data *tegra_dfll_unregister(struct platform_device *pdev)
2070{
2071	struct tegra_dfll *td = platform_get_drvdata(pdev);
2072
2073	/* Try to prevent removal while the DFLL is active */
2074	if (td->mode != DFLL_DISABLED) {
2075		dev_err(&pdev->dev,
2076			"must disable DFLL before removing driver\n");
2077		return ERR_PTR(-EBUSY);
2078	}
2079
2080	debugfs_remove_recursive(td->debugfs_dir);
2081
2082	dfll_unregister_clk(td);
2083	pm_runtime_disable(&pdev->dev);
2084
2085	clk_unprepare(td->ref_clk);
2086	clk_unprepare(td->soc_clk);
2087	clk_unprepare(td->i2c_clk);
2088
2089	reset_control_assert(td->dvco_rst);
2090
2091	return td->soc;
2092}
2093EXPORT_SYMBOL(tegra_dfll_unregister);
2094