1// SPDX-License-Identifier: GPL-2.0
2/*
3 * R9A06G032 clock driver
4 *
5 * Copyright (C) 2018 Renesas Electronics Europe Limited
6 *
7 * Michel Pollet <michel.pollet@bp.renesas.com>, <buserror@gmail.com>
8 */
9
10#include <linux/clk.h>
11#include <linux/clk-provider.h>
12#include <linux/delay.h>
13#include <linux/init.h>
14#include <linux/io.h>
15#include <linux/kernel.h>
16#include <linux/math64.h>
17#include <linux/of.h>
18#include <linux/of_address.h>
19#include <linux/platform_device.h>
20#include <linux/pm_clock.h>
21#include <linux/pm_domain.h>
22#include <linux/slab.h>
23#include <linux/spinlock.h>
24#include <dt-bindings/clock/r9a06g032-sysctrl.h>
25
26struct r9a06g032_gate {
27	u16 gate, reset, ready, midle,
28		scon, mirack, mistat;
29};
30
31/* This is used to describe a clock for instantiation */
32struct r9a06g032_clkdesc {
33	const char *name;
34	uint32_t managed: 1;
35	uint32_t type: 3;
36	uint32_t index: 8;
37	uint32_t source : 8; /* source index + 1 (0 == none) */
38	/* these are used to populate the bitsel struct */
39	union {
40		struct r9a06g032_gate gate;
41		/* for dividers */
42		struct {
43			unsigned int div_min : 10, div_max : 10, reg: 10;
44			u16 div_table[4];
45		};
46		/* For fixed-factor ones */
47		struct {
48			u16 div, mul;
49		};
50		unsigned int factor;
51		unsigned int frequency;
52		/* for dual gate */
53		struct {
54			uint16_t group : 1, index: 3;
55			u16 sel, g1, r1, g2, r2;
56		} dual;
57	};
58};
59
60#define I_GATE(_clk, _rst, _rdy, _midle, _scon, _mirack, _mistat) \
61	{ .gate = _clk, .reset = _rst, \
62		.ready = _rdy, .midle = _midle, \
63		.scon = _scon, .mirack = _mirack, .mistat = _mistat }
64#define D_GATE(_idx, _n, _src, ...) \
65	{ .type = K_GATE, .index = R9A06G032_##_idx, \
66		.source = 1 + R9A06G032_##_src, .name = _n, \
67		.gate = I_GATE(__VA_ARGS__) }
68#define D_MODULE(_idx, _n, _src, ...) \
69	{ .type = K_GATE, .index = R9A06G032_##_idx, \
70		.source = 1 + R9A06G032_##_src, .name = _n, \
71		.managed = 1, .gate = I_GATE(__VA_ARGS__) }
72#define D_ROOT(_idx, _n, _mul, _div) \
73	{ .type = K_FFC, .index = R9A06G032_##_idx, .name = _n, \
74		.div = _div, .mul = _mul }
75#define D_FFC(_idx, _n, _src, _div) \
76	{ .type = K_FFC, .index = R9A06G032_##_idx, \
77		.source = 1 + R9A06G032_##_src, .name = _n, \
78		.div = _div, .mul = 1}
79#define D_DIV(_idx, _n, _src, _reg, _min, _max, ...) \
80	{ .type = K_DIV, .index = R9A06G032_##_idx, \
81		.source = 1 + R9A06G032_##_src, .name = _n, \
82		.reg = _reg, .div_min = _min, .div_max = _max, \
83		.div_table = { __VA_ARGS__ } }
84#define D_UGATE(_idx, _n, _src, _g, _gi, _g1, _r1, _g2, _r2) \
85	{ .type = K_DUALGATE, .index = R9A06G032_##_idx, \
86		.source = 1 + R9A06G032_##_src, .name = _n, \
87		.dual = { .group = _g, .index = _gi, \
88			.g1 = _g1, .r1 = _r1, .g2 = _g2, .r2 = _r2 }, }
89
90enum { K_GATE = 0, K_FFC, K_DIV, K_BITSEL, K_DUALGATE };
91
92/* Internal clock IDs */
93#define R9A06G032_CLKOUT		0
94#define R9A06G032_CLKOUT_D10		2
95#define R9A06G032_CLKOUT_D16		3
96#define R9A06G032_CLKOUT_D160		4
97#define R9A06G032_CLKOUT_D1OR2		5
98#define R9A06G032_CLKOUT_D20		6
99#define R9A06G032_CLKOUT_D40		7
100#define R9A06G032_CLKOUT_D5		8
101#define R9A06G032_CLKOUT_D8		9
102#define R9A06G032_DIV_ADC		10
103#define R9A06G032_DIV_I2C		11
104#define R9A06G032_DIV_NAND		12
105#define R9A06G032_DIV_P1_PG		13
106#define R9A06G032_DIV_P2_PG		14
107#define R9A06G032_DIV_P3_PG		15
108#define R9A06G032_DIV_P4_PG		16
109#define R9A06G032_DIV_P5_PG		17
110#define R9A06G032_DIV_P6_PG		18
111#define R9A06G032_DIV_QSPI0		19
112#define R9A06G032_DIV_QSPI1		20
113#define R9A06G032_DIV_REF_SYNC		21
114#define R9A06G032_DIV_SDIO0		22
115#define R9A06G032_DIV_SDIO1		23
116#define R9A06G032_DIV_SWITCH		24
117#define R9A06G032_DIV_UART		25
118#define R9A06G032_DIV_MOTOR		64
119#define R9A06G032_CLK_DDRPHY_PLLCLK_D4	78
120#define R9A06G032_CLK_ECAT100_D4	79
121#define R9A06G032_CLK_HSR100_D2		80
122#define R9A06G032_CLK_REF_SYNC_D4	81
123#define R9A06G032_CLK_REF_SYNC_D8	82
124#define R9A06G032_CLK_SERCOS100_D2	83
125#define R9A06G032_DIV_CA7		84
126
127#define R9A06G032_UART_GROUP_012	154
128#define R9A06G032_UART_GROUP_34567	155
129
130#define R9A06G032_CLOCK_COUNT		(R9A06G032_UART_GROUP_34567 + 1)
131
132static const struct r9a06g032_clkdesc r9a06g032_clocks[] = {
133	D_ROOT(CLKOUT, "clkout", 25, 1),
134	D_ROOT(CLK_PLL_USB, "clk_pll_usb", 12, 10),
135	D_FFC(CLKOUT_D10, "clkout_d10", CLKOUT, 10),
136	D_FFC(CLKOUT_D16, "clkout_d16", CLKOUT, 16),
137	D_FFC(CLKOUT_D160, "clkout_d160", CLKOUT, 160),
138	D_DIV(CLKOUT_D1OR2, "clkout_d1or2", CLKOUT, 0, 1, 2),
139	D_FFC(CLKOUT_D20, "clkout_d20", CLKOUT, 20),
140	D_FFC(CLKOUT_D40, "clkout_d40", CLKOUT, 40),
141	D_FFC(CLKOUT_D5, "clkout_d5", CLKOUT, 5),
142	D_FFC(CLKOUT_D8, "clkout_d8", CLKOUT, 8),
143	D_DIV(DIV_ADC, "div_adc", CLKOUT, 77, 50, 250),
144	D_DIV(DIV_I2C, "div_i2c", CLKOUT, 78, 12, 16),
145	D_DIV(DIV_NAND, "div_nand", CLKOUT, 82, 12, 32),
146	D_DIV(DIV_P1_PG, "div_p1_pg", CLKOUT, 68, 12, 200),
147	D_DIV(DIV_P2_PG, "div_p2_pg", CLKOUT, 62, 12, 128),
148	D_DIV(DIV_P3_PG, "div_p3_pg", CLKOUT, 64, 8, 128),
149	D_DIV(DIV_P4_PG, "div_p4_pg", CLKOUT, 66, 8, 128),
150	D_DIV(DIV_P5_PG, "div_p5_pg", CLKOUT, 71, 10, 40),
151	D_DIV(DIV_P6_PG, "div_p6_pg", CLKOUT, 18, 12, 64),
152	D_DIV(DIV_QSPI0, "div_qspi0", CLKOUT, 73, 3, 7),
153	D_DIV(DIV_QSPI1, "div_qspi1", CLKOUT, 25, 3, 7),
154	D_DIV(DIV_REF_SYNC, "div_ref_sync", CLKOUT, 56, 2, 16, 2, 4, 8, 16),
155	D_DIV(DIV_SDIO0, "div_sdio0", CLKOUT, 74, 20, 128),
156	D_DIV(DIV_SDIO1, "div_sdio1", CLKOUT, 75, 20, 128),
157	D_DIV(DIV_SWITCH, "div_switch", CLKOUT, 37, 5, 40),
158	D_DIV(DIV_UART, "div_uart", CLKOUT, 79, 12, 128),
159	D_GATE(CLK_25_PG4, "clk_25_pg4", CLKOUT_D40, 0x749, 0x74a, 0x74b, 0, 0xae3, 0, 0),
160	D_GATE(CLK_25_PG5, "clk_25_pg5", CLKOUT_D40, 0x74c, 0x74d, 0x74e, 0, 0xae4, 0, 0),
161	D_GATE(CLK_25_PG6, "clk_25_pg6", CLKOUT_D40, 0x74f, 0x750, 0x751, 0, 0xae5, 0, 0),
162	D_GATE(CLK_25_PG7, "clk_25_pg7", CLKOUT_D40, 0x752, 0x753, 0x754, 0, 0xae6, 0, 0),
163	D_GATE(CLK_25_PG8, "clk_25_pg8", CLKOUT_D40, 0x755, 0x756, 0x757, 0, 0xae7, 0, 0),
164	D_GATE(CLK_ADC, "clk_adc", DIV_ADC, 0x1ea, 0x1eb, 0, 0, 0, 0, 0),
165	D_GATE(CLK_ECAT100, "clk_ecat100", CLKOUT_D10, 0x405, 0, 0, 0, 0, 0, 0),
166	D_GATE(CLK_HSR100, "clk_hsr100", CLKOUT_D10, 0x483, 0, 0, 0, 0, 0, 0),
167	D_GATE(CLK_I2C0, "clk_i2c0", DIV_I2C, 0x1e6, 0x1e7, 0, 0, 0, 0, 0),
168	D_GATE(CLK_I2C1, "clk_i2c1", DIV_I2C, 0x1e8, 0x1e9, 0, 0, 0, 0, 0),
169	D_GATE(CLK_MII_REF, "clk_mii_ref", CLKOUT_D40, 0x342, 0, 0, 0, 0, 0, 0),
170	D_GATE(CLK_NAND, "clk_nand", DIV_NAND, 0x284, 0x285, 0, 0, 0, 0, 0),
171	D_GATE(CLK_NOUSBP2_PG6, "clk_nousbp2_pg6", DIV_P2_PG, 0x774, 0x775, 0, 0, 0, 0, 0),
172	D_GATE(CLK_P1_PG2, "clk_p1_pg2", DIV_P1_PG, 0x862, 0x863, 0, 0, 0, 0, 0),
173	D_GATE(CLK_P1_PG3, "clk_p1_pg3", DIV_P1_PG, 0x864, 0x865, 0, 0, 0, 0, 0),
174	D_GATE(CLK_P1_PG4, "clk_p1_pg4", DIV_P1_PG, 0x866, 0x867, 0, 0, 0, 0, 0),
175	D_GATE(CLK_P4_PG3, "clk_p4_pg3", DIV_P4_PG, 0x824, 0x825, 0, 0, 0, 0, 0),
176	D_GATE(CLK_P4_PG4, "clk_p4_pg4", DIV_P4_PG, 0x826, 0x827, 0, 0, 0, 0, 0),
177	D_GATE(CLK_P6_PG1, "clk_p6_pg1", DIV_P6_PG, 0x8a0, 0x8a1, 0x8a2, 0, 0xb60, 0, 0),
178	D_GATE(CLK_P6_PG2, "clk_p6_pg2", DIV_P6_PG, 0x8a3, 0x8a4, 0x8a5, 0, 0xb61, 0, 0),
179	D_GATE(CLK_P6_PG3, "clk_p6_pg3", DIV_P6_PG, 0x8a6, 0x8a7, 0x8a8, 0, 0xb62, 0, 0),
180	D_GATE(CLK_P6_PG4, "clk_p6_pg4", DIV_P6_PG, 0x8a9, 0x8aa, 0x8ab, 0, 0xb63, 0, 0),
181	D_MODULE(CLK_PCI_USB, "clk_pci_usb", CLKOUT_D40, 0xe6, 0, 0, 0, 0, 0, 0),
182	D_GATE(CLK_QSPI0, "clk_qspi0", DIV_QSPI0, 0x2a4, 0x2a5, 0, 0, 0, 0, 0),
183	D_GATE(CLK_QSPI1, "clk_qspi1", DIV_QSPI1, 0x484, 0x485, 0, 0, 0, 0, 0),
184	D_GATE(CLK_RGMII_REF, "clk_rgmii_ref", CLKOUT_D8, 0x340, 0, 0, 0, 0, 0, 0),
185	D_GATE(CLK_RMII_REF, "clk_rmii_ref", CLKOUT_D20, 0x341, 0, 0, 0, 0, 0, 0),
186	D_GATE(CLK_SDIO0, "clk_sdio0", DIV_SDIO0, 0x64, 0, 0, 0, 0, 0, 0),
187	D_GATE(CLK_SDIO1, "clk_sdio1", DIV_SDIO1, 0x644, 0, 0, 0, 0, 0, 0),
188	D_GATE(CLK_SERCOS100, "clk_sercos100", CLKOUT_D10, 0x425, 0, 0, 0, 0, 0, 0),
189	D_GATE(CLK_SLCD, "clk_slcd", DIV_P1_PG, 0x860, 0x861, 0, 0, 0, 0, 0),
190	D_GATE(CLK_SPI0, "clk_spi0", DIV_P3_PG, 0x7e0, 0x7e1, 0, 0, 0, 0, 0),
191	D_GATE(CLK_SPI1, "clk_spi1", DIV_P3_PG, 0x7e2, 0x7e3, 0, 0, 0, 0, 0),
192	D_GATE(CLK_SPI2, "clk_spi2", DIV_P3_PG, 0x7e4, 0x7e5, 0, 0, 0, 0, 0),
193	D_GATE(CLK_SPI3, "clk_spi3", DIV_P3_PG, 0x7e6, 0x7e7, 0, 0, 0, 0, 0),
194	D_GATE(CLK_SPI4, "clk_spi4", DIV_P4_PG, 0x820, 0x821, 0, 0, 0, 0, 0),
195	D_GATE(CLK_SPI5, "clk_spi5", DIV_P4_PG, 0x822, 0x823, 0, 0, 0, 0, 0),
196	D_GATE(CLK_SWITCH, "clk_switch", DIV_SWITCH, 0x982, 0x983, 0, 0, 0, 0, 0),
197	D_DIV(DIV_MOTOR, "div_motor", CLKOUT_D5, 84, 2, 8),
198	D_MODULE(HCLK_ECAT125, "hclk_ecat125", CLKOUT_D8, 0x400, 0x401, 0, 0x402, 0, 0x440, 0x441),
199	D_MODULE(HCLK_PINCONFIG, "hclk_pinconfig", CLKOUT_D40, 0x740, 0x741, 0x742, 0, 0xae0, 0, 0),
200	D_MODULE(HCLK_SERCOS, "hclk_sercos", CLKOUT_D10, 0x420, 0x422, 0, 0x421, 0, 0x460, 0x461),
201	D_MODULE(HCLK_SGPIO2, "hclk_sgpio2", DIV_P5_PG, 0x8c3, 0x8c4, 0x8c5, 0, 0xb41, 0, 0),
202	D_MODULE(HCLK_SGPIO3, "hclk_sgpio3", DIV_P5_PG, 0x8c6, 0x8c7, 0x8c8, 0, 0xb42, 0, 0),
203	D_MODULE(HCLK_SGPIO4, "hclk_sgpio4", DIV_P5_PG, 0x8c9, 0x8ca, 0x8cb, 0, 0xb43, 0, 0),
204	D_MODULE(HCLK_TIMER0, "hclk_timer0", CLKOUT_D40, 0x743, 0x744, 0x745, 0, 0xae1, 0, 0),
205	D_MODULE(HCLK_TIMER1, "hclk_timer1", CLKOUT_D40, 0x746, 0x747, 0x748, 0, 0xae2, 0, 0),
206	D_MODULE(HCLK_USBF, "hclk_usbf", CLKOUT_D8, 0xe3, 0, 0, 0xe4, 0, 0x102, 0x103),
207	D_MODULE(HCLK_USBH, "hclk_usbh", CLKOUT_D8, 0xe0, 0xe1, 0, 0xe2, 0, 0x100, 0x101),
208	D_MODULE(HCLK_USBPM, "hclk_usbpm", CLKOUT_D8, 0xe5, 0, 0, 0, 0, 0, 0),
209	D_GATE(CLK_48_PG_F, "clk_48_pg_f", CLK_48, 0x78c, 0x78d, 0, 0x78e, 0, 0xb04, 0xb05),
210	D_GATE(CLK_48_PG4, "clk_48_pg4", CLK_48, 0x789, 0x78a, 0x78b, 0, 0xb03, 0, 0),
211	D_FFC(CLK_DDRPHY_PLLCLK_D4, "clk_ddrphy_pllclk_d4", CLK_DDRPHY_PLLCLK, 4),
212	D_FFC(CLK_ECAT100_D4, "clk_ecat100_d4", CLK_ECAT100, 4),
213	D_FFC(CLK_HSR100_D2, "clk_hsr100_d2", CLK_HSR100, 2),
214	D_FFC(CLK_REF_SYNC_D4, "clk_ref_sync_d4", CLK_REF_SYNC, 4),
215	D_FFC(CLK_REF_SYNC_D8, "clk_ref_sync_d8", CLK_REF_SYNC, 8),
216	D_FFC(CLK_SERCOS100_D2, "clk_sercos100_d2", CLK_SERCOS100, 2),
217	D_DIV(DIV_CA7, "div_ca7", CLK_REF_SYNC, 57, 1, 4, 1, 2, 4),
218	D_MODULE(HCLK_CAN0, "hclk_can0", CLK_48, 0x783, 0x784, 0x785, 0, 0xb01, 0, 0),
219	D_MODULE(HCLK_CAN1, "hclk_can1", CLK_48, 0x786, 0x787, 0x788, 0, 0xb02, 0, 0),
220	D_MODULE(HCLK_DELTASIGMA, "hclk_deltasigma", DIV_MOTOR, 0x1ef, 0x1f0, 0x1f1, 0, 0, 0, 0),
221	D_MODULE(HCLK_PWMPTO, "hclk_pwmpto", DIV_MOTOR, 0x1ec, 0x1ed, 0x1ee, 0, 0, 0, 0),
222	D_MODULE(HCLK_RSV, "hclk_rsv", CLK_48, 0x780, 0x781, 0x782, 0, 0xb00, 0, 0),
223	D_MODULE(HCLK_SGPIO0, "hclk_sgpio0", DIV_MOTOR, 0x1e0, 0x1e1, 0x1e2, 0, 0, 0, 0),
224	D_MODULE(HCLK_SGPIO1, "hclk_sgpio1", DIV_MOTOR, 0x1e3, 0x1e4, 0x1e5, 0, 0, 0, 0),
225	D_DIV(RTOS_MDC, "rtos_mdc", CLK_REF_SYNC, 100, 80, 640, 80, 160, 320, 640),
226	D_GATE(CLK_CM3, "clk_cm3", CLK_REF_SYNC_D4, 0xba0, 0xba1, 0, 0xba2, 0, 0xbc0, 0xbc1),
227	D_GATE(CLK_DDRC, "clk_ddrc", CLK_DDRPHY_PLLCLK_D4, 0x323, 0x324, 0, 0, 0, 0, 0),
228	D_GATE(CLK_ECAT25, "clk_ecat25", CLK_ECAT100_D4, 0x403, 0x404, 0, 0, 0, 0, 0),
229	D_GATE(CLK_HSR50, "clk_hsr50", CLK_HSR100_D2, 0x484, 0x485, 0, 0, 0, 0, 0),
230	D_GATE(CLK_HW_RTOS, "clk_hw_rtos", CLK_REF_SYNC_D4, 0xc60, 0xc61, 0, 0, 0, 0, 0),
231	D_GATE(CLK_SERCOS50, "clk_sercos50", CLK_SERCOS100_D2, 0x424, 0x423, 0, 0, 0, 0, 0),
232	D_MODULE(HCLK_ADC, "hclk_adc", CLK_REF_SYNC_D8, 0x1af, 0x1b0, 0x1b1, 0, 0, 0, 0),
233	D_MODULE(HCLK_CM3, "hclk_cm3", CLK_REF_SYNC_D4, 0xc20, 0xc21, 0xc22, 0, 0, 0, 0),
234	D_MODULE(HCLK_CRYPTO_EIP150, "hclk_crypto_eip150", CLK_REF_SYNC_D4, 0x123, 0x124, 0x125, 0, 0x142, 0, 0),
235	D_MODULE(HCLK_CRYPTO_EIP93, "hclk_crypto_eip93", CLK_REF_SYNC_D4, 0x120, 0x121, 0, 0x122, 0, 0x140, 0x141),
236	D_MODULE(HCLK_DDRC, "hclk_ddrc", CLK_REF_SYNC_D4, 0x320, 0x322, 0, 0x321, 0, 0x3a0, 0x3a1),
237	D_MODULE(HCLK_DMA0, "hclk_dma0", CLK_REF_SYNC_D4, 0x260, 0x261, 0x262, 0x263, 0x2c0, 0x2c1, 0x2c2),
238	D_MODULE(HCLK_DMA1, "hclk_dma1", CLK_REF_SYNC_D4, 0x264, 0x265, 0x266, 0x267, 0x2c3, 0x2c4, 0x2c5),
239	D_MODULE(HCLK_GMAC0, "hclk_gmac0", CLK_REF_SYNC_D4, 0x360, 0x361, 0x362, 0x363, 0x3c0, 0x3c1, 0x3c2),
240	D_MODULE(HCLK_GMAC1, "hclk_gmac1", CLK_REF_SYNC_D4, 0x380, 0x381, 0x382, 0x383, 0x3e0, 0x3e1, 0x3e2),
241	D_MODULE(HCLK_GPIO0, "hclk_gpio0", CLK_REF_SYNC_D4, 0x212, 0x213, 0x214, 0, 0, 0, 0),
242	D_MODULE(HCLK_GPIO1, "hclk_gpio1", CLK_REF_SYNC_D4, 0x215, 0x216, 0x217, 0, 0, 0, 0),
243	D_MODULE(HCLK_GPIO2, "hclk_gpio2", CLK_REF_SYNC_D4, 0x229, 0x22a, 0x22b, 0, 0, 0, 0),
244	D_MODULE(HCLK_HSR, "hclk_hsr", CLK_HSR100_D2, 0x480, 0x482, 0, 0x481, 0, 0x4c0, 0x4c1),
245	D_MODULE(HCLK_I2C0, "hclk_i2c0", CLK_REF_SYNC_D8, 0x1a9, 0x1aa, 0x1ab, 0, 0, 0, 0),
246	D_MODULE(HCLK_I2C1, "hclk_i2c1", CLK_REF_SYNC_D8, 0x1ac, 0x1ad, 0x1ae, 0, 0, 0, 0),
247	D_MODULE(HCLK_LCD, "hclk_lcd", CLK_REF_SYNC_D4, 0x7a0, 0x7a1, 0x7a2, 0, 0xb20, 0, 0),
248	D_MODULE(HCLK_MSEBI_M, "hclk_msebi_m", CLK_REF_SYNC_D4, 0x164, 0x165, 0x166, 0, 0x183, 0, 0),
249	D_MODULE(HCLK_MSEBI_S, "hclk_msebi_s", CLK_REF_SYNC_D4, 0x160, 0x161, 0x162, 0x163, 0x180, 0x181, 0x182),
250	D_MODULE(HCLK_NAND, "hclk_nand", CLK_REF_SYNC_D4, 0x280, 0x281, 0x282, 0x283, 0x2e0, 0x2e1, 0x2e2),
251	D_MODULE(HCLK_PG_I, "hclk_pg_i", CLK_REF_SYNC_D4, 0x7ac, 0x7ad, 0, 0x7ae, 0, 0xb24, 0xb25),
252	D_MODULE(HCLK_PG19, "hclk_pg19", CLK_REF_SYNC_D4, 0x22c, 0x22d, 0x22e, 0, 0, 0, 0),
253	D_MODULE(HCLK_PG20, "hclk_pg20", CLK_REF_SYNC_D4, 0x22f, 0x230, 0x231, 0, 0, 0, 0),
254	D_MODULE(HCLK_PG3, "hclk_pg3", CLK_REF_SYNC_D4, 0x7a6, 0x7a7, 0x7a8, 0, 0xb22, 0, 0),
255	D_MODULE(HCLK_PG4, "hclk_pg4", CLK_REF_SYNC_D4, 0x7a9, 0x7aa, 0x7ab, 0, 0xb23, 0, 0),
256	D_MODULE(HCLK_QSPI0, "hclk_qspi0", CLK_REF_SYNC_D4, 0x2a0, 0x2a1, 0x2a2, 0x2a3, 0x300, 0x301, 0x302),
257	D_MODULE(HCLK_QSPI1, "hclk_qspi1", CLK_REF_SYNC_D4, 0x480, 0x481, 0x482, 0x483, 0x4c0, 0x4c1, 0x4c2),
258	D_MODULE(HCLK_ROM, "hclk_rom", CLK_REF_SYNC_D4, 0xaa0, 0xaa1, 0xaa2, 0, 0xb80, 0, 0),
259	D_MODULE(HCLK_RTC, "hclk_rtc", CLK_REF_SYNC_D8, 0xa00, 0, 0, 0, 0, 0, 0),
260	D_MODULE(HCLK_SDIO0, "hclk_sdio0", CLK_REF_SYNC_D4, 0x60, 0x61, 0x62, 0x63, 0x80, 0x81, 0x82),
261	D_MODULE(HCLK_SDIO1, "hclk_sdio1", CLK_REF_SYNC_D4, 0x640, 0x641, 0x642, 0x643, 0x660, 0x661, 0x662),
262	D_MODULE(HCLK_SEMAP, "hclk_semap", CLK_REF_SYNC_D4, 0x7a3, 0x7a4, 0x7a5, 0, 0xb21, 0, 0),
263	D_MODULE(HCLK_SPI0, "hclk_spi0", CLK_REF_SYNC_D4, 0x200, 0x201, 0x202, 0, 0, 0, 0),
264	D_MODULE(HCLK_SPI1, "hclk_spi1", CLK_REF_SYNC_D4, 0x203, 0x204, 0x205, 0, 0, 0, 0),
265	D_MODULE(HCLK_SPI2, "hclk_spi2", CLK_REF_SYNC_D4, 0x206, 0x207, 0x208, 0, 0, 0, 0),
266	D_MODULE(HCLK_SPI3, "hclk_spi3", CLK_REF_SYNC_D4, 0x209, 0x20a, 0x20b, 0, 0, 0, 0),
267	D_MODULE(HCLK_SPI4, "hclk_spi4", CLK_REF_SYNC_D4, 0x20c, 0x20d, 0x20e, 0, 0, 0, 0),
268	D_MODULE(HCLK_SPI5, "hclk_spi5", CLK_REF_SYNC_D4, 0x20f, 0x210, 0x211, 0, 0, 0, 0),
269	D_MODULE(HCLK_SWITCH, "hclk_switch", CLK_REF_SYNC_D4, 0x980, 0, 0x981, 0, 0, 0, 0),
270	D_MODULE(HCLK_SWITCH_RG, "hclk_switch_rg", CLK_REF_SYNC_D4, 0xc40, 0xc41, 0xc42, 0, 0, 0, 0),
271	D_MODULE(HCLK_UART0, "hclk_uart0", CLK_REF_SYNC_D8, 0x1a0, 0x1a1, 0x1a2, 0, 0, 0, 0),
272	D_MODULE(HCLK_UART1, "hclk_uart1", CLK_REF_SYNC_D8, 0x1a3, 0x1a4, 0x1a5, 0, 0, 0, 0),
273	D_MODULE(HCLK_UART2, "hclk_uart2", CLK_REF_SYNC_D8, 0x1a6, 0x1a7, 0x1a8, 0, 0, 0, 0),
274	D_MODULE(HCLK_UART3, "hclk_uart3", CLK_REF_SYNC_D4, 0x218, 0x219, 0x21a, 0, 0, 0, 0),
275	D_MODULE(HCLK_UART4, "hclk_uart4", CLK_REF_SYNC_D4, 0x21b, 0x21c, 0x21d, 0, 0, 0, 0),
276	D_MODULE(HCLK_UART5, "hclk_uart5", CLK_REF_SYNC_D4, 0x220, 0x221, 0x222, 0, 0, 0, 0),
277	D_MODULE(HCLK_UART6, "hclk_uart6", CLK_REF_SYNC_D4, 0x223, 0x224, 0x225, 0, 0, 0, 0),
278	D_MODULE(HCLK_UART7, "hclk_uart7", CLK_REF_SYNC_D4, 0x226, 0x227, 0x228, 0, 0, 0, 0),
279	/*
280	 * These are not hardware clocks, but are needed to handle the special
281	 * case where we have a 'selector bit' that doesn't just change the
282	 * parent for a clock, but also the gate it's suposed to use.
283	 */
284	{
285		.index = R9A06G032_UART_GROUP_012,
286		.name = "uart_group_012",
287		.type = K_BITSEL,
288		.source = 1 + R9A06G032_DIV_UART,
289		/* R9A06G032_SYSCTRL_REG_PWRCTRL_PG0_0 */
290		.dual.sel = ((0x34 / 4) << 5) | 30,
291		.dual.group = 0,
292	},
293	{
294		.index = R9A06G032_UART_GROUP_34567,
295		.name = "uart_group_34567",
296		.type = K_BITSEL,
297		.source = 1 + R9A06G032_DIV_P2_PG,
298		/* R9A06G032_SYSCTRL_REG_PWRCTRL_PG1_PR2 */
299		.dual.sel = ((0xec / 4) << 5) | 24,
300		.dual.group = 1,
301	},
302	D_UGATE(CLK_UART0, "clk_uart0", UART_GROUP_012, 0, 0, 0x1b2, 0x1b3, 0x1b4, 0x1b5),
303	D_UGATE(CLK_UART1, "clk_uart1", UART_GROUP_012, 0, 1, 0x1b6, 0x1b7, 0x1b8, 0x1b9),
304	D_UGATE(CLK_UART2, "clk_uart2", UART_GROUP_012, 0, 2, 0x1ba, 0x1bb, 0x1bc, 0x1bd),
305	D_UGATE(CLK_UART3, "clk_uart3", UART_GROUP_34567, 1, 0, 0x760, 0x761, 0x762, 0x763),
306	D_UGATE(CLK_UART4, "clk_uart4", UART_GROUP_34567, 1, 1, 0x764, 0x765, 0x766, 0x767),
307	D_UGATE(CLK_UART5, "clk_uart5", UART_GROUP_34567, 1, 2, 0x768, 0x769, 0x76a, 0x76b),
308	D_UGATE(CLK_UART6, "clk_uart6", UART_GROUP_34567, 1, 3, 0x76c, 0x76d, 0x76e, 0x76f),
309	D_UGATE(CLK_UART7, "clk_uart7", UART_GROUP_34567, 1, 4, 0x770, 0x771, 0x772, 0x773),
310};
311
312struct r9a06g032_priv {
313	struct clk_onecell_data data;
314	spinlock_t lock; /* protects concurent access to gates */
315	void __iomem *reg;
316};
317
318/* register/bit pairs are encoded as an uint16_t */
319static void
320clk_rdesc_set(struct r9a06g032_priv *clocks,
321	      u16 one, unsigned int on)
322{
323	u32 __iomem *reg = clocks->reg + (4 * (one >> 5));
324	u32 val = readl(reg);
325
326	val = (val & ~(1U << (one & 0x1f))) | ((!!on) << (one & 0x1f));
327	writel(val, reg);
328}
329
330static int
331clk_rdesc_get(struct r9a06g032_priv *clocks,
332	      uint16_t one)
333{
334	u32 __iomem *reg = clocks->reg + (4 * (one >> 5));
335	u32 val = readl(reg);
336
337	return !!(val & (1U << (one & 0x1f)));
338}
339
340/*
341 * This implements the R9A06G032 clock gate 'driver'. We cannot use the system's
342 * clock gate framework as the gates on the R9A06G032 have a special enabling
343 * sequence, therefore we use this little proxy.
344 */
345struct r9a06g032_clk_gate {
346	struct clk_hw hw;
347	struct r9a06g032_priv *clocks;
348	u16 index;
349
350	struct r9a06g032_gate gate;
351};
352
353#define to_r9a06g032_gate(_hw) container_of(_hw, struct r9a06g032_clk_gate, hw)
354
355static int create_add_module_clock(struct of_phandle_args *clkspec,
356				   struct device *dev)
357{
358	struct clk *clk;
359	int error;
360
361	clk = of_clk_get_from_provider(clkspec);
362	if (IS_ERR(clk))
363		return PTR_ERR(clk);
364
365	error = pm_clk_create(dev);
366	if (error) {
367		clk_put(clk);
368		return error;
369	}
370
371	error = pm_clk_add_clk(dev, clk);
372	if (error) {
373		pm_clk_destroy(dev);
374		clk_put(clk);
375	}
376
377	return error;
378}
379
380static int r9a06g032_attach_dev(struct generic_pm_domain *pd,
381				struct device *dev)
382{
383	struct device_node *np = dev->of_node;
384	struct of_phandle_args clkspec;
385	int i = 0;
386	int error;
387	int index;
388
389	while (!of_parse_phandle_with_args(np, "clocks", "#clock-cells", i++,
390					   &clkspec)) {
391		if (clkspec.np != pd->dev.of_node)
392			continue;
393
394		index = clkspec.args[0];
395		if (index < R9A06G032_CLOCK_COUNT &&
396		    r9a06g032_clocks[index].managed) {
397			error = create_add_module_clock(&clkspec, dev);
398			of_node_put(clkspec.np);
399			if (error)
400				return error;
401		}
402	}
403
404	return 0;
405}
406
407static void r9a06g032_detach_dev(struct generic_pm_domain *unused, struct device *dev)
408{
409	if (!pm_clk_no_clocks(dev))
410		pm_clk_destroy(dev);
411}
412
413static int r9a06g032_add_clk_domain(struct device *dev)
414{
415	struct device_node *np = dev->of_node;
416	struct generic_pm_domain *pd;
417
418	pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
419	if (!pd)
420		return -ENOMEM;
421
422	pd->name = np->name;
423	pd->flags = GENPD_FLAG_PM_CLK | GENPD_FLAG_ALWAYS_ON |
424		    GENPD_FLAG_ACTIVE_WAKEUP;
425	pd->attach_dev = r9a06g032_attach_dev;
426	pd->detach_dev = r9a06g032_detach_dev;
427	pm_genpd_init(pd, &pm_domain_always_on_gov, false);
428
429	of_genpd_add_provider_simple(np, pd);
430	return 0;
431}
432
433static void
434r9a06g032_clk_gate_set(struct r9a06g032_priv *clocks,
435		       struct r9a06g032_gate *g, int on)
436{
437	unsigned long flags;
438
439	WARN_ON(!g->gate);
440
441	spin_lock_irqsave(&clocks->lock, flags);
442	clk_rdesc_set(clocks, g->gate, on);
443	/* De-assert reset */
444	if (g->reset)
445		clk_rdesc_set(clocks, g->reset, 1);
446	spin_unlock_irqrestore(&clocks->lock, flags);
447
448	/* Hardware manual recommends 5us delay after enabling clock & reset */
449	udelay(5);
450
451	/* If the peripheral is memory mapped (i.e. an AXI slave), there is an
452	 * associated SLVRDY bit in the System Controller that needs to be set
453	 * so that the FlexWAY bus fabric passes on the read/write requests.
454	 */
455	if (g->ready || g->midle) {
456		spin_lock_irqsave(&clocks->lock, flags);
457		if (g->ready)
458			clk_rdesc_set(clocks, g->ready, on);
459		/* Clear 'Master Idle Request' bit */
460		if (g->midle)
461			clk_rdesc_set(clocks, g->midle, !on);
462		spin_unlock_irqrestore(&clocks->lock, flags);
463	}
464	/* Note: We don't wait for FlexWAY Socket Connection signal */
465}
466
467static int r9a06g032_clk_gate_enable(struct clk_hw *hw)
468{
469	struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
470
471	r9a06g032_clk_gate_set(g->clocks, &g->gate, 1);
472	return 0;
473}
474
475static void r9a06g032_clk_gate_disable(struct clk_hw *hw)
476{
477	struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
478
479	r9a06g032_clk_gate_set(g->clocks, &g->gate, 0);
480}
481
482static int r9a06g032_clk_gate_is_enabled(struct clk_hw *hw)
483{
484	struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
485
486	/* if clock is in reset, the gate might be on, and still not 'be' on */
487	if (g->gate.reset && !clk_rdesc_get(g->clocks, g->gate.reset))
488		return 0;
489
490	return clk_rdesc_get(g->clocks, g->gate.gate);
491}
492
493static const struct clk_ops r9a06g032_clk_gate_ops = {
494	.enable = r9a06g032_clk_gate_enable,
495	.disable = r9a06g032_clk_gate_disable,
496	.is_enabled = r9a06g032_clk_gate_is_enabled,
497};
498
499static struct clk *
500r9a06g032_register_gate(struct r9a06g032_priv *clocks,
501			const char *parent_name,
502			const struct r9a06g032_clkdesc *desc)
503{
504	struct clk *clk;
505	struct r9a06g032_clk_gate *g;
506	struct clk_init_data init;
507
508	g = kzalloc(sizeof(*g), GFP_KERNEL);
509	if (!g)
510		return NULL;
511
512	init.name = desc->name;
513	init.ops = &r9a06g032_clk_gate_ops;
514	init.flags = CLK_SET_RATE_PARENT;
515	init.parent_names = parent_name ? &parent_name : NULL;
516	init.num_parents = parent_name ? 1 : 0;
517
518	g->clocks = clocks;
519	g->index = desc->index;
520	g->gate = desc->gate;
521	g->hw.init = &init;
522
523	/*
524	 * important here, some clocks are already in use by the CM3, we
525	 * have to assume they are not Linux's to play with and try to disable
526	 * at the end of the boot!
527	 */
528	if (r9a06g032_clk_gate_is_enabled(&g->hw)) {
529		init.flags |= CLK_IS_CRITICAL;
530		pr_debug("%s was enabled, making read-only\n", desc->name);
531	}
532
533	clk = clk_register(NULL, &g->hw);
534	if (IS_ERR(clk)) {
535		kfree(g);
536		return NULL;
537	}
538	return clk;
539}
540
541struct r9a06g032_clk_div {
542	struct clk_hw hw;
543	struct r9a06g032_priv *clocks;
544	u16 index;
545	u16 reg;
546	u16 min, max;
547	u8 table_size;
548	u16 table[8];	/* we know there are no more than 8 */
549};
550
551#define to_r9a06g032_div(_hw) \
552		container_of(_hw, struct r9a06g032_clk_div, hw)
553
554static unsigned long
555r9a06g032_div_recalc_rate(struct clk_hw *hw,
556			  unsigned long parent_rate)
557{
558	struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
559	u32 __iomem *reg = clk->clocks->reg + (4 * clk->reg);
560	u32 div = readl(reg);
561
562	if (div < clk->min)
563		div = clk->min;
564	else if (div > clk->max)
565		div = clk->max;
566	return DIV_ROUND_UP(parent_rate, div);
567}
568
569/*
570 * Attempts to find a value that is in range of min,max,
571 * and if a table of set dividers was specified for this
572 * register, try to find the fixed divider that is the closest
573 * to the target frequency
574 */
575static long
576r9a06g032_div_clamp_div(struct r9a06g032_clk_div *clk,
577			unsigned long rate, unsigned long prate)
578{
579	/* + 1 to cope with rates that have the remainder dropped */
580	u32 div = DIV_ROUND_UP(prate, rate + 1);
581	int i;
582
583	if (div <= clk->min)
584		return clk->min;
585	if (div >= clk->max)
586		return clk->max;
587
588	for (i = 0; clk->table_size && i < clk->table_size - 1; i++) {
589		if (div >= clk->table[i] && div <= clk->table[i + 1]) {
590			unsigned long m = rate -
591				DIV_ROUND_UP(prate, clk->table[i]);
592			unsigned long p =
593				DIV_ROUND_UP(prate, clk->table[i + 1]) -
594				rate;
595			/*
596			 * select the divider that generates
597			 * the value closest to the ideal frequency
598			 */
599			div = p >= m ? clk->table[i] : clk->table[i + 1];
600			return div;
601		}
602	}
603	return div;
604}
605
606static long
607r9a06g032_div_round_rate(struct clk_hw *hw,
608			 unsigned long rate, unsigned long *prate)
609{
610	struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
611	u32 div = DIV_ROUND_UP(*prate, rate);
612
613	pr_devel("%s %pC %ld (prate %ld) (wanted div %u)\n", __func__,
614		 hw->clk, rate, *prate, div);
615	pr_devel("   min %d (%ld) max %d (%ld)\n",
616		 clk->min, DIV_ROUND_UP(*prate, clk->min),
617		clk->max, DIV_ROUND_UP(*prate, clk->max));
618
619	div = r9a06g032_div_clamp_div(clk, rate, *prate);
620	/*
621	 * this is a hack. Currently the serial driver asks for a clock rate
622	 * that is 16 times the baud rate -- and that is wildly outside the
623	 * range of the UART divider, somehow there is no provision for that
624	 * case of 'let the divider as is if outside range'.
625	 * The serial driver *shouldn't* play with these clocks anyway, there's
626	 * several uarts attached to this divider, and changing this impacts
627	 * everyone.
628	 */
629	if (clk->index == R9A06G032_DIV_UART ||
630	    clk->index == R9A06G032_DIV_P2_PG) {
631		pr_devel("%s div uart hack!\n", __func__);
632		return clk_get_rate(hw->clk);
633	}
634	pr_devel("%s %pC %ld / %u = %ld\n", __func__, hw->clk,
635		 *prate, div, DIV_ROUND_UP(*prate, div));
636	return DIV_ROUND_UP(*prate, div);
637}
638
639static int
640r9a06g032_div_set_rate(struct clk_hw *hw,
641		       unsigned long rate, unsigned long parent_rate)
642{
643	struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
644	/* + 1 to cope with rates that have the remainder dropped */
645	u32 div = DIV_ROUND_UP(parent_rate, rate + 1);
646	u32 __iomem *reg = clk->clocks->reg + (4 * clk->reg);
647
648	pr_devel("%s %pC rate %ld parent %ld div %d\n", __func__, hw->clk,
649		 rate, parent_rate, div);
650
651	/*
652	 * Need to write the bit 31 with the divider value to
653	 * latch it. Technically we should wait until it has been
654	 * cleared too.
655	 * TODO: Find whether this callback is sleepable, in case
656	 * the hardware /does/ require some sort of spinloop here.
657	 */
658	writel(div | BIT(31), reg);
659
660	return 0;
661}
662
663static const struct clk_ops r9a06g032_clk_div_ops = {
664	.recalc_rate = r9a06g032_div_recalc_rate,
665	.round_rate = r9a06g032_div_round_rate,
666	.set_rate = r9a06g032_div_set_rate,
667};
668
669static struct clk *
670r9a06g032_register_div(struct r9a06g032_priv *clocks,
671		       const char *parent_name,
672		       const struct r9a06g032_clkdesc *desc)
673{
674	struct r9a06g032_clk_div *div;
675	struct clk *clk;
676	struct clk_init_data init;
677	unsigned int i;
678
679	div = kzalloc(sizeof(*div), GFP_KERNEL);
680	if (!div)
681		return NULL;
682
683	init.name = desc->name;
684	init.ops = &r9a06g032_clk_div_ops;
685	init.flags = CLK_SET_RATE_PARENT;
686	init.parent_names = parent_name ? &parent_name : NULL;
687	init.num_parents = parent_name ? 1 : 0;
688
689	div->clocks = clocks;
690	div->index = desc->index;
691	div->reg = desc->reg;
692	div->hw.init = &init;
693	div->min = desc->div_min;
694	div->max = desc->div_max;
695	/* populate (optional) divider table fixed values */
696	for (i = 0; i < ARRAY_SIZE(div->table) &&
697	     i < ARRAY_SIZE(desc->div_table) && desc->div_table[i]; i++) {
698		div->table[div->table_size++] = desc->div_table[i];
699	}
700
701	clk = clk_register(NULL, &div->hw);
702	if (IS_ERR(clk)) {
703		kfree(div);
704		return NULL;
705	}
706	return clk;
707}
708
709/*
710 * This clock provider handles the case of the R9A06G032 where you have
711 * peripherals that have two potential clock source and two gates, one for
712 * each of the clock source - the used clock source (for all sub clocks)
713 * is selected by a single bit.
714 * That single bit affects all sub-clocks, and therefore needs to change the
715 * active gate (and turn the others off) and force a recalculation of the rates.
716 *
717 * This implements two clock providers, one 'bitselect' that
718 * handles the switch between both parents, and another 'dualgate'
719 * that knows which gate to poke at, depending on the parent's bit position.
720 */
721struct r9a06g032_clk_bitsel {
722	struct clk_hw	hw;
723	struct r9a06g032_priv *clocks;
724	u16 index;
725	u16 selector;		/* selector register + bit */
726};
727
728#define to_clk_bitselect(_hw) \
729		container_of(_hw, struct r9a06g032_clk_bitsel, hw)
730
731static u8 r9a06g032_clk_mux_get_parent(struct clk_hw *hw)
732{
733	struct r9a06g032_clk_bitsel *set = to_clk_bitselect(hw);
734
735	return clk_rdesc_get(set->clocks, set->selector);
736}
737
738static int r9a06g032_clk_mux_set_parent(struct clk_hw *hw, u8 index)
739{
740	struct r9a06g032_clk_bitsel *set = to_clk_bitselect(hw);
741
742	/* a single bit in the register selects one of two parent clocks */
743	clk_rdesc_set(set->clocks, set->selector, !!index);
744
745	return 0;
746}
747
748static const struct clk_ops clk_bitselect_ops = {
749	.get_parent = r9a06g032_clk_mux_get_parent,
750	.set_parent = r9a06g032_clk_mux_set_parent,
751};
752
753static struct clk *
754r9a06g032_register_bitsel(struct r9a06g032_priv *clocks,
755			  const char *parent_name,
756			  const struct r9a06g032_clkdesc *desc)
757{
758	struct clk *clk;
759	struct r9a06g032_clk_bitsel *g;
760	struct clk_init_data init;
761	const char *names[2];
762
763	/* allocate the gate */
764	g = kzalloc(sizeof(*g), GFP_KERNEL);
765	if (!g)
766		return NULL;
767
768	names[0] = parent_name;
769	names[1] = "clk_pll_usb";
770
771	init.name = desc->name;
772	init.ops = &clk_bitselect_ops;
773	init.flags = CLK_SET_RATE_PARENT;
774	init.parent_names = names;
775	init.num_parents = 2;
776
777	g->clocks = clocks;
778	g->index = desc->index;
779	g->selector = desc->dual.sel;
780	g->hw.init = &init;
781
782	clk = clk_register(NULL, &g->hw);
783	if (IS_ERR(clk)) {
784		kfree(g);
785		return NULL;
786	}
787	return clk;
788}
789
790struct r9a06g032_clk_dualgate {
791	struct clk_hw	hw;
792	struct r9a06g032_priv *clocks;
793	u16 index;
794	u16 selector;		/* selector register + bit */
795	struct r9a06g032_gate gate[2];
796};
797
798#define to_clk_dualgate(_hw) \
799		container_of(_hw, struct r9a06g032_clk_dualgate, hw)
800
801static int
802r9a06g032_clk_dualgate_setenable(struct r9a06g032_clk_dualgate *g, int enable)
803{
804	u8 sel_bit = clk_rdesc_get(g->clocks, g->selector);
805
806	/* we always turn off the 'other' gate, regardless */
807	r9a06g032_clk_gate_set(g->clocks, &g->gate[!sel_bit], 0);
808	r9a06g032_clk_gate_set(g->clocks, &g->gate[sel_bit], enable);
809
810	return 0;
811}
812
813static int r9a06g032_clk_dualgate_enable(struct clk_hw *hw)
814{
815	struct r9a06g032_clk_dualgate *gate = to_clk_dualgate(hw);
816
817	r9a06g032_clk_dualgate_setenable(gate, 1);
818
819	return 0;
820}
821
822static void r9a06g032_clk_dualgate_disable(struct clk_hw *hw)
823{
824	struct r9a06g032_clk_dualgate *gate = to_clk_dualgate(hw);
825
826	r9a06g032_clk_dualgate_setenable(gate, 0);
827}
828
829static int r9a06g032_clk_dualgate_is_enabled(struct clk_hw *hw)
830{
831	struct r9a06g032_clk_dualgate *g = to_clk_dualgate(hw);
832	u8 sel_bit = clk_rdesc_get(g->clocks, g->selector);
833
834	return clk_rdesc_get(g->clocks, g->gate[sel_bit].gate);
835}
836
837static const struct clk_ops r9a06g032_clk_dualgate_ops = {
838	.enable = r9a06g032_clk_dualgate_enable,
839	.disable = r9a06g032_clk_dualgate_disable,
840	.is_enabled = r9a06g032_clk_dualgate_is_enabled,
841};
842
843static struct clk *
844r9a06g032_register_dualgate(struct r9a06g032_priv *clocks,
845			    const char *parent_name,
846			    const struct r9a06g032_clkdesc *desc,
847			    uint16_t sel)
848{
849	struct r9a06g032_clk_dualgate *g;
850	struct clk *clk;
851	struct clk_init_data init;
852
853	/* allocate the gate */
854	g = kzalloc(sizeof(*g), GFP_KERNEL);
855	if (!g)
856		return NULL;
857	g->clocks = clocks;
858	g->index = desc->index;
859	g->selector = sel;
860	g->gate[0].gate = desc->dual.g1;
861	g->gate[0].reset = desc->dual.r1;
862	g->gate[1].gate = desc->dual.g2;
863	g->gate[1].reset = desc->dual.r2;
864
865	init.name = desc->name;
866	init.ops = &r9a06g032_clk_dualgate_ops;
867	init.flags = CLK_SET_RATE_PARENT;
868	init.parent_names = &parent_name;
869	init.num_parents = 1;
870	g->hw.init = &init;
871	/*
872	 * important here, some clocks are already in use by the CM3, we
873	 * have to assume they are not Linux's to play with and try to disable
874	 * at the end of the boot!
875	 */
876	if (r9a06g032_clk_dualgate_is_enabled(&g->hw)) {
877		init.flags |= CLK_IS_CRITICAL;
878		pr_debug("%s was enabled, making read-only\n", desc->name);
879	}
880
881	clk = clk_register(NULL, &g->hw);
882	if (IS_ERR(clk)) {
883		kfree(g);
884		return NULL;
885	}
886	return clk;
887}
888
889static void r9a06g032_clocks_del_clk_provider(void *data)
890{
891	of_clk_del_provider(data);
892}
893
894static int __init r9a06g032_clocks_probe(struct platform_device *pdev)
895{
896	struct device *dev = &pdev->dev;
897	struct device_node *np = dev->of_node;
898	struct r9a06g032_priv *clocks;
899	struct clk **clks;
900	struct clk *mclk;
901	unsigned int i;
902	u16 uart_group_sel[2];
903	int error;
904
905	clocks = devm_kzalloc(dev, sizeof(*clocks), GFP_KERNEL);
906	clks = devm_kcalloc(dev, R9A06G032_CLOCK_COUNT, sizeof(struct clk *),
907			    GFP_KERNEL);
908	if (!clocks || !clks)
909		return -ENOMEM;
910
911	spin_lock_init(&clocks->lock);
912
913	clocks->data.clks = clks;
914	clocks->data.clk_num = R9A06G032_CLOCK_COUNT;
915
916	mclk = devm_clk_get(dev, "mclk");
917	if (IS_ERR(mclk))
918		return PTR_ERR(mclk);
919
920	clocks->reg = of_iomap(np, 0);
921	if (WARN_ON(!clocks->reg))
922		return -ENOMEM;
923	for (i = 0; i < ARRAY_SIZE(r9a06g032_clocks); ++i) {
924		const struct r9a06g032_clkdesc *d = &r9a06g032_clocks[i];
925		const char *parent_name = d->source ?
926			__clk_get_name(clocks->data.clks[d->source - 1]) :
927			__clk_get_name(mclk);
928		struct clk *clk = NULL;
929
930		switch (d->type) {
931		case K_FFC:
932			clk = clk_register_fixed_factor(NULL, d->name,
933							parent_name, 0,
934							d->mul, d->div);
935			break;
936		case K_GATE:
937			clk = r9a06g032_register_gate(clocks, parent_name, d);
938			break;
939		case K_DIV:
940			clk = r9a06g032_register_div(clocks, parent_name, d);
941			break;
942		case K_BITSEL:
943			/* keep that selector register around */
944			uart_group_sel[d->dual.group] = d->dual.sel;
945			clk = r9a06g032_register_bitsel(clocks, parent_name, d);
946			break;
947		case K_DUALGATE:
948			clk = r9a06g032_register_dualgate(clocks, parent_name,
949							  d,
950							  uart_group_sel[d->dual.group]);
951			break;
952		}
953		clocks->data.clks[d->index] = clk;
954	}
955	error = of_clk_add_provider(np, of_clk_src_onecell_get, &clocks->data);
956	if (error)
957		return error;
958
959	error = devm_add_action_or_reset(dev,
960					r9a06g032_clocks_del_clk_provider, np);
961	if (error)
962		return error;
963
964	return r9a06g032_add_clk_domain(dev);
965}
966
967static const struct of_device_id r9a06g032_match[] = {
968	{ .compatible = "renesas,r9a06g032-sysctrl" },
969	{ }
970};
971
972static struct platform_driver r9a06g032_clock_driver = {
973	.driver		= {
974		.name	= "renesas,r9a06g032-sysctrl",
975		.of_match_table = r9a06g032_match,
976	},
977};
978
979static int __init r9a06g032_clocks_init(void)
980{
981	return platform_driver_probe(&r9a06g032_clock_driver,
982			r9a06g032_clocks_probe);
983}
984
985subsys_initcall(r9a06g032_clocks_init);
986