18c2ecf20Sopenharmony_ci/*
28c2ecf20Sopenharmony_ci * Copyright (C) 2013 Broadcom Corporation
38c2ecf20Sopenharmony_ci * Copyright 2013 Linaro Limited
48c2ecf20Sopenharmony_ci *
58c2ecf20Sopenharmony_ci * This program is free software; you can redistribute it and/or
68c2ecf20Sopenharmony_ci * modify it under the terms of the GNU General Public License as
78c2ecf20Sopenharmony_ci * published by the Free Software Foundation version 2.
88c2ecf20Sopenharmony_ci *
98c2ecf20Sopenharmony_ci * This program is distributed "as is" WITHOUT ANY WARRANTY of any
108c2ecf20Sopenharmony_ci * kind, whether express or implied; without even the implied warranty
118c2ecf20Sopenharmony_ci * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
128c2ecf20Sopenharmony_ci * GNU General Public License for more details.
138c2ecf20Sopenharmony_ci */
148c2ecf20Sopenharmony_ci
158c2ecf20Sopenharmony_ci#include "clk-kona.h"
168c2ecf20Sopenharmony_ci
178c2ecf20Sopenharmony_ci#include <linux/delay.h>
188c2ecf20Sopenharmony_ci#include <linux/io.h>
198c2ecf20Sopenharmony_ci#include <linux/kernel.h>
208c2ecf20Sopenharmony_ci#include <linux/clk-provider.h>
218c2ecf20Sopenharmony_ci
228c2ecf20Sopenharmony_ci/*
238c2ecf20Sopenharmony_ci * "Policies" affect the frequencies of bus clocks provided by a
248c2ecf20Sopenharmony_ci * CCU.  (I believe these polices are named "Deep Sleep", "Economy",
258c2ecf20Sopenharmony_ci * "Normal", and "Turbo".)  A lower policy number has lower power
268c2ecf20Sopenharmony_ci * consumption, and policy 2 is the default.
278c2ecf20Sopenharmony_ci */
288c2ecf20Sopenharmony_ci#define CCU_POLICY_COUNT	4
298c2ecf20Sopenharmony_ci
308c2ecf20Sopenharmony_ci#define CCU_ACCESS_PASSWORD      0xA5A500
318c2ecf20Sopenharmony_ci#define CLK_GATE_DELAY_LOOP      2000
328c2ecf20Sopenharmony_ci
338c2ecf20Sopenharmony_ci/* Bitfield operations */
348c2ecf20Sopenharmony_ci
358c2ecf20Sopenharmony_ci/* Produces a mask of set bits covering a range of a 32-bit value */
368c2ecf20Sopenharmony_cistatic inline u32 bitfield_mask(u32 shift, u32 width)
378c2ecf20Sopenharmony_ci{
388c2ecf20Sopenharmony_ci	return ((1 << width) - 1) << shift;
398c2ecf20Sopenharmony_ci}
408c2ecf20Sopenharmony_ci
418c2ecf20Sopenharmony_ci/* Extract the value of a bitfield found within a given register value */
428c2ecf20Sopenharmony_cistatic inline u32 bitfield_extract(u32 reg_val, u32 shift, u32 width)
438c2ecf20Sopenharmony_ci{
448c2ecf20Sopenharmony_ci	return (reg_val & bitfield_mask(shift, width)) >> shift;
458c2ecf20Sopenharmony_ci}
468c2ecf20Sopenharmony_ci
478c2ecf20Sopenharmony_ci/* Replace the value of a bitfield found within a given register value */
488c2ecf20Sopenharmony_cistatic inline u32 bitfield_replace(u32 reg_val, u32 shift, u32 width, u32 val)
498c2ecf20Sopenharmony_ci{
508c2ecf20Sopenharmony_ci	u32 mask = bitfield_mask(shift, width);
518c2ecf20Sopenharmony_ci
528c2ecf20Sopenharmony_ci	return (reg_val & ~mask) | (val << shift);
538c2ecf20Sopenharmony_ci}
548c2ecf20Sopenharmony_ci
558c2ecf20Sopenharmony_ci/* Divider and scaling helpers */
568c2ecf20Sopenharmony_ci
578c2ecf20Sopenharmony_ci/* Convert a divider into the scaled divisor value it represents. */
588c2ecf20Sopenharmony_cistatic inline u64 scaled_div_value(struct bcm_clk_div *div, u32 reg_div)
598c2ecf20Sopenharmony_ci{
608c2ecf20Sopenharmony_ci	return (u64)reg_div + ((u64)1 << div->u.s.frac_width);
618c2ecf20Sopenharmony_ci}
628c2ecf20Sopenharmony_ci
638c2ecf20Sopenharmony_ci/*
648c2ecf20Sopenharmony_ci * Build a scaled divider value as close as possible to the
658c2ecf20Sopenharmony_ci * given whole part (div_value) and fractional part (expressed
668c2ecf20Sopenharmony_ci * in billionths).
678c2ecf20Sopenharmony_ci */
688c2ecf20Sopenharmony_ciu64 scaled_div_build(struct bcm_clk_div *div, u32 div_value, u32 billionths)
698c2ecf20Sopenharmony_ci{
708c2ecf20Sopenharmony_ci	u64 combined;
718c2ecf20Sopenharmony_ci
728c2ecf20Sopenharmony_ci	BUG_ON(!div_value);
738c2ecf20Sopenharmony_ci	BUG_ON(billionths >= BILLION);
748c2ecf20Sopenharmony_ci
758c2ecf20Sopenharmony_ci	combined = (u64)div_value * BILLION + billionths;
768c2ecf20Sopenharmony_ci	combined <<= div->u.s.frac_width;
778c2ecf20Sopenharmony_ci
788c2ecf20Sopenharmony_ci	return DIV_ROUND_CLOSEST_ULL(combined, BILLION);
798c2ecf20Sopenharmony_ci}
808c2ecf20Sopenharmony_ci
818c2ecf20Sopenharmony_ci/* The scaled minimum divisor representable by a divider */
828c2ecf20Sopenharmony_cistatic inline u64
838c2ecf20Sopenharmony_ciscaled_div_min(struct bcm_clk_div *div)
848c2ecf20Sopenharmony_ci{
858c2ecf20Sopenharmony_ci	if (divider_is_fixed(div))
868c2ecf20Sopenharmony_ci		return (u64)div->u.fixed;
878c2ecf20Sopenharmony_ci
888c2ecf20Sopenharmony_ci	return scaled_div_value(div, 0);
898c2ecf20Sopenharmony_ci}
908c2ecf20Sopenharmony_ci
918c2ecf20Sopenharmony_ci/* The scaled maximum divisor representable by a divider */
928c2ecf20Sopenharmony_ciu64 scaled_div_max(struct bcm_clk_div *div)
938c2ecf20Sopenharmony_ci{
948c2ecf20Sopenharmony_ci	u32 reg_div;
958c2ecf20Sopenharmony_ci
968c2ecf20Sopenharmony_ci	if (divider_is_fixed(div))
978c2ecf20Sopenharmony_ci		return (u64)div->u.fixed;
988c2ecf20Sopenharmony_ci
998c2ecf20Sopenharmony_ci	reg_div = ((u32)1 << div->u.s.width) - 1;
1008c2ecf20Sopenharmony_ci
1018c2ecf20Sopenharmony_ci	return scaled_div_value(div, reg_div);
1028c2ecf20Sopenharmony_ci}
1038c2ecf20Sopenharmony_ci
1048c2ecf20Sopenharmony_ci/*
1058c2ecf20Sopenharmony_ci * Convert a scaled divisor into its divider representation as
1068c2ecf20Sopenharmony_ci * stored in a divider register field.
1078c2ecf20Sopenharmony_ci */
1088c2ecf20Sopenharmony_cistatic inline u32
1098c2ecf20Sopenharmony_cidivider(struct bcm_clk_div *div, u64 scaled_div)
1108c2ecf20Sopenharmony_ci{
1118c2ecf20Sopenharmony_ci	BUG_ON(scaled_div < scaled_div_min(div));
1128c2ecf20Sopenharmony_ci	BUG_ON(scaled_div > scaled_div_max(div));
1138c2ecf20Sopenharmony_ci
1148c2ecf20Sopenharmony_ci	return (u32)(scaled_div - ((u64)1 << div->u.s.frac_width));
1158c2ecf20Sopenharmony_ci}
1168c2ecf20Sopenharmony_ci
1178c2ecf20Sopenharmony_ci/* Return a rate scaled for use when dividing by a scaled divisor. */
1188c2ecf20Sopenharmony_cistatic inline u64
1198c2ecf20Sopenharmony_ciscale_rate(struct bcm_clk_div *div, u32 rate)
1208c2ecf20Sopenharmony_ci{
1218c2ecf20Sopenharmony_ci	if (divider_is_fixed(div))
1228c2ecf20Sopenharmony_ci		return (u64)rate;
1238c2ecf20Sopenharmony_ci
1248c2ecf20Sopenharmony_ci	return (u64)rate << div->u.s.frac_width;
1258c2ecf20Sopenharmony_ci}
1268c2ecf20Sopenharmony_ci
1278c2ecf20Sopenharmony_ci/* CCU access */
1288c2ecf20Sopenharmony_ci
1298c2ecf20Sopenharmony_ci/* Read a 32-bit register value from a CCU's address space. */
1308c2ecf20Sopenharmony_cistatic inline u32 __ccu_read(struct ccu_data *ccu, u32 reg_offset)
1318c2ecf20Sopenharmony_ci{
1328c2ecf20Sopenharmony_ci	return readl(ccu->base + reg_offset);
1338c2ecf20Sopenharmony_ci}
1348c2ecf20Sopenharmony_ci
1358c2ecf20Sopenharmony_ci/* Write a 32-bit register value into a CCU's address space. */
1368c2ecf20Sopenharmony_cistatic inline void
1378c2ecf20Sopenharmony_ci__ccu_write(struct ccu_data *ccu, u32 reg_offset, u32 reg_val)
1388c2ecf20Sopenharmony_ci{
1398c2ecf20Sopenharmony_ci	writel(reg_val, ccu->base + reg_offset);
1408c2ecf20Sopenharmony_ci}
1418c2ecf20Sopenharmony_ci
1428c2ecf20Sopenharmony_cistatic inline unsigned long ccu_lock(struct ccu_data *ccu)
1438c2ecf20Sopenharmony_ci{
1448c2ecf20Sopenharmony_ci	unsigned long flags;
1458c2ecf20Sopenharmony_ci
1468c2ecf20Sopenharmony_ci	spin_lock_irqsave(&ccu->lock, flags);
1478c2ecf20Sopenharmony_ci
1488c2ecf20Sopenharmony_ci	return flags;
1498c2ecf20Sopenharmony_ci}
1508c2ecf20Sopenharmony_cistatic inline void ccu_unlock(struct ccu_data *ccu, unsigned long flags)
1518c2ecf20Sopenharmony_ci{
1528c2ecf20Sopenharmony_ci	spin_unlock_irqrestore(&ccu->lock, flags);
1538c2ecf20Sopenharmony_ci}
1548c2ecf20Sopenharmony_ci
1558c2ecf20Sopenharmony_ci/*
1568c2ecf20Sopenharmony_ci * Enable/disable write access to CCU protected registers.  The
1578c2ecf20Sopenharmony_ci * WR_ACCESS register for all CCUs is at offset 0.
1588c2ecf20Sopenharmony_ci */
1598c2ecf20Sopenharmony_cistatic inline void __ccu_write_enable(struct ccu_data *ccu)
1608c2ecf20Sopenharmony_ci{
1618c2ecf20Sopenharmony_ci	if (ccu->write_enabled) {
1628c2ecf20Sopenharmony_ci		pr_err("%s: access already enabled for %s\n", __func__,
1638c2ecf20Sopenharmony_ci			ccu->name);
1648c2ecf20Sopenharmony_ci		return;
1658c2ecf20Sopenharmony_ci	}
1668c2ecf20Sopenharmony_ci	ccu->write_enabled = true;
1678c2ecf20Sopenharmony_ci	__ccu_write(ccu, 0, CCU_ACCESS_PASSWORD | 1);
1688c2ecf20Sopenharmony_ci}
1698c2ecf20Sopenharmony_ci
1708c2ecf20Sopenharmony_cistatic inline void __ccu_write_disable(struct ccu_data *ccu)
1718c2ecf20Sopenharmony_ci{
1728c2ecf20Sopenharmony_ci	if (!ccu->write_enabled) {
1738c2ecf20Sopenharmony_ci		pr_err("%s: access wasn't enabled for %s\n", __func__,
1748c2ecf20Sopenharmony_ci			ccu->name);
1758c2ecf20Sopenharmony_ci		return;
1768c2ecf20Sopenharmony_ci	}
1778c2ecf20Sopenharmony_ci
1788c2ecf20Sopenharmony_ci	__ccu_write(ccu, 0, CCU_ACCESS_PASSWORD);
1798c2ecf20Sopenharmony_ci	ccu->write_enabled = false;
1808c2ecf20Sopenharmony_ci}
1818c2ecf20Sopenharmony_ci
1828c2ecf20Sopenharmony_ci/*
1838c2ecf20Sopenharmony_ci * Poll a register in a CCU's address space, returning when the
1848c2ecf20Sopenharmony_ci * specified bit in that register's value is set (or clear).  Delay
1858c2ecf20Sopenharmony_ci * a microsecond after each read of the register.  Returns true if
1868c2ecf20Sopenharmony_ci * successful, or false if we gave up trying.
1878c2ecf20Sopenharmony_ci *
1888c2ecf20Sopenharmony_ci * Caller must ensure the CCU lock is held.
1898c2ecf20Sopenharmony_ci */
1908c2ecf20Sopenharmony_cistatic inline bool
1918c2ecf20Sopenharmony_ci__ccu_wait_bit(struct ccu_data *ccu, u32 reg_offset, u32 bit, bool want)
1928c2ecf20Sopenharmony_ci{
1938c2ecf20Sopenharmony_ci	unsigned int tries;
1948c2ecf20Sopenharmony_ci	u32 bit_mask = 1 << bit;
1958c2ecf20Sopenharmony_ci
1968c2ecf20Sopenharmony_ci	for (tries = 0; tries < CLK_GATE_DELAY_LOOP; tries++) {
1978c2ecf20Sopenharmony_ci		u32 val;
1988c2ecf20Sopenharmony_ci		bool bit_val;
1998c2ecf20Sopenharmony_ci
2008c2ecf20Sopenharmony_ci		val = __ccu_read(ccu, reg_offset);
2018c2ecf20Sopenharmony_ci		bit_val = (val & bit_mask) != 0;
2028c2ecf20Sopenharmony_ci		if (bit_val == want)
2038c2ecf20Sopenharmony_ci			return true;
2048c2ecf20Sopenharmony_ci		udelay(1);
2058c2ecf20Sopenharmony_ci	}
2068c2ecf20Sopenharmony_ci	pr_warn("%s: %s/0x%04x bit %u was never %s\n", __func__,
2078c2ecf20Sopenharmony_ci		ccu->name, reg_offset, bit, want ? "set" : "clear");
2088c2ecf20Sopenharmony_ci
2098c2ecf20Sopenharmony_ci	return false;
2108c2ecf20Sopenharmony_ci}
2118c2ecf20Sopenharmony_ci
2128c2ecf20Sopenharmony_ci/* Policy operations */
2138c2ecf20Sopenharmony_ci
2148c2ecf20Sopenharmony_cistatic bool __ccu_policy_engine_start(struct ccu_data *ccu, bool sync)
2158c2ecf20Sopenharmony_ci{
2168c2ecf20Sopenharmony_ci	struct bcm_policy_ctl *control = &ccu->policy.control;
2178c2ecf20Sopenharmony_ci	u32 offset;
2188c2ecf20Sopenharmony_ci	u32 go_bit;
2198c2ecf20Sopenharmony_ci	u32 mask;
2208c2ecf20Sopenharmony_ci	bool ret;
2218c2ecf20Sopenharmony_ci
2228c2ecf20Sopenharmony_ci	/* If we don't need to control policy for this CCU, we're done. */
2238c2ecf20Sopenharmony_ci	if (!policy_ctl_exists(control))
2248c2ecf20Sopenharmony_ci		return true;
2258c2ecf20Sopenharmony_ci
2268c2ecf20Sopenharmony_ci	offset = control->offset;
2278c2ecf20Sopenharmony_ci	go_bit = control->go_bit;
2288c2ecf20Sopenharmony_ci
2298c2ecf20Sopenharmony_ci	/* Ensure we're not busy before we start */
2308c2ecf20Sopenharmony_ci	ret = __ccu_wait_bit(ccu, offset, go_bit, false);
2318c2ecf20Sopenharmony_ci	if (!ret) {
2328c2ecf20Sopenharmony_ci		pr_err("%s: ccu %s policy engine wouldn't go idle\n",
2338c2ecf20Sopenharmony_ci			__func__, ccu->name);
2348c2ecf20Sopenharmony_ci		return false;
2358c2ecf20Sopenharmony_ci	}
2368c2ecf20Sopenharmony_ci
2378c2ecf20Sopenharmony_ci	/*
2388c2ecf20Sopenharmony_ci	 * If it's a synchronous request, we'll wait for the voltage
2398c2ecf20Sopenharmony_ci	 * and frequency of the active load to stabilize before
2408c2ecf20Sopenharmony_ci	 * returning.  To do this we select the active load by
2418c2ecf20Sopenharmony_ci	 * setting the ATL bit.
2428c2ecf20Sopenharmony_ci	 *
2438c2ecf20Sopenharmony_ci	 * An asynchronous request instead ramps the voltage in the
2448c2ecf20Sopenharmony_ci	 * background, and when that process stabilizes, the target
2458c2ecf20Sopenharmony_ci	 * load is copied to the active load and the CCU frequency
2468c2ecf20Sopenharmony_ci	 * is switched.  We do this by selecting the target load
2478c2ecf20Sopenharmony_ci	 * (ATL bit clear) and setting the request auto-copy (AC bit
2488c2ecf20Sopenharmony_ci	 * set).
2498c2ecf20Sopenharmony_ci	 *
2508c2ecf20Sopenharmony_ci	 * Note, we do NOT read-modify-write this register.
2518c2ecf20Sopenharmony_ci	 */
2528c2ecf20Sopenharmony_ci	mask = (u32)1 << go_bit;
2538c2ecf20Sopenharmony_ci	if (sync)
2548c2ecf20Sopenharmony_ci		mask |= 1 << control->atl_bit;
2558c2ecf20Sopenharmony_ci	else
2568c2ecf20Sopenharmony_ci		mask |= 1 << control->ac_bit;
2578c2ecf20Sopenharmony_ci	__ccu_write(ccu, offset, mask);
2588c2ecf20Sopenharmony_ci
2598c2ecf20Sopenharmony_ci	/* Wait for indication that operation is complete. */
2608c2ecf20Sopenharmony_ci	ret = __ccu_wait_bit(ccu, offset, go_bit, false);
2618c2ecf20Sopenharmony_ci	if (!ret)
2628c2ecf20Sopenharmony_ci		pr_err("%s: ccu %s policy engine never started\n",
2638c2ecf20Sopenharmony_ci			__func__, ccu->name);
2648c2ecf20Sopenharmony_ci
2658c2ecf20Sopenharmony_ci	return ret;
2668c2ecf20Sopenharmony_ci}
2678c2ecf20Sopenharmony_ci
2688c2ecf20Sopenharmony_cistatic bool __ccu_policy_engine_stop(struct ccu_data *ccu)
2698c2ecf20Sopenharmony_ci{
2708c2ecf20Sopenharmony_ci	struct bcm_lvm_en *enable = &ccu->policy.enable;
2718c2ecf20Sopenharmony_ci	u32 offset;
2728c2ecf20Sopenharmony_ci	u32 enable_bit;
2738c2ecf20Sopenharmony_ci	bool ret;
2748c2ecf20Sopenharmony_ci
2758c2ecf20Sopenharmony_ci	/* If we don't need to control policy for this CCU, we're done. */
2768c2ecf20Sopenharmony_ci	if (!policy_lvm_en_exists(enable))
2778c2ecf20Sopenharmony_ci		return true;
2788c2ecf20Sopenharmony_ci
2798c2ecf20Sopenharmony_ci	/* Ensure we're not busy before we start */
2808c2ecf20Sopenharmony_ci	offset = enable->offset;
2818c2ecf20Sopenharmony_ci	enable_bit = enable->bit;
2828c2ecf20Sopenharmony_ci	ret = __ccu_wait_bit(ccu, offset, enable_bit, false);
2838c2ecf20Sopenharmony_ci	if (!ret) {
2848c2ecf20Sopenharmony_ci		pr_err("%s: ccu %s policy engine already stopped\n",
2858c2ecf20Sopenharmony_ci			__func__, ccu->name);
2868c2ecf20Sopenharmony_ci		return false;
2878c2ecf20Sopenharmony_ci	}
2888c2ecf20Sopenharmony_ci
2898c2ecf20Sopenharmony_ci	/* Now set the bit to stop the engine (NO read-modify-write) */
2908c2ecf20Sopenharmony_ci	__ccu_write(ccu, offset, (u32)1 << enable_bit);
2918c2ecf20Sopenharmony_ci
2928c2ecf20Sopenharmony_ci	/* Wait for indication that it has stopped. */
2938c2ecf20Sopenharmony_ci	ret = __ccu_wait_bit(ccu, offset, enable_bit, false);
2948c2ecf20Sopenharmony_ci	if (!ret)
2958c2ecf20Sopenharmony_ci		pr_err("%s: ccu %s policy engine never stopped\n",
2968c2ecf20Sopenharmony_ci			__func__, ccu->name);
2978c2ecf20Sopenharmony_ci
2988c2ecf20Sopenharmony_ci	return ret;
2998c2ecf20Sopenharmony_ci}
3008c2ecf20Sopenharmony_ci
3018c2ecf20Sopenharmony_ci/*
3028c2ecf20Sopenharmony_ci * A CCU has four operating conditions ("policies"), and some clocks
3038c2ecf20Sopenharmony_ci * can be disabled or enabled based on which policy is currently in
3048c2ecf20Sopenharmony_ci * effect.  Such clocks have a bit in a "policy mask" register for
3058c2ecf20Sopenharmony_ci * each policy indicating whether the clock is enabled for that
3068c2ecf20Sopenharmony_ci * policy or not.  The bit position for a clock is the same for all
3078c2ecf20Sopenharmony_ci * four registers, and the 32-bit registers are at consecutive
3088c2ecf20Sopenharmony_ci * addresses.
3098c2ecf20Sopenharmony_ci */
3108c2ecf20Sopenharmony_cistatic bool policy_init(struct ccu_data *ccu, struct bcm_clk_policy *policy)
3118c2ecf20Sopenharmony_ci{
3128c2ecf20Sopenharmony_ci	u32 offset;
3138c2ecf20Sopenharmony_ci	u32 mask;
3148c2ecf20Sopenharmony_ci	int i;
3158c2ecf20Sopenharmony_ci	bool ret;
3168c2ecf20Sopenharmony_ci
3178c2ecf20Sopenharmony_ci	if (!policy_exists(policy))
3188c2ecf20Sopenharmony_ci		return true;
3198c2ecf20Sopenharmony_ci
3208c2ecf20Sopenharmony_ci	/*
3218c2ecf20Sopenharmony_ci	 * We need to stop the CCU policy engine to allow update
3228c2ecf20Sopenharmony_ci	 * of our policy bits.
3238c2ecf20Sopenharmony_ci	 */
3248c2ecf20Sopenharmony_ci	if (!__ccu_policy_engine_stop(ccu)) {
3258c2ecf20Sopenharmony_ci		pr_err("%s: unable to stop CCU %s policy engine\n",
3268c2ecf20Sopenharmony_ci			__func__, ccu->name);
3278c2ecf20Sopenharmony_ci		return false;
3288c2ecf20Sopenharmony_ci	}
3298c2ecf20Sopenharmony_ci
3308c2ecf20Sopenharmony_ci	/*
3318c2ecf20Sopenharmony_ci	 * For now, if a clock defines its policy bit we just mark
3328c2ecf20Sopenharmony_ci	 * it "enabled" for all four policies.
3338c2ecf20Sopenharmony_ci	 */
3348c2ecf20Sopenharmony_ci	offset = policy->offset;
3358c2ecf20Sopenharmony_ci	mask = (u32)1 << policy->bit;
3368c2ecf20Sopenharmony_ci	for (i = 0; i < CCU_POLICY_COUNT; i++) {
3378c2ecf20Sopenharmony_ci		u32 reg_val;
3388c2ecf20Sopenharmony_ci
3398c2ecf20Sopenharmony_ci		reg_val = __ccu_read(ccu, offset);
3408c2ecf20Sopenharmony_ci		reg_val |= mask;
3418c2ecf20Sopenharmony_ci		__ccu_write(ccu, offset, reg_val);
3428c2ecf20Sopenharmony_ci		offset += sizeof(u32);
3438c2ecf20Sopenharmony_ci	}
3448c2ecf20Sopenharmony_ci
3458c2ecf20Sopenharmony_ci	/* We're done updating; fire up the policy engine again. */
3468c2ecf20Sopenharmony_ci	ret = __ccu_policy_engine_start(ccu, true);
3478c2ecf20Sopenharmony_ci	if (!ret)
3488c2ecf20Sopenharmony_ci		pr_err("%s: unable to restart CCU %s policy engine\n",
3498c2ecf20Sopenharmony_ci			__func__, ccu->name);
3508c2ecf20Sopenharmony_ci
3518c2ecf20Sopenharmony_ci	return ret;
3528c2ecf20Sopenharmony_ci}
3538c2ecf20Sopenharmony_ci
3548c2ecf20Sopenharmony_ci/* Gate operations */
3558c2ecf20Sopenharmony_ci
3568c2ecf20Sopenharmony_ci/* Determine whether a clock is gated.  CCU lock must be held.  */
3578c2ecf20Sopenharmony_cistatic bool
3588c2ecf20Sopenharmony_ci__is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
3598c2ecf20Sopenharmony_ci{
3608c2ecf20Sopenharmony_ci	u32 bit_mask;
3618c2ecf20Sopenharmony_ci	u32 reg_val;
3628c2ecf20Sopenharmony_ci
3638c2ecf20Sopenharmony_ci	/* If there is no gate we can assume it's enabled. */
3648c2ecf20Sopenharmony_ci	if (!gate_exists(gate))
3658c2ecf20Sopenharmony_ci		return true;
3668c2ecf20Sopenharmony_ci
3678c2ecf20Sopenharmony_ci	bit_mask = 1 << gate->status_bit;
3688c2ecf20Sopenharmony_ci	reg_val = __ccu_read(ccu, gate->offset);
3698c2ecf20Sopenharmony_ci
3708c2ecf20Sopenharmony_ci	return (reg_val & bit_mask) != 0;
3718c2ecf20Sopenharmony_ci}
3728c2ecf20Sopenharmony_ci
3738c2ecf20Sopenharmony_ci/* Determine whether a clock is gated. */
3748c2ecf20Sopenharmony_cistatic bool
3758c2ecf20Sopenharmony_ciis_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
3768c2ecf20Sopenharmony_ci{
3778c2ecf20Sopenharmony_ci	long flags;
3788c2ecf20Sopenharmony_ci	bool ret;
3798c2ecf20Sopenharmony_ci
3808c2ecf20Sopenharmony_ci	/* Avoid taking the lock if we can */
3818c2ecf20Sopenharmony_ci	if (!gate_exists(gate))
3828c2ecf20Sopenharmony_ci		return true;
3838c2ecf20Sopenharmony_ci
3848c2ecf20Sopenharmony_ci	flags = ccu_lock(ccu);
3858c2ecf20Sopenharmony_ci	ret = __is_clk_gate_enabled(ccu, gate);
3868c2ecf20Sopenharmony_ci	ccu_unlock(ccu, flags);
3878c2ecf20Sopenharmony_ci
3888c2ecf20Sopenharmony_ci	return ret;
3898c2ecf20Sopenharmony_ci}
3908c2ecf20Sopenharmony_ci
3918c2ecf20Sopenharmony_ci/*
3928c2ecf20Sopenharmony_ci * Commit our desired gate state to the hardware.
3938c2ecf20Sopenharmony_ci * Returns true if successful, false otherwise.
3948c2ecf20Sopenharmony_ci */
3958c2ecf20Sopenharmony_cistatic bool
3968c2ecf20Sopenharmony_ci__gate_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate)
3978c2ecf20Sopenharmony_ci{
3988c2ecf20Sopenharmony_ci	u32 reg_val;
3998c2ecf20Sopenharmony_ci	u32 mask;
4008c2ecf20Sopenharmony_ci	bool enabled = false;
4018c2ecf20Sopenharmony_ci
4028c2ecf20Sopenharmony_ci	BUG_ON(!gate_exists(gate));
4038c2ecf20Sopenharmony_ci	if (!gate_is_sw_controllable(gate))
4048c2ecf20Sopenharmony_ci		return true;		/* Nothing we can change */
4058c2ecf20Sopenharmony_ci
4068c2ecf20Sopenharmony_ci	reg_val = __ccu_read(ccu, gate->offset);
4078c2ecf20Sopenharmony_ci
4088c2ecf20Sopenharmony_ci	/* For a hardware/software gate, set which is in control */
4098c2ecf20Sopenharmony_ci	if (gate_is_hw_controllable(gate)) {
4108c2ecf20Sopenharmony_ci		mask = (u32)1 << gate->hw_sw_sel_bit;
4118c2ecf20Sopenharmony_ci		if (gate_is_sw_managed(gate))
4128c2ecf20Sopenharmony_ci			reg_val |= mask;
4138c2ecf20Sopenharmony_ci		else
4148c2ecf20Sopenharmony_ci			reg_val &= ~mask;
4158c2ecf20Sopenharmony_ci	}
4168c2ecf20Sopenharmony_ci
4178c2ecf20Sopenharmony_ci	/*
4188c2ecf20Sopenharmony_ci	 * If software is in control, enable or disable the gate.
4198c2ecf20Sopenharmony_ci	 * If hardware is, clear the enabled bit for good measure.
4208c2ecf20Sopenharmony_ci	 * If a software controlled gate can't be disabled, we're
4218c2ecf20Sopenharmony_ci	 * required to write a 0 into the enable bit (but the gate
4228c2ecf20Sopenharmony_ci	 * will be enabled).
4238c2ecf20Sopenharmony_ci	 */
4248c2ecf20Sopenharmony_ci	mask = (u32)1 << gate->en_bit;
4258c2ecf20Sopenharmony_ci	if (gate_is_sw_managed(gate) && (enabled = gate_is_enabled(gate)) &&
4268c2ecf20Sopenharmony_ci			!gate_is_no_disable(gate))
4278c2ecf20Sopenharmony_ci		reg_val |= mask;
4288c2ecf20Sopenharmony_ci	else
4298c2ecf20Sopenharmony_ci		reg_val &= ~mask;
4308c2ecf20Sopenharmony_ci
4318c2ecf20Sopenharmony_ci	__ccu_write(ccu, gate->offset, reg_val);
4328c2ecf20Sopenharmony_ci
4338c2ecf20Sopenharmony_ci	/* For a hardware controlled gate, we're done */
4348c2ecf20Sopenharmony_ci	if (!gate_is_sw_managed(gate))
4358c2ecf20Sopenharmony_ci		return true;
4368c2ecf20Sopenharmony_ci
4378c2ecf20Sopenharmony_ci	/* Otherwise wait for the gate to be in desired state */
4388c2ecf20Sopenharmony_ci	return __ccu_wait_bit(ccu, gate->offset, gate->status_bit, enabled);
4398c2ecf20Sopenharmony_ci}
4408c2ecf20Sopenharmony_ci
4418c2ecf20Sopenharmony_ci/*
4428c2ecf20Sopenharmony_ci * Initialize a gate.  Our desired state (hardware/software select,
4438c2ecf20Sopenharmony_ci * and if software, its enable state) is committed to hardware
4448c2ecf20Sopenharmony_ci * without the usual checks to see if it's already set up that way.
4458c2ecf20Sopenharmony_ci * Returns true if successful, false otherwise.
4468c2ecf20Sopenharmony_ci */
4478c2ecf20Sopenharmony_cistatic bool gate_init(struct ccu_data *ccu, struct bcm_clk_gate *gate)
4488c2ecf20Sopenharmony_ci{
4498c2ecf20Sopenharmony_ci	if (!gate_exists(gate))
4508c2ecf20Sopenharmony_ci		return true;
4518c2ecf20Sopenharmony_ci	return __gate_commit(ccu, gate);
4528c2ecf20Sopenharmony_ci}
4538c2ecf20Sopenharmony_ci
4548c2ecf20Sopenharmony_ci/*
4558c2ecf20Sopenharmony_ci * Set a gate to enabled or disabled state.  Does nothing if the
4568c2ecf20Sopenharmony_ci * gate is not currently under software control, or if it is already
4578c2ecf20Sopenharmony_ci * in the requested state.  Returns true if successful, false
4588c2ecf20Sopenharmony_ci * otherwise.  CCU lock must be held.
4598c2ecf20Sopenharmony_ci */
4608c2ecf20Sopenharmony_cistatic bool
4618c2ecf20Sopenharmony_ci__clk_gate(struct ccu_data *ccu, struct bcm_clk_gate *gate, bool enable)
4628c2ecf20Sopenharmony_ci{
4638c2ecf20Sopenharmony_ci	bool ret;
4648c2ecf20Sopenharmony_ci
4658c2ecf20Sopenharmony_ci	if (!gate_exists(gate) || !gate_is_sw_managed(gate))
4668c2ecf20Sopenharmony_ci		return true;	/* Nothing to do */
4678c2ecf20Sopenharmony_ci
4688c2ecf20Sopenharmony_ci	if (!enable && gate_is_no_disable(gate)) {
4698c2ecf20Sopenharmony_ci		pr_warn("%s: invalid gate disable request (ignoring)\n",
4708c2ecf20Sopenharmony_ci			__func__);
4718c2ecf20Sopenharmony_ci		return true;
4728c2ecf20Sopenharmony_ci	}
4738c2ecf20Sopenharmony_ci
4748c2ecf20Sopenharmony_ci	if (enable == gate_is_enabled(gate))
4758c2ecf20Sopenharmony_ci		return true;	/* No change */
4768c2ecf20Sopenharmony_ci
4778c2ecf20Sopenharmony_ci	gate_flip_enabled(gate);
4788c2ecf20Sopenharmony_ci	ret = __gate_commit(ccu, gate);
4798c2ecf20Sopenharmony_ci	if (!ret)
4808c2ecf20Sopenharmony_ci		gate_flip_enabled(gate);	/* Revert the change */
4818c2ecf20Sopenharmony_ci
4828c2ecf20Sopenharmony_ci	return ret;
4838c2ecf20Sopenharmony_ci}
4848c2ecf20Sopenharmony_ci
4858c2ecf20Sopenharmony_ci/* Enable or disable a gate.  Returns 0 if successful, -EIO otherwise */
4868c2ecf20Sopenharmony_cistatic int clk_gate(struct ccu_data *ccu, const char *name,
4878c2ecf20Sopenharmony_ci			struct bcm_clk_gate *gate, bool enable)
4888c2ecf20Sopenharmony_ci{
4898c2ecf20Sopenharmony_ci	unsigned long flags;
4908c2ecf20Sopenharmony_ci	bool success;
4918c2ecf20Sopenharmony_ci
4928c2ecf20Sopenharmony_ci	/*
4938c2ecf20Sopenharmony_ci	 * Avoid taking the lock if we can.  We quietly ignore
4948c2ecf20Sopenharmony_ci	 * requests to change state that don't make sense.
4958c2ecf20Sopenharmony_ci	 */
4968c2ecf20Sopenharmony_ci	if (!gate_exists(gate) || !gate_is_sw_managed(gate))
4978c2ecf20Sopenharmony_ci		return 0;
4988c2ecf20Sopenharmony_ci	if (!enable && gate_is_no_disable(gate))
4998c2ecf20Sopenharmony_ci		return 0;
5008c2ecf20Sopenharmony_ci
5018c2ecf20Sopenharmony_ci	flags = ccu_lock(ccu);
5028c2ecf20Sopenharmony_ci	__ccu_write_enable(ccu);
5038c2ecf20Sopenharmony_ci
5048c2ecf20Sopenharmony_ci	success = __clk_gate(ccu, gate, enable);
5058c2ecf20Sopenharmony_ci
5068c2ecf20Sopenharmony_ci	__ccu_write_disable(ccu);
5078c2ecf20Sopenharmony_ci	ccu_unlock(ccu, flags);
5088c2ecf20Sopenharmony_ci
5098c2ecf20Sopenharmony_ci	if (success)
5108c2ecf20Sopenharmony_ci		return 0;
5118c2ecf20Sopenharmony_ci
5128c2ecf20Sopenharmony_ci	pr_err("%s: failed to %s gate for %s\n", __func__,
5138c2ecf20Sopenharmony_ci		enable ? "enable" : "disable", name);
5148c2ecf20Sopenharmony_ci
5158c2ecf20Sopenharmony_ci	return -EIO;
5168c2ecf20Sopenharmony_ci}
5178c2ecf20Sopenharmony_ci
5188c2ecf20Sopenharmony_ci/* Hysteresis operations */
5198c2ecf20Sopenharmony_ci
5208c2ecf20Sopenharmony_ci/*
5218c2ecf20Sopenharmony_ci * If a clock gate requires a turn-off delay it will have
5228c2ecf20Sopenharmony_ci * "hysteresis" register bits defined.  The first, if set, enables
5238c2ecf20Sopenharmony_ci * the delay; and if enabled, the second bit determines whether the
5248c2ecf20Sopenharmony_ci * delay is "low" or "high" (1 means high).  For now, if it's
5258c2ecf20Sopenharmony_ci * defined for a clock, we set it.
5268c2ecf20Sopenharmony_ci */
5278c2ecf20Sopenharmony_cistatic bool hyst_init(struct ccu_data *ccu, struct bcm_clk_hyst *hyst)
5288c2ecf20Sopenharmony_ci{
5298c2ecf20Sopenharmony_ci	u32 offset;
5308c2ecf20Sopenharmony_ci	u32 reg_val;
5318c2ecf20Sopenharmony_ci	u32 mask;
5328c2ecf20Sopenharmony_ci
5338c2ecf20Sopenharmony_ci	if (!hyst_exists(hyst))
5348c2ecf20Sopenharmony_ci		return true;
5358c2ecf20Sopenharmony_ci
5368c2ecf20Sopenharmony_ci	offset = hyst->offset;
5378c2ecf20Sopenharmony_ci	mask = (u32)1 << hyst->en_bit;
5388c2ecf20Sopenharmony_ci	mask |= (u32)1 << hyst->val_bit;
5398c2ecf20Sopenharmony_ci
5408c2ecf20Sopenharmony_ci	reg_val = __ccu_read(ccu, offset);
5418c2ecf20Sopenharmony_ci	reg_val |= mask;
5428c2ecf20Sopenharmony_ci	__ccu_write(ccu, offset, reg_val);
5438c2ecf20Sopenharmony_ci
5448c2ecf20Sopenharmony_ci	return true;
5458c2ecf20Sopenharmony_ci}
5468c2ecf20Sopenharmony_ci
5478c2ecf20Sopenharmony_ci/* Trigger operations */
5488c2ecf20Sopenharmony_ci
5498c2ecf20Sopenharmony_ci/*
5508c2ecf20Sopenharmony_ci * Caller must ensure CCU lock is held and access is enabled.
5518c2ecf20Sopenharmony_ci * Returns true if successful, false otherwise.
5528c2ecf20Sopenharmony_ci */
5538c2ecf20Sopenharmony_cistatic bool __clk_trigger(struct ccu_data *ccu, struct bcm_clk_trig *trig)
5548c2ecf20Sopenharmony_ci{
5558c2ecf20Sopenharmony_ci	/* Trigger the clock and wait for it to finish */
5568c2ecf20Sopenharmony_ci	__ccu_write(ccu, trig->offset, 1 << trig->bit);
5578c2ecf20Sopenharmony_ci
5588c2ecf20Sopenharmony_ci	return __ccu_wait_bit(ccu, trig->offset, trig->bit, false);
5598c2ecf20Sopenharmony_ci}
5608c2ecf20Sopenharmony_ci
5618c2ecf20Sopenharmony_ci/* Divider operations */
5628c2ecf20Sopenharmony_ci
5638c2ecf20Sopenharmony_ci/* Read a divider value and return the scaled divisor it represents. */
5648c2ecf20Sopenharmony_cistatic u64 divider_read_scaled(struct ccu_data *ccu, struct bcm_clk_div *div)
5658c2ecf20Sopenharmony_ci{
5668c2ecf20Sopenharmony_ci	unsigned long flags;
5678c2ecf20Sopenharmony_ci	u32 reg_val;
5688c2ecf20Sopenharmony_ci	u32 reg_div;
5698c2ecf20Sopenharmony_ci
5708c2ecf20Sopenharmony_ci	if (divider_is_fixed(div))
5718c2ecf20Sopenharmony_ci		return (u64)div->u.fixed;
5728c2ecf20Sopenharmony_ci
5738c2ecf20Sopenharmony_ci	flags = ccu_lock(ccu);
5748c2ecf20Sopenharmony_ci	reg_val = __ccu_read(ccu, div->u.s.offset);
5758c2ecf20Sopenharmony_ci	ccu_unlock(ccu, flags);
5768c2ecf20Sopenharmony_ci
5778c2ecf20Sopenharmony_ci	/* Extract the full divider field from the register value */
5788c2ecf20Sopenharmony_ci	reg_div = bitfield_extract(reg_val, div->u.s.shift, div->u.s.width);
5798c2ecf20Sopenharmony_ci
5808c2ecf20Sopenharmony_ci	/* Return the scaled divisor value it represents */
5818c2ecf20Sopenharmony_ci	return scaled_div_value(div, reg_div);
5828c2ecf20Sopenharmony_ci}
5838c2ecf20Sopenharmony_ci
5848c2ecf20Sopenharmony_ci/*
5858c2ecf20Sopenharmony_ci * Convert a divider's scaled divisor value into its recorded form
5868c2ecf20Sopenharmony_ci * and commit it into the hardware divider register.
5878c2ecf20Sopenharmony_ci *
5888c2ecf20Sopenharmony_ci * Returns 0 on success.  Returns -EINVAL for invalid arguments.
5898c2ecf20Sopenharmony_ci * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
5908c2ecf20Sopenharmony_ci */
5918c2ecf20Sopenharmony_cistatic int __div_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
5928c2ecf20Sopenharmony_ci			struct bcm_clk_div *div, struct bcm_clk_trig *trig)
5938c2ecf20Sopenharmony_ci{
5948c2ecf20Sopenharmony_ci	bool enabled;
5958c2ecf20Sopenharmony_ci	u32 reg_div;
5968c2ecf20Sopenharmony_ci	u32 reg_val;
5978c2ecf20Sopenharmony_ci	int ret = 0;
5988c2ecf20Sopenharmony_ci
5998c2ecf20Sopenharmony_ci	BUG_ON(divider_is_fixed(div));
6008c2ecf20Sopenharmony_ci
6018c2ecf20Sopenharmony_ci	/*
6028c2ecf20Sopenharmony_ci	 * If we're just initializing the divider, and no initial
6038c2ecf20Sopenharmony_ci	 * state was defined in the device tree, we just find out
6048c2ecf20Sopenharmony_ci	 * what its current value is rather than updating it.
6058c2ecf20Sopenharmony_ci	 */
6068c2ecf20Sopenharmony_ci	if (div->u.s.scaled_div == BAD_SCALED_DIV_VALUE) {
6078c2ecf20Sopenharmony_ci		reg_val = __ccu_read(ccu, div->u.s.offset);
6088c2ecf20Sopenharmony_ci		reg_div = bitfield_extract(reg_val, div->u.s.shift,
6098c2ecf20Sopenharmony_ci						div->u.s.width);
6108c2ecf20Sopenharmony_ci		div->u.s.scaled_div = scaled_div_value(div, reg_div);
6118c2ecf20Sopenharmony_ci
6128c2ecf20Sopenharmony_ci		return 0;
6138c2ecf20Sopenharmony_ci	}
6148c2ecf20Sopenharmony_ci
6158c2ecf20Sopenharmony_ci	/* Convert the scaled divisor to the value we need to record */
6168c2ecf20Sopenharmony_ci	reg_div = divider(div, div->u.s.scaled_div);
6178c2ecf20Sopenharmony_ci
6188c2ecf20Sopenharmony_ci	/* Clock needs to be enabled before changing the rate */
6198c2ecf20Sopenharmony_ci	enabled = __is_clk_gate_enabled(ccu, gate);
6208c2ecf20Sopenharmony_ci	if (!enabled && !__clk_gate(ccu, gate, true)) {
6218c2ecf20Sopenharmony_ci		ret = -ENXIO;
6228c2ecf20Sopenharmony_ci		goto out;
6238c2ecf20Sopenharmony_ci	}
6248c2ecf20Sopenharmony_ci
6258c2ecf20Sopenharmony_ci	/* Replace the divider value and record the result */
6268c2ecf20Sopenharmony_ci	reg_val = __ccu_read(ccu, div->u.s.offset);
6278c2ecf20Sopenharmony_ci	reg_val = bitfield_replace(reg_val, div->u.s.shift, div->u.s.width,
6288c2ecf20Sopenharmony_ci					reg_div);
6298c2ecf20Sopenharmony_ci	__ccu_write(ccu, div->u.s.offset, reg_val);
6308c2ecf20Sopenharmony_ci
6318c2ecf20Sopenharmony_ci	/* If the trigger fails we still want to disable the gate */
6328c2ecf20Sopenharmony_ci	if (!__clk_trigger(ccu, trig))
6338c2ecf20Sopenharmony_ci		ret = -EIO;
6348c2ecf20Sopenharmony_ci
6358c2ecf20Sopenharmony_ci	/* Disable the clock again if it was disabled to begin with */
6368c2ecf20Sopenharmony_ci	if (!enabled && !__clk_gate(ccu, gate, false))
6378c2ecf20Sopenharmony_ci		ret = ret ? ret : -ENXIO;	/* return first error */
6388c2ecf20Sopenharmony_ciout:
6398c2ecf20Sopenharmony_ci	return ret;
6408c2ecf20Sopenharmony_ci}
6418c2ecf20Sopenharmony_ci
6428c2ecf20Sopenharmony_ci/*
6438c2ecf20Sopenharmony_ci * Initialize a divider by committing our desired state to hardware
6448c2ecf20Sopenharmony_ci * without the usual checks to see if it's already set up that way.
6458c2ecf20Sopenharmony_ci * Returns true if successful, false otherwise.
6468c2ecf20Sopenharmony_ci */
6478c2ecf20Sopenharmony_cistatic bool div_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
6488c2ecf20Sopenharmony_ci			struct bcm_clk_div *div, struct bcm_clk_trig *trig)
6498c2ecf20Sopenharmony_ci{
6508c2ecf20Sopenharmony_ci	if (!divider_exists(div) || divider_is_fixed(div))
6518c2ecf20Sopenharmony_ci		return true;
6528c2ecf20Sopenharmony_ci	return !__div_commit(ccu, gate, div, trig);
6538c2ecf20Sopenharmony_ci}
6548c2ecf20Sopenharmony_ci
6558c2ecf20Sopenharmony_cistatic int divider_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
6568c2ecf20Sopenharmony_ci			struct bcm_clk_div *div, struct bcm_clk_trig *trig,
6578c2ecf20Sopenharmony_ci			u64 scaled_div)
6588c2ecf20Sopenharmony_ci{
6598c2ecf20Sopenharmony_ci	unsigned long flags;
6608c2ecf20Sopenharmony_ci	u64 previous;
6618c2ecf20Sopenharmony_ci	int ret;
6628c2ecf20Sopenharmony_ci
6638c2ecf20Sopenharmony_ci	BUG_ON(divider_is_fixed(div));
6648c2ecf20Sopenharmony_ci
6658c2ecf20Sopenharmony_ci	previous = div->u.s.scaled_div;
6668c2ecf20Sopenharmony_ci	if (previous == scaled_div)
6678c2ecf20Sopenharmony_ci		return 0;	/* No change */
6688c2ecf20Sopenharmony_ci
6698c2ecf20Sopenharmony_ci	div->u.s.scaled_div = scaled_div;
6708c2ecf20Sopenharmony_ci
6718c2ecf20Sopenharmony_ci	flags = ccu_lock(ccu);
6728c2ecf20Sopenharmony_ci	__ccu_write_enable(ccu);
6738c2ecf20Sopenharmony_ci
6748c2ecf20Sopenharmony_ci	ret = __div_commit(ccu, gate, div, trig);
6758c2ecf20Sopenharmony_ci
6768c2ecf20Sopenharmony_ci	__ccu_write_disable(ccu);
6778c2ecf20Sopenharmony_ci	ccu_unlock(ccu, flags);
6788c2ecf20Sopenharmony_ci
6798c2ecf20Sopenharmony_ci	if (ret)
6808c2ecf20Sopenharmony_ci		div->u.s.scaled_div = previous;		/* Revert the change */
6818c2ecf20Sopenharmony_ci
6828c2ecf20Sopenharmony_ci	return ret;
6838c2ecf20Sopenharmony_ci
6848c2ecf20Sopenharmony_ci}
6858c2ecf20Sopenharmony_ci
6868c2ecf20Sopenharmony_ci/* Common clock rate helpers */
6878c2ecf20Sopenharmony_ci
6888c2ecf20Sopenharmony_ci/*
6898c2ecf20Sopenharmony_ci * Implement the common clock framework recalc_rate method, taking
6908c2ecf20Sopenharmony_ci * into account a divider and an optional pre-divider.  The
6918c2ecf20Sopenharmony_ci * pre-divider register pointer may be NULL.
6928c2ecf20Sopenharmony_ci */
6938c2ecf20Sopenharmony_cistatic unsigned long clk_recalc_rate(struct ccu_data *ccu,
6948c2ecf20Sopenharmony_ci			struct bcm_clk_div *div, struct bcm_clk_div *pre_div,
6958c2ecf20Sopenharmony_ci			unsigned long parent_rate)
6968c2ecf20Sopenharmony_ci{
6978c2ecf20Sopenharmony_ci	u64 scaled_parent_rate;
6988c2ecf20Sopenharmony_ci	u64 scaled_div;
6998c2ecf20Sopenharmony_ci	u64 result;
7008c2ecf20Sopenharmony_ci
7018c2ecf20Sopenharmony_ci	if (!divider_exists(div))
7028c2ecf20Sopenharmony_ci		return parent_rate;
7038c2ecf20Sopenharmony_ci
7048c2ecf20Sopenharmony_ci	if (parent_rate > (unsigned long)LONG_MAX)
7058c2ecf20Sopenharmony_ci		return 0;	/* actually this would be a caller bug */
7068c2ecf20Sopenharmony_ci
7078c2ecf20Sopenharmony_ci	/*
7088c2ecf20Sopenharmony_ci	 * If there is a pre-divider, divide the scaled parent rate
7098c2ecf20Sopenharmony_ci	 * by the pre-divider value first.  In this case--to improve
7108c2ecf20Sopenharmony_ci	 * accuracy--scale the parent rate by *both* the pre-divider
7118c2ecf20Sopenharmony_ci	 * value and the divider before actually computing the
7128c2ecf20Sopenharmony_ci	 * result of the pre-divider.
7138c2ecf20Sopenharmony_ci	 *
7148c2ecf20Sopenharmony_ci	 * If there's only one divider, just scale the parent rate.
7158c2ecf20Sopenharmony_ci	 */
7168c2ecf20Sopenharmony_ci	if (pre_div && divider_exists(pre_div)) {
7178c2ecf20Sopenharmony_ci		u64 scaled_rate;
7188c2ecf20Sopenharmony_ci
7198c2ecf20Sopenharmony_ci		scaled_rate = scale_rate(pre_div, parent_rate);
7208c2ecf20Sopenharmony_ci		scaled_rate = scale_rate(div, scaled_rate);
7218c2ecf20Sopenharmony_ci		scaled_div = divider_read_scaled(ccu, pre_div);
7228c2ecf20Sopenharmony_ci		scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate,
7238c2ecf20Sopenharmony_ci							scaled_div);
7248c2ecf20Sopenharmony_ci	} else  {
7258c2ecf20Sopenharmony_ci		scaled_parent_rate = scale_rate(div, parent_rate);
7268c2ecf20Sopenharmony_ci	}
7278c2ecf20Sopenharmony_ci
7288c2ecf20Sopenharmony_ci	/*
7298c2ecf20Sopenharmony_ci	 * Get the scaled divisor value, and divide the scaled
7308c2ecf20Sopenharmony_ci	 * parent rate by that to determine this clock's resulting
7318c2ecf20Sopenharmony_ci	 * rate.
7328c2ecf20Sopenharmony_ci	 */
7338c2ecf20Sopenharmony_ci	scaled_div = divider_read_scaled(ccu, div);
7348c2ecf20Sopenharmony_ci	result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, scaled_div);
7358c2ecf20Sopenharmony_ci
7368c2ecf20Sopenharmony_ci	return (unsigned long)result;
7378c2ecf20Sopenharmony_ci}
7388c2ecf20Sopenharmony_ci
7398c2ecf20Sopenharmony_ci/*
7408c2ecf20Sopenharmony_ci * Compute the output rate produced when a given parent rate is fed
7418c2ecf20Sopenharmony_ci * into two dividers.  The pre-divider can be NULL, and even if it's
7428c2ecf20Sopenharmony_ci * non-null it may be nonexistent.  It's also OK for the divider to
7438c2ecf20Sopenharmony_ci * be nonexistent, and in that case the pre-divider is also ignored.
7448c2ecf20Sopenharmony_ci *
7458c2ecf20Sopenharmony_ci * If scaled_div is non-null, it is used to return the scaled divisor
7468c2ecf20Sopenharmony_ci * value used by the (downstream) divider to produce that rate.
7478c2ecf20Sopenharmony_ci */
7488c2ecf20Sopenharmony_cistatic long round_rate(struct ccu_data *ccu, struct bcm_clk_div *div,
7498c2ecf20Sopenharmony_ci				struct bcm_clk_div *pre_div,
7508c2ecf20Sopenharmony_ci				unsigned long rate, unsigned long parent_rate,
7518c2ecf20Sopenharmony_ci				u64 *scaled_div)
7528c2ecf20Sopenharmony_ci{
7538c2ecf20Sopenharmony_ci	u64 scaled_parent_rate;
7548c2ecf20Sopenharmony_ci	u64 min_scaled_div;
7558c2ecf20Sopenharmony_ci	u64 max_scaled_div;
7568c2ecf20Sopenharmony_ci	u64 best_scaled_div;
7578c2ecf20Sopenharmony_ci	u64 result;
7588c2ecf20Sopenharmony_ci
7598c2ecf20Sopenharmony_ci	BUG_ON(!divider_exists(div));
7608c2ecf20Sopenharmony_ci	BUG_ON(!rate);
7618c2ecf20Sopenharmony_ci	BUG_ON(parent_rate > (u64)LONG_MAX);
7628c2ecf20Sopenharmony_ci
7638c2ecf20Sopenharmony_ci	/*
7648c2ecf20Sopenharmony_ci	 * If there is a pre-divider, divide the scaled parent rate
7658c2ecf20Sopenharmony_ci	 * by the pre-divider value first.  In this case--to improve
7668c2ecf20Sopenharmony_ci	 * accuracy--scale the parent rate by *both* the pre-divider
7678c2ecf20Sopenharmony_ci	 * value and the divider before actually computing the
7688c2ecf20Sopenharmony_ci	 * result of the pre-divider.
7698c2ecf20Sopenharmony_ci	 *
7708c2ecf20Sopenharmony_ci	 * If there's only one divider, just scale the parent rate.
7718c2ecf20Sopenharmony_ci	 *
7728c2ecf20Sopenharmony_ci	 * For simplicity we treat the pre-divider as fixed (for now).
7738c2ecf20Sopenharmony_ci	 */
7748c2ecf20Sopenharmony_ci	if (divider_exists(pre_div)) {
7758c2ecf20Sopenharmony_ci		u64 scaled_rate;
7768c2ecf20Sopenharmony_ci		u64 scaled_pre_div;
7778c2ecf20Sopenharmony_ci
7788c2ecf20Sopenharmony_ci		scaled_rate = scale_rate(pre_div, parent_rate);
7798c2ecf20Sopenharmony_ci		scaled_rate = scale_rate(div, scaled_rate);
7808c2ecf20Sopenharmony_ci		scaled_pre_div = divider_read_scaled(ccu, pre_div);
7818c2ecf20Sopenharmony_ci		scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate,
7828c2ecf20Sopenharmony_ci							scaled_pre_div);
7838c2ecf20Sopenharmony_ci	} else {
7848c2ecf20Sopenharmony_ci		scaled_parent_rate = scale_rate(div, parent_rate);
7858c2ecf20Sopenharmony_ci	}
7868c2ecf20Sopenharmony_ci
7878c2ecf20Sopenharmony_ci	/*
7888c2ecf20Sopenharmony_ci	 * Compute the best possible divider and ensure it is in
7898c2ecf20Sopenharmony_ci	 * range.  A fixed divider can't be changed, so just report
7908c2ecf20Sopenharmony_ci	 * the best we can do.
7918c2ecf20Sopenharmony_ci	 */
7928c2ecf20Sopenharmony_ci	if (!divider_is_fixed(div)) {
7938c2ecf20Sopenharmony_ci		best_scaled_div = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate,
7948c2ecf20Sopenharmony_ci							rate);
7958c2ecf20Sopenharmony_ci		min_scaled_div = scaled_div_min(div);
7968c2ecf20Sopenharmony_ci		max_scaled_div = scaled_div_max(div);
7978c2ecf20Sopenharmony_ci		if (best_scaled_div > max_scaled_div)
7988c2ecf20Sopenharmony_ci			best_scaled_div = max_scaled_div;
7998c2ecf20Sopenharmony_ci		else if (best_scaled_div < min_scaled_div)
8008c2ecf20Sopenharmony_ci			best_scaled_div = min_scaled_div;
8018c2ecf20Sopenharmony_ci	} else {
8028c2ecf20Sopenharmony_ci		best_scaled_div = divider_read_scaled(ccu, div);
8038c2ecf20Sopenharmony_ci	}
8048c2ecf20Sopenharmony_ci
8058c2ecf20Sopenharmony_ci	/* OK, figure out the resulting rate */
8068c2ecf20Sopenharmony_ci	result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, best_scaled_div);
8078c2ecf20Sopenharmony_ci
8088c2ecf20Sopenharmony_ci	if (scaled_div)
8098c2ecf20Sopenharmony_ci		*scaled_div = best_scaled_div;
8108c2ecf20Sopenharmony_ci
8118c2ecf20Sopenharmony_ci	return (long)result;
8128c2ecf20Sopenharmony_ci}
8138c2ecf20Sopenharmony_ci
8148c2ecf20Sopenharmony_ci/* Common clock parent helpers */
8158c2ecf20Sopenharmony_ci
8168c2ecf20Sopenharmony_ci/*
8178c2ecf20Sopenharmony_ci * For a given parent selector (register field) value, find the
8188c2ecf20Sopenharmony_ci * index into a selector's parent_sel array that contains it.
8198c2ecf20Sopenharmony_ci * Returns the index, or BAD_CLK_INDEX if it's not found.
8208c2ecf20Sopenharmony_ci */
8218c2ecf20Sopenharmony_cistatic u8 parent_index(struct bcm_clk_sel *sel, u8 parent_sel)
8228c2ecf20Sopenharmony_ci{
8238c2ecf20Sopenharmony_ci	u8 i;
8248c2ecf20Sopenharmony_ci
8258c2ecf20Sopenharmony_ci	BUG_ON(sel->parent_count > (u32)U8_MAX);
8268c2ecf20Sopenharmony_ci	for (i = 0; i < sel->parent_count; i++)
8278c2ecf20Sopenharmony_ci		if (sel->parent_sel[i] == parent_sel)
8288c2ecf20Sopenharmony_ci			return i;
8298c2ecf20Sopenharmony_ci	return BAD_CLK_INDEX;
8308c2ecf20Sopenharmony_ci}
8318c2ecf20Sopenharmony_ci
8328c2ecf20Sopenharmony_ci/*
8338c2ecf20Sopenharmony_ci * Fetch the current value of the selector, and translate that into
8348c2ecf20Sopenharmony_ci * its corresponding index in the parent array we registered with
8358c2ecf20Sopenharmony_ci * the clock framework.
8368c2ecf20Sopenharmony_ci *
8378c2ecf20Sopenharmony_ci * Returns parent array index that corresponds with the value found,
8388c2ecf20Sopenharmony_ci * or BAD_CLK_INDEX if the found value is out of range.
8398c2ecf20Sopenharmony_ci */
8408c2ecf20Sopenharmony_cistatic u8 selector_read_index(struct ccu_data *ccu, struct bcm_clk_sel *sel)
8418c2ecf20Sopenharmony_ci{
8428c2ecf20Sopenharmony_ci	unsigned long flags;
8438c2ecf20Sopenharmony_ci	u32 reg_val;
8448c2ecf20Sopenharmony_ci	u32 parent_sel;
8458c2ecf20Sopenharmony_ci	u8 index;
8468c2ecf20Sopenharmony_ci
8478c2ecf20Sopenharmony_ci	/* If there's no selector, there's only one parent */
8488c2ecf20Sopenharmony_ci	if (!selector_exists(sel))
8498c2ecf20Sopenharmony_ci		return 0;
8508c2ecf20Sopenharmony_ci
8518c2ecf20Sopenharmony_ci	/* Get the value in the selector register */
8528c2ecf20Sopenharmony_ci	flags = ccu_lock(ccu);
8538c2ecf20Sopenharmony_ci	reg_val = __ccu_read(ccu, sel->offset);
8548c2ecf20Sopenharmony_ci	ccu_unlock(ccu, flags);
8558c2ecf20Sopenharmony_ci
8568c2ecf20Sopenharmony_ci	parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);
8578c2ecf20Sopenharmony_ci
8588c2ecf20Sopenharmony_ci	/* Look up that selector's parent array index and return it */
8598c2ecf20Sopenharmony_ci	index = parent_index(sel, parent_sel);
8608c2ecf20Sopenharmony_ci	if (index == BAD_CLK_INDEX)
8618c2ecf20Sopenharmony_ci		pr_err("%s: out-of-range parent selector %u (%s 0x%04x)\n",
8628c2ecf20Sopenharmony_ci			__func__, parent_sel, ccu->name, sel->offset);
8638c2ecf20Sopenharmony_ci
8648c2ecf20Sopenharmony_ci	return index;
8658c2ecf20Sopenharmony_ci}
8668c2ecf20Sopenharmony_ci
8678c2ecf20Sopenharmony_ci/*
8688c2ecf20Sopenharmony_ci * Commit our desired selector value to the hardware.
8698c2ecf20Sopenharmony_ci *
8708c2ecf20Sopenharmony_ci * Returns 0 on success.  Returns -EINVAL for invalid arguments.
8718c2ecf20Sopenharmony_ci * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
8728c2ecf20Sopenharmony_ci */
8738c2ecf20Sopenharmony_cistatic int
8748c2ecf20Sopenharmony_ci__sel_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
8758c2ecf20Sopenharmony_ci			struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
8768c2ecf20Sopenharmony_ci{
8778c2ecf20Sopenharmony_ci	u32 parent_sel;
8788c2ecf20Sopenharmony_ci	u32 reg_val;
8798c2ecf20Sopenharmony_ci	bool enabled;
8808c2ecf20Sopenharmony_ci	int ret = 0;
8818c2ecf20Sopenharmony_ci
8828c2ecf20Sopenharmony_ci	BUG_ON(!selector_exists(sel));
8838c2ecf20Sopenharmony_ci
8848c2ecf20Sopenharmony_ci	/*
8858c2ecf20Sopenharmony_ci	 * If we're just initializing the selector, and no initial
8868c2ecf20Sopenharmony_ci	 * state was defined in the device tree, we just find out
8878c2ecf20Sopenharmony_ci	 * what its current value is rather than updating it.
8888c2ecf20Sopenharmony_ci	 */
8898c2ecf20Sopenharmony_ci	if (sel->clk_index == BAD_CLK_INDEX) {
8908c2ecf20Sopenharmony_ci		u8 index;
8918c2ecf20Sopenharmony_ci
8928c2ecf20Sopenharmony_ci		reg_val = __ccu_read(ccu, sel->offset);
8938c2ecf20Sopenharmony_ci		parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);
8948c2ecf20Sopenharmony_ci		index = parent_index(sel, parent_sel);
8958c2ecf20Sopenharmony_ci		if (index == BAD_CLK_INDEX)
8968c2ecf20Sopenharmony_ci			return -EINVAL;
8978c2ecf20Sopenharmony_ci		sel->clk_index = index;
8988c2ecf20Sopenharmony_ci
8998c2ecf20Sopenharmony_ci		return 0;
9008c2ecf20Sopenharmony_ci	}
9018c2ecf20Sopenharmony_ci
9028c2ecf20Sopenharmony_ci	BUG_ON((u32)sel->clk_index >= sel->parent_count);
9038c2ecf20Sopenharmony_ci	parent_sel = sel->parent_sel[sel->clk_index];
9048c2ecf20Sopenharmony_ci
9058c2ecf20Sopenharmony_ci	/* Clock needs to be enabled before changing the parent */
9068c2ecf20Sopenharmony_ci	enabled = __is_clk_gate_enabled(ccu, gate);
9078c2ecf20Sopenharmony_ci	if (!enabled && !__clk_gate(ccu, gate, true))
9088c2ecf20Sopenharmony_ci		return -ENXIO;
9098c2ecf20Sopenharmony_ci
9108c2ecf20Sopenharmony_ci	/* Replace the selector value and record the result */
9118c2ecf20Sopenharmony_ci	reg_val = __ccu_read(ccu, sel->offset);
9128c2ecf20Sopenharmony_ci	reg_val = bitfield_replace(reg_val, sel->shift, sel->width, parent_sel);
9138c2ecf20Sopenharmony_ci	__ccu_write(ccu, sel->offset, reg_val);
9148c2ecf20Sopenharmony_ci
9158c2ecf20Sopenharmony_ci	/* If the trigger fails we still want to disable the gate */
9168c2ecf20Sopenharmony_ci	if (!__clk_trigger(ccu, trig))
9178c2ecf20Sopenharmony_ci		ret = -EIO;
9188c2ecf20Sopenharmony_ci
9198c2ecf20Sopenharmony_ci	/* Disable the clock again if it was disabled to begin with */
9208c2ecf20Sopenharmony_ci	if (!enabled && !__clk_gate(ccu, gate, false))
9218c2ecf20Sopenharmony_ci		ret = ret ? ret : -ENXIO;	/* return first error */
9228c2ecf20Sopenharmony_ci
9238c2ecf20Sopenharmony_ci	return ret;
9248c2ecf20Sopenharmony_ci}
9258c2ecf20Sopenharmony_ci
9268c2ecf20Sopenharmony_ci/*
9278c2ecf20Sopenharmony_ci * Initialize a selector by committing our desired state to hardware
9288c2ecf20Sopenharmony_ci * without the usual checks to see if it's already set up that way.
9298c2ecf20Sopenharmony_ci * Returns true if successful, false otherwise.
9308c2ecf20Sopenharmony_ci */
9318c2ecf20Sopenharmony_cistatic bool sel_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
9328c2ecf20Sopenharmony_ci			struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
9338c2ecf20Sopenharmony_ci{
9348c2ecf20Sopenharmony_ci	if (!selector_exists(sel))
9358c2ecf20Sopenharmony_ci		return true;
9368c2ecf20Sopenharmony_ci	return !__sel_commit(ccu, gate, sel, trig);
9378c2ecf20Sopenharmony_ci}
9388c2ecf20Sopenharmony_ci
9398c2ecf20Sopenharmony_ci/*
9408c2ecf20Sopenharmony_ci * Write a new value into a selector register to switch to a
9418c2ecf20Sopenharmony_ci * different parent clock.  Returns 0 on success, or an error code
9428c2ecf20Sopenharmony_ci * (from __sel_commit()) otherwise.
9438c2ecf20Sopenharmony_ci */
9448c2ecf20Sopenharmony_cistatic int selector_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
9458c2ecf20Sopenharmony_ci			struct bcm_clk_sel *sel, struct bcm_clk_trig *trig,
9468c2ecf20Sopenharmony_ci			u8 index)
9478c2ecf20Sopenharmony_ci{
9488c2ecf20Sopenharmony_ci	unsigned long flags;
9498c2ecf20Sopenharmony_ci	u8 previous;
9508c2ecf20Sopenharmony_ci	int ret;
9518c2ecf20Sopenharmony_ci
9528c2ecf20Sopenharmony_ci	previous = sel->clk_index;
9538c2ecf20Sopenharmony_ci	if (previous == index)
9548c2ecf20Sopenharmony_ci		return 0;	/* No change */
9558c2ecf20Sopenharmony_ci
9568c2ecf20Sopenharmony_ci	sel->clk_index = index;
9578c2ecf20Sopenharmony_ci
9588c2ecf20Sopenharmony_ci	flags = ccu_lock(ccu);
9598c2ecf20Sopenharmony_ci	__ccu_write_enable(ccu);
9608c2ecf20Sopenharmony_ci
9618c2ecf20Sopenharmony_ci	ret = __sel_commit(ccu, gate, sel, trig);
9628c2ecf20Sopenharmony_ci
9638c2ecf20Sopenharmony_ci	__ccu_write_disable(ccu);
9648c2ecf20Sopenharmony_ci	ccu_unlock(ccu, flags);
9658c2ecf20Sopenharmony_ci
9668c2ecf20Sopenharmony_ci	if (ret)
9678c2ecf20Sopenharmony_ci		sel->clk_index = previous;	/* Revert the change */
9688c2ecf20Sopenharmony_ci
9698c2ecf20Sopenharmony_ci	return ret;
9708c2ecf20Sopenharmony_ci}
9718c2ecf20Sopenharmony_ci
9728c2ecf20Sopenharmony_ci/* Clock operations */
9738c2ecf20Sopenharmony_ci
9748c2ecf20Sopenharmony_cistatic int kona_peri_clk_enable(struct clk_hw *hw)
9758c2ecf20Sopenharmony_ci{
9768c2ecf20Sopenharmony_ci	struct kona_clk *bcm_clk = to_kona_clk(hw);
9778c2ecf20Sopenharmony_ci	struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
9788c2ecf20Sopenharmony_ci
9798c2ecf20Sopenharmony_ci	return clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, true);
9808c2ecf20Sopenharmony_ci}
9818c2ecf20Sopenharmony_ci
9828c2ecf20Sopenharmony_cistatic void kona_peri_clk_disable(struct clk_hw *hw)
9838c2ecf20Sopenharmony_ci{
9848c2ecf20Sopenharmony_ci	struct kona_clk *bcm_clk = to_kona_clk(hw);
9858c2ecf20Sopenharmony_ci	struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
9868c2ecf20Sopenharmony_ci
9878c2ecf20Sopenharmony_ci	(void)clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, false);
9888c2ecf20Sopenharmony_ci}
9898c2ecf20Sopenharmony_ci
9908c2ecf20Sopenharmony_cistatic int kona_peri_clk_is_enabled(struct clk_hw *hw)
9918c2ecf20Sopenharmony_ci{
9928c2ecf20Sopenharmony_ci	struct kona_clk *bcm_clk = to_kona_clk(hw);
9938c2ecf20Sopenharmony_ci	struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
9948c2ecf20Sopenharmony_ci
9958c2ecf20Sopenharmony_ci	return is_clk_gate_enabled(bcm_clk->ccu, gate) ? 1 : 0;
9968c2ecf20Sopenharmony_ci}
9978c2ecf20Sopenharmony_ci
9988c2ecf20Sopenharmony_cistatic unsigned long kona_peri_clk_recalc_rate(struct clk_hw *hw,
9998c2ecf20Sopenharmony_ci			unsigned long parent_rate)
10008c2ecf20Sopenharmony_ci{
10018c2ecf20Sopenharmony_ci	struct kona_clk *bcm_clk = to_kona_clk(hw);
10028c2ecf20Sopenharmony_ci	struct peri_clk_data *data = bcm_clk->u.peri;
10038c2ecf20Sopenharmony_ci
10048c2ecf20Sopenharmony_ci	return clk_recalc_rate(bcm_clk->ccu, &data->div, &data->pre_div,
10058c2ecf20Sopenharmony_ci				parent_rate);
10068c2ecf20Sopenharmony_ci}
10078c2ecf20Sopenharmony_ci
10088c2ecf20Sopenharmony_cistatic long kona_peri_clk_round_rate(struct clk_hw *hw, unsigned long rate,
10098c2ecf20Sopenharmony_ci			unsigned long *parent_rate)
10108c2ecf20Sopenharmony_ci{
10118c2ecf20Sopenharmony_ci	struct kona_clk *bcm_clk = to_kona_clk(hw);
10128c2ecf20Sopenharmony_ci	struct bcm_clk_div *div = &bcm_clk->u.peri->div;
10138c2ecf20Sopenharmony_ci
10148c2ecf20Sopenharmony_ci	if (!divider_exists(div))
10158c2ecf20Sopenharmony_ci		return clk_hw_get_rate(hw);
10168c2ecf20Sopenharmony_ci
10178c2ecf20Sopenharmony_ci	/* Quietly avoid a zero rate */
10188c2ecf20Sopenharmony_ci	return round_rate(bcm_clk->ccu, div, &bcm_clk->u.peri->pre_div,
10198c2ecf20Sopenharmony_ci				rate ? rate : 1, *parent_rate, NULL);
10208c2ecf20Sopenharmony_ci}
10218c2ecf20Sopenharmony_ci
10228c2ecf20Sopenharmony_cistatic int kona_peri_clk_determine_rate(struct clk_hw *hw,
10238c2ecf20Sopenharmony_ci					struct clk_rate_request *req)
10248c2ecf20Sopenharmony_ci{
10258c2ecf20Sopenharmony_ci	struct kona_clk *bcm_clk = to_kona_clk(hw);
10268c2ecf20Sopenharmony_ci	struct clk_hw *current_parent;
10278c2ecf20Sopenharmony_ci	unsigned long parent_rate;
10288c2ecf20Sopenharmony_ci	unsigned long best_delta;
10298c2ecf20Sopenharmony_ci	unsigned long best_rate;
10308c2ecf20Sopenharmony_ci	u32 parent_count;
10318c2ecf20Sopenharmony_ci	long rate;
10328c2ecf20Sopenharmony_ci	u32 which;
10338c2ecf20Sopenharmony_ci
10348c2ecf20Sopenharmony_ci	/*
10358c2ecf20Sopenharmony_ci	 * If there is no other parent to choose, use the current one.
10368c2ecf20Sopenharmony_ci	 * Note:  We don't honor (or use) CLK_SET_RATE_NO_REPARENT.
10378c2ecf20Sopenharmony_ci	 */
10388c2ecf20Sopenharmony_ci	WARN_ON_ONCE(bcm_clk->init_data.flags & CLK_SET_RATE_NO_REPARENT);
10398c2ecf20Sopenharmony_ci	parent_count = (u32)bcm_clk->init_data.num_parents;
10408c2ecf20Sopenharmony_ci	if (parent_count < 2) {
10418c2ecf20Sopenharmony_ci		rate = kona_peri_clk_round_rate(hw, req->rate,
10428c2ecf20Sopenharmony_ci						&req->best_parent_rate);
10438c2ecf20Sopenharmony_ci		if (rate < 0)
10448c2ecf20Sopenharmony_ci			return rate;
10458c2ecf20Sopenharmony_ci
10468c2ecf20Sopenharmony_ci		req->rate = rate;
10478c2ecf20Sopenharmony_ci		return 0;
10488c2ecf20Sopenharmony_ci	}
10498c2ecf20Sopenharmony_ci
10508c2ecf20Sopenharmony_ci	/* Unless we can do better, stick with current parent */
10518c2ecf20Sopenharmony_ci	current_parent = clk_hw_get_parent(hw);
10528c2ecf20Sopenharmony_ci	parent_rate = clk_hw_get_rate(current_parent);
10538c2ecf20Sopenharmony_ci	best_rate = kona_peri_clk_round_rate(hw, req->rate, &parent_rate);
10548c2ecf20Sopenharmony_ci	best_delta = abs(best_rate - req->rate);
10558c2ecf20Sopenharmony_ci
10568c2ecf20Sopenharmony_ci	/* Check whether any other parent clock can produce a better result */
10578c2ecf20Sopenharmony_ci	for (which = 0; which < parent_count; which++) {
10588c2ecf20Sopenharmony_ci		struct clk_hw *parent = clk_hw_get_parent_by_index(hw, which);
10598c2ecf20Sopenharmony_ci		unsigned long delta;
10608c2ecf20Sopenharmony_ci		unsigned long other_rate;
10618c2ecf20Sopenharmony_ci
10628c2ecf20Sopenharmony_ci		BUG_ON(!parent);
10638c2ecf20Sopenharmony_ci		if (parent == current_parent)
10648c2ecf20Sopenharmony_ci			continue;
10658c2ecf20Sopenharmony_ci
10668c2ecf20Sopenharmony_ci		/* We don't support CLK_SET_RATE_PARENT */
10678c2ecf20Sopenharmony_ci		parent_rate = clk_hw_get_rate(parent);
10688c2ecf20Sopenharmony_ci		other_rate = kona_peri_clk_round_rate(hw, req->rate,
10698c2ecf20Sopenharmony_ci						      &parent_rate);
10708c2ecf20Sopenharmony_ci		delta = abs(other_rate - req->rate);
10718c2ecf20Sopenharmony_ci		if (delta < best_delta) {
10728c2ecf20Sopenharmony_ci			best_delta = delta;
10738c2ecf20Sopenharmony_ci			best_rate = other_rate;
10748c2ecf20Sopenharmony_ci			req->best_parent_hw = parent;
10758c2ecf20Sopenharmony_ci			req->best_parent_rate = parent_rate;
10768c2ecf20Sopenharmony_ci		}
10778c2ecf20Sopenharmony_ci	}
10788c2ecf20Sopenharmony_ci
10798c2ecf20Sopenharmony_ci	req->rate = best_rate;
10808c2ecf20Sopenharmony_ci	return 0;
10818c2ecf20Sopenharmony_ci}
10828c2ecf20Sopenharmony_ci
10838c2ecf20Sopenharmony_cistatic int kona_peri_clk_set_parent(struct clk_hw *hw, u8 index)
10848c2ecf20Sopenharmony_ci{
10858c2ecf20Sopenharmony_ci	struct kona_clk *bcm_clk = to_kona_clk(hw);
10868c2ecf20Sopenharmony_ci	struct peri_clk_data *data = bcm_clk->u.peri;
10878c2ecf20Sopenharmony_ci	struct bcm_clk_sel *sel = &data->sel;
10888c2ecf20Sopenharmony_ci	struct bcm_clk_trig *trig;
10898c2ecf20Sopenharmony_ci	int ret;
10908c2ecf20Sopenharmony_ci
10918c2ecf20Sopenharmony_ci	BUG_ON(index >= sel->parent_count);
10928c2ecf20Sopenharmony_ci
10938c2ecf20Sopenharmony_ci	/* If there's only one parent we don't require a selector */
10948c2ecf20Sopenharmony_ci	if (!selector_exists(sel))
10958c2ecf20Sopenharmony_ci		return 0;
10968c2ecf20Sopenharmony_ci
10978c2ecf20Sopenharmony_ci	/*
10988c2ecf20Sopenharmony_ci	 * The regular trigger is used by default, but if there's a
10998c2ecf20Sopenharmony_ci	 * pre-trigger we want to use that instead.
11008c2ecf20Sopenharmony_ci	 */
11018c2ecf20Sopenharmony_ci	trig = trigger_exists(&data->pre_trig) ? &data->pre_trig
11028c2ecf20Sopenharmony_ci					       : &data->trig;
11038c2ecf20Sopenharmony_ci
11048c2ecf20Sopenharmony_ci	ret = selector_write(bcm_clk->ccu, &data->gate, sel, trig, index);
11058c2ecf20Sopenharmony_ci	if (ret == -ENXIO) {
11068c2ecf20Sopenharmony_ci		pr_err("%s: gating failure for %s\n", __func__,
11078c2ecf20Sopenharmony_ci			bcm_clk->init_data.name);
11088c2ecf20Sopenharmony_ci		ret = -EIO;	/* Don't proliferate weird errors */
11098c2ecf20Sopenharmony_ci	} else if (ret == -EIO) {
11108c2ecf20Sopenharmony_ci		pr_err("%s: %strigger failed for %s\n", __func__,
11118c2ecf20Sopenharmony_ci			trig == &data->pre_trig ? "pre-" : "",
11128c2ecf20Sopenharmony_ci			bcm_clk->init_data.name);
11138c2ecf20Sopenharmony_ci	}
11148c2ecf20Sopenharmony_ci
11158c2ecf20Sopenharmony_ci	return ret;
11168c2ecf20Sopenharmony_ci}
11178c2ecf20Sopenharmony_ci
11188c2ecf20Sopenharmony_cistatic u8 kona_peri_clk_get_parent(struct clk_hw *hw)
11198c2ecf20Sopenharmony_ci{
11208c2ecf20Sopenharmony_ci	struct kona_clk *bcm_clk = to_kona_clk(hw);
11218c2ecf20Sopenharmony_ci	struct peri_clk_data *data = bcm_clk->u.peri;
11228c2ecf20Sopenharmony_ci	u8 index;
11238c2ecf20Sopenharmony_ci
11248c2ecf20Sopenharmony_ci	index = selector_read_index(bcm_clk->ccu, &data->sel);
11258c2ecf20Sopenharmony_ci
11268c2ecf20Sopenharmony_ci	/* Not all callers would handle an out-of-range value gracefully */
11278c2ecf20Sopenharmony_ci	return index == BAD_CLK_INDEX ? 0 : index;
11288c2ecf20Sopenharmony_ci}
11298c2ecf20Sopenharmony_ci
11308c2ecf20Sopenharmony_cistatic int kona_peri_clk_set_rate(struct clk_hw *hw, unsigned long rate,
11318c2ecf20Sopenharmony_ci			unsigned long parent_rate)
11328c2ecf20Sopenharmony_ci{
11338c2ecf20Sopenharmony_ci	struct kona_clk *bcm_clk = to_kona_clk(hw);
11348c2ecf20Sopenharmony_ci	struct peri_clk_data *data = bcm_clk->u.peri;
11358c2ecf20Sopenharmony_ci	struct bcm_clk_div *div = &data->div;
11368c2ecf20Sopenharmony_ci	u64 scaled_div = 0;
11378c2ecf20Sopenharmony_ci	int ret;
11388c2ecf20Sopenharmony_ci
11398c2ecf20Sopenharmony_ci	if (parent_rate > (unsigned long)LONG_MAX)
11408c2ecf20Sopenharmony_ci		return -EINVAL;
11418c2ecf20Sopenharmony_ci
11428c2ecf20Sopenharmony_ci	if (rate == clk_hw_get_rate(hw))
11438c2ecf20Sopenharmony_ci		return 0;
11448c2ecf20Sopenharmony_ci
11458c2ecf20Sopenharmony_ci	if (!divider_exists(div))
11468c2ecf20Sopenharmony_ci		return rate == parent_rate ? 0 : -EINVAL;
11478c2ecf20Sopenharmony_ci
11488c2ecf20Sopenharmony_ci	/*
11498c2ecf20Sopenharmony_ci	 * A fixed divider can't be changed.  (Nor can a fixed
11508c2ecf20Sopenharmony_ci	 * pre-divider be, but for now we never actually try to
11518c2ecf20Sopenharmony_ci	 * change that.)  Tolerate a request for a no-op change.
11528c2ecf20Sopenharmony_ci	 */
11538c2ecf20Sopenharmony_ci	if (divider_is_fixed(&data->div))
11548c2ecf20Sopenharmony_ci		return rate == parent_rate ? 0 : -EINVAL;
11558c2ecf20Sopenharmony_ci
11568c2ecf20Sopenharmony_ci	/*
11578c2ecf20Sopenharmony_ci	 * Get the scaled divisor value needed to achieve a clock
11588c2ecf20Sopenharmony_ci	 * rate as close as possible to what was requested, given
11598c2ecf20Sopenharmony_ci	 * the parent clock rate supplied.
11608c2ecf20Sopenharmony_ci	 */
11618c2ecf20Sopenharmony_ci	(void)round_rate(bcm_clk->ccu, div, &data->pre_div,
11628c2ecf20Sopenharmony_ci				rate ? rate : 1, parent_rate, &scaled_div);
11638c2ecf20Sopenharmony_ci
11648c2ecf20Sopenharmony_ci	/*
11658c2ecf20Sopenharmony_ci	 * We aren't updating any pre-divider at this point, so
11668c2ecf20Sopenharmony_ci	 * we'll use the regular trigger.
11678c2ecf20Sopenharmony_ci	 */
11688c2ecf20Sopenharmony_ci	ret = divider_write(bcm_clk->ccu, &data->gate, &data->div,
11698c2ecf20Sopenharmony_ci				&data->trig, scaled_div);
11708c2ecf20Sopenharmony_ci	if (ret == -ENXIO) {
11718c2ecf20Sopenharmony_ci		pr_err("%s: gating failure for %s\n", __func__,
11728c2ecf20Sopenharmony_ci			bcm_clk->init_data.name);
11738c2ecf20Sopenharmony_ci		ret = -EIO;	/* Don't proliferate weird errors */
11748c2ecf20Sopenharmony_ci	} else if (ret == -EIO) {
11758c2ecf20Sopenharmony_ci		pr_err("%s: trigger failed for %s\n", __func__,
11768c2ecf20Sopenharmony_ci			bcm_clk->init_data.name);
11778c2ecf20Sopenharmony_ci	}
11788c2ecf20Sopenharmony_ci
11798c2ecf20Sopenharmony_ci	return ret;
11808c2ecf20Sopenharmony_ci}
11818c2ecf20Sopenharmony_ci
11828c2ecf20Sopenharmony_cistruct clk_ops kona_peri_clk_ops = {
11838c2ecf20Sopenharmony_ci	.enable = kona_peri_clk_enable,
11848c2ecf20Sopenharmony_ci	.disable = kona_peri_clk_disable,
11858c2ecf20Sopenharmony_ci	.is_enabled = kona_peri_clk_is_enabled,
11868c2ecf20Sopenharmony_ci	.recalc_rate = kona_peri_clk_recalc_rate,
11878c2ecf20Sopenharmony_ci	.determine_rate = kona_peri_clk_determine_rate,
11888c2ecf20Sopenharmony_ci	.set_parent = kona_peri_clk_set_parent,
11898c2ecf20Sopenharmony_ci	.get_parent = kona_peri_clk_get_parent,
11908c2ecf20Sopenharmony_ci	.set_rate = kona_peri_clk_set_rate,
11918c2ecf20Sopenharmony_ci};
11928c2ecf20Sopenharmony_ci
11938c2ecf20Sopenharmony_ci/* Put a peripheral clock into its initial state */
11948c2ecf20Sopenharmony_cistatic bool __peri_clk_init(struct kona_clk *bcm_clk)
11958c2ecf20Sopenharmony_ci{
11968c2ecf20Sopenharmony_ci	struct ccu_data *ccu = bcm_clk->ccu;
11978c2ecf20Sopenharmony_ci	struct peri_clk_data *peri = bcm_clk->u.peri;
11988c2ecf20Sopenharmony_ci	const char *name = bcm_clk->init_data.name;
11998c2ecf20Sopenharmony_ci	struct bcm_clk_trig *trig;
12008c2ecf20Sopenharmony_ci
12018c2ecf20Sopenharmony_ci	BUG_ON(bcm_clk->type != bcm_clk_peri);
12028c2ecf20Sopenharmony_ci
12038c2ecf20Sopenharmony_ci	if (!policy_init(ccu, &peri->policy)) {
12048c2ecf20Sopenharmony_ci		pr_err("%s: error initializing policy for %s\n",
12058c2ecf20Sopenharmony_ci			__func__, name);
12068c2ecf20Sopenharmony_ci		return false;
12078c2ecf20Sopenharmony_ci	}
12088c2ecf20Sopenharmony_ci	if (!gate_init(ccu, &peri->gate)) {
12098c2ecf20Sopenharmony_ci		pr_err("%s: error initializing gate for %s\n", __func__, name);
12108c2ecf20Sopenharmony_ci		return false;
12118c2ecf20Sopenharmony_ci	}
12128c2ecf20Sopenharmony_ci	if (!hyst_init(ccu, &peri->hyst)) {
12138c2ecf20Sopenharmony_ci		pr_err("%s: error initializing hyst for %s\n", __func__, name);
12148c2ecf20Sopenharmony_ci		return false;
12158c2ecf20Sopenharmony_ci	}
12168c2ecf20Sopenharmony_ci	if (!div_init(ccu, &peri->gate, &peri->div, &peri->trig)) {
12178c2ecf20Sopenharmony_ci		pr_err("%s: error initializing divider for %s\n", __func__,
12188c2ecf20Sopenharmony_ci			name);
12198c2ecf20Sopenharmony_ci		return false;
12208c2ecf20Sopenharmony_ci	}
12218c2ecf20Sopenharmony_ci
12228c2ecf20Sopenharmony_ci	/*
12238c2ecf20Sopenharmony_ci	 * For the pre-divider and selector, the pre-trigger is used
12248c2ecf20Sopenharmony_ci	 * if it's present, otherwise we just use the regular trigger.
12258c2ecf20Sopenharmony_ci	 */
12268c2ecf20Sopenharmony_ci	trig = trigger_exists(&peri->pre_trig) ? &peri->pre_trig
12278c2ecf20Sopenharmony_ci					       : &peri->trig;
12288c2ecf20Sopenharmony_ci
12298c2ecf20Sopenharmony_ci	if (!div_init(ccu, &peri->gate, &peri->pre_div, trig)) {
12308c2ecf20Sopenharmony_ci		pr_err("%s: error initializing pre-divider for %s\n", __func__,
12318c2ecf20Sopenharmony_ci			name);
12328c2ecf20Sopenharmony_ci		return false;
12338c2ecf20Sopenharmony_ci	}
12348c2ecf20Sopenharmony_ci
12358c2ecf20Sopenharmony_ci	if (!sel_init(ccu, &peri->gate, &peri->sel, trig)) {
12368c2ecf20Sopenharmony_ci		pr_err("%s: error initializing selector for %s\n", __func__,
12378c2ecf20Sopenharmony_ci			name);
12388c2ecf20Sopenharmony_ci		return false;
12398c2ecf20Sopenharmony_ci	}
12408c2ecf20Sopenharmony_ci
12418c2ecf20Sopenharmony_ci	return true;
12428c2ecf20Sopenharmony_ci}
12438c2ecf20Sopenharmony_ci
12448c2ecf20Sopenharmony_cistatic bool __kona_clk_init(struct kona_clk *bcm_clk)
12458c2ecf20Sopenharmony_ci{
12468c2ecf20Sopenharmony_ci	switch (bcm_clk->type) {
12478c2ecf20Sopenharmony_ci	case bcm_clk_peri:
12488c2ecf20Sopenharmony_ci		return __peri_clk_init(bcm_clk);
12498c2ecf20Sopenharmony_ci	default:
12508c2ecf20Sopenharmony_ci		BUG();
12518c2ecf20Sopenharmony_ci	}
12528c2ecf20Sopenharmony_ci	return false;
12538c2ecf20Sopenharmony_ci}
12548c2ecf20Sopenharmony_ci
12558c2ecf20Sopenharmony_ci/* Set a CCU and all its clocks into their desired initial state */
12568c2ecf20Sopenharmony_cibool __init kona_ccu_init(struct ccu_data *ccu)
12578c2ecf20Sopenharmony_ci{
12588c2ecf20Sopenharmony_ci	unsigned long flags;
12598c2ecf20Sopenharmony_ci	unsigned int which;
12608c2ecf20Sopenharmony_ci	struct kona_clk *kona_clks = ccu->kona_clks;
12618c2ecf20Sopenharmony_ci	bool success = true;
12628c2ecf20Sopenharmony_ci
12638c2ecf20Sopenharmony_ci	flags = ccu_lock(ccu);
12648c2ecf20Sopenharmony_ci	__ccu_write_enable(ccu);
12658c2ecf20Sopenharmony_ci
12668c2ecf20Sopenharmony_ci	for (which = 0; which < ccu->clk_num; which++) {
12678c2ecf20Sopenharmony_ci		struct kona_clk *bcm_clk = &kona_clks[which];
12688c2ecf20Sopenharmony_ci
12698c2ecf20Sopenharmony_ci		if (!bcm_clk->ccu)
12708c2ecf20Sopenharmony_ci			continue;
12718c2ecf20Sopenharmony_ci
12728c2ecf20Sopenharmony_ci		success &= __kona_clk_init(bcm_clk);
12738c2ecf20Sopenharmony_ci	}
12748c2ecf20Sopenharmony_ci
12758c2ecf20Sopenharmony_ci	__ccu_write_disable(ccu);
12768c2ecf20Sopenharmony_ci	ccu_unlock(ccu, flags);
12778c2ecf20Sopenharmony_ci	return success;
12788c2ecf20Sopenharmony_ci}
1279