1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Driver for Silicon Labs Si5340, Si5341, Si5342, Si5344 and Si5345
4 * Copyright (C) 2019 Topic Embedded Products
5 * Author: Mike Looijmans <mike.looijmans@topic.nl>
6 *
7 * The Si5341 has 10 outputs and 5 synthesizers.
8 * The Si5340 is a smaller version of the Si5341 with only 4 outputs.
9 * The Si5345 is similar to the Si5341, with the addition of fractional input
10 * dividers and automatic input selection.
11 * The Si5342 and Si5344 are smaller versions of the Si5345.
12 */
13
14#include <linux/clk.h>
15#include <linux/clk-provider.h>
16#include <linux/delay.h>
17#include <linux/gcd.h>
18#include <linux/math64.h>
19#include <linux/i2c.h>
20#include <linux/module.h>
21#include <linux/regmap.h>
22#include <linux/regulator/consumer.h>
23#include <linux/slab.h>
24#include <asm/unaligned.h>
25
26#define SI5341_NUM_INPUTS 4
27
28#define SI5340_MAX_NUM_OUTPUTS 4
29#define SI5341_MAX_NUM_OUTPUTS 10
30#define SI5342_MAX_NUM_OUTPUTS 2
31#define SI5344_MAX_NUM_OUTPUTS 4
32#define SI5345_MAX_NUM_OUTPUTS 10
33
34#define SI5340_NUM_SYNTH 4
35#define SI5341_NUM_SYNTH 5
36#define SI5342_NUM_SYNTH 2
37#define SI5344_NUM_SYNTH 4
38#define SI5345_NUM_SYNTH 5
39
40/* Range of the synthesizer fractional divider */
41#define SI5341_SYNTH_N_MIN	10
42#define SI5341_SYNTH_N_MAX	4095
43
44/* The chip can get its input clock from 3 input pins or an XTAL */
45
46/* There is one PLL running at 13500–14256 MHz */
47#define SI5341_PLL_VCO_MIN 13500000000ull
48#define SI5341_PLL_VCO_MAX 14256000000ull
49
50/* The 5 frequency synthesizers obtain their input from the PLL */
51struct clk_si5341_synth {
52	struct clk_hw hw;
53	struct clk_si5341 *data;
54	u8 index;
55};
56#define to_clk_si5341_synth(_hw) \
57	container_of(_hw, struct clk_si5341_synth, hw)
58
59/* The output stages can be connected to any synth (full mux) */
60struct clk_si5341_output {
61	struct clk_hw hw;
62	struct clk_si5341 *data;
63	struct regulator *vddo_reg;
64	u8 index;
65};
66#define to_clk_si5341_output(_hw) \
67	container_of(_hw, struct clk_si5341_output, hw)
68
69struct clk_si5341 {
70	struct clk_hw hw;
71	struct regmap *regmap;
72	struct i2c_client *i2c_client;
73	struct clk_si5341_synth synth[SI5341_NUM_SYNTH];
74	struct clk_si5341_output clk[SI5341_MAX_NUM_OUTPUTS];
75	struct clk *input_clk[SI5341_NUM_INPUTS];
76	const char *input_clk_name[SI5341_NUM_INPUTS];
77	const u16 *reg_output_offset;
78	const u16 *reg_rdiv_offset;
79	u64 freq_vco; /* 13500–14256 MHz */
80	u8 num_outputs;
81	u8 num_synth;
82	u16 chip_id;
83};
84#define to_clk_si5341(_hw)	container_of(_hw, struct clk_si5341, hw)
85
86struct clk_si5341_output_config {
87	u8 out_format_drv_bits;
88	u8 out_cm_ampl_bits;
89	u8 vdd_sel_bits;
90	bool synth_master;
91	bool always_on;
92};
93
94#define SI5341_PAGE		0x0001
95#define SI5341_PN_BASE		0x0002
96#define SI5341_DEVICE_REV	0x0005
97#define SI5341_STATUS		0x000C
98#define SI5341_LOS		0x000D
99#define SI5341_STATUS_STICKY	0x0011
100#define SI5341_LOS_STICKY	0x0012
101#define SI5341_SOFT_RST		0x001C
102#define SI5341_IN_SEL		0x0021
103#define SI5341_DEVICE_READY	0x00FE
104#define SI5341_XAXB_CFG		0x090E
105#define SI5341_IN_EN		0x0949
106#define SI5341_INX_TO_PFD_EN	0x094A
107
108/* Status bits */
109#define SI5341_STATUS_SYSINCAL	BIT(0)
110#define SI5341_STATUS_LOSXAXB	BIT(1)
111#define SI5341_STATUS_LOSREF	BIT(2)
112#define SI5341_STATUS_LOL	BIT(3)
113
114/* Input selection */
115#define SI5341_IN_SEL_MASK	0x06
116#define SI5341_IN_SEL_SHIFT	1
117#define SI5341_IN_SEL_REGCTRL	0x01
118#define SI5341_INX_TO_PFD_SHIFT	4
119
120/* XTAL config bits */
121#define SI5341_XAXB_CFG_EXTCLK_EN	BIT(0)
122#define SI5341_XAXB_CFG_PDNB		BIT(1)
123
124/* Input dividers (48-bit) */
125#define SI5341_IN_PDIV(x)	(0x0208 + ((x) * 10))
126#define SI5341_IN_PSET(x)	(0x020E + ((x) * 10))
127#define SI5341_PX_UPD		0x0230
128
129/* PLL configuration */
130#define SI5341_PLL_M_NUM	0x0235
131#define SI5341_PLL_M_DEN	0x023B
132
133/* Output configuration */
134#define SI5341_OUT_CONFIG(output)	\
135			((output)->data->reg_output_offset[(output)->index])
136#define SI5341_OUT_FORMAT(output)	(SI5341_OUT_CONFIG(output) + 1)
137#define SI5341_OUT_CM(output)		(SI5341_OUT_CONFIG(output) + 2)
138#define SI5341_OUT_MUX_SEL(output)	(SI5341_OUT_CONFIG(output) + 3)
139#define SI5341_OUT_R_REG(output)	\
140			((output)->data->reg_rdiv_offset[(output)->index])
141
142#define SI5341_OUT_MUX_VDD_SEL_MASK 0x38
143
144/* Synthesize N divider */
145#define SI5341_SYNTH_N_NUM(x)	(0x0302 + ((x) * 11))
146#define SI5341_SYNTH_N_DEN(x)	(0x0308 + ((x) * 11))
147#define SI5341_SYNTH_N_UPD(x)	(0x030C + ((x) * 11))
148
149/* Synthesizer output enable, phase bypass, power mode */
150#define SI5341_SYNTH_N_CLK_TO_OUTX_EN	0x0A03
151#define SI5341_SYNTH_N_PIBYP		0x0A04
152#define SI5341_SYNTH_N_PDNB		0x0A05
153#define SI5341_SYNTH_N_CLK_DIS		0x0B4A
154
155#define SI5341_REGISTER_MAX	0xBFF
156
157/* SI5341_OUT_CONFIG bits */
158#define SI5341_OUT_CFG_PDN		BIT(0)
159#define SI5341_OUT_CFG_OE		BIT(1)
160#define SI5341_OUT_CFG_RDIV_FORCE2	BIT(2)
161
162/* Static configuration (to be moved to firmware) */
163struct si5341_reg_default {
164	u16 address;
165	u8 value;
166};
167
168static const char * const si5341_input_clock_names[] = {
169	"in0", "in1", "in2", "xtal"
170};
171
172/* Output configuration registers 0..9 are not quite logically organized */
173/* Also for si5345 */
174static const u16 si5341_reg_output_offset[] = {
175	0x0108,
176	0x010D,
177	0x0112,
178	0x0117,
179	0x011C,
180	0x0121,
181	0x0126,
182	0x012B,
183	0x0130,
184	0x013A,
185};
186
187/* for si5340, si5342 and si5344 */
188static const u16 si5340_reg_output_offset[] = {
189	0x0112,
190	0x0117,
191	0x0126,
192	0x012B,
193};
194
195/* The location of the R divider registers */
196static const u16 si5341_reg_rdiv_offset[] = {
197	0x024A,
198	0x024D,
199	0x0250,
200	0x0253,
201	0x0256,
202	0x0259,
203	0x025C,
204	0x025F,
205	0x0262,
206	0x0268,
207};
208static const u16 si5340_reg_rdiv_offset[] = {
209	0x0250,
210	0x0253,
211	0x025C,
212	0x025F,
213};
214
215/*
216 * Programming sequence from ClockBuilder, settings to initialize the system
217 * using only the XTAL input, without pre-divider.
218 * This also contains settings that aren't mentioned anywhere in the datasheet.
219 * The "known" settings like synth and output configuration are done later.
220 */
221static const struct si5341_reg_default si5341_reg_defaults[] = {
222	{ 0x0017, 0x3A }, /* INT mask (disable interrupts) */
223	{ 0x0018, 0xFF }, /* INT mask */
224	{ 0x0021, 0x0F }, /* Select XTAL as input */
225	{ 0x0022, 0x00 }, /* Not in datasheet */
226	{ 0x002B, 0x02 }, /* SPI config */
227	{ 0x002C, 0x20 }, /* LOS enable for XTAL */
228	{ 0x002D, 0x00 }, /* LOS timing */
229	{ 0x002E, 0x00 },
230	{ 0x002F, 0x00 },
231	{ 0x0030, 0x00 },
232	{ 0x0031, 0x00 },
233	{ 0x0032, 0x00 },
234	{ 0x0033, 0x00 },
235	{ 0x0034, 0x00 },
236	{ 0x0035, 0x00 },
237	{ 0x0036, 0x00 },
238	{ 0x0037, 0x00 },
239	{ 0x0038, 0x00 }, /* LOS setting (thresholds) */
240	{ 0x0039, 0x00 },
241	{ 0x003A, 0x00 },
242	{ 0x003B, 0x00 },
243	{ 0x003C, 0x00 },
244	{ 0x003D, 0x00 }, /* LOS setting (thresholds) end */
245	{ 0x0041, 0x00 }, /* LOS0_DIV_SEL */
246	{ 0x0042, 0x00 }, /* LOS1_DIV_SEL */
247	{ 0x0043, 0x00 }, /* LOS2_DIV_SEL */
248	{ 0x0044, 0x00 }, /* LOS3_DIV_SEL */
249	{ 0x009E, 0x00 }, /* Not in datasheet */
250	{ 0x0102, 0x01 }, /* Enable outputs */
251	{ 0x013F, 0x00 }, /* Not in datasheet */
252	{ 0x0140, 0x00 }, /* Not in datasheet */
253	{ 0x0141, 0x40 }, /* OUT LOS */
254	{ 0x0202, 0x00 }, /* XAXB_FREQ_OFFSET (=0)*/
255	{ 0x0203, 0x00 },
256	{ 0x0204, 0x00 },
257	{ 0x0205, 0x00 },
258	{ 0x0206, 0x00 }, /* PXAXB (2^x) */
259	{ 0x0208, 0x00 }, /* Px divider setting (usually 0) */
260	{ 0x0209, 0x00 },
261	{ 0x020A, 0x00 },
262	{ 0x020B, 0x00 },
263	{ 0x020C, 0x00 },
264	{ 0x020D, 0x00 },
265	{ 0x020E, 0x00 },
266	{ 0x020F, 0x00 },
267	{ 0x0210, 0x00 },
268	{ 0x0211, 0x00 },
269	{ 0x0212, 0x00 },
270	{ 0x0213, 0x00 },
271	{ 0x0214, 0x00 },
272	{ 0x0215, 0x00 },
273	{ 0x0216, 0x00 },
274	{ 0x0217, 0x00 },
275	{ 0x0218, 0x00 },
276	{ 0x0219, 0x00 },
277	{ 0x021A, 0x00 },
278	{ 0x021B, 0x00 },
279	{ 0x021C, 0x00 },
280	{ 0x021D, 0x00 },
281	{ 0x021E, 0x00 },
282	{ 0x021F, 0x00 },
283	{ 0x0220, 0x00 },
284	{ 0x0221, 0x00 },
285	{ 0x0222, 0x00 },
286	{ 0x0223, 0x00 },
287	{ 0x0224, 0x00 },
288	{ 0x0225, 0x00 },
289	{ 0x0226, 0x00 },
290	{ 0x0227, 0x00 },
291	{ 0x0228, 0x00 },
292	{ 0x0229, 0x00 },
293	{ 0x022A, 0x00 },
294	{ 0x022B, 0x00 },
295	{ 0x022C, 0x00 },
296	{ 0x022D, 0x00 },
297	{ 0x022E, 0x00 },
298	{ 0x022F, 0x00 }, /* Px divider setting (usually 0) end */
299	{ 0x026B, 0x00 }, /* DESIGN_ID (ASCII string) */
300	{ 0x026C, 0x00 },
301	{ 0x026D, 0x00 },
302	{ 0x026E, 0x00 },
303	{ 0x026F, 0x00 },
304	{ 0x0270, 0x00 },
305	{ 0x0271, 0x00 },
306	{ 0x0272, 0x00 }, /* DESIGN_ID (ASCII string) end */
307	{ 0x0339, 0x1F }, /* N_FSTEP_MSK */
308	{ 0x033B, 0x00 }, /* Nx_FSTEPW (Frequency step) */
309	{ 0x033C, 0x00 },
310	{ 0x033D, 0x00 },
311	{ 0x033E, 0x00 },
312	{ 0x033F, 0x00 },
313	{ 0x0340, 0x00 },
314	{ 0x0341, 0x00 },
315	{ 0x0342, 0x00 },
316	{ 0x0343, 0x00 },
317	{ 0x0344, 0x00 },
318	{ 0x0345, 0x00 },
319	{ 0x0346, 0x00 },
320	{ 0x0347, 0x00 },
321	{ 0x0348, 0x00 },
322	{ 0x0349, 0x00 },
323	{ 0x034A, 0x00 },
324	{ 0x034B, 0x00 },
325	{ 0x034C, 0x00 },
326	{ 0x034D, 0x00 },
327	{ 0x034E, 0x00 },
328	{ 0x034F, 0x00 },
329	{ 0x0350, 0x00 },
330	{ 0x0351, 0x00 },
331	{ 0x0352, 0x00 },
332	{ 0x0353, 0x00 },
333	{ 0x0354, 0x00 },
334	{ 0x0355, 0x00 },
335	{ 0x0356, 0x00 },
336	{ 0x0357, 0x00 },
337	{ 0x0358, 0x00 }, /* Nx_FSTEPW (Frequency step) end */
338	{ 0x0359, 0x00 }, /* Nx_DELAY */
339	{ 0x035A, 0x00 },
340	{ 0x035B, 0x00 },
341	{ 0x035C, 0x00 },
342	{ 0x035D, 0x00 },
343	{ 0x035E, 0x00 },
344	{ 0x035F, 0x00 },
345	{ 0x0360, 0x00 },
346	{ 0x0361, 0x00 },
347	{ 0x0362, 0x00 }, /* Nx_DELAY end */
348	{ 0x0802, 0x00 }, /* Not in datasheet */
349	{ 0x0803, 0x00 }, /* Not in datasheet */
350	{ 0x0804, 0x00 }, /* Not in datasheet */
351	{ 0x090E, 0x02 }, /* XAXB_EXTCLK_EN=0 XAXB_PDNB=1 (use XTAL) */
352	{ 0x091C, 0x04 }, /* ZDM_EN=4 (Normal mode) */
353	{ 0x0943, 0x00 }, /* IO_VDD_SEL=0 (0=1v8, use 1=3v3) */
354	{ 0x0949, 0x00 }, /* IN_EN (disable input clocks) */
355	{ 0x094A, 0x00 }, /* INx_TO_PFD_EN (disabled) */
356	{ 0x0A02, 0x00 }, /* Not in datasheet */
357	{ 0x0B44, 0x0F }, /* PDIV_ENB (datasheet does not mention what it is) */
358	{ 0x0B57, 0x10 }, /* VCO_RESET_CALCODE (not described in datasheet) */
359	{ 0x0B58, 0x05 }, /* VCO_RESET_CALCODE (not described in datasheet) */
360};
361
362/* Read and interpret a 44-bit followed by a 32-bit value in the regmap */
363static int si5341_decode_44_32(struct regmap *regmap, unsigned int reg,
364	u64 *val1, u32 *val2)
365{
366	int err;
367	u8 r[10];
368
369	err = regmap_bulk_read(regmap, reg, r, 10);
370	if (err < 0)
371		return err;
372
373	*val1 = ((u64)((r[5] & 0x0f) << 8 | r[4]) << 32) |
374		 (get_unaligned_le32(r));
375	*val2 = get_unaligned_le32(&r[6]);
376
377	return 0;
378}
379
380static int si5341_encode_44_32(struct regmap *regmap, unsigned int reg,
381	u64 n_num, u32 n_den)
382{
383	u8 r[10];
384
385	/* Shift left as far as possible without overflowing */
386	while (!(n_num & BIT_ULL(43)) && !(n_den & BIT(31))) {
387		n_num <<= 1;
388		n_den <<= 1;
389	}
390
391	/* 44 bits (6 bytes) numerator */
392	put_unaligned_le32(n_num, r);
393	r[4] = (n_num >> 32) & 0xff;
394	r[5] = (n_num >> 40) & 0x0f;
395	/* 32 bits denominator */
396	put_unaligned_le32(n_den, &r[6]);
397
398	/* Program the fraction */
399	return regmap_bulk_write(regmap, reg, r, sizeof(r));
400}
401
402/* VCO, we assume it runs at a constant frequency */
403static unsigned long si5341_clk_recalc_rate(struct clk_hw *hw,
404		unsigned long parent_rate)
405{
406	struct clk_si5341 *data = to_clk_si5341(hw);
407	int err;
408	u64 res;
409	u64 m_num;
410	u32 m_den;
411	unsigned int shift;
412
413	/* Assume that PDIV is not being used, just read the PLL setting */
414	err = si5341_decode_44_32(data->regmap, SI5341_PLL_M_NUM,
415				&m_num, &m_den);
416	if (err < 0)
417		return 0;
418
419	if (!m_num || !m_den)
420		return 0;
421
422	/*
423	 * Though m_num is 64-bit, only the upper bits are actually used. While
424	 * calculating m_num and m_den, they are shifted as far as possible to
425	 * the left. To avoid 96-bit division here, we just shift them back so
426	 * we can do with just 64 bits.
427	 */
428	shift = 0;
429	res = m_num;
430	while (res & 0xffff00000000ULL) {
431		++shift;
432		res >>= 1;
433	}
434	res *= parent_rate;
435	do_div(res, (m_den >> shift));
436
437	/* We cannot return the actual frequency in 32 bit, store it locally */
438	data->freq_vco = res;
439
440	/* Report kHz since the value is out of range */
441	do_div(res, 1000);
442
443	return (unsigned long)res;
444}
445
446static int si5341_clk_get_selected_input(struct clk_si5341 *data)
447{
448	int err;
449	u32 val;
450
451	err = regmap_read(data->regmap, SI5341_IN_SEL, &val);
452	if (err < 0)
453		return err;
454
455	return (val & SI5341_IN_SEL_MASK) >> SI5341_IN_SEL_SHIFT;
456}
457
458static u8 si5341_clk_get_parent(struct clk_hw *hw)
459{
460	struct clk_si5341 *data = to_clk_si5341(hw);
461	int res = si5341_clk_get_selected_input(data);
462
463	if (res < 0)
464		return 0; /* Apparently we cannot report errors */
465
466	return res;
467}
468
469static int si5341_clk_reparent(struct clk_si5341 *data, u8 index)
470{
471	int err;
472	u8 val;
473
474	val = (index << SI5341_IN_SEL_SHIFT) & SI5341_IN_SEL_MASK;
475	/* Enable register-based input selection */
476	val |= SI5341_IN_SEL_REGCTRL;
477
478	err = regmap_update_bits(data->regmap,
479		SI5341_IN_SEL, SI5341_IN_SEL_REGCTRL | SI5341_IN_SEL_MASK, val);
480	if (err < 0)
481		return err;
482
483	if (index < 3) {
484		/* Enable input buffer for selected input */
485		err = regmap_update_bits(data->regmap,
486				SI5341_IN_EN, 0x07, BIT(index));
487		if (err < 0)
488			return err;
489
490		/* Enables the input to phase detector */
491		err = regmap_update_bits(data->regmap, SI5341_INX_TO_PFD_EN,
492				0x7 << SI5341_INX_TO_PFD_SHIFT,
493				BIT(index + SI5341_INX_TO_PFD_SHIFT));
494		if (err < 0)
495			return err;
496
497		/* Power down XTAL oscillator and buffer */
498		err = regmap_update_bits(data->regmap, SI5341_XAXB_CFG,
499				SI5341_XAXB_CFG_PDNB, 0);
500		if (err < 0)
501			return err;
502
503		/*
504		 * Set the P divider to "1". There's no explanation in the
505		 * datasheet of these registers, but the clockbuilder software
506		 * programs a "1" when the input is being used.
507		 */
508		err = regmap_write(data->regmap, SI5341_IN_PDIV(index), 1);
509		if (err < 0)
510			return err;
511
512		err = regmap_write(data->regmap, SI5341_IN_PSET(index), 1);
513		if (err < 0)
514			return err;
515
516		/* Set update PDIV bit */
517		err = regmap_write(data->regmap, SI5341_PX_UPD, BIT(index));
518		if (err < 0)
519			return err;
520	} else {
521		/* Disable all input buffers */
522		err = regmap_update_bits(data->regmap, SI5341_IN_EN, 0x07, 0);
523		if (err < 0)
524			return err;
525
526		/* Disable input to phase detector */
527		err = regmap_update_bits(data->regmap, SI5341_INX_TO_PFD_EN,
528				0x7 << SI5341_INX_TO_PFD_SHIFT, 0);
529		if (err < 0)
530			return err;
531
532		/* Power up XTAL oscillator and buffer */
533		err = regmap_update_bits(data->regmap, SI5341_XAXB_CFG,
534				SI5341_XAXB_CFG_PDNB, SI5341_XAXB_CFG_PDNB);
535		if (err < 0)
536			return err;
537	}
538
539	return 0;
540}
541
542static int si5341_clk_set_parent(struct clk_hw *hw, u8 index)
543{
544	struct clk_si5341 *data = to_clk_si5341(hw);
545
546	return si5341_clk_reparent(data, index);
547}
548
549static const struct clk_ops si5341_clk_ops = {
550	.set_parent = si5341_clk_set_parent,
551	.get_parent = si5341_clk_get_parent,
552	.recalc_rate = si5341_clk_recalc_rate,
553};
554
555/* Synthesizers, there are 5 synthesizers that connect to any of the outputs */
556
557/* The synthesizer is on if all power and enable bits are set */
558static int si5341_synth_clk_is_on(struct clk_hw *hw)
559{
560	struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
561	int err;
562	u32 val;
563	u8 index = synth->index;
564
565	err = regmap_read(synth->data->regmap,
566			SI5341_SYNTH_N_CLK_TO_OUTX_EN, &val);
567	if (err < 0)
568		return 0;
569
570	if (!(val & BIT(index)))
571		return 0;
572
573	err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_PDNB, &val);
574	if (err < 0)
575		return 0;
576
577	if (!(val & BIT(index)))
578		return 0;
579
580	/* This bit must be 0 for the synthesizer to receive clock input */
581	err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_CLK_DIS, &val);
582	if (err < 0)
583		return 0;
584
585	return !(val & BIT(index));
586}
587
588static void si5341_synth_clk_unprepare(struct clk_hw *hw)
589{
590	struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
591	u8 index = synth->index; /* In range 0..5 */
592	u8 mask = BIT(index);
593
594	/* Disable output */
595	regmap_update_bits(synth->data->regmap,
596		SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, 0);
597	/* Power down */
598	regmap_update_bits(synth->data->regmap,
599		SI5341_SYNTH_N_PDNB, mask, 0);
600	/* Disable clock input to synth (set to 1 to disable) */
601	regmap_update_bits(synth->data->regmap,
602		SI5341_SYNTH_N_CLK_DIS, mask, mask);
603}
604
605static int si5341_synth_clk_prepare(struct clk_hw *hw)
606{
607	struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
608	int err;
609	u8 index = synth->index;
610	u8 mask = BIT(index);
611
612	/* Power up */
613	err = regmap_update_bits(synth->data->regmap,
614		SI5341_SYNTH_N_PDNB, mask, mask);
615	if (err < 0)
616		return err;
617
618	/* Enable clock input to synth (set bit to 0 to enable) */
619	err = regmap_update_bits(synth->data->regmap,
620		SI5341_SYNTH_N_CLK_DIS, mask, 0);
621	if (err < 0)
622		return err;
623
624	/* Enable output */
625	return regmap_update_bits(synth->data->regmap,
626		SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, mask);
627}
628
629/* Synth clock frequency: Fvco * n_den / n_den, with Fvco in 13500-14256 MHz */
630static unsigned long si5341_synth_clk_recalc_rate(struct clk_hw *hw,
631		unsigned long parent_rate)
632{
633	struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
634	u64 f;
635	u64 n_num;
636	u32 n_den;
637	int err;
638
639	err = si5341_decode_44_32(synth->data->regmap,
640			SI5341_SYNTH_N_NUM(synth->index), &n_num, &n_den);
641	if (err < 0)
642		return err;
643	/* Check for bogus/uninitialized settings */
644	if (!n_num || !n_den)
645		return 0;
646
647	/*
648	 * n_num and n_den are shifted left as much as possible, so to prevent
649	 * overflow in 64-bit math, we shift n_den 4 bits to the right
650	 */
651	f = synth->data->freq_vco;
652	f *= n_den >> 4;
653
654	/* Now we need to to 64-bit division: f/n_num */
655	/* And compensate for the 4 bits we dropped */
656	f = div64_u64(f, (n_num >> 4));
657
658	return f;
659}
660
661static long si5341_synth_clk_round_rate(struct clk_hw *hw, unsigned long rate,
662		unsigned long *parent_rate)
663{
664	struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
665	u64 f;
666
667	/* The synthesizer accuracy is such that anything in range will work */
668	f = synth->data->freq_vco;
669	do_div(f, SI5341_SYNTH_N_MAX);
670	if (rate < f)
671		return f;
672
673	f = synth->data->freq_vco;
674	do_div(f, SI5341_SYNTH_N_MIN);
675	if (rate > f)
676		return f;
677
678	return rate;
679}
680
681static int si5341_synth_program(struct clk_si5341_synth *synth,
682	u64 n_num, u32 n_den, bool is_integer)
683{
684	int err;
685	u8 index = synth->index;
686
687	err = si5341_encode_44_32(synth->data->regmap,
688			SI5341_SYNTH_N_NUM(index), n_num, n_den);
689
690	err = regmap_update_bits(synth->data->regmap,
691		SI5341_SYNTH_N_PIBYP, BIT(index), is_integer ? BIT(index) : 0);
692	if (err < 0)
693		return err;
694
695	return regmap_write(synth->data->regmap,
696		SI5341_SYNTH_N_UPD(index), 0x01);
697}
698
699
700static int si5341_synth_clk_set_rate(struct clk_hw *hw, unsigned long rate,
701		unsigned long parent_rate)
702{
703	struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
704	u64 n_num;
705	u32 n_den;
706	u32 r;
707	u32 g;
708	bool is_integer;
709
710	n_num = synth->data->freq_vco;
711
712	/* see if there's an integer solution */
713	r = do_div(n_num, rate);
714	is_integer = (r == 0);
715	if (is_integer) {
716		/* Integer divider equal to n_num */
717		n_den = 1;
718	} else {
719		/* Calculate a fractional solution */
720		g = gcd(r, rate);
721		n_den = rate / g;
722		n_num *= n_den;
723		n_num += r / g;
724	}
725
726	dev_dbg(&synth->data->i2c_client->dev,
727			"%s(%u): n=0x%llx d=0x%x %s\n", __func__,
728				synth->index, n_num, n_den,
729				is_integer ? "int" : "frac");
730
731	return si5341_synth_program(synth, n_num, n_den, is_integer);
732}
733
734static const struct clk_ops si5341_synth_clk_ops = {
735	.is_prepared = si5341_synth_clk_is_on,
736	.prepare = si5341_synth_clk_prepare,
737	.unprepare = si5341_synth_clk_unprepare,
738	.recalc_rate = si5341_synth_clk_recalc_rate,
739	.round_rate = si5341_synth_clk_round_rate,
740	.set_rate = si5341_synth_clk_set_rate,
741};
742
743static int si5341_output_clk_is_on(struct clk_hw *hw)
744{
745	struct clk_si5341_output *output = to_clk_si5341_output(hw);
746	int err;
747	u32 val;
748
749	err = regmap_read(output->data->regmap,
750			SI5341_OUT_CONFIG(output), &val);
751	if (err < 0)
752		return err;
753
754	/* Bit 0=PDN, 1=OE so only a value of 0x2 enables the output */
755	return (val & 0x03) == SI5341_OUT_CFG_OE;
756}
757
758/* Disables and then powers down the output */
759static void si5341_output_clk_unprepare(struct clk_hw *hw)
760{
761	struct clk_si5341_output *output = to_clk_si5341_output(hw);
762
763	regmap_update_bits(output->data->regmap,
764			SI5341_OUT_CONFIG(output),
765			SI5341_OUT_CFG_OE, 0);
766	regmap_update_bits(output->data->regmap,
767			SI5341_OUT_CONFIG(output),
768			SI5341_OUT_CFG_PDN, SI5341_OUT_CFG_PDN);
769}
770
771/* Powers up and then enables the output */
772static int si5341_output_clk_prepare(struct clk_hw *hw)
773{
774	struct clk_si5341_output *output = to_clk_si5341_output(hw);
775	int err;
776
777	err = regmap_update_bits(output->data->regmap,
778			SI5341_OUT_CONFIG(output),
779			SI5341_OUT_CFG_PDN, 0);
780	if (err < 0)
781		return err;
782
783	return regmap_update_bits(output->data->regmap,
784			SI5341_OUT_CONFIG(output),
785			SI5341_OUT_CFG_OE, SI5341_OUT_CFG_OE);
786}
787
788static unsigned long si5341_output_clk_recalc_rate(struct clk_hw *hw,
789		unsigned long parent_rate)
790{
791	struct clk_si5341_output *output = to_clk_si5341_output(hw);
792	int err;
793	u32 val;
794	u32 r_divider;
795	u8 r[3];
796
797	err = regmap_read(output->data->regmap,
798			SI5341_OUT_CONFIG(output), &val);
799	if (err < 0)
800		return err;
801
802	/* If SI5341_OUT_CFG_RDIV_FORCE2 is set, r_divider is 2 */
803	if (val & SI5341_OUT_CFG_RDIV_FORCE2)
804		return parent_rate / 2;
805
806	err = regmap_bulk_read(output->data->regmap,
807			SI5341_OUT_R_REG(output), r, 3);
808	if (err < 0)
809		return err;
810
811	/* Calculate value as 24-bit integer*/
812	r_divider = r[2] << 16 | r[1] << 8 | r[0];
813
814	/* If Rx_REG is zero, the divider is disabled, so return a "0" rate */
815	if (!r_divider)
816		return 0;
817
818	/* Divider is 2*(Rx_REG+1) */
819	r_divider += 1;
820	r_divider <<= 1;
821
822
823	return parent_rate / r_divider;
824}
825
826static long si5341_output_clk_round_rate(struct clk_hw *hw, unsigned long rate,
827		unsigned long *parent_rate)
828{
829	unsigned long r;
830
831	if (!rate)
832		return 0;
833
834	r = *parent_rate >> 1;
835
836	/* If rate is an even divisor, no changes to parent required */
837	if (r && !(r % rate))
838		return (long)rate;
839
840	if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT) {
841		if (rate > 200000000) {
842			/* minimum r-divider is 2 */
843			r = 2;
844		} else {
845			/* Take a parent frequency near 400 MHz */
846			r = (400000000u / rate) & ~1;
847		}
848		*parent_rate = r * rate;
849	} else {
850		/* We cannot change our parent's rate, report what we can do */
851		r /= rate;
852		rate = *parent_rate / (r << 1);
853	}
854
855	return rate;
856}
857
858static int si5341_output_clk_set_rate(struct clk_hw *hw, unsigned long rate,
859		unsigned long parent_rate)
860{
861	struct clk_si5341_output *output = to_clk_si5341_output(hw);
862	u32 r_div;
863	int err;
864	u8 r[3];
865
866	if (!rate)
867		return -EINVAL;
868
869	/* Frequency divider is (r_div + 1) * 2 */
870	r_div = (parent_rate / rate) >> 1;
871
872	if (r_div <= 1)
873		r_div = 0;
874	else if (r_div >= BIT(24))
875		r_div = BIT(24) - 1;
876	else
877		--r_div;
878
879	/* For a value of "2", we set the "OUT0_RDIV_FORCE2" bit */
880	err = regmap_update_bits(output->data->regmap,
881			SI5341_OUT_CONFIG(output),
882			SI5341_OUT_CFG_RDIV_FORCE2,
883			(r_div == 0) ? SI5341_OUT_CFG_RDIV_FORCE2 : 0);
884	if (err < 0)
885		return err;
886
887	/* Always write Rx_REG, because a zero value disables the divider */
888	r[0] = r_div ? (r_div & 0xff) : 1;
889	r[1] = (r_div >> 8) & 0xff;
890	r[2] = (r_div >> 16) & 0xff;
891	return regmap_bulk_write(output->data->regmap,
892			SI5341_OUT_R_REG(output), r, 3);
893}
894
895static int si5341_output_reparent(struct clk_si5341_output *output, u8 index)
896{
897	return regmap_update_bits(output->data->regmap,
898		SI5341_OUT_MUX_SEL(output), 0x07, index);
899}
900
901static int si5341_output_set_parent(struct clk_hw *hw, u8 index)
902{
903	struct clk_si5341_output *output = to_clk_si5341_output(hw);
904
905	if (index >= output->data->num_synth)
906		return -EINVAL;
907
908	return si5341_output_reparent(output, index);
909}
910
911static u8 si5341_output_get_parent(struct clk_hw *hw)
912{
913	struct clk_si5341_output *output = to_clk_si5341_output(hw);
914	u32 val;
915
916	regmap_read(output->data->regmap, SI5341_OUT_MUX_SEL(output), &val);
917
918	return val & 0x7;
919}
920
921static const struct clk_ops si5341_output_clk_ops = {
922	.is_prepared = si5341_output_clk_is_on,
923	.prepare = si5341_output_clk_prepare,
924	.unprepare = si5341_output_clk_unprepare,
925	.recalc_rate = si5341_output_clk_recalc_rate,
926	.round_rate = si5341_output_clk_round_rate,
927	.set_rate = si5341_output_clk_set_rate,
928	.set_parent = si5341_output_set_parent,
929	.get_parent = si5341_output_get_parent,
930};
931
932/*
933 * The chip can be bought in a pre-programmed version, or one can program the
934 * NVM in the chip to boot up in a preset mode. This routine tries to determine
935 * if that's the case, or if we need to reset and program everything from
936 * scratch. Returns negative error, or true/false.
937 */
938static int si5341_is_programmed_already(struct clk_si5341 *data)
939{
940	int err;
941	u8 r[4];
942
943	/* Read the PLL divider value, it must have a non-zero value */
944	err = regmap_bulk_read(data->regmap, SI5341_PLL_M_DEN,
945			r, ARRAY_SIZE(r));
946	if (err < 0)
947		return err;
948
949	return !!get_unaligned_le32(r);
950}
951
952static struct clk_hw *
953of_clk_si5341_get(struct of_phandle_args *clkspec, void *_data)
954{
955	struct clk_si5341 *data = _data;
956	unsigned int idx = clkspec->args[1];
957	unsigned int group = clkspec->args[0];
958
959	switch (group) {
960	case 0:
961		if (idx >= data->num_outputs) {
962			dev_err(&data->i2c_client->dev,
963				"invalid output index %u\n", idx);
964			return ERR_PTR(-EINVAL);
965		}
966		return &data->clk[idx].hw;
967	case 1:
968		if (idx >= data->num_synth) {
969			dev_err(&data->i2c_client->dev,
970				"invalid synthesizer index %u\n", idx);
971			return ERR_PTR(-EINVAL);
972		}
973		return &data->synth[idx].hw;
974	case 2:
975		if (idx > 0) {
976			dev_err(&data->i2c_client->dev,
977				"invalid PLL index %u\n", idx);
978			return ERR_PTR(-EINVAL);
979		}
980		return &data->hw;
981	default:
982		dev_err(&data->i2c_client->dev, "invalid group %u\n", group);
983		return ERR_PTR(-EINVAL);
984	}
985}
986
987static int si5341_probe_chip_id(struct clk_si5341 *data)
988{
989	int err;
990	u8 reg[4];
991	u16 model;
992
993	err = regmap_bulk_read(data->regmap, SI5341_PN_BASE, reg,
994				ARRAY_SIZE(reg));
995	if (err < 0) {
996		dev_err(&data->i2c_client->dev, "Failed to read chip ID\n");
997		return err;
998	}
999
1000	model = get_unaligned_le16(reg);
1001
1002	dev_info(&data->i2c_client->dev, "Chip: %x Grade: %u Rev: %u\n",
1003		 model, reg[2], reg[3]);
1004
1005	switch (model) {
1006	case 0x5340:
1007		data->num_outputs = SI5340_MAX_NUM_OUTPUTS;
1008		data->num_synth = SI5340_NUM_SYNTH;
1009		data->reg_output_offset = si5340_reg_output_offset;
1010		data->reg_rdiv_offset = si5340_reg_rdiv_offset;
1011		break;
1012	case 0x5341:
1013		data->num_outputs = SI5341_MAX_NUM_OUTPUTS;
1014		data->num_synth = SI5341_NUM_SYNTH;
1015		data->reg_output_offset = si5341_reg_output_offset;
1016		data->reg_rdiv_offset = si5341_reg_rdiv_offset;
1017		break;
1018	case 0x5342:
1019		data->num_outputs = SI5342_MAX_NUM_OUTPUTS;
1020		data->num_synth = SI5342_NUM_SYNTH;
1021		data->reg_output_offset = si5340_reg_output_offset;
1022		data->reg_rdiv_offset = si5340_reg_rdiv_offset;
1023		break;
1024	case 0x5344:
1025		data->num_outputs = SI5344_MAX_NUM_OUTPUTS;
1026		data->num_synth = SI5344_NUM_SYNTH;
1027		data->reg_output_offset = si5340_reg_output_offset;
1028		data->reg_rdiv_offset = si5340_reg_rdiv_offset;
1029		break;
1030	case 0x5345:
1031		data->num_outputs = SI5345_MAX_NUM_OUTPUTS;
1032		data->num_synth = SI5345_NUM_SYNTH;
1033		data->reg_output_offset = si5341_reg_output_offset;
1034		data->reg_rdiv_offset = si5341_reg_rdiv_offset;
1035		break;
1036	default:
1037		dev_err(&data->i2c_client->dev, "Model '%x' not supported\n",
1038			model);
1039		return -EINVAL;
1040	}
1041
1042	data->chip_id = model;
1043
1044	return 0;
1045}
1046
1047/* Read active settings into the regmap cache for later reference */
1048static int si5341_read_settings(struct clk_si5341 *data)
1049{
1050	int err;
1051	u8 i;
1052	u8 r[10];
1053
1054	err = regmap_bulk_read(data->regmap, SI5341_PLL_M_NUM, r, 10);
1055	if (err < 0)
1056		return err;
1057
1058	err = regmap_bulk_read(data->regmap,
1059				SI5341_SYNTH_N_CLK_TO_OUTX_EN, r, 3);
1060	if (err < 0)
1061		return err;
1062
1063	err = regmap_bulk_read(data->regmap,
1064				SI5341_SYNTH_N_CLK_DIS, r, 1);
1065	if (err < 0)
1066		return err;
1067
1068	for (i = 0; i < data->num_synth; ++i) {
1069		err = regmap_bulk_read(data->regmap,
1070					SI5341_SYNTH_N_NUM(i), r, 10);
1071		if (err < 0)
1072			return err;
1073	}
1074
1075	for (i = 0; i < data->num_outputs; ++i) {
1076		err = regmap_bulk_read(data->regmap,
1077					data->reg_output_offset[i], r, 4);
1078		if (err < 0)
1079			return err;
1080
1081		err = regmap_bulk_read(data->regmap,
1082					data->reg_rdiv_offset[i], r, 3);
1083		if (err < 0)
1084			return err;
1085	}
1086
1087	return 0;
1088}
1089
1090static int si5341_write_multiple(struct clk_si5341 *data,
1091	const struct si5341_reg_default *values, unsigned int num_values)
1092{
1093	unsigned int i;
1094	int res;
1095
1096	for (i = 0; i < num_values; ++i) {
1097		res = regmap_write(data->regmap,
1098			values[i].address, values[i].value);
1099		if (res < 0) {
1100			dev_err(&data->i2c_client->dev,
1101				"Failed to write %#x:%#x\n",
1102				values[i].address, values[i].value);
1103			return res;
1104		}
1105	}
1106
1107	return 0;
1108}
1109
1110static const struct si5341_reg_default si5341_preamble[] = {
1111	{ 0x0B25, 0x00 },
1112	{ 0x0502, 0x01 },
1113	{ 0x0505, 0x03 },
1114	{ 0x0957, 0x17 },
1115	{ 0x0B4E, 0x1A },
1116};
1117
1118static const struct si5341_reg_default si5345_preamble[] = {
1119	{ 0x0B25, 0x00 },
1120	{ 0x0540, 0x01 },
1121};
1122
1123static int si5341_send_preamble(struct clk_si5341 *data)
1124{
1125	int res;
1126	u32 revision;
1127
1128	/* For revision 2 and up, the values are slightly different */
1129	res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision);
1130	if (res < 0)
1131		return res;
1132
1133	/* Write "preamble" as specified by datasheet */
1134	res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xD8 : 0xC0);
1135	if (res < 0)
1136		return res;
1137
1138	/* The si5342..si5345 require a different preamble */
1139	if (data->chip_id > 0x5341)
1140		res = si5341_write_multiple(data,
1141			si5345_preamble, ARRAY_SIZE(si5345_preamble));
1142	else
1143		res = si5341_write_multiple(data,
1144			si5341_preamble, ARRAY_SIZE(si5341_preamble));
1145	if (res < 0)
1146		return res;
1147
1148	/* Datasheet specifies a 300ms wait after sending the preamble */
1149	msleep(300);
1150
1151	return 0;
1152}
1153
1154/* Perform a soft reset and write post-amble */
1155static int si5341_finalize_defaults(struct clk_si5341 *data)
1156{
1157	int res;
1158	u32 revision;
1159
1160	res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision);
1161	if (res < 0)
1162		return res;
1163
1164	dev_dbg(&data->i2c_client->dev, "%s rev=%u\n", __func__, revision);
1165
1166	res = regmap_write(data->regmap, SI5341_SOFT_RST, 0x01);
1167	if (res < 0)
1168		return res;
1169
1170	/* The si5342..si5345 have an additional post-amble */
1171	if (data->chip_id > 0x5341) {
1172		res = regmap_write(data->regmap, 0x540, 0x0);
1173		if (res < 0)
1174			return res;
1175	}
1176
1177	/* Datasheet does not explain these nameless registers */
1178	res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xDB : 0xC3);
1179	if (res < 0)
1180		return res;
1181	res = regmap_write(data->regmap, 0x0B25, 0x02);
1182	if (res < 0)
1183		return res;
1184
1185	return 0;
1186}
1187
1188
1189static const struct regmap_range si5341_regmap_volatile_range[] = {
1190	regmap_reg_range(0x000C, 0x0012), /* Status */
1191	regmap_reg_range(0x001C, 0x001E), /* reset, finc/fdec */
1192	regmap_reg_range(0x00E2, 0x00FE), /* NVM, interrupts, device ready */
1193	/* Update bits for P divider and synth config */
1194	regmap_reg_range(SI5341_PX_UPD, SI5341_PX_UPD),
1195	regmap_reg_range(SI5341_SYNTH_N_UPD(0), SI5341_SYNTH_N_UPD(0)),
1196	regmap_reg_range(SI5341_SYNTH_N_UPD(1), SI5341_SYNTH_N_UPD(1)),
1197	regmap_reg_range(SI5341_SYNTH_N_UPD(2), SI5341_SYNTH_N_UPD(2)),
1198	regmap_reg_range(SI5341_SYNTH_N_UPD(3), SI5341_SYNTH_N_UPD(3)),
1199	regmap_reg_range(SI5341_SYNTH_N_UPD(4), SI5341_SYNTH_N_UPD(4)),
1200};
1201
1202static const struct regmap_access_table si5341_regmap_volatile = {
1203	.yes_ranges = si5341_regmap_volatile_range,
1204	.n_yes_ranges = ARRAY_SIZE(si5341_regmap_volatile_range),
1205};
1206
1207/* Pages 0, 1, 2, 3, 9, A, B are valid, so there are 12 pages */
1208static const struct regmap_range_cfg si5341_regmap_ranges[] = {
1209	{
1210		.range_min = 0,
1211		.range_max = SI5341_REGISTER_MAX,
1212		.selector_reg = SI5341_PAGE,
1213		.selector_mask = 0xff,
1214		.selector_shift = 0,
1215		.window_start = 0,
1216		.window_len = 256,
1217	},
1218};
1219
1220static int si5341_wait_device_ready(struct i2c_client *client)
1221{
1222	int count;
1223
1224	/* Datasheet warns: Any attempt to read or write any register other
1225	 * than DEVICE_READY before DEVICE_READY reads as 0x0F may corrupt the
1226	 * NVM programming and may corrupt the register contents, as they are
1227	 * read from NVM. Note that this includes accesses to the PAGE register.
1228	 * Also: DEVICE_READY is available on every register page, so no page
1229	 * change is needed to read it.
1230	 * Do this outside regmap to avoid automatic PAGE register access.
1231	 * May take up to 300ms to complete.
1232	 */
1233	for (count = 0; count < 15; ++count) {
1234		s32 result = i2c_smbus_read_byte_data(client,
1235						      SI5341_DEVICE_READY);
1236		if (result < 0)
1237			return result;
1238		if (result == 0x0F)
1239			return 0;
1240		msleep(20);
1241	}
1242	dev_err(&client->dev, "timeout waiting for DEVICE_READY\n");
1243	return -EIO;
1244}
1245
1246static const struct regmap_config si5341_regmap_config = {
1247	.reg_bits = 8,
1248	.val_bits = 8,
1249	.cache_type = REGCACHE_RBTREE,
1250	.ranges = si5341_regmap_ranges,
1251	.num_ranges = ARRAY_SIZE(si5341_regmap_ranges),
1252	.max_register = SI5341_REGISTER_MAX,
1253	.volatile_table = &si5341_regmap_volatile,
1254};
1255
1256static int si5341_dt_parse_dt(struct clk_si5341 *data,
1257			      struct clk_si5341_output_config *config)
1258{
1259	struct device_node *child;
1260	struct device_node *np = data->i2c_client->dev.of_node;
1261	u32 num;
1262	u32 val;
1263
1264	memset(config, 0, sizeof(struct clk_si5341_output_config) *
1265				SI5341_MAX_NUM_OUTPUTS);
1266
1267	for_each_child_of_node(np, child) {
1268		if (of_property_read_u32(child, "reg", &num)) {
1269			dev_err(&data->i2c_client->dev, "missing reg property of %s\n",
1270				child->name);
1271			goto put_child;
1272		}
1273
1274		if (num >= SI5341_MAX_NUM_OUTPUTS) {
1275			dev_err(&data->i2c_client->dev, "invalid clkout %d\n", num);
1276			goto put_child;
1277		}
1278
1279		if (!of_property_read_u32(child, "silabs,format", &val)) {
1280			/* Set cm and ampl conservatively to 3v3 settings */
1281			switch (val) {
1282			case 1: /* normal differential */
1283				config[num].out_cm_ampl_bits = 0x33;
1284				break;
1285			case 2: /* low-power differential */
1286				config[num].out_cm_ampl_bits = 0x13;
1287				break;
1288			case 4: /* LVCMOS */
1289				config[num].out_cm_ampl_bits = 0x33;
1290				/* Set SI recommended impedance for LVCMOS */
1291				config[num].out_format_drv_bits |= 0xc0;
1292				break;
1293			default:
1294				dev_err(&data->i2c_client->dev,
1295					"invalid silabs,format %u for %u\n",
1296					val, num);
1297				goto put_child;
1298			}
1299			config[num].out_format_drv_bits &= ~0x07;
1300			config[num].out_format_drv_bits |= val & 0x07;
1301			/* Always enable the SYNC feature */
1302			config[num].out_format_drv_bits |= 0x08;
1303		}
1304
1305		if (!of_property_read_u32(child, "silabs,common-mode", &val)) {
1306			if (val > 0xf) {
1307				dev_err(&data->i2c_client->dev,
1308					"invalid silabs,common-mode %u\n",
1309					val);
1310				goto put_child;
1311			}
1312			config[num].out_cm_ampl_bits &= 0xf0;
1313			config[num].out_cm_ampl_bits |= val & 0x0f;
1314		}
1315
1316		if (!of_property_read_u32(child, "silabs,amplitude", &val)) {
1317			if (val > 0xf) {
1318				dev_err(&data->i2c_client->dev,
1319					"invalid silabs,amplitude %u\n",
1320					val);
1321				goto put_child;
1322			}
1323			config[num].out_cm_ampl_bits &= 0x0f;
1324			config[num].out_cm_ampl_bits |= (val << 4) & 0xf0;
1325		}
1326
1327		if (of_property_read_bool(child, "silabs,disable-high"))
1328			config[num].out_format_drv_bits |= 0x10;
1329
1330		config[num].synth_master =
1331			of_property_read_bool(child, "silabs,synth-master");
1332
1333		config[num].always_on =
1334			of_property_read_bool(child, "always-on");
1335
1336		config[num].vdd_sel_bits = 0x08;
1337		if (data->clk[num].vddo_reg) {
1338			int vdd = regulator_get_voltage(data->clk[num].vddo_reg);
1339
1340			switch (vdd) {
1341			case 3300000:
1342				config[num].vdd_sel_bits |= 0 << 4;
1343				break;
1344			case 1800000:
1345				config[num].vdd_sel_bits |= 1 << 4;
1346				break;
1347			case 2500000:
1348				config[num].vdd_sel_bits |= 2 << 4;
1349				break;
1350			default:
1351				dev_err(&data->i2c_client->dev,
1352					"unsupported vddo voltage %d for %s\n",
1353					vdd, child->name);
1354				goto put_child;
1355			}
1356		} else {
1357			/* chip seems to default to 2.5V when not set */
1358			dev_warn(&data->i2c_client->dev,
1359				"no regulator set, defaulting vdd_sel to 2.5V for %s\n",
1360				child->name);
1361			config[num].vdd_sel_bits |= 2 << 4;
1362		}
1363	}
1364
1365	return 0;
1366
1367put_child:
1368	of_node_put(child);
1369	return -EINVAL;
1370}
1371
1372/*
1373 * If not pre-configured, calculate and set the PLL configuration manually.
1374 * For low-jitter performance, the PLL should be set such that the synthesizers
1375 * only need integer division.
1376 * Without any user guidance, we'll set the PLL to 14GHz, which still allows
1377 * the chip to generate any frequency on its outputs, but jitter performance
1378 * may be sub-optimal.
1379 */
1380static int si5341_initialize_pll(struct clk_si5341 *data)
1381{
1382	struct device_node *np = data->i2c_client->dev.of_node;
1383	u32 m_num = 0;
1384	u32 m_den = 0;
1385	int sel;
1386
1387	if (of_property_read_u32(np, "silabs,pll-m-num", &m_num)) {
1388		dev_err(&data->i2c_client->dev,
1389			"PLL configuration requires silabs,pll-m-num\n");
1390	}
1391	if (of_property_read_u32(np, "silabs,pll-m-den", &m_den)) {
1392		dev_err(&data->i2c_client->dev,
1393			"PLL configuration requires silabs,pll-m-den\n");
1394	}
1395
1396	if (!m_num || !m_den) {
1397		dev_err(&data->i2c_client->dev,
1398			"PLL configuration invalid, assume 14GHz\n");
1399		sel = si5341_clk_get_selected_input(data);
1400		if (sel < 0)
1401			return sel;
1402
1403		m_den = clk_get_rate(data->input_clk[sel]) / 10;
1404		m_num = 1400000000;
1405	}
1406
1407	return si5341_encode_44_32(data->regmap,
1408			SI5341_PLL_M_NUM, m_num, m_den);
1409}
1410
1411static int si5341_clk_select_active_input(struct clk_si5341 *data)
1412{
1413	int res;
1414	int err;
1415	int i;
1416
1417	res = si5341_clk_get_selected_input(data);
1418	if (res < 0)
1419		return res;
1420
1421	/* If the current register setting is invalid, pick the first input */
1422	if (!data->input_clk[res]) {
1423		dev_dbg(&data->i2c_client->dev,
1424			"Input %d not connected, rerouting\n", res);
1425		res = -ENODEV;
1426		for (i = 0; i < SI5341_NUM_INPUTS; ++i) {
1427			if (data->input_clk[i]) {
1428				res = i;
1429				break;
1430			}
1431		}
1432		if (res < 0) {
1433			dev_err(&data->i2c_client->dev,
1434				"No clock input available\n");
1435			return res;
1436		}
1437	}
1438
1439	/* Make sure the selected clock is also enabled and routed */
1440	err = si5341_clk_reparent(data, res);
1441	if (err < 0)
1442		return err;
1443
1444	err = clk_prepare_enable(data->input_clk[res]);
1445	if (err < 0)
1446		return err;
1447
1448	return res;
1449}
1450
1451static ssize_t input_present_show(struct device *dev,
1452				  struct device_attribute *attr,
1453				  char *buf)
1454{
1455	struct clk_si5341 *data = dev_get_drvdata(dev);
1456	u32 status;
1457	int res = regmap_read(data->regmap, SI5341_STATUS, &status);
1458
1459	if (res < 0)
1460		return res;
1461	res = !(status & SI5341_STATUS_LOSREF);
1462	return snprintf(buf, PAGE_SIZE, "%d\n", res);
1463}
1464static DEVICE_ATTR_RO(input_present);
1465
1466static ssize_t input_present_sticky_show(struct device *dev,
1467					 struct device_attribute *attr,
1468					 char *buf)
1469{
1470	struct clk_si5341 *data = dev_get_drvdata(dev);
1471	u32 status;
1472	int res = regmap_read(data->regmap, SI5341_STATUS_STICKY, &status);
1473
1474	if (res < 0)
1475		return res;
1476	res = !(status & SI5341_STATUS_LOSREF);
1477	return snprintf(buf, PAGE_SIZE, "%d\n", res);
1478}
1479static DEVICE_ATTR_RO(input_present_sticky);
1480
1481static ssize_t pll_locked_show(struct device *dev,
1482			       struct device_attribute *attr,
1483			       char *buf)
1484{
1485	struct clk_si5341 *data = dev_get_drvdata(dev);
1486	u32 status;
1487	int res = regmap_read(data->regmap, SI5341_STATUS, &status);
1488
1489	if (res < 0)
1490		return res;
1491	res = !(status & SI5341_STATUS_LOL);
1492	return snprintf(buf, PAGE_SIZE, "%d\n", res);
1493}
1494static DEVICE_ATTR_RO(pll_locked);
1495
1496static ssize_t pll_locked_sticky_show(struct device *dev,
1497				      struct device_attribute *attr,
1498				      char *buf)
1499{
1500	struct clk_si5341 *data = dev_get_drvdata(dev);
1501	u32 status;
1502	int res = regmap_read(data->regmap, SI5341_STATUS_STICKY, &status);
1503
1504	if (res < 0)
1505		return res;
1506	res = !(status & SI5341_STATUS_LOL);
1507	return snprintf(buf, PAGE_SIZE, "%d\n", res);
1508}
1509static DEVICE_ATTR_RO(pll_locked_sticky);
1510
1511static ssize_t clear_sticky_store(struct device *dev,
1512				  struct device_attribute *attr,
1513				  const char *buf, size_t count)
1514{
1515	struct clk_si5341 *data = dev_get_drvdata(dev);
1516	long val;
1517
1518	if (kstrtol(buf, 10, &val))
1519		return -EINVAL;
1520	if (val) {
1521		int res = regmap_write(data->regmap, SI5341_STATUS_STICKY, 0);
1522
1523		if (res < 0)
1524			return res;
1525	}
1526	return count;
1527}
1528static DEVICE_ATTR_WO(clear_sticky);
1529
1530static const struct attribute *si5341_attributes[] = {
1531	&dev_attr_input_present.attr,
1532	&dev_attr_input_present_sticky.attr,
1533	&dev_attr_pll_locked.attr,
1534	&dev_attr_pll_locked_sticky.attr,
1535	&dev_attr_clear_sticky.attr,
1536	NULL
1537};
1538
1539static int si5341_probe(struct i2c_client *client,
1540		const struct i2c_device_id *id)
1541{
1542	struct clk_si5341 *data;
1543	struct clk_init_data init;
1544	struct clk *input;
1545	const char *root_clock_name;
1546	const char *synth_clock_names[SI5341_NUM_SYNTH] = { NULL };
1547	int err;
1548	unsigned int i;
1549	struct clk_si5341_output_config config[SI5341_MAX_NUM_OUTPUTS];
1550	bool initialization_required;
1551	u32 status;
1552
1553	data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
1554	if (!data)
1555		return -ENOMEM;
1556
1557	data->i2c_client = client;
1558
1559	/* Must be done before otherwise touching hardware */
1560	err = si5341_wait_device_ready(client);
1561	if (err)
1562		return err;
1563
1564	for (i = 0; i < SI5341_NUM_INPUTS; ++i) {
1565		input = devm_clk_get(&client->dev, si5341_input_clock_names[i]);
1566		if (IS_ERR(input)) {
1567			if (PTR_ERR(input) == -EPROBE_DEFER)
1568				return -EPROBE_DEFER;
1569			data->input_clk_name[i] = si5341_input_clock_names[i];
1570		} else {
1571			data->input_clk[i] = input;
1572			data->input_clk_name[i] = __clk_get_name(input);
1573		}
1574	}
1575
1576	for (i = 0; i < SI5341_MAX_NUM_OUTPUTS; ++i) {
1577		char reg_name[10];
1578
1579		snprintf(reg_name, sizeof(reg_name), "vddo%d", i);
1580		data->clk[i].vddo_reg = devm_regulator_get_optional(
1581			&client->dev, reg_name);
1582		if (IS_ERR(data->clk[i].vddo_reg)) {
1583			err = PTR_ERR(data->clk[i].vddo_reg);
1584			data->clk[i].vddo_reg = NULL;
1585			if (err == -ENODEV)
1586				continue;
1587			goto cleanup;
1588		} else {
1589			err = regulator_enable(data->clk[i].vddo_reg);
1590			if (err) {
1591				dev_err(&client->dev,
1592					"failed to enable %s regulator: %d\n",
1593					reg_name, err);
1594				data->clk[i].vddo_reg = NULL;
1595				goto cleanup;
1596			}
1597		}
1598	}
1599
1600	err = si5341_dt_parse_dt(data, config);
1601	if (err)
1602		goto cleanup;
1603
1604	if (of_property_read_string(client->dev.of_node, "clock-output-names",
1605			&init.name))
1606		init.name = client->dev.of_node->name;
1607	root_clock_name = init.name;
1608
1609	data->regmap = devm_regmap_init_i2c(client, &si5341_regmap_config);
1610	if (IS_ERR(data->regmap)) {
1611		err = PTR_ERR(data->regmap);
1612		goto cleanup;
1613	}
1614
1615	i2c_set_clientdata(client, data);
1616
1617	err = si5341_probe_chip_id(data);
1618	if (err < 0)
1619		goto cleanup;
1620
1621	if (of_property_read_bool(client->dev.of_node, "silabs,reprogram")) {
1622		initialization_required = true;
1623	} else {
1624		err = si5341_is_programmed_already(data);
1625		if (err < 0)
1626			goto cleanup;
1627
1628		initialization_required = !err;
1629	}
1630
1631	if (initialization_required) {
1632		/* Populate the regmap cache in preparation for "cache only" */
1633		err = si5341_read_settings(data);
1634		if (err < 0)
1635			goto cleanup;
1636
1637		err = si5341_send_preamble(data);
1638		if (err < 0)
1639			goto cleanup;
1640
1641		/*
1642		 * We intend to send all 'final' register values in a single
1643		 * transaction. So cache all register writes until we're done
1644		 * configuring.
1645		 */
1646		regcache_cache_only(data->regmap, true);
1647
1648		/* Write the configuration pairs from the firmware blob */
1649		err = si5341_write_multiple(data, si5341_reg_defaults,
1650					ARRAY_SIZE(si5341_reg_defaults));
1651		if (err < 0)
1652			goto cleanup;
1653	}
1654
1655	/* Input must be up and running at this point */
1656	err = si5341_clk_select_active_input(data);
1657	if (err < 0)
1658		goto cleanup;
1659
1660	if (initialization_required) {
1661		/* PLL configuration is required */
1662		err = si5341_initialize_pll(data);
1663		if (err < 0)
1664			goto cleanup;
1665	}
1666
1667	/* Register the PLL */
1668	init.parent_names = data->input_clk_name;
1669	init.num_parents = SI5341_NUM_INPUTS;
1670	init.ops = &si5341_clk_ops;
1671	init.flags = 0;
1672	data->hw.init = &init;
1673
1674	err = devm_clk_hw_register(&client->dev, &data->hw);
1675	if (err) {
1676		dev_err(&client->dev, "clock registration failed\n");
1677		goto cleanup;
1678	}
1679
1680	init.num_parents = 1;
1681	init.parent_names = &root_clock_name;
1682	init.ops = &si5341_synth_clk_ops;
1683	for (i = 0; i < data->num_synth; ++i) {
1684		synth_clock_names[i] = devm_kasprintf(&client->dev, GFP_KERNEL,
1685				"%s.N%u", client->dev.of_node->name, i);
1686		if (!synth_clock_names[i]) {
1687			err = -ENOMEM;
1688			goto free_clk_names;
1689		}
1690		init.name = synth_clock_names[i];
1691		data->synth[i].index = i;
1692		data->synth[i].data = data;
1693		data->synth[i].hw.init = &init;
1694		err = devm_clk_hw_register(&client->dev, &data->synth[i].hw);
1695		if (err) {
1696			dev_err(&client->dev,
1697				"synth N%u registration failed\n", i);
1698			goto free_clk_names;
1699		}
1700	}
1701
1702	init.num_parents = data->num_synth;
1703	init.parent_names = synth_clock_names;
1704	init.ops = &si5341_output_clk_ops;
1705	for (i = 0; i < data->num_outputs; ++i) {
1706		init.name = kasprintf(GFP_KERNEL, "%s.%d",
1707			client->dev.of_node->name, i);
1708		if (!init.name) {
1709			err = -ENOMEM;
1710			goto free_clk_names;
1711		}
1712		init.flags = config[i].synth_master ? CLK_SET_RATE_PARENT : 0;
1713		data->clk[i].index = i;
1714		data->clk[i].data = data;
1715		data->clk[i].hw.init = &init;
1716		if (config[i].out_format_drv_bits & 0x07) {
1717			regmap_write(data->regmap,
1718				SI5341_OUT_FORMAT(&data->clk[i]),
1719				config[i].out_format_drv_bits);
1720			regmap_write(data->regmap,
1721				SI5341_OUT_CM(&data->clk[i]),
1722				config[i].out_cm_ampl_bits);
1723			regmap_update_bits(data->regmap,
1724				SI5341_OUT_MUX_SEL(&data->clk[i]),
1725				SI5341_OUT_MUX_VDD_SEL_MASK,
1726				config[i].vdd_sel_bits);
1727		}
1728		err = devm_clk_hw_register(&client->dev, &data->clk[i].hw);
1729		kfree(init.name); /* clock framework made a copy of the name */
1730		if (err) {
1731			dev_err(&client->dev,
1732				"output %u registration failed\n", i);
1733			goto free_clk_names;
1734		}
1735		if (config[i].always_on)
1736			clk_prepare(data->clk[i].hw.clk);
1737	}
1738
1739	err = devm_of_clk_add_hw_provider(&client->dev, of_clk_si5341_get,
1740			data);
1741	if (err) {
1742		dev_err(&client->dev, "unable to add clk provider\n");
1743		goto free_clk_names;
1744	}
1745
1746	if (initialization_required) {
1747		/* Synchronize */
1748		regcache_cache_only(data->regmap, false);
1749		err = regcache_sync(data->regmap);
1750		if (err < 0)
1751			goto free_clk_names;
1752
1753		err = si5341_finalize_defaults(data);
1754		if (err < 0)
1755			goto free_clk_names;
1756	}
1757
1758	/* wait for device to report input clock present and PLL lock */
1759	err = regmap_read_poll_timeout(data->regmap, SI5341_STATUS, status,
1760		!(status & (SI5341_STATUS_LOSREF | SI5341_STATUS_LOL)),
1761	       10000, 250000);
1762	if (err) {
1763		dev_err(&client->dev, "Error waiting for input clock or PLL lock\n");
1764		goto free_clk_names;
1765	}
1766
1767	/* clear sticky alarm bits from initialization */
1768	err = regmap_write(data->regmap, SI5341_STATUS_STICKY, 0);
1769	if (err) {
1770		dev_err(&client->dev, "unable to clear sticky status\n");
1771		goto free_clk_names;
1772	}
1773
1774	err = sysfs_create_files(&client->dev.kobj, si5341_attributes);
1775	if (err)
1776		dev_err(&client->dev, "unable to create sysfs files\n");
1777
1778free_clk_names:
1779	/* Free the names, clk framework makes copies */
1780	for (i = 0; i < data->num_synth; ++i)
1781		 devm_kfree(&client->dev, (void *)synth_clock_names[i]);
1782
1783cleanup:
1784	if (err) {
1785		for (i = 0; i < SI5341_MAX_NUM_OUTPUTS; ++i) {
1786			if (data->clk[i].vddo_reg)
1787				regulator_disable(data->clk[i].vddo_reg);
1788		}
1789	}
1790	return err;
1791}
1792
1793static int si5341_remove(struct i2c_client *client)
1794{
1795	struct clk_si5341 *data = i2c_get_clientdata(client);
1796	int i;
1797
1798	sysfs_remove_files(&client->dev.kobj, si5341_attributes);
1799
1800	for (i = 0; i < SI5341_MAX_NUM_OUTPUTS; ++i) {
1801		if (data->clk[i].vddo_reg)
1802			regulator_disable(data->clk[i].vddo_reg);
1803	}
1804
1805	return 0;
1806}
1807
1808static const struct i2c_device_id si5341_id[] = {
1809	{ "si5340", 0 },
1810	{ "si5341", 1 },
1811	{ "si5342", 2 },
1812	{ "si5344", 4 },
1813	{ "si5345", 5 },
1814	{ }
1815};
1816MODULE_DEVICE_TABLE(i2c, si5341_id);
1817
1818static const struct of_device_id clk_si5341_of_match[] = {
1819	{ .compatible = "silabs,si5340" },
1820	{ .compatible = "silabs,si5341" },
1821	{ .compatible = "silabs,si5342" },
1822	{ .compatible = "silabs,si5344" },
1823	{ .compatible = "silabs,si5345" },
1824	{ }
1825};
1826MODULE_DEVICE_TABLE(of, clk_si5341_of_match);
1827
1828static struct i2c_driver si5341_driver = {
1829	.driver = {
1830		.name = "si5341",
1831		.of_match_table = clk_si5341_of_match,
1832	},
1833	.probe		= si5341_probe,
1834	.remove		= si5341_remove,
1835	.id_table	= si5341_id,
1836};
1837module_i2c_driver(si5341_driver);
1838
1839MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
1840MODULE_DESCRIPTION("Si5341 driver");
1841MODULE_LICENSE("GPL");
1842