1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright (C) 2010,2015 Broadcom
4 * Copyright (C) 2012 Stephen Warren
5 */
6
7/**
8 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
9 *
10 * The clock tree on the 2835 has several levels.  There's a root
11 * oscillator running at 19.2Mhz.  After the oscillator there are 5
12 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
13 * and "HDMI displays".  Those 5 PLLs each can divide their output to
14 * produce up to 4 channels.  Finally, there is the level of clocks to
15 * be consumed by other hardware components (like "H264" or "HDMI
16 * state machine"), which divide off of some subset of the PLL
17 * channels.
18 *
19 * All of the clocks in the tree are exposed in the DT, because the DT
20 * may want to make assignments of the final layer of clocks to the
21 * PLL channels, and some components of the hardware will actually
22 * skip layers of the tree (for example, the pixel clock comes
23 * directly from the PLLH PIX channel without using a CM_*CTL clock
24 * generator).
25 */
26
27#include <linux/clk-provider.h>
28#include <linux/clkdev.h>
29#include <linux/clk.h>
30#include <linux/debugfs.h>
31#include <linux/delay.h>
32#include <linux/io.h>
33#include <linux/module.h>
34#include <linux/of_device.h>
35#include <linux/platform_device.h>
36#include <linux/slab.h>
37#include <dt-bindings/clock/bcm2835.h>
38
39#define CM_PASSWORD		0x5a000000
40
41#define CM_GNRICCTL		0x000
42#define CM_GNRICDIV		0x004
43# define CM_DIV_FRAC_BITS	12
44# define CM_DIV_FRAC_MASK	GENMASK(CM_DIV_FRAC_BITS - 1, 0)
45
46#define CM_VPUCTL		0x008
47#define CM_VPUDIV		0x00c
48#define CM_SYSCTL		0x010
49#define CM_SYSDIV		0x014
50#define CM_PERIACTL		0x018
51#define CM_PERIADIV		0x01c
52#define CM_PERIICTL		0x020
53#define CM_PERIIDIV		0x024
54#define CM_H264CTL		0x028
55#define CM_H264DIV		0x02c
56#define CM_ISPCTL		0x030
57#define CM_ISPDIV		0x034
58#define CM_V3DCTL		0x038
59#define CM_V3DDIV		0x03c
60#define CM_CAM0CTL		0x040
61#define CM_CAM0DIV		0x044
62#define CM_CAM1CTL		0x048
63#define CM_CAM1DIV		0x04c
64#define CM_CCP2CTL		0x050
65#define CM_CCP2DIV		0x054
66#define CM_DSI0ECTL		0x058
67#define CM_DSI0EDIV		0x05c
68#define CM_DSI0PCTL		0x060
69#define CM_DSI0PDIV		0x064
70#define CM_DPICTL		0x068
71#define CM_DPIDIV		0x06c
72#define CM_GP0CTL		0x070
73#define CM_GP0DIV		0x074
74#define CM_GP1CTL		0x078
75#define CM_GP1DIV		0x07c
76#define CM_GP2CTL		0x080
77#define CM_GP2DIV		0x084
78#define CM_HSMCTL		0x088
79#define CM_HSMDIV		0x08c
80#define CM_OTPCTL		0x090
81#define CM_OTPDIV		0x094
82#define CM_PCMCTL		0x098
83#define CM_PCMDIV		0x09c
84#define CM_PWMCTL		0x0a0
85#define CM_PWMDIV		0x0a4
86#define CM_SLIMCTL		0x0a8
87#define CM_SLIMDIV		0x0ac
88#define CM_SMICTL		0x0b0
89#define CM_SMIDIV		0x0b4
90/* no definition for 0x0b8  and 0x0bc */
91#define CM_TCNTCTL		0x0c0
92# define CM_TCNT_SRC1_SHIFT		12
93#define CM_TCNTCNT		0x0c4
94#define CM_TECCTL		0x0c8
95#define CM_TECDIV		0x0cc
96#define CM_TD0CTL		0x0d0
97#define CM_TD0DIV		0x0d4
98#define CM_TD1CTL		0x0d8
99#define CM_TD1DIV		0x0dc
100#define CM_TSENSCTL		0x0e0
101#define CM_TSENSDIV		0x0e4
102#define CM_TIMERCTL		0x0e8
103#define CM_TIMERDIV		0x0ec
104#define CM_UARTCTL		0x0f0
105#define CM_UARTDIV		0x0f4
106#define CM_VECCTL		0x0f8
107#define CM_VECDIV		0x0fc
108#define CM_PULSECTL		0x190
109#define CM_PULSEDIV		0x194
110#define CM_SDCCTL		0x1a8
111#define CM_SDCDIV		0x1ac
112#define CM_ARMCTL		0x1b0
113#define CM_AVEOCTL		0x1b8
114#define CM_AVEODIV		0x1bc
115#define CM_EMMCCTL		0x1c0
116#define CM_EMMCDIV		0x1c4
117#define CM_EMMC2CTL		0x1d0
118#define CM_EMMC2DIV		0x1d4
119
120/* General bits for the CM_*CTL regs */
121# define CM_ENABLE			BIT(4)
122# define CM_KILL			BIT(5)
123# define CM_GATE_BIT			6
124# define CM_GATE			BIT(CM_GATE_BIT)
125# define CM_BUSY			BIT(7)
126# define CM_BUSYD			BIT(8)
127# define CM_FRAC			BIT(9)
128# define CM_SRC_SHIFT			0
129# define CM_SRC_BITS			4
130# define CM_SRC_MASK			0xf
131# define CM_SRC_GND			0
132# define CM_SRC_OSC			1
133# define CM_SRC_TESTDEBUG0		2
134# define CM_SRC_TESTDEBUG1		3
135# define CM_SRC_PLLA_CORE		4
136# define CM_SRC_PLLA_PER		4
137# define CM_SRC_PLLC_CORE0		5
138# define CM_SRC_PLLC_PER		5
139# define CM_SRC_PLLC_CORE1		8
140# define CM_SRC_PLLD_CORE		6
141# define CM_SRC_PLLD_PER		6
142# define CM_SRC_PLLH_AUX		7
143# define CM_SRC_PLLC_CORE1		8
144# define CM_SRC_PLLC_CORE2		9
145
146#define CM_OSCCOUNT		0x100
147
148#define CM_PLLA			0x104
149# define CM_PLL_ANARST			BIT(8)
150# define CM_PLLA_HOLDPER		BIT(7)
151# define CM_PLLA_LOADPER		BIT(6)
152# define CM_PLLA_HOLDCORE		BIT(5)
153# define CM_PLLA_LOADCORE		BIT(4)
154# define CM_PLLA_HOLDCCP2		BIT(3)
155# define CM_PLLA_LOADCCP2		BIT(2)
156# define CM_PLLA_HOLDDSI0		BIT(1)
157# define CM_PLLA_LOADDSI0		BIT(0)
158
159#define CM_PLLC			0x108
160# define CM_PLLC_HOLDPER		BIT(7)
161# define CM_PLLC_LOADPER		BIT(6)
162# define CM_PLLC_HOLDCORE2		BIT(5)
163# define CM_PLLC_LOADCORE2		BIT(4)
164# define CM_PLLC_HOLDCORE1		BIT(3)
165# define CM_PLLC_LOADCORE1		BIT(2)
166# define CM_PLLC_HOLDCORE0		BIT(1)
167# define CM_PLLC_LOADCORE0		BIT(0)
168
169#define CM_PLLD			0x10c
170# define CM_PLLD_HOLDPER		BIT(7)
171# define CM_PLLD_LOADPER		BIT(6)
172# define CM_PLLD_HOLDCORE		BIT(5)
173# define CM_PLLD_LOADCORE		BIT(4)
174# define CM_PLLD_HOLDDSI1		BIT(3)
175# define CM_PLLD_LOADDSI1		BIT(2)
176# define CM_PLLD_HOLDDSI0		BIT(1)
177# define CM_PLLD_LOADDSI0		BIT(0)
178
179#define CM_PLLH			0x110
180# define CM_PLLH_LOADRCAL		BIT(2)
181# define CM_PLLH_LOADAUX		BIT(1)
182# define CM_PLLH_LOADPIX		BIT(0)
183
184#define CM_LOCK			0x114
185# define CM_LOCK_FLOCKH			BIT(12)
186# define CM_LOCK_FLOCKD			BIT(11)
187# define CM_LOCK_FLOCKC			BIT(10)
188# define CM_LOCK_FLOCKB			BIT(9)
189# define CM_LOCK_FLOCKA			BIT(8)
190
191#define CM_EVENT		0x118
192#define CM_DSI1ECTL		0x158
193#define CM_DSI1EDIV		0x15c
194#define CM_DSI1PCTL		0x160
195#define CM_DSI1PDIV		0x164
196#define CM_DFTCTL		0x168
197#define CM_DFTDIV		0x16c
198
199#define CM_PLLB			0x170
200# define CM_PLLB_HOLDARM		BIT(1)
201# define CM_PLLB_LOADARM		BIT(0)
202
203#define A2W_PLLA_CTRL		0x1100
204#define A2W_PLLC_CTRL		0x1120
205#define A2W_PLLD_CTRL		0x1140
206#define A2W_PLLH_CTRL		0x1160
207#define A2W_PLLB_CTRL		0x11e0
208# define A2W_PLL_CTRL_PRST_DISABLE	BIT(17)
209# define A2W_PLL_CTRL_PWRDN		BIT(16)
210# define A2W_PLL_CTRL_PDIV_MASK		0x000007000
211# define A2W_PLL_CTRL_PDIV_SHIFT	12
212# define A2W_PLL_CTRL_NDIV_MASK		0x0000003ff
213# define A2W_PLL_CTRL_NDIV_SHIFT	0
214
215#define A2W_PLLA_ANA0		0x1010
216#define A2W_PLLC_ANA0		0x1030
217#define A2W_PLLD_ANA0		0x1050
218#define A2W_PLLH_ANA0		0x1070
219#define A2W_PLLB_ANA0		0x10f0
220
221#define A2W_PLL_KA_SHIFT	7
222#define A2W_PLL_KA_MASK		GENMASK(9, 7)
223#define A2W_PLL_KI_SHIFT	19
224#define A2W_PLL_KI_MASK		GENMASK(21, 19)
225#define A2W_PLL_KP_SHIFT	15
226#define A2W_PLL_KP_MASK		GENMASK(18, 15)
227
228#define A2W_PLLH_KA_SHIFT	19
229#define A2W_PLLH_KA_MASK	GENMASK(21, 19)
230#define A2W_PLLH_KI_LOW_SHIFT	22
231#define A2W_PLLH_KI_LOW_MASK	GENMASK(23, 22)
232#define A2W_PLLH_KI_HIGH_SHIFT	0
233#define A2W_PLLH_KI_HIGH_MASK	GENMASK(0, 0)
234#define A2W_PLLH_KP_SHIFT	1
235#define A2W_PLLH_KP_MASK	GENMASK(4, 1)
236
237#define A2W_XOSC_CTRL		0x1190
238# define A2W_XOSC_CTRL_PLLB_ENABLE	BIT(7)
239# define A2W_XOSC_CTRL_PLLA_ENABLE	BIT(6)
240# define A2W_XOSC_CTRL_PLLD_ENABLE	BIT(5)
241# define A2W_XOSC_CTRL_DDR_ENABLE	BIT(4)
242# define A2W_XOSC_CTRL_CPR1_ENABLE	BIT(3)
243# define A2W_XOSC_CTRL_USB_ENABLE	BIT(2)
244# define A2W_XOSC_CTRL_HDMI_ENABLE	BIT(1)
245# define A2W_XOSC_CTRL_PLLC_ENABLE	BIT(0)
246
247#define A2W_PLLA_FRAC		0x1200
248#define A2W_PLLC_FRAC		0x1220
249#define A2W_PLLD_FRAC		0x1240
250#define A2W_PLLH_FRAC		0x1260
251#define A2W_PLLB_FRAC		0x12e0
252# define A2W_PLL_FRAC_MASK		((1 << A2W_PLL_FRAC_BITS) - 1)
253# define A2W_PLL_FRAC_BITS		20
254
255#define A2W_PLL_CHANNEL_DISABLE		BIT(8)
256#define A2W_PLL_DIV_BITS		8
257#define A2W_PLL_DIV_SHIFT		0
258
259#define A2W_PLLA_DSI0		0x1300
260#define A2W_PLLA_CORE		0x1400
261#define A2W_PLLA_PER		0x1500
262#define A2W_PLLA_CCP2		0x1600
263
264#define A2W_PLLC_CORE2		0x1320
265#define A2W_PLLC_CORE1		0x1420
266#define A2W_PLLC_PER		0x1520
267#define A2W_PLLC_CORE0		0x1620
268
269#define A2W_PLLD_DSI0		0x1340
270#define A2W_PLLD_CORE		0x1440
271#define A2W_PLLD_PER		0x1540
272#define A2W_PLLD_DSI1		0x1640
273
274#define A2W_PLLH_AUX		0x1360
275#define A2W_PLLH_RCAL		0x1460
276#define A2W_PLLH_PIX		0x1560
277#define A2W_PLLH_STS		0x1660
278
279#define A2W_PLLH_CTRLR		0x1960
280#define A2W_PLLH_FRACR		0x1a60
281#define A2W_PLLH_AUXR		0x1b60
282#define A2W_PLLH_RCALR		0x1c60
283#define A2W_PLLH_PIXR		0x1d60
284#define A2W_PLLH_STSR		0x1e60
285
286#define A2W_PLLB_ARM		0x13e0
287#define A2W_PLLB_SP0		0x14e0
288#define A2W_PLLB_SP1		0x15e0
289#define A2W_PLLB_SP2		0x16e0
290
291#define LOCK_TIMEOUT_NS		100000000
292#define BCM2835_MAX_FB_RATE	1750000000u
293
294#define SOC_BCM2835		BIT(0)
295#define SOC_BCM2711		BIT(1)
296#define SOC_ALL			(SOC_BCM2835 | SOC_BCM2711)
297
298/*
299 * Names of clocks used within the driver that need to be replaced
300 * with an external parent's name.  This array is in the order that
301 * the clocks node in the DT references external clocks.
302 */
303static const char *const cprman_parent_names[] = {
304	"xosc",
305	"dsi0_byte",
306	"dsi0_ddr2",
307	"dsi0_ddr",
308	"dsi1_byte",
309	"dsi1_ddr2",
310	"dsi1_ddr",
311};
312
313struct bcm2835_cprman {
314	struct device *dev;
315	void __iomem *regs;
316	spinlock_t regs_lock; /* spinlock for all clocks */
317	unsigned int soc;
318
319	/*
320	 * Real names of cprman clock parents looked up through
321	 * of_clk_get_parent_name(), which will be used in the
322	 * parent_names[] arrays for clock registration.
323	 */
324	const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)];
325
326	/* Must be last */
327	struct clk_hw_onecell_data onecell;
328};
329
330struct cprman_plat_data {
331	unsigned int soc;
332};
333
334static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
335{
336	writel(CM_PASSWORD | val, cprman->regs + reg);
337}
338
339static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
340{
341	return readl(cprman->regs + reg);
342}
343
344/* Does a cycle of measuring a clock through the TCNT clock, which may
345 * source from many other clocks in the system.
346 */
347static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman,
348					      u32 tcnt_mux)
349{
350	u32 osccount = 19200; /* 1ms */
351	u32 count;
352	ktime_t timeout;
353
354	spin_lock(&cprman->regs_lock);
355
356	cprman_write(cprman, CM_TCNTCTL, CM_KILL);
357
358	cprman_write(cprman, CM_TCNTCTL,
359		     (tcnt_mux & CM_SRC_MASK) |
360		     (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT);
361
362	cprman_write(cprman, CM_OSCCOUNT, osccount);
363
364	/* do a kind delay at the start */
365	mdelay(1);
366
367	/* Finish off whatever is left of OSCCOUNT */
368	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
369	while (cprman_read(cprman, CM_OSCCOUNT)) {
370		if (ktime_after(ktime_get(), timeout)) {
371			dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n");
372			count = 0;
373			goto out;
374		}
375		cpu_relax();
376	}
377
378	/* Wait for BUSY to clear. */
379	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
380	while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) {
381		if (ktime_after(ktime_get(), timeout)) {
382			dev_err(cprman->dev, "timeout waiting for !BUSY\n");
383			count = 0;
384			goto out;
385		}
386		cpu_relax();
387	}
388
389	count = cprman_read(cprman, CM_TCNTCNT);
390
391	cprman_write(cprman, CM_TCNTCTL, 0);
392
393out:
394	spin_unlock(&cprman->regs_lock);
395
396	return count * 1000;
397}
398
399static void bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
400				   const struct debugfs_reg32 *regs,
401				   size_t nregs, struct dentry *dentry)
402{
403	struct debugfs_regset32 *regset;
404
405	regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
406	if (!regset)
407		return;
408
409	regset->regs = regs;
410	regset->nregs = nregs;
411	regset->base = cprman->regs + base;
412
413	debugfs_create_regset32("regdump", S_IRUGO, dentry, regset);
414}
415
416struct bcm2835_pll_data {
417	const char *name;
418	u32 cm_ctrl_reg;
419	u32 a2w_ctrl_reg;
420	u32 frac_reg;
421	u32 ana_reg_base;
422	u32 reference_enable_mask;
423	/* Bit in CM_LOCK to indicate when the PLL has locked. */
424	u32 lock_mask;
425	u32 flags;
426
427	const struct bcm2835_pll_ana_bits *ana;
428
429	unsigned long min_rate;
430	unsigned long max_rate;
431	/*
432	 * Highest rate for the VCO before we have to use the
433	 * pre-divide-by-2.
434	 */
435	unsigned long max_fb_rate;
436};
437
438struct bcm2835_pll_ana_bits {
439	u32 mask0;
440	u32 set0;
441	u32 mask1;
442	u32 set1;
443	u32 mask3;
444	u32 set3;
445	u32 fb_prediv_mask;
446};
447
448static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
449	.mask0 = 0,
450	.set0 = 0,
451	.mask1 = A2W_PLL_KI_MASK | A2W_PLL_KP_MASK,
452	.set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
453	.mask3 = A2W_PLL_KA_MASK,
454	.set3 = (2 << A2W_PLL_KA_SHIFT),
455	.fb_prediv_mask = BIT(14),
456};
457
458static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
459	.mask0 = A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK,
460	.set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
461	.mask1 = A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK,
462	.set1 = (6 << A2W_PLLH_KP_SHIFT),
463	.mask3 = 0,
464	.set3 = 0,
465	.fb_prediv_mask = BIT(11),
466};
467
468struct bcm2835_pll_divider_data {
469	const char *name;
470	const char *source_pll;
471
472	u32 cm_reg;
473	u32 a2w_reg;
474
475	u32 load_mask;
476	u32 hold_mask;
477	u32 fixed_divider;
478	u32 flags;
479};
480
481struct bcm2835_clock_data {
482	const char *name;
483
484	const char *const *parents;
485	int num_mux_parents;
486
487	/* Bitmap encoding which parents accept rate change propagation. */
488	unsigned int set_rate_parent;
489
490	u32 ctl_reg;
491	u32 div_reg;
492
493	/* Number of integer bits in the divider */
494	u32 int_bits;
495	/* Number of fractional bits in the divider */
496	u32 frac_bits;
497
498	u32 flags;
499
500	bool is_vpu_clock;
501	bool is_mash_clock;
502	bool low_jitter;
503
504	u32 tcnt_mux;
505};
506
507struct bcm2835_gate_data {
508	const char *name;
509	const char *parent;
510
511	u32 ctl_reg;
512};
513
514struct bcm2835_pll {
515	struct clk_hw hw;
516	struct bcm2835_cprman *cprman;
517	const struct bcm2835_pll_data *data;
518};
519
520static int bcm2835_pll_is_on(struct clk_hw *hw)
521{
522	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
523	struct bcm2835_cprman *cprman = pll->cprman;
524	const struct bcm2835_pll_data *data = pll->data;
525
526	return cprman_read(cprman, data->a2w_ctrl_reg) &
527		A2W_PLL_CTRL_PRST_DISABLE;
528}
529
530static u32 bcm2835_pll_get_prediv_mask(struct bcm2835_cprman *cprman,
531				       const struct bcm2835_pll_data *data)
532{
533	/*
534	 * On BCM2711 there isn't a pre-divisor available in the PLL feedback
535	 * loop. Bits 13:14 of ANA1 (PLLA,PLLB,PLLC,PLLD) have been re-purposed
536	 * for to for VCO RANGE bits.
537	 */
538	if (cprman->soc & SOC_BCM2711)
539		return 0;
540
541	return data->ana->fb_prediv_mask;
542}
543
544static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
545					     unsigned long parent_rate,
546					     u32 *ndiv, u32 *fdiv)
547{
548	u64 div;
549
550	div = (u64)rate << A2W_PLL_FRAC_BITS;
551	do_div(div, parent_rate);
552
553	*ndiv = div >> A2W_PLL_FRAC_BITS;
554	*fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
555}
556
557static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
558					   u32 ndiv, u32 fdiv, u32 pdiv)
559{
560	u64 rate;
561
562	if (pdiv == 0)
563		return 0;
564
565	rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
566	do_div(rate, pdiv);
567	return rate >> A2W_PLL_FRAC_BITS;
568}
569
570static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
571				   unsigned long *parent_rate)
572{
573	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
574	const struct bcm2835_pll_data *data = pll->data;
575	u32 ndiv, fdiv;
576
577	rate = clamp(rate, data->min_rate, data->max_rate);
578
579	bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
580
581	return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
582}
583
584static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
585					  unsigned long parent_rate)
586{
587	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
588	struct bcm2835_cprman *cprman = pll->cprman;
589	const struct bcm2835_pll_data *data = pll->data;
590	u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
591	u32 ndiv, pdiv, fdiv;
592	bool using_prediv;
593
594	if (parent_rate == 0)
595		return 0;
596
597	fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
598	ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
599	pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
600	using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
601		       bcm2835_pll_get_prediv_mask(cprman, data);
602
603	if (using_prediv) {
604		ndiv *= 2;
605		fdiv *= 2;
606	}
607
608	return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
609}
610
611static void bcm2835_pll_off(struct clk_hw *hw)
612{
613	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
614	struct bcm2835_cprman *cprman = pll->cprman;
615	const struct bcm2835_pll_data *data = pll->data;
616
617	spin_lock(&cprman->regs_lock);
618	cprman_write(cprman, data->cm_ctrl_reg, CM_PLL_ANARST);
619	cprman_write(cprman, data->a2w_ctrl_reg,
620		     cprman_read(cprman, data->a2w_ctrl_reg) |
621		     A2W_PLL_CTRL_PWRDN);
622	spin_unlock(&cprman->regs_lock);
623}
624
625static int bcm2835_pll_on(struct clk_hw *hw)
626{
627	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
628	struct bcm2835_cprman *cprman = pll->cprman;
629	const struct bcm2835_pll_data *data = pll->data;
630	ktime_t timeout;
631
632	cprman_write(cprman, data->a2w_ctrl_reg,
633		     cprman_read(cprman, data->a2w_ctrl_reg) &
634		     ~A2W_PLL_CTRL_PWRDN);
635
636	/* Take the PLL out of reset. */
637	spin_lock(&cprman->regs_lock);
638	cprman_write(cprman, data->cm_ctrl_reg,
639		     cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
640	spin_unlock(&cprman->regs_lock);
641
642	/* Wait for the PLL to lock. */
643	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
644	while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
645		if (ktime_after(ktime_get(), timeout)) {
646			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
647				clk_hw_get_name(hw));
648			return -ETIMEDOUT;
649		}
650
651		cpu_relax();
652	}
653
654	cprman_write(cprman, data->a2w_ctrl_reg,
655		     cprman_read(cprman, data->a2w_ctrl_reg) |
656		     A2W_PLL_CTRL_PRST_DISABLE);
657
658	return 0;
659}
660
661static void
662bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
663{
664	int i;
665
666	/*
667	 * ANA register setup is done as a series of writes to
668	 * ANA3-ANA0, in that order.  This lets us write all 4
669	 * registers as a single cycle of the serdes interface (taking
670	 * 100 xosc clocks), whereas if we were to update ana0, 1, and
671	 * 3 individually through their partial-write registers, each
672	 * would be their own serdes cycle.
673	 */
674	for (i = 3; i >= 0; i--)
675		cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
676}
677
678static int bcm2835_pll_set_rate(struct clk_hw *hw,
679				unsigned long rate, unsigned long parent_rate)
680{
681	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
682	struct bcm2835_cprman *cprman = pll->cprman;
683	const struct bcm2835_pll_data *data = pll->data;
684	u32 prediv_mask = bcm2835_pll_get_prediv_mask(cprman, data);
685	bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
686	u32 ndiv, fdiv, a2w_ctl;
687	u32 ana[4];
688	int i;
689
690	if (rate > data->max_fb_rate) {
691		use_fb_prediv = true;
692		rate /= 2;
693	} else {
694		use_fb_prediv = false;
695	}
696
697	bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
698
699	for (i = 3; i >= 0; i--)
700		ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
701
702	was_using_prediv = ana[1] & prediv_mask;
703
704	ana[0] &= ~data->ana->mask0;
705	ana[0] |= data->ana->set0;
706	ana[1] &= ~data->ana->mask1;
707	ana[1] |= data->ana->set1;
708	ana[3] &= ~data->ana->mask3;
709	ana[3] |= data->ana->set3;
710
711	if (was_using_prediv && !use_fb_prediv) {
712		ana[1] &= ~prediv_mask;
713		do_ana_setup_first = true;
714	} else if (!was_using_prediv && use_fb_prediv) {
715		ana[1] |= prediv_mask;
716		do_ana_setup_first = false;
717	} else {
718		do_ana_setup_first = true;
719	}
720
721	/* Unmask the reference clock from the oscillator. */
722	spin_lock(&cprman->regs_lock);
723	cprman_write(cprman, A2W_XOSC_CTRL,
724		     cprman_read(cprman, A2W_XOSC_CTRL) |
725		     data->reference_enable_mask);
726	spin_unlock(&cprman->regs_lock);
727
728	if (do_ana_setup_first)
729		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
730
731	/* Set the PLL multiplier from the oscillator. */
732	cprman_write(cprman, data->frac_reg, fdiv);
733
734	a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
735	a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
736	a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
737	a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
738	a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
739	cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
740
741	if (!do_ana_setup_first)
742		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
743
744	return 0;
745}
746
747static void bcm2835_pll_debug_init(struct clk_hw *hw,
748				  struct dentry *dentry)
749{
750	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
751	struct bcm2835_cprman *cprman = pll->cprman;
752	const struct bcm2835_pll_data *data = pll->data;
753	struct debugfs_reg32 *regs;
754
755	regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
756	if (!regs)
757		return;
758
759	regs[0].name = "cm_ctrl";
760	regs[0].offset = data->cm_ctrl_reg;
761	regs[1].name = "a2w_ctrl";
762	regs[1].offset = data->a2w_ctrl_reg;
763	regs[2].name = "frac";
764	regs[2].offset = data->frac_reg;
765	regs[3].name = "ana0";
766	regs[3].offset = data->ana_reg_base + 0 * 4;
767	regs[4].name = "ana1";
768	regs[4].offset = data->ana_reg_base + 1 * 4;
769	regs[5].name = "ana2";
770	regs[5].offset = data->ana_reg_base + 2 * 4;
771	regs[6].name = "ana3";
772	regs[6].offset = data->ana_reg_base + 3 * 4;
773
774	bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
775}
776
777static const struct clk_ops bcm2835_pll_clk_ops = {
778	.is_prepared = bcm2835_pll_is_on,
779	.prepare = bcm2835_pll_on,
780	.unprepare = bcm2835_pll_off,
781	.recalc_rate = bcm2835_pll_get_rate,
782	.set_rate = bcm2835_pll_set_rate,
783	.round_rate = bcm2835_pll_round_rate,
784	.debug_init = bcm2835_pll_debug_init,
785};
786
787struct bcm2835_pll_divider {
788	struct clk_divider div;
789	struct bcm2835_cprman *cprman;
790	const struct bcm2835_pll_divider_data *data;
791};
792
793static struct bcm2835_pll_divider *
794bcm2835_pll_divider_from_hw(struct clk_hw *hw)
795{
796	return container_of(hw, struct bcm2835_pll_divider, div.hw);
797}
798
799static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
800{
801	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
802	struct bcm2835_cprman *cprman = divider->cprman;
803	const struct bcm2835_pll_divider_data *data = divider->data;
804
805	return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
806}
807
808static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
809					   unsigned long rate,
810					   unsigned long *parent_rate)
811{
812	return clk_divider_ops.round_rate(hw, rate, parent_rate);
813}
814
815static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
816						  unsigned long parent_rate)
817{
818	return clk_divider_ops.recalc_rate(hw, parent_rate);
819}
820
821static void bcm2835_pll_divider_off(struct clk_hw *hw)
822{
823	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
824	struct bcm2835_cprman *cprman = divider->cprman;
825	const struct bcm2835_pll_divider_data *data = divider->data;
826
827	spin_lock(&cprman->regs_lock);
828	cprman_write(cprman, data->cm_reg,
829		     (cprman_read(cprman, data->cm_reg) &
830		      ~data->load_mask) | data->hold_mask);
831	cprman_write(cprman, data->a2w_reg,
832		     cprman_read(cprman, data->a2w_reg) |
833		     A2W_PLL_CHANNEL_DISABLE);
834	spin_unlock(&cprman->regs_lock);
835}
836
837static int bcm2835_pll_divider_on(struct clk_hw *hw)
838{
839	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
840	struct bcm2835_cprman *cprman = divider->cprman;
841	const struct bcm2835_pll_divider_data *data = divider->data;
842
843	spin_lock(&cprman->regs_lock);
844	cprman_write(cprman, data->a2w_reg,
845		     cprman_read(cprman, data->a2w_reg) &
846		     ~A2W_PLL_CHANNEL_DISABLE);
847
848	cprman_write(cprman, data->cm_reg,
849		     cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
850	spin_unlock(&cprman->regs_lock);
851
852	return 0;
853}
854
855static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
856					unsigned long rate,
857					unsigned long parent_rate)
858{
859	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
860	struct bcm2835_cprman *cprman = divider->cprman;
861	const struct bcm2835_pll_divider_data *data = divider->data;
862	u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
863
864	div = DIV_ROUND_UP_ULL(parent_rate, rate);
865
866	div = min(div, max_div);
867	if (div == max_div)
868		div = 0;
869
870	cprman_write(cprman, data->a2w_reg, div);
871	cm = cprman_read(cprman, data->cm_reg);
872	cprman_write(cprman, data->cm_reg, cm | data->load_mask);
873	cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
874
875	return 0;
876}
877
878static void bcm2835_pll_divider_debug_init(struct clk_hw *hw,
879					   struct dentry *dentry)
880{
881	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
882	struct bcm2835_cprman *cprman = divider->cprman;
883	const struct bcm2835_pll_divider_data *data = divider->data;
884	struct debugfs_reg32 *regs;
885
886	regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
887	if (!regs)
888		return;
889
890	regs[0].name = "cm";
891	regs[0].offset = data->cm_reg;
892	regs[1].name = "a2w";
893	regs[1].offset = data->a2w_reg;
894
895	bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
896}
897
898static const struct clk_ops bcm2835_pll_divider_clk_ops = {
899	.is_prepared = bcm2835_pll_divider_is_on,
900	.prepare = bcm2835_pll_divider_on,
901	.unprepare = bcm2835_pll_divider_off,
902	.recalc_rate = bcm2835_pll_divider_get_rate,
903	.set_rate = bcm2835_pll_divider_set_rate,
904	.round_rate = bcm2835_pll_divider_round_rate,
905	.debug_init = bcm2835_pll_divider_debug_init,
906};
907
908/*
909 * The CM dividers do fixed-point division, so we can't use the
910 * generic integer divider code like the PLL dividers do (and we can't
911 * fake it by having some fixed shifts preceding it in the clock tree,
912 * because we'd run out of bits in a 32-bit unsigned long).
913 */
914struct bcm2835_clock {
915	struct clk_hw hw;
916	struct bcm2835_cprman *cprman;
917	const struct bcm2835_clock_data *data;
918};
919
920static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
921{
922	return container_of(hw, struct bcm2835_clock, hw);
923}
924
925static int bcm2835_clock_is_on(struct clk_hw *hw)
926{
927	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
928	struct bcm2835_cprman *cprman = clock->cprman;
929	const struct bcm2835_clock_data *data = clock->data;
930
931	return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
932}
933
934static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
935				    unsigned long rate,
936				    unsigned long parent_rate)
937{
938	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
939	const struct bcm2835_clock_data *data = clock->data;
940	u32 unused_frac_mask =
941		GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
942	u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
943	u64 rem;
944	u32 div, mindiv, maxdiv;
945
946	rem = do_div(temp, rate);
947	div = temp;
948	div &= ~unused_frac_mask;
949
950	/* different clamping limits apply for a mash clock */
951	if (data->is_mash_clock) {
952		/* clamp to min divider of 2 */
953		mindiv = 2 << CM_DIV_FRAC_BITS;
954		/* clamp to the highest possible integer divider */
955		maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
956	} else {
957		/* clamp to min divider of 1 */
958		mindiv = 1 << CM_DIV_FRAC_BITS;
959		/* clamp to the highest possible fractional divider */
960		maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
961				 CM_DIV_FRAC_BITS - data->frac_bits);
962	}
963
964	/* apply the clamping  limits */
965	div = max_t(u32, div, mindiv);
966	div = min_t(u32, div, maxdiv);
967
968	return div;
969}
970
971static unsigned long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
972						     unsigned long parent_rate,
973						     u32 div)
974{
975	const struct bcm2835_clock_data *data = clock->data;
976	u64 temp;
977
978	if (data->int_bits == 0 && data->frac_bits == 0)
979		return parent_rate;
980
981	/*
982	 * The divisor is a 12.12 fixed point field, but only some of
983	 * the bits are populated in any given clock.
984	 */
985	div >>= CM_DIV_FRAC_BITS - data->frac_bits;
986	div &= (1 << (data->int_bits + data->frac_bits)) - 1;
987
988	if (div == 0)
989		return 0;
990
991	temp = (u64)parent_rate << data->frac_bits;
992
993	do_div(temp, div);
994
995	return temp;
996}
997
998static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
999					    unsigned long parent_rate)
1000{
1001	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1002	struct bcm2835_cprman *cprman = clock->cprman;
1003	const struct bcm2835_clock_data *data = clock->data;
1004	u32 div;
1005
1006	if (data->int_bits == 0 && data->frac_bits == 0)
1007		return parent_rate;
1008
1009	div = cprman_read(cprman, data->div_reg);
1010
1011	return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
1012}
1013
1014static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
1015{
1016	struct bcm2835_cprman *cprman = clock->cprman;
1017	const struct bcm2835_clock_data *data = clock->data;
1018	ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
1019
1020	while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
1021		if (ktime_after(ktime_get(), timeout)) {
1022			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
1023				clk_hw_get_name(&clock->hw));
1024			return;
1025		}
1026		cpu_relax();
1027	}
1028}
1029
1030static void bcm2835_clock_off(struct clk_hw *hw)
1031{
1032	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1033	struct bcm2835_cprman *cprman = clock->cprman;
1034	const struct bcm2835_clock_data *data = clock->data;
1035
1036	spin_lock(&cprman->regs_lock);
1037	cprman_write(cprman, data->ctl_reg,
1038		     cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
1039	spin_unlock(&cprman->regs_lock);
1040
1041	/* BUSY will remain high until the divider completes its cycle. */
1042	bcm2835_clock_wait_busy(clock);
1043}
1044
1045static int bcm2835_clock_on(struct clk_hw *hw)
1046{
1047	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1048	struct bcm2835_cprman *cprman = clock->cprman;
1049	const struct bcm2835_clock_data *data = clock->data;
1050
1051	spin_lock(&cprman->regs_lock);
1052	cprman_write(cprman, data->ctl_reg,
1053		     cprman_read(cprman, data->ctl_reg) |
1054		     CM_ENABLE |
1055		     CM_GATE);
1056	spin_unlock(&cprman->regs_lock);
1057
1058	/* Debug code to measure the clock once it's turned on to see
1059	 * if it's ticking at the rate we expect.
1060	 */
1061	if (data->tcnt_mux && false) {
1062		dev_info(cprman->dev,
1063			 "clk %s: rate %ld, measure %ld\n",
1064			 data->name,
1065			 clk_hw_get_rate(hw),
1066			 bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux));
1067	}
1068
1069	return 0;
1070}
1071
1072static int bcm2835_clock_set_rate(struct clk_hw *hw,
1073				  unsigned long rate, unsigned long parent_rate)
1074{
1075	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1076	struct bcm2835_cprman *cprman = clock->cprman;
1077	const struct bcm2835_clock_data *data = clock->data;
1078	u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate);
1079	u32 ctl;
1080
1081	spin_lock(&cprman->regs_lock);
1082
1083	/*
1084	 * Setting up frac support
1085	 *
1086	 * In principle it is recommended to stop/start the clock first,
1087	 * but as we set CLK_SET_RATE_GATE during registration of the
1088	 * clock this requirement should be take care of by the
1089	 * clk-framework.
1090	 */
1091	ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1092	ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1093	cprman_write(cprman, data->ctl_reg, ctl);
1094
1095	cprman_write(cprman, data->div_reg, div);
1096
1097	spin_unlock(&cprman->regs_lock);
1098
1099	return 0;
1100}
1101
1102static bool
1103bcm2835_clk_is_pllc(struct clk_hw *hw)
1104{
1105	if (!hw)
1106		return false;
1107
1108	return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1109}
1110
1111static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
1112							int parent_idx,
1113							unsigned long rate,
1114							u32 *div,
1115							unsigned long *prate,
1116							unsigned long *avgrate)
1117{
1118	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1119	struct bcm2835_cprman *cprman = clock->cprman;
1120	const struct bcm2835_clock_data *data = clock->data;
1121	unsigned long best_rate = 0;
1122	u32 curdiv, mindiv, maxdiv;
1123	struct clk_hw *parent;
1124
1125	parent = clk_hw_get_parent_by_index(hw, parent_idx);
1126
1127	if (!(BIT(parent_idx) & data->set_rate_parent)) {
1128		*prate = clk_hw_get_rate(parent);
1129		*div = bcm2835_clock_choose_div(hw, rate, *prate);
1130
1131		*avgrate = bcm2835_clock_rate_from_divisor(clock, *prate, *div);
1132
1133		if (data->low_jitter && (*div & CM_DIV_FRAC_MASK)) {
1134			unsigned long high, low;
1135			u32 int_div = *div & ~CM_DIV_FRAC_MASK;
1136
1137			high = bcm2835_clock_rate_from_divisor(clock, *prate,
1138							       int_div);
1139			int_div += CM_DIV_FRAC_MASK + 1;
1140			low = bcm2835_clock_rate_from_divisor(clock, *prate,
1141							      int_div);
1142
1143			/*
1144			 * Return a value which is the maximum deviation
1145			 * below the ideal rate, for use as a metric.
1146			 */
1147			return *avgrate - max(*avgrate - low, high - *avgrate);
1148		}
1149		return *avgrate;
1150	}
1151
1152	if (data->frac_bits)
1153		dev_warn(cprman->dev,
1154			"frac bits are not used when propagating rate change");
1155
1156	/* clamp to min divider of 2 if we're dealing with a mash clock */
1157	mindiv = data->is_mash_clock ? 2 : 1;
1158	maxdiv = BIT(data->int_bits) - 1;
1159
1160	/* TODO: Be smart, and only test a subset of the available divisors. */
1161	for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
1162		unsigned long tmp_rate;
1163
1164		tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
1165		tmp_rate /= curdiv;
1166		if (curdiv == mindiv ||
1167		    (tmp_rate > best_rate && tmp_rate <= rate))
1168			best_rate = tmp_rate;
1169
1170		if (best_rate == rate)
1171			break;
1172	}
1173
1174	*div = curdiv << CM_DIV_FRAC_BITS;
1175	*prate = curdiv * best_rate;
1176	*avgrate = best_rate;
1177
1178	return best_rate;
1179}
1180
1181static int bcm2835_clock_determine_rate(struct clk_hw *hw,
1182					struct clk_rate_request *req)
1183{
1184	struct clk_hw *parent, *best_parent = NULL;
1185	bool current_parent_is_pllc;
1186	unsigned long rate, best_rate = 0;
1187	unsigned long prate, best_prate = 0;
1188	unsigned long avgrate, best_avgrate = 0;
1189	size_t i;
1190	u32 div;
1191
1192	current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1193
1194	/*
1195	 * Select parent clock that results in the closest but lower rate
1196	 */
1197	for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1198		parent = clk_hw_get_parent_by_index(hw, i);
1199		if (!parent)
1200			continue;
1201
1202		/*
1203		 * Don't choose a PLLC-derived clock as our parent
1204		 * unless it had been manually set that way.  PLLC's
1205		 * frequency gets adjusted by the firmware due to
1206		 * over-temp or under-voltage conditions, without
1207		 * prior notification to our clock consumer.
1208		 */
1209		if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1210			continue;
1211
1212		rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
1213							  &div, &prate,
1214							  &avgrate);
1215		if (abs(req->rate - rate) < abs(req->rate - best_rate)) {
1216			best_parent = parent;
1217			best_prate = prate;
1218			best_rate = rate;
1219			best_avgrate = avgrate;
1220		}
1221	}
1222
1223	if (!best_parent)
1224		return -EINVAL;
1225
1226	req->best_parent_hw = best_parent;
1227	req->best_parent_rate = best_prate;
1228
1229	req->rate = best_avgrate;
1230
1231	return 0;
1232}
1233
1234static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1235{
1236	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1237	struct bcm2835_cprman *cprman = clock->cprman;
1238	const struct bcm2835_clock_data *data = clock->data;
1239	u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1240
1241	cprman_write(cprman, data->ctl_reg, src);
1242	return 0;
1243}
1244
1245static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1246{
1247	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1248	struct bcm2835_cprman *cprman = clock->cprman;
1249	const struct bcm2835_clock_data *data = clock->data;
1250	u32 src = cprman_read(cprman, data->ctl_reg);
1251
1252	return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1253}
1254
1255static const struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1256	{
1257		.name = "ctl",
1258		.offset = 0,
1259	},
1260	{
1261		.name = "div",
1262		.offset = 4,
1263	},
1264};
1265
1266static void bcm2835_clock_debug_init(struct clk_hw *hw,
1267				    struct dentry *dentry)
1268{
1269	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1270	struct bcm2835_cprman *cprman = clock->cprman;
1271	const struct bcm2835_clock_data *data = clock->data;
1272
1273	bcm2835_debugfs_regset(cprman, data->ctl_reg,
1274		bcm2835_debugfs_clock_reg32,
1275		ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1276		dentry);
1277}
1278
1279static const struct clk_ops bcm2835_clock_clk_ops = {
1280	.is_prepared = bcm2835_clock_is_on,
1281	.prepare = bcm2835_clock_on,
1282	.unprepare = bcm2835_clock_off,
1283	.recalc_rate = bcm2835_clock_get_rate,
1284	.set_rate = bcm2835_clock_set_rate,
1285	.determine_rate = bcm2835_clock_determine_rate,
1286	.set_parent = bcm2835_clock_set_parent,
1287	.get_parent = bcm2835_clock_get_parent,
1288	.debug_init = bcm2835_clock_debug_init,
1289};
1290
1291static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1292{
1293	return true;
1294}
1295
1296/*
1297 * The VPU clock can never be disabled (it doesn't have an ENABLE
1298 * bit), so it gets its own set of clock ops.
1299 */
1300static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1301	.is_prepared = bcm2835_vpu_clock_is_on,
1302	.recalc_rate = bcm2835_clock_get_rate,
1303	.set_rate = bcm2835_clock_set_rate,
1304	.determine_rate = bcm2835_clock_determine_rate,
1305	.set_parent = bcm2835_clock_set_parent,
1306	.get_parent = bcm2835_clock_get_parent,
1307	.debug_init = bcm2835_clock_debug_init,
1308};
1309
1310static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1311					   const void *data)
1312{
1313	const struct bcm2835_pll_data *pll_data = data;
1314	struct bcm2835_pll *pll;
1315	struct clk_init_data init;
1316	int ret;
1317
1318	memset(&init, 0, sizeof(init));
1319
1320	/* All of the PLLs derive from the external oscillator. */
1321	init.parent_names = &cprman->real_parent_names[0];
1322	init.num_parents = 1;
1323	init.name = pll_data->name;
1324	init.ops = &bcm2835_pll_clk_ops;
1325	init.flags = pll_data->flags | CLK_IGNORE_UNUSED;
1326
1327	pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1328	if (!pll)
1329		return NULL;
1330
1331	pll->cprman = cprman;
1332	pll->data = pll_data;
1333	pll->hw.init = &init;
1334
1335	ret = devm_clk_hw_register(cprman->dev, &pll->hw);
1336	if (ret) {
1337		kfree(pll);
1338		return NULL;
1339	}
1340	return &pll->hw;
1341}
1342
1343static struct clk_hw *
1344bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1345			     const void *data)
1346{
1347	const struct bcm2835_pll_divider_data *divider_data = data;
1348	struct bcm2835_pll_divider *divider;
1349	struct clk_init_data init;
1350	const char *divider_name;
1351	int ret;
1352
1353	if (divider_data->fixed_divider != 1) {
1354		divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1355					      "%s_prediv", divider_data->name);
1356		if (!divider_name)
1357			return NULL;
1358	} else {
1359		divider_name = divider_data->name;
1360	}
1361
1362	memset(&init, 0, sizeof(init));
1363
1364	init.parent_names = &divider_data->source_pll;
1365	init.num_parents = 1;
1366	init.name = divider_name;
1367	init.ops = &bcm2835_pll_divider_clk_ops;
1368	init.flags = divider_data->flags | CLK_IGNORE_UNUSED;
1369
1370	divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1371	if (!divider)
1372		return NULL;
1373
1374	divider->div.reg = cprman->regs + divider_data->a2w_reg;
1375	divider->div.shift = A2W_PLL_DIV_SHIFT;
1376	divider->div.width = A2W_PLL_DIV_BITS;
1377	divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
1378	divider->div.lock = &cprman->regs_lock;
1379	divider->div.hw.init = &init;
1380	divider->div.table = NULL;
1381
1382	divider->cprman = cprman;
1383	divider->data = divider_data;
1384
1385	ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
1386	if (ret)
1387		return ERR_PTR(ret);
1388
1389	/*
1390	 * PLLH's channels have a fixed divide by 10 afterwards, which
1391	 * is what our consumers are actually using.
1392	 */
1393	if (divider_data->fixed_divider != 1) {
1394		return clk_hw_register_fixed_factor(cprman->dev,
1395						    divider_data->name,
1396						    divider_name,
1397						    CLK_SET_RATE_PARENT,
1398						    1,
1399						    divider_data->fixed_divider);
1400	}
1401
1402	return &divider->div.hw;
1403}
1404
1405static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1406					     const void *data)
1407{
1408	const struct bcm2835_clock_data *clock_data = data;
1409	struct bcm2835_clock *clock;
1410	struct clk_init_data init;
1411	const char *parents[1 << CM_SRC_BITS];
1412	size_t i;
1413	int ret;
1414
1415	/*
1416	 * Replace our strings referencing parent clocks with the
1417	 * actual clock-output-name of the parent.
1418	 */
1419	for (i = 0; i < clock_data->num_mux_parents; i++) {
1420		parents[i] = clock_data->parents[i];
1421
1422		ret = match_string(cprman_parent_names,
1423				   ARRAY_SIZE(cprman_parent_names),
1424				   parents[i]);
1425		if (ret >= 0)
1426			parents[i] = cprman->real_parent_names[ret];
1427	}
1428
1429	memset(&init, 0, sizeof(init));
1430	init.parent_names = parents;
1431	init.num_parents = clock_data->num_mux_parents;
1432	init.name = clock_data->name;
1433	init.flags = clock_data->flags | CLK_IGNORE_UNUSED;
1434
1435	/*
1436	 * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1437	 * rate changes on at least of the parents.
1438	 */
1439	if (clock_data->set_rate_parent)
1440		init.flags |= CLK_SET_RATE_PARENT;
1441
1442	if (clock_data->is_vpu_clock) {
1443		init.ops = &bcm2835_vpu_clock_clk_ops;
1444	} else {
1445		init.ops = &bcm2835_clock_clk_ops;
1446		init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1447
1448		/* If the clock wasn't actually enabled at boot, it's not
1449		 * critical.
1450		 */
1451		if (!(cprman_read(cprman, clock_data->ctl_reg) & CM_ENABLE))
1452			init.flags &= ~CLK_IS_CRITICAL;
1453	}
1454
1455	clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1456	if (!clock)
1457		return NULL;
1458
1459	clock->cprman = cprman;
1460	clock->data = clock_data;
1461	clock->hw.init = &init;
1462
1463	ret = devm_clk_hw_register(cprman->dev, &clock->hw);
1464	if (ret)
1465		return ERR_PTR(ret);
1466	return &clock->hw;
1467}
1468
1469static struct clk_hw *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1470					    const void *data)
1471{
1472	const struct bcm2835_gate_data *gate_data = data;
1473
1474	return clk_hw_register_gate(cprman->dev, gate_data->name,
1475				    gate_data->parent,
1476				    CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1477				    cprman->regs + gate_data->ctl_reg,
1478				    CM_GATE_BIT, 0, &cprman->regs_lock);
1479}
1480
1481struct bcm2835_clk_desc {
1482	struct clk_hw *(*clk_register)(struct bcm2835_cprman *cprman,
1483				       const void *data);
1484	unsigned int supported;
1485	const void *data;
1486};
1487
1488/* assignment helper macros for different clock types */
1489#define _REGISTER(f, s, ...) { .clk_register = f, \
1490			       .supported = s,				\
1491			       .data = __VA_ARGS__ }
1492#define REGISTER_PLL(s, ...)	_REGISTER(&bcm2835_register_pll,	\
1493					  s,				\
1494					  &(struct bcm2835_pll_data)	\
1495					  {__VA_ARGS__})
1496#define REGISTER_PLL_DIV(s, ...) _REGISTER(&bcm2835_register_pll_divider, \
1497					   s,				  \
1498					   &(struct bcm2835_pll_divider_data) \
1499					   {__VA_ARGS__})
1500#define REGISTER_CLK(s, ...)	_REGISTER(&bcm2835_register_clock,	\
1501					  s,				\
1502					  &(struct bcm2835_clock_data)	\
1503					  {__VA_ARGS__})
1504#define REGISTER_GATE(s, ...)	_REGISTER(&bcm2835_register_gate,	\
1505					  s,				\
1506					  &(struct bcm2835_gate_data)	\
1507					  {__VA_ARGS__})
1508
1509/* parent mux arrays plus helper macros */
1510
1511/* main oscillator parent mux */
1512static const char *const bcm2835_clock_osc_parents[] = {
1513	"gnd",
1514	"xosc",
1515	"testdebug0",
1516	"testdebug1"
1517};
1518
1519#define REGISTER_OSC_CLK(s, ...)	REGISTER_CLK(			\
1520	s,								\
1521	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),	\
1522	.parents = bcm2835_clock_osc_parents,				\
1523	__VA_ARGS__)
1524
1525/* main peripherial parent mux */
1526static const char *const bcm2835_clock_per_parents[] = {
1527	"gnd",
1528	"xosc",
1529	"testdebug0",
1530	"testdebug1",
1531	"plla_per",
1532	"pllc_per",
1533	"plld_per",
1534	"pllh_aux",
1535};
1536
1537#define REGISTER_PER_CLK(s, ...)	REGISTER_CLK(			\
1538	s,								\
1539	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),	\
1540	.parents = bcm2835_clock_per_parents,				\
1541	__VA_ARGS__)
1542
1543/*
1544 * Restrict clock sources for the PCM peripheral to the oscillator and
1545 * PLLD_PER because other source may have varying rates or be switched
1546 * off.
1547 *
1548 * Prevent other sources from being selected by replacing their names in
1549 * the list of potential parents with dummy entries (entry index is
1550 * significant).
1551 */
1552static const char *const bcm2835_pcm_per_parents[] = {
1553	"-",
1554	"xosc",
1555	"-",
1556	"-",
1557	"-",
1558	"-",
1559	"plld_per",
1560	"-",
1561};
1562
1563#define REGISTER_PCM_CLK(s, ...)	REGISTER_CLK(			\
1564	s,								\
1565	.num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents),		\
1566	.parents = bcm2835_pcm_per_parents,				\
1567	__VA_ARGS__)
1568
1569/* main vpu parent mux */
1570static const char *const bcm2835_clock_vpu_parents[] = {
1571	"gnd",
1572	"xosc",
1573	"testdebug0",
1574	"testdebug1",
1575	"plla_core",
1576	"pllc_core0",
1577	"plld_core",
1578	"pllh_aux",
1579	"pllc_core1",
1580	"pllc_core2",
1581};
1582
1583#define REGISTER_VPU_CLK(s, ...)	REGISTER_CLK(			\
1584	s,								\
1585	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),	\
1586	.parents = bcm2835_clock_vpu_parents,				\
1587	__VA_ARGS__)
1588
1589/*
1590 * DSI parent clocks.  The DSI byte/DDR/DDR2 clocks come from the DSI
1591 * analog PHY.  The _inv variants are generated internally to cprman,
1592 * but we don't use them so they aren't hooked up.
1593 */
1594static const char *const bcm2835_clock_dsi0_parents[] = {
1595	"gnd",
1596	"xosc",
1597	"testdebug0",
1598	"testdebug1",
1599	"dsi0_ddr",
1600	"dsi0_ddr_inv",
1601	"dsi0_ddr2",
1602	"dsi0_ddr2_inv",
1603	"dsi0_byte",
1604	"dsi0_byte_inv",
1605};
1606
1607static const char *const bcm2835_clock_dsi1_parents[] = {
1608	"gnd",
1609	"xosc",
1610	"testdebug0",
1611	"testdebug1",
1612	"dsi1_ddr",
1613	"dsi1_ddr_inv",
1614	"dsi1_ddr2",
1615	"dsi1_ddr2_inv",
1616	"dsi1_byte",
1617	"dsi1_byte_inv",
1618};
1619
1620#define REGISTER_DSI0_CLK(s, ...)	REGISTER_CLK(			\
1621	s,								\
1622	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents),	\
1623	.parents = bcm2835_clock_dsi0_parents,				\
1624	__VA_ARGS__)
1625
1626#define REGISTER_DSI1_CLK(s, ...)	REGISTER_CLK(			\
1627	s,								\
1628	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents),	\
1629	.parents = bcm2835_clock_dsi1_parents,				\
1630	__VA_ARGS__)
1631
1632/*
1633 * the real definition of all the pll, pll_dividers and clocks
1634 * these make use of the above REGISTER_* macros
1635 */
1636static const struct bcm2835_clk_desc clk_desc_array[] = {
1637	/* the PLL + PLL dividers */
1638
1639	/*
1640	 * PLLA is the auxiliary PLL, used to drive the CCP2
1641	 * (Compact Camera Port 2) transmitter clock.
1642	 *
1643	 * It is in the PX LDO power domain, which is on when the
1644	 * AUDIO domain is on.
1645	 */
1646	[BCM2835_PLLA]		= REGISTER_PLL(
1647		SOC_ALL,
1648		.name = "plla",
1649		.cm_ctrl_reg = CM_PLLA,
1650		.a2w_ctrl_reg = A2W_PLLA_CTRL,
1651		.frac_reg = A2W_PLLA_FRAC,
1652		.ana_reg_base = A2W_PLLA_ANA0,
1653		.reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1654		.lock_mask = CM_LOCK_FLOCKA,
1655
1656		.ana = &bcm2835_ana_default,
1657
1658		.min_rate = 600000000u,
1659		.max_rate = 2400000000u,
1660		.max_fb_rate = BCM2835_MAX_FB_RATE),
1661	[BCM2835_PLLA_CORE]	= REGISTER_PLL_DIV(
1662		SOC_ALL,
1663		.name = "plla_core",
1664		.source_pll = "plla",
1665		.cm_reg = CM_PLLA,
1666		.a2w_reg = A2W_PLLA_CORE,
1667		.load_mask = CM_PLLA_LOADCORE,
1668		.hold_mask = CM_PLLA_HOLDCORE,
1669		.fixed_divider = 1,
1670		.flags = CLK_SET_RATE_PARENT),
1671	[BCM2835_PLLA_PER]	= REGISTER_PLL_DIV(
1672		SOC_ALL,
1673		.name = "plla_per",
1674		.source_pll = "plla",
1675		.cm_reg = CM_PLLA,
1676		.a2w_reg = A2W_PLLA_PER,
1677		.load_mask = CM_PLLA_LOADPER,
1678		.hold_mask = CM_PLLA_HOLDPER,
1679		.fixed_divider = 1,
1680		.flags = CLK_SET_RATE_PARENT),
1681	[BCM2835_PLLA_DSI0]	= REGISTER_PLL_DIV(
1682		SOC_ALL,
1683		.name = "plla_dsi0",
1684		.source_pll = "plla",
1685		.cm_reg = CM_PLLA,
1686		.a2w_reg = A2W_PLLA_DSI0,
1687		.load_mask = CM_PLLA_LOADDSI0,
1688		.hold_mask = CM_PLLA_HOLDDSI0,
1689		.fixed_divider = 1),
1690	[BCM2835_PLLA_CCP2]	= REGISTER_PLL_DIV(
1691		SOC_ALL,
1692		.name = "plla_ccp2",
1693		.source_pll = "plla",
1694		.cm_reg = CM_PLLA,
1695		.a2w_reg = A2W_PLLA_CCP2,
1696		.load_mask = CM_PLLA_LOADCCP2,
1697		.hold_mask = CM_PLLA_HOLDCCP2,
1698		.fixed_divider = 1,
1699		.flags = CLK_SET_RATE_PARENT),
1700
1701	/* PLLB is used for the ARM's clock. */
1702	[BCM2835_PLLB]		= REGISTER_PLL(
1703		SOC_ALL,
1704		.name = "pllb",
1705		.cm_ctrl_reg = CM_PLLB,
1706		.a2w_ctrl_reg = A2W_PLLB_CTRL,
1707		.frac_reg = A2W_PLLB_FRAC,
1708		.ana_reg_base = A2W_PLLB_ANA0,
1709		.reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
1710		.lock_mask = CM_LOCK_FLOCKB,
1711
1712		.ana = &bcm2835_ana_default,
1713
1714		.min_rate = 600000000u,
1715		.max_rate = 3000000000u,
1716		.max_fb_rate = BCM2835_MAX_FB_RATE,
1717		.flags = CLK_GET_RATE_NOCACHE),
1718	[BCM2835_PLLB_ARM]	= REGISTER_PLL_DIV(
1719		SOC_ALL,
1720		.name = "pllb_arm",
1721		.source_pll = "pllb",
1722		.cm_reg = CM_PLLB,
1723		.a2w_reg = A2W_PLLB_ARM,
1724		.load_mask = CM_PLLB_LOADARM,
1725		.hold_mask = CM_PLLB_HOLDARM,
1726		.fixed_divider = 1,
1727		.flags = CLK_SET_RATE_PARENT | CLK_GET_RATE_NOCACHE),
1728
1729	/*
1730	 * PLLC is the core PLL, used to drive the core VPU clock.
1731	 *
1732	 * It is in the PX LDO power domain, which is on when the
1733	 * AUDIO domain is on.
1734	 */
1735	[BCM2835_PLLC]		= REGISTER_PLL(
1736		SOC_ALL,
1737		.name = "pllc",
1738		.cm_ctrl_reg = CM_PLLC,
1739		.a2w_ctrl_reg = A2W_PLLC_CTRL,
1740		.frac_reg = A2W_PLLC_FRAC,
1741		.ana_reg_base = A2W_PLLC_ANA0,
1742		.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1743		.lock_mask = CM_LOCK_FLOCKC,
1744
1745		.ana = &bcm2835_ana_default,
1746
1747		.min_rate = 600000000u,
1748		.max_rate = 3000000000u,
1749		.max_fb_rate = BCM2835_MAX_FB_RATE),
1750	[BCM2835_PLLC_CORE0]	= REGISTER_PLL_DIV(
1751		SOC_ALL,
1752		.name = "pllc_core0",
1753		.source_pll = "pllc",
1754		.cm_reg = CM_PLLC,
1755		.a2w_reg = A2W_PLLC_CORE0,
1756		.load_mask = CM_PLLC_LOADCORE0,
1757		.hold_mask = CM_PLLC_HOLDCORE0,
1758		.fixed_divider = 1,
1759		.flags = CLK_SET_RATE_PARENT),
1760	[BCM2835_PLLC_CORE1]	= REGISTER_PLL_DIV(
1761		SOC_ALL,
1762		.name = "pllc_core1",
1763		.source_pll = "pllc",
1764		.cm_reg = CM_PLLC,
1765		.a2w_reg = A2W_PLLC_CORE1,
1766		.load_mask = CM_PLLC_LOADCORE1,
1767		.hold_mask = CM_PLLC_HOLDCORE1,
1768		.fixed_divider = 1,
1769		.flags = CLK_SET_RATE_PARENT),
1770	[BCM2835_PLLC_CORE2]	= REGISTER_PLL_DIV(
1771		SOC_ALL,
1772		.name = "pllc_core2",
1773		.source_pll = "pllc",
1774		.cm_reg = CM_PLLC,
1775		.a2w_reg = A2W_PLLC_CORE2,
1776		.load_mask = CM_PLLC_LOADCORE2,
1777		.hold_mask = CM_PLLC_HOLDCORE2,
1778		.fixed_divider = 1,
1779		.flags = CLK_SET_RATE_PARENT),
1780	[BCM2835_PLLC_PER]	= REGISTER_PLL_DIV(
1781		SOC_ALL,
1782		.name = "pllc_per",
1783		.source_pll = "pllc",
1784		.cm_reg = CM_PLLC,
1785		.a2w_reg = A2W_PLLC_PER,
1786		.load_mask = CM_PLLC_LOADPER,
1787		.hold_mask = CM_PLLC_HOLDPER,
1788		.fixed_divider = 1,
1789		.flags = CLK_IS_CRITICAL | CLK_SET_RATE_PARENT),
1790
1791	/*
1792	 * PLLD is the display PLL, used to drive DSI display panels.
1793	 *
1794	 * It is in the PX LDO power domain, which is on when the
1795	 * AUDIO domain is on.
1796	 */
1797	[BCM2835_PLLD]		= REGISTER_PLL(
1798		SOC_ALL,
1799		.name = "plld",
1800		.cm_ctrl_reg = CM_PLLD,
1801		.a2w_ctrl_reg = A2W_PLLD_CTRL,
1802		.frac_reg = A2W_PLLD_FRAC,
1803		.ana_reg_base = A2W_PLLD_ANA0,
1804		.reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1805		.lock_mask = CM_LOCK_FLOCKD,
1806
1807		.ana = &bcm2835_ana_default,
1808
1809		.min_rate = 600000000u,
1810		.max_rate = 2400000000u,
1811		.max_fb_rate = BCM2835_MAX_FB_RATE),
1812	[BCM2835_PLLD_CORE]	= REGISTER_PLL_DIV(
1813		SOC_ALL,
1814		.name = "plld_core",
1815		.source_pll = "plld",
1816		.cm_reg = CM_PLLD,
1817		.a2w_reg = A2W_PLLD_CORE,
1818		.load_mask = CM_PLLD_LOADCORE,
1819		.hold_mask = CM_PLLD_HOLDCORE,
1820		.fixed_divider = 1,
1821		.flags = CLK_SET_RATE_PARENT),
1822	/*
1823	 * VPU firmware assumes that PLLD_PER isn't disabled by the ARM core.
1824	 * Otherwise this could cause firmware lookups. That's why we mark
1825	 * it as critical.
1826	 */
1827	[BCM2835_PLLD_PER]	= REGISTER_PLL_DIV(
1828		SOC_ALL,
1829		.name = "plld_per",
1830		.source_pll = "plld",
1831		.cm_reg = CM_PLLD,
1832		.a2w_reg = A2W_PLLD_PER,
1833		.load_mask = CM_PLLD_LOADPER,
1834		.hold_mask = CM_PLLD_HOLDPER,
1835		.fixed_divider = 1,
1836		.flags = CLK_IS_CRITICAL | CLK_SET_RATE_PARENT),
1837	[BCM2835_PLLD_DSI0]	= REGISTER_PLL_DIV(
1838		SOC_ALL,
1839		.name = "plld_dsi0",
1840		.source_pll = "plld",
1841		.cm_reg = CM_PLLD,
1842		.a2w_reg = A2W_PLLD_DSI0,
1843		.load_mask = CM_PLLD_LOADDSI0,
1844		.hold_mask = CM_PLLD_HOLDDSI0,
1845		.fixed_divider = 1),
1846	[BCM2835_PLLD_DSI1]	= REGISTER_PLL_DIV(
1847		SOC_ALL,
1848		.name = "plld_dsi1",
1849		.source_pll = "plld",
1850		.cm_reg = CM_PLLD,
1851		.a2w_reg = A2W_PLLD_DSI1,
1852		.load_mask = CM_PLLD_LOADDSI1,
1853		.hold_mask = CM_PLLD_HOLDDSI1,
1854		.fixed_divider = 1),
1855
1856	/*
1857	 * PLLH is used to supply the pixel clock or the AUX clock for the
1858	 * TV encoder.
1859	 *
1860	 * It is in the HDMI power domain.
1861	 */
1862	[BCM2835_PLLH]		= REGISTER_PLL(
1863		SOC_BCM2835,
1864		"pllh",
1865		.cm_ctrl_reg = CM_PLLH,
1866		.a2w_ctrl_reg = A2W_PLLH_CTRL,
1867		.frac_reg = A2W_PLLH_FRAC,
1868		.ana_reg_base = A2W_PLLH_ANA0,
1869		.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1870		.lock_mask = CM_LOCK_FLOCKH,
1871
1872		.ana = &bcm2835_ana_pllh,
1873
1874		.min_rate = 600000000u,
1875		.max_rate = 3000000000u,
1876		.max_fb_rate = BCM2835_MAX_FB_RATE),
1877	[BCM2835_PLLH_RCAL]	= REGISTER_PLL_DIV(
1878		SOC_BCM2835,
1879		.name = "pllh_rcal",
1880		.source_pll = "pllh",
1881		.cm_reg = CM_PLLH,
1882		.a2w_reg = A2W_PLLH_RCAL,
1883		.load_mask = CM_PLLH_LOADRCAL,
1884		.hold_mask = 0,
1885		.fixed_divider = 10,
1886		.flags = CLK_SET_RATE_PARENT),
1887	[BCM2835_PLLH_AUX]	= REGISTER_PLL_DIV(
1888		SOC_BCM2835,
1889		.name = "pllh_aux",
1890		.source_pll = "pllh",
1891		.cm_reg = CM_PLLH,
1892		.a2w_reg = A2W_PLLH_AUX,
1893		.load_mask = CM_PLLH_LOADAUX,
1894		.hold_mask = 0,
1895		.fixed_divider = 1,
1896		.flags = CLK_SET_RATE_PARENT),
1897	[BCM2835_PLLH_PIX]	= REGISTER_PLL_DIV(
1898		SOC_BCM2835,
1899		.name = "pllh_pix",
1900		.source_pll = "pllh",
1901		.cm_reg = CM_PLLH,
1902		.a2w_reg = A2W_PLLH_PIX,
1903		.load_mask = CM_PLLH_LOADPIX,
1904		.hold_mask = 0,
1905		.fixed_divider = 10,
1906		.flags = CLK_SET_RATE_PARENT),
1907
1908	/* the clocks */
1909
1910	/* clocks with oscillator parent mux */
1911
1912	/* One Time Programmable Memory clock.  Maximum 10Mhz. */
1913	[BCM2835_CLOCK_OTP]	= REGISTER_OSC_CLK(
1914		SOC_ALL,
1915		.name = "otp",
1916		.ctl_reg = CM_OTPCTL,
1917		.div_reg = CM_OTPDIV,
1918		.int_bits = 4,
1919		.frac_bits = 0,
1920		.tcnt_mux = 6),
1921	/*
1922	 * Used for a 1Mhz clock for the system clocksource, and also used
1923	 * bythe watchdog timer and the camera pulse generator.
1924	 */
1925	[BCM2835_CLOCK_TIMER]	= REGISTER_OSC_CLK(
1926		SOC_ALL,
1927		.name = "timer",
1928		.ctl_reg = CM_TIMERCTL,
1929		.div_reg = CM_TIMERDIV,
1930		.int_bits = 6,
1931		.frac_bits = 12),
1932	/*
1933	 * Clock for the temperature sensor.
1934	 * Generally run at 2Mhz, max 5Mhz.
1935	 */
1936	[BCM2835_CLOCK_TSENS]	= REGISTER_OSC_CLK(
1937		SOC_ALL,
1938		.name = "tsens",
1939		.ctl_reg = CM_TSENSCTL,
1940		.div_reg = CM_TSENSDIV,
1941		.int_bits = 5,
1942		.frac_bits = 0),
1943	[BCM2835_CLOCK_TEC]	= REGISTER_OSC_CLK(
1944		SOC_ALL,
1945		.name = "tec",
1946		.ctl_reg = CM_TECCTL,
1947		.div_reg = CM_TECDIV,
1948		.int_bits = 6,
1949		.frac_bits = 0),
1950
1951	/* clocks with vpu parent mux */
1952	[BCM2835_CLOCK_H264]	= REGISTER_VPU_CLK(
1953		SOC_ALL,
1954		.name = "h264",
1955		.ctl_reg = CM_H264CTL,
1956		.div_reg = CM_H264DIV,
1957		.int_bits = 4,
1958		.frac_bits = 8,
1959		.tcnt_mux = 1),
1960	[BCM2835_CLOCK_ISP]	= REGISTER_VPU_CLK(
1961		SOC_ALL,
1962		.name = "isp",
1963		.ctl_reg = CM_ISPCTL,
1964		.div_reg = CM_ISPDIV,
1965		.int_bits = 4,
1966		.frac_bits = 8,
1967		.tcnt_mux = 2),
1968
1969	/*
1970	 * Secondary SDRAM clock.  Used for low-voltage modes when the PLL
1971	 * in the SDRAM controller can't be used.
1972	 */
1973	[BCM2835_CLOCK_SDRAM]	= REGISTER_VPU_CLK(
1974		SOC_ALL,
1975		.name = "sdram",
1976		.ctl_reg = CM_SDCCTL,
1977		.div_reg = CM_SDCDIV,
1978		.int_bits = 6,
1979		.frac_bits = 0,
1980		.tcnt_mux = 3),
1981	[BCM2835_CLOCK_V3D]	= REGISTER_VPU_CLK(
1982		SOC_ALL,
1983		.name = "v3d",
1984		.ctl_reg = CM_V3DCTL,
1985		.div_reg = CM_V3DDIV,
1986		.int_bits = 4,
1987		.frac_bits = 8,
1988		.tcnt_mux = 4),
1989	/*
1990	 * VPU clock.  This doesn't have an enable bit, since it drives
1991	 * the bus for everything else, and is special so it doesn't need
1992	 * to be gated for rate changes.  It is also known as "clk_audio"
1993	 * in various hardware documentation.
1994	 */
1995	[BCM2835_CLOCK_VPU]	= REGISTER_VPU_CLK(
1996		SOC_ALL,
1997		.name = "vpu",
1998		.ctl_reg = CM_VPUCTL,
1999		.div_reg = CM_VPUDIV,
2000		.int_bits = 12,
2001		.frac_bits = 8,
2002		.flags = CLK_IS_CRITICAL,
2003		.is_vpu_clock = true,
2004		.tcnt_mux = 5),
2005
2006	/* clocks with per parent mux */
2007	[BCM2835_CLOCK_AVEO]	= REGISTER_PER_CLK(
2008		SOC_ALL,
2009		.name = "aveo",
2010		.ctl_reg = CM_AVEOCTL,
2011		.div_reg = CM_AVEODIV,
2012		.int_bits = 4,
2013		.frac_bits = 0,
2014		.tcnt_mux = 38),
2015	[BCM2835_CLOCK_CAM0]	= REGISTER_PER_CLK(
2016		SOC_ALL,
2017		.name = "cam0",
2018		.ctl_reg = CM_CAM0CTL,
2019		.div_reg = CM_CAM0DIV,
2020		.int_bits = 4,
2021		.frac_bits = 8,
2022		.tcnt_mux = 14),
2023	[BCM2835_CLOCK_CAM1]	= REGISTER_PER_CLK(
2024		SOC_ALL,
2025		.name = "cam1",
2026		.ctl_reg = CM_CAM1CTL,
2027		.div_reg = CM_CAM1DIV,
2028		.int_bits = 4,
2029		.frac_bits = 8,
2030		.tcnt_mux = 15),
2031	[BCM2835_CLOCK_DFT]	= REGISTER_PER_CLK(
2032		SOC_ALL,
2033		.name = "dft",
2034		.ctl_reg = CM_DFTCTL,
2035		.div_reg = CM_DFTDIV,
2036		.int_bits = 5,
2037		.frac_bits = 0),
2038	[BCM2835_CLOCK_DPI]	= REGISTER_PER_CLK(
2039		SOC_ALL,
2040		.name = "dpi",
2041		.ctl_reg = CM_DPICTL,
2042		.div_reg = CM_DPIDIV,
2043		.int_bits = 4,
2044		.frac_bits = 8,
2045		.tcnt_mux = 17),
2046
2047	/* Arasan EMMC clock */
2048	[BCM2835_CLOCK_EMMC]	= REGISTER_PER_CLK(
2049		SOC_ALL,
2050		.name = "emmc",
2051		.ctl_reg = CM_EMMCCTL,
2052		.div_reg = CM_EMMCDIV,
2053		.int_bits = 4,
2054		.frac_bits = 8,
2055		.tcnt_mux = 39),
2056
2057	/* EMMC2 clock (only available for BCM2711) */
2058	[BCM2711_CLOCK_EMMC2]	= REGISTER_PER_CLK(
2059		SOC_BCM2711,
2060		.name = "emmc2",
2061		.ctl_reg = CM_EMMC2CTL,
2062		.div_reg = CM_EMMC2DIV,
2063		.int_bits = 4,
2064		.frac_bits = 8,
2065		.tcnt_mux = 42),
2066
2067	/* General purpose (GPIO) clocks */
2068	[BCM2835_CLOCK_GP0]	= REGISTER_PER_CLK(
2069		SOC_ALL,
2070		.name = "gp0",
2071		.ctl_reg = CM_GP0CTL,
2072		.div_reg = CM_GP0DIV,
2073		.int_bits = 12,
2074		.frac_bits = 12,
2075		.is_mash_clock = true,
2076		.tcnt_mux = 20),
2077	[BCM2835_CLOCK_GP1]	= REGISTER_PER_CLK(
2078		SOC_ALL,
2079		.name = "gp1",
2080		.ctl_reg = CM_GP1CTL,
2081		.div_reg = CM_GP1DIV,
2082		.int_bits = 12,
2083		.frac_bits = 12,
2084		.flags = CLK_IS_CRITICAL,
2085		.is_mash_clock = true,
2086		.tcnt_mux = 21),
2087	[BCM2835_CLOCK_GP2]	= REGISTER_PER_CLK(
2088		SOC_ALL,
2089		.name = "gp2",
2090		.ctl_reg = CM_GP2CTL,
2091		.div_reg = CM_GP2DIV,
2092		.int_bits = 12,
2093		.frac_bits = 12,
2094		.flags = CLK_IS_CRITICAL),
2095
2096	/* HDMI state machine */
2097	[BCM2835_CLOCK_HSM]	= REGISTER_PER_CLK(
2098		SOC_ALL,
2099		.name = "hsm",
2100		.ctl_reg = CM_HSMCTL,
2101		.div_reg = CM_HSMDIV,
2102		.int_bits = 4,
2103		.frac_bits = 8,
2104		.tcnt_mux = 22),
2105	[BCM2835_CLOCK_PCM]	= REGISTER_PCM_CLK(
2106		SOC_ALL,
2107		.name = "pcm",
2108		.ctl_reg = CM_PCMCTL,
2109		.div_reg = CM_PCMDIV,
2110		.int_bits = 12,
2111		.frac_bits = 12,
2112		.is_mash_clock = true,
2113		.low_jitter = true,
2114		.tcnt_mux = 23),
2115	[BCM2835_CLOCK_PWM]	= REGISTER_PER_CLK(
2116		SOC_ALL,
2117		.name = "pwm",
2118		.ctl_reg = CM_PWMCTL,
2119		.div_reg = CM_PWMDIV,
2120		.int_bits = 12,
2121		.frac_bits = 12,
2122		.is_mash_clock = true,
2123		.tcnt_mux = 24),
2124	[BCM2835_CLOCK_SLIM]	= REGISTER_PER_CLK(
2125		SOC_ALL,
2126		.name = "slim",
2127		.ctl_reg = CM_SLIMCTL,
2128		.div_reg = CM_SLIMDIV,
2129		.int_bits = 12,
2130		.frac_bits = 12,
2131		.is_mash_clock = true,
2132		.tcnt_mux = 25),
2133	[BCM2835_CLOCK_SMI]	= REGISTER_PER_CLK(
2134		SOC_ALL,
2135		.name = "smi",
2136		.ctl_reg = CM_SMICTL,
2137		.div_reg = CM_SMIDIV,
2138		.int_bits = 4,
2139		.frac_bits = 8,
2140		.tcnt_mux = 27),
2141	[BCM2835_CLOCK_UART]	= REGISTER_PER_CLK(
2142		SOC_ALL,
2143		.name = "uart",
2144		.ctl_reg = CM_UARTCTL,
2145		.div_reg = CM_UARTDIV,
2146		.int_bits = 10,
2147		.frac_bits = 12,
2148		.tcnt_mux = 28),
2149
2150	/* TV encoder clock.  Only operating frequency is 108Mhz.  */
2151	[BCM2835_CLOCK_VEC]	= REGISTER_PER_CLK(
2152		SOC_ALL,
2153		.name = "vec",
2154		.ctl_reg = CM_VECCTL,
2155		.div_reg = CM_VECDIV,
2156		.int_bits = 4,
2157		.frac_bits = 0,
2158		/*
2159		 * Allow rate change propagation only on PLLH_AUX which is
2160		 * assigned index 7 in the parent array.
2161		 */
2162		.set_rate_parent = BIT(7),
2163		.tcnt_mux = 29),
2164
2165	/* dsi clocks */
2166	[BCM2835_CLOCK_DSI0E]	= REGISTER_PER_CLK(
2167		SOC_ALL,
2168		.name = "dsi0e",
2169		.ctl_reg = CM_DSI0ECTL,
2170		.div_reg = CM_DSI0EDIV,
2171		.int_bits = 4,
2172		.frac_bits = 8,
2173		.tcnt_mux = 18),
2174	[BCM2835_CLOCK_DSI1E]	= REGISTER_PER_CLK(
2175		SOC_ALL,
2176		.name = "dsi1e",
2177		.ctl_reg = CM_DSI1ECTL,
2178		.div_reg = CM_DSI1EDIV,
2179		.int_bits = 4,
2180		.frac_bits = 8,
2181		.tcnt_mux = 19),
2182	[BCM2835_CLOCK_DSI0P]	= REGISTER_DSI0_CLK(
2183		SOC_ALL,
2184		.name = "dsi0p",
2185		.ctl_reg = CM_DSI0PCTL,
2186		.div_reg = CM_DSI0PDIV,
2187		.int_bits = 0,
2188		.frac_bits = 0,
2189		.tcnt_mux = 12),
2190	[BCM2835_CLOCK_DSI1P]	= REGISTER_DSI1_CLK(
2191		SOC_ALL,
2192		.name = "dsi1p",
2193		.ctl_reg = CM_DSI1PCTL,
2194		.div_reg = CM_DSI1PDIV,
2195		.int_bits = 0,
2196		.frac_bits = 0,
2197		.tcnt_mux = 13),
2198
2199	/* the gates */
2200
2201	/*
2202	 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
2203	 * you have the debug bit set in the power manager, which we
2204	 * don't bother exposing) are individual gates off of the
2205	 * non-stop vpu clock.
2206	 */
2207	[BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
2208		SOC_ALL,
2209		.name = "peri_image",
2210		.parent = "vpu",
2211		.ctl_reg = CM_PERIICTL),
2212};
2213
2214/*
2215 * Permanently take a reference on the parent of the SDRAM clock.
2216 *
2217 * While the SDRAM is being driven by its dedicated PLL most of the
2218 * time, there is a little loop running in the firmware that
2219 * periodically switches the SDRAM to using our CM clock to do PVT
2220 * recalibration, with the assumption that the previously configured
2221 * SDRAM parent is still enabled and running.
2222 */
2223static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
2224{
2225	struct clk *parent = clk_get_parent(sdc);
2226
2227	if (IS_ERR(parent))
2228		return PTR_ERR(parent);
2229
2230	return clk_prepare_enable(parent);
2231}
2232
2233static int bcm2835_clk_probe(struct platform_device *pdev)
2234{
2235	struct device *dev = &pdev->dev;
2236	struct clk_hw **hws;
2237	struct bcm2835_cprman *cprman;
2238	const struct bcm2835_clk_desc *desc;
2239	const size_t asize = ARRAY_SIZE(clk_desc_array);
2240	const struct cprman_plat_data *pdata;
2241	size_t i;
2242	int ret;
2243
2244	pdata = of_device_get_match_data(&pdev->dev);
2245	if (!pdata)
2246		return -ENODEV;
2247
2248	cprman = devm_kzalloc(dev,
2249			      struct_size(cprman, onecell.hws, asize),
2250			      GFP_KERNEL);
2251	if (!cprman)
2252		return -ENOMEM;
2253
2254	spin_lock_init(&cprman->regs_lock);
2255	cprman->dev = dev;
2256	cprman->regs = devm_platform_ioremap_resource(pdev, 0);
2257	if (IS_ERR(cprman->regs))
2258		return PTR_ERR(cprman->regs);
2259
2260	memcpy(cprman->real_parent_names, cprman_parent_names,
2261	       sizeof(cprman_parent_names));
2262	of_clk_parent_fill(dev->of_node, cprman->real_parent_names,
2263			   ARRAY_SIZE(cprman_parent_names));
2264
2265	/*
2266	 * Make sure the external oscillator has been registered.
2267	 *
2268	 * The other (DSI) clocks are not present on older device
2269	 * trees, which we still need to support for backwards
2270	 * compatibility.
2271	 */
2272	if (!cprman->real_parent_names[0])
2273		return -ENODEV;
2274
2275	platform_set_drvdata(pdev, cprman);
2276
2277	cprman->onecell.num = asize;
2278	cprman->soc = pdata->soc;
2279	hws = cprman->onecell.hws;
2280
2281	for (i = 0; i < asize; i++) {
2282		desc = &clk_desc_array[i];
2283		if (desc->clk_register && desc->data &&
2284		    (desc->supported & pdata->soc)) {
2285			hws[i] = desc->clk_register(cprman, desc->data);
2286		}
2287	}
2288
2289	ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
2290	if (ret)
2291		return ret;
2292
2293	return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
2294				      &cprman->onecell);
2295}
2296
2297static const struct cprman_plat_data cprman_bcm2835_plat_data = {
2298	.soc = SOC_BCM2835,
2299};
2300
2301static const struct cprman_plat_data cprman_bcm2711_plat_data = {
2302	.soc = SOC_BCM2711,
2303};
2304
2305static const struct of_device_id bcm2835_clk_of_match[] = {
2306	{ .compatible = "brcm,bcm2835-cprman", .data = &cprman_bcm2835_plat_data },
2307	{ .compatible = "brcm,bcm2711-cprman", .data = &cprman_bcm2711_plat_data },
2308	{}
2309};
2310MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
2311
2312static struct platform_driver bcm2835_clk_driver = {
2313	.driver = {
2314		.name = "bcm2835-clk",
2315		.of_match_table = bcm2835_clk_of_match,
2316	},
2317	.probe          = bcm2835_clk_probe,
2318};
2319
2320builtin_platform_driver(bcm2835_clk_driver);
2321
2322MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
2323MODULE_DESCRIPTION("BCM2835 clock driver");
2324MODULE_LICENSE("GPL");
2325