xref: /kernel/linux/linux-5.10/drivers/char/random.c (revision 8c2ecf20)
1// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2/*
3 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
6 *
7 * This driver produces cryptographically secure pseudorandom data. It is divided
8 * into roughly six sections, each with a section header:
9 *
10 *   - Initialization and readiness waiting.
11 *   - Fast key erasure RNG, the "crng".
12 *   - Entropy accumulation and extraction routines.
13 *   - Entropy collection routines.
14 *   - Userspace reader/writer interfaces.
15 *   - Sysctl interface.
16 *
17 * The high level overview is that there is one input pool, into which
18 * various pieces of data are hashed. Prior to initialization, some of that
19 * data is then "credited" as having a certain number of bits of entropy.
20 * When enough bits of entropy are available, the hash is finalized and
21 * handed as a key to a stream cipher that expands it indefinitely for
22 * various consumers. This key is periodically refreshed as the various
23 * entropy collectors, described below, add data to the input pool.
24 */
25
26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28#include <linux/utsname.h>
29#include <linux/module.h>
30#include <linux/kernel.h>
31#include <linux/major.h>
32#include <linux/string.h>
33#include <linux/fcntl.h>
34#include <linux/slab.h>
35#include <linux/random.h>
36#include <linux/poll.h>
37#include <linux/init.h>
38#include <linux/fs.h>
39#include <linux/genhd.h>
40#include <linux/interrupt.h>
41#include <linux/mm.h>
42#include <linux/nodemask.h>
43#include <linux/spinlock.h>
44#include <linux/kthread.h>
45#include <linux/percpu.h>
46#include <linux/ptrace.h>
47#include <linux/workqueue.h>
48#include <linux/irq.h>
49#include <linux/ratelimit.h>
50#include <linux/syscalls.h>
51#include <linux/completion.h>
52#include <linux/uuid.h>
53#include <linux/uaccess.h>
54#include <linux/siphash.h>
55#include <linux/uio.h>
56#include <crypto/chacha.h>
57#include <crypto/blake2s.h>
58#include <asm/processor.h>
59#include <asm/irq.h>
60#include <asm/irq_regs.h>
61#include <asm/io.h>
62
63/*********************************************************************
64 *
65 * Initialization and readiness waiting.
66 *
67 * Much of the RNG infrastructure is devoted to various dependencies
68 * being able to wait until the RNG has collected enough entropy and
69 * is ready for safe consumption.
70 *
71 *********************************************************************/
72
73/*
74 * crng_init is protected by base_crng->lock, and only increases
75 * its value (from empty->early->ready).
76 */
77static enum {
78	CRNG_EMPTY = 0, /* Little to no entropy collected */
79	CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */
80	CRNG_READY = 2  /* Fully initialized with POOL_READY_BITS collected */
81} crng_init __read_mostly = CRNG_EMPTY;
82#define crng_ready() (likely(crng_init >= CRNG_READY))
83/* Various types of waiters for crng_init->CRNG_READY transition. */
84static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
85static struct fasync_struct *fasync;
86static DEFINE_SPINLOCK(random_ready_chain_lock);
87static RAW_NOTIFIER_HEAD(random_ready_chain);
88
89/* Control how we warn userspace. */
90static struct ratelimit_state urandom_warning =
91	RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE);
92static int ratelimit_disable __read_mostly =
93	IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM);
94module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
95MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
96
97/*
98 * Returns whether or not the input pool has been seeded and thus guaranteed
99 * to supply cryptographically secure random numbers. This applies to: the
100 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
101 * ,u64,int,long} family of functions.
102 *
103 * Returns: true if the input pool has been seeded.
104 *          false if the input pool has not been seeded.
105 */
106bool rng_is_initialized(void)
107{
108	return crng_ready();
109}
110EXPORT_SYMBOL(rng_is_initialized);
111
112/* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
113static void try_to_generate_entropy(void);
114
115/*
116 * Wait for the input pool to be seeded and thus guaranteed to supply
117 * cryptographically secure random numbers. This applies to: the /dev/urandom
118 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
119 * family of functions. Using any of these functions without first calling
120 * this function forfeits the guarantee of security.
121 *
122 * Returns: 0 if the input pool has been seeded.
123 *          -ERESTARTSYS if the function was interrupted by a signal.
124 */
125int wait_for_random_bytes(void)
126{
127	while (!crng_ready()) {
128		int ret;
129
130		try_to_generate_entropy();
131		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
132		if (ret)
133			return ret > 0 ? 0 : ret;
134	}
135	return 0;
136}
137EXPORT_SYMBOL(wait_for_random_bytes);
138
139/*
140 * Add a callback function that will be invoked when the input
141 * pool is initialised.
142 *
143 * returns: 0 if callback is successfully added
144 *	    -EALREADY if pool is already initialised (callback not called)
145 */
146int __cold register_random_ready_notifier(struct notifier_block *nb)
147{
148	unsigned long flags;
149	int ret = -EALREADY;
150
151	if (crng_ready())
152		return ret;
153
154	spin_lock_irqsave(&random_ready_chain_lock, flags);
155	if (!crng_ready())
156		ret = raw_notifier_chain_register(&random_ready_chain, nb);
157	spin_unlock_irqrestore(&random_ready_chain_lock, flags);
158	return ret;
159}
160
161/*
162 * Delete a previously registered readiness callback function.
163 */
164int __cold unregister_random_ready_notifier(struct notifier_block *nb)
165{
166	unsigned long flags;
167	int ret;
168
169	spin_lock_irqsave(&random_ready_chain_lock, flags);
170	ret = raw_notifier_chain_unregister(&random_ready_chain, nb);
171	spin_unlock_irqrestore(&random_ready_chain_lock, flags);
172	return ret;
173}
174
175static void __cold process_random_ready_list(void)
176{
177	unsigned long flags;
178
179	spin_lock_irqsave(&random_ready_chain_lock, flags);
180	raw_notifier_call_chain(&random_ready_chain, 0, NULL);
181	spin_unlock_irqrestore(&random_ready_chain_lock, flags);
182}
183
184#define warn_unseeded_randomness() \
185	if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \
186		printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \
187				__func__, (void *)_RET_IP_, crng_init)
188
189
190/*********************************************************************
191 *
192 * Fast key erasure RNG, the "crng".
193 *
194 * These functions expand entropy from the entropy extractor into
195 * long streams for external consumption using the "fast key erasure"
196 * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
197 *
198 * There are a few exported interfaces for use by other drivers:
199 *
200 *	void get_random_bytes(void *buf, size_t len)
201 *	u32 get_random_u32()
202 *	u64 get_random_u64()
203 *	unsigned int get_random_int()
204 *	unsigned long get_random_long()
205 *
206 * These interfaces will return the requested number of random bytes
207 * into the given buffer or as a return value. This is equivalent to
208 * a read from /dev/urandom. The u32, u64, int, and long family of
209 * functions may be higher performance for one-off random integers,
210 * because they do a bit of buffering and do not invoke reseeding
211 * until the buffer is emptied.
212 *
213 *********************************************************************/
214
215enum {
216	CRNG_RESEED_START_INTERVAL = HZ,
217	CRNG_RESEED_INTERVAL = 60 * HZ
218};
219
220static struct {
221	u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
222	unsigned long birth;
223	unsigned long generation;
224	spinlock_t lock;
225} base_crng = {
226	.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
227};
228
229struct crng {
230	u8 key[CHACHA_KEY_SIZE];
231	unsigned long generation;
232	local_lock_t lock;
233};
234
235static DEFINE_PER_CPU(struct crng, crngs) = {
236	.generation = ULONG_MAX,
237	.lock = INIT_LOCAL_LOCK(crngs.lock),
238};
239
240/* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
241static void extract_entropy(void *buf, size_t len);
242
243/* This extracts a new crng key from the input pool. */
244static void crng_reseed(void)
245{
246	unsigned long flags;
247	unsigned long next_gen;
248	u8 key[CHACHA_KEY_SIZE];
249
250	extract_entropy(key, sizeof(key));
251
252	/*
253	 * We copy the new key into the base_crng, overwriting the old one,
254	 * and update the generation counter. We avoid hitting ULONG_MAX,
255	 * because the per-cpu crngs are initialized to ULONG_MAX, so this
256	 * forces new CPUs that come online to always initialize.
257	 */
258	spin_lock_irqsave(&base_crng.lock, flags);
259	memcpy(base_crng.key, key, sizeof(base_crng.key));
260	next_gen = base_crng.generation + 1;
261	if (next_gen == ULONG_MAX)
262		++next_gen;
263	WRITE_ONCE(base_crng.generation, next_gen);
264	WRITE_ONCE(base_crng.birth, jiffies);
265	if (!crng_ready())
266		crng_init = CRNG_READY;
267	spin_unlock_irqrestore(&base_crng.lock, flags);
268	memzero_explicit(key, sizeof(key));
269}
270
271/*
272 * This generates a ChaCha block using the provided key, and then
273 * immediately overwites that key with half the block. It returns
274 * the resultant ChaCha state to the user, along with the second
275 * half of the block containing 32 bytes of random data that may
276 * be used; random_data_len may not be greater than 32.
277 *
278 * The returned ChaCha state contains within it a copy of the old
279 * key value, at index 4, so the state should always be zeroed out
280 * immediately after using in order to maintain forward secrecy.
281 * If the state cannot be erased in a timely manner, then it is
282 * safer to set the random_data parameter to &chacha_state[4] so
283 * that this function overwrites it before returning.
284 */
285static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
286				  u32 chacha_state[CHACHA_STATE_WORDS],
287				  u8 *random_data, size_t random_data_len)
288{
289	u8 first_block[CHACHA_BLOCK_SIZE];
290
291	BUG_ON(random_data_len > 32);
292
293	chacha_init_consts(chacha_state);
294	memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
295	memset(&chacha_state[12], 0, sizeof(u32) * 4);
296	chacha20_block(chacha_state, first_block);
297
298	memcpy(key, first_block, CHACHA_KEY_SIZE);
299	memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
300	memzero_explicit(first_block, sizeof(first_block));
301}
302
303/*
304 * Return whether the crng seed is considered to be sufficiently old
305 * that a reseeding is needed. This happens if the last reseeding
306 * was CRNG_RESEED_INTERVAL ago, or during early boot, at an interval
307 * proportional to the uptime.
308 */
309static bool crng_has_old_seed(void)
310{
311	static bool early_boot = true;
312	unsigned long interval = CRNG_RESEED_INTERVAL;
313
314	if (unlikely(READ_ONCE(early_boot))) {
315		time64_t uptime = ktime_get_seconds();
316		if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
317			WRITE_ONCE(early_boot, false);
318		else
319			interval = max_t(unsigned int, CRNG_RESEED_START_INTERVAL,
320					 (unsigned int)uptime / 2 * HZ);
321	}
322	return time_is_before_jiffies(READ_ONCE(base_crng.birth) + interval);
323}
324
325/*
326 * This function returns a ChaCha state that you may use for generating
327 * random data. It also returns up to 32 bytes on its own of random data
328 * that may be used; random_data_len may not be greater than 32.
329 */
330static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
331			    u8 *random_data, size_t random_data_len)
332{
333	unsigned long flags;
334	struct crng *crng;
335
336	BUG_ON(random_data_len > 32);
337
338	/*
339	 * For the fast path, we check whether we're ready, unlocked first, and
340	 * then re-check once locked later. In the case where we're really not
341	 * ready, we do fast key erasure with the base_crng directly, extracting
342	 * when crng_init is CRNG_EMPTY.
343	 */
344	if (!crng_ready()) {
345		bool ready;
346
347		spin_lock_irqsave(&base_crng.lock, flags);
348		ready = crng_ready();
349		if (!ready) {
350			if (crng_init == CRNG_EMPTY)
351				extract_entropy(base_crng.key, sizeof(base_crng.key));
352			crng_fast_key_erasure(base_crng.key, chacha_state,
353					      random_data, random_data_len);
354		}
355		spin_unlock_irqrestore(&base_crng.lock, flags);
356		if (!ready)
357			return;
358	}
359
360	/*
361	 * If the base_crng is old enough, we reseed, which in turn bumps the
362	 * generation counter that we check below.
363	 */
364	if (unlikely(crng_has_old_seed()))
365		crng_reseed();
366
367	local_lock_irqsave(&crngs.lock, flags);
368	crng = raw_cpu_ptr(&crngs);
369
370	/*
371	 * If our per-cpu crng is older than the base_crng, then it means
372	 * somebody reseeded the base_crng. In that case, we do fast key
373	 * erasure on the base_crng, and use its output as the new key
374	 * for our per-cpu crng. This brings us up to date with base_crng.
375	 */
376	if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
377		spin_lock(&base_crng.lock);
378		crng_fast_key_erasure(base_crng.key, chacha_state,
379				      crng->key, sizeof(crng->key));
380		crng->generation = base_crng.generation;
381		spin_unlock(&base_crng.lock);
382	}
383
384	/*
385	 * Finally, when we've made it this far, our per-cpu crng has an up
386	 * to date key, and we can do fast key erasure with it to produce
387	 * some random data and a ChaCha state for the caller. All other
388	 * branches of this function are "unlikely", so most of the time we
389	 * should wind up here immediately.
390	 */
391	crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
392	local_unlock_irqrestore(&crngs.lock, flags);
393}
394
395static void _get_random_bytes(void *buf, size_t len)
396{
397	u32 chacha_state[CHACHA_STATE_WORDS];
398	u8 tmp[CHACHA_BLOCK_SIZE];
399	size_t first_block_len;
400
401	if (!len)
402		return;
403
404	first_block_len = min_t(size_t, 32, len);
405	crng_make_state(chacha_state, buf, first_block_len);
406	len -= first_block_len;
407	buf += first_block_len;
408
409	while (len) {
410		if (len < CHACHA_BLOCK_SIZE) {
411			chacha20_block(chacha_state, tmp);
412			memcpy(buf, tmp, len);
413			memzero_explicit(tmp, sizeof(tmp));
414			break;
415		}
416
417		chacha20_block(chacha_state, buf);
418		if (unlikely(chacha_state[12] == 0))
419			++chacha_state[13];
420		len -= CHACHA_BLOCK_SIZE;
421		buf += CHACHA_BLOCK_SIZE;
422	}
423
424	memzero_explicit(chacha_state, sizeof(chacha_state));
425}
426
427/*
428 * This function is the exported kernel interface.  It returns some
429 * number of good random numbers, suitable for key generation, seeding
430 * TCP sequence numbers, etc.  It does not rely on the hardware random
431 * number generator.  For random bytes direct from the hardware RNG
432 * (when available), use get_random_bytes_arch(). In order to ensure
433 * that the randomness provided by this function is okay, the function
434 * wait_for_random_bytes() should be called and return 0 at least once
435 * at any point prior.
436 */
437void get_random_bytes(void *buf, size_t len)
438{
439	warn_unseeded_randomness();
440	_get_random_bytes(buf, len);
441}
442EXPORT_SYMBOL(get_random_bytes);
443
444static ssize_t get_random_bytes_user(struct iov_iter *iter)
445{
446	u32 chacha_state[CHACHA_STATE_WORDS];
447	u8 block[CHACHA_BLOCK_SIZE];
448	size_t ret = 0, copied;
449
450	if (unlikely(!iov_iter_count(iter)))
451		return 0;
452
453	/*
454	 * Immediately overwrite the ChaCha key at index 4 with random
455	 * bytes, in case userspace causes copy_to_iter() below to sleep
456	 * forever, so that we still retain forward secrecy in that case.
457	 */
458	crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE);
459	/*
460	 * However, if we're doing a read of len <= 32, we don't need to
461	 * use chacha_state after, so we can simply return those bytes to
462	 * the user directly.
463	 */
464	if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) {
465		ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter);
466		goto out_zero_chacha;
467	}
468
469	for (;;) {
470		chacha20_block(chacha_state, block);
471		if (unlikely(chacha_state[12] == 0))
472			++chacha_state[13];
473
474		copied = copy_to_iter(block, sizeof(block), iter);
475		ret += copied;
476		if (!iov_iter_count(iter) || copied != sizeof(block))
477			break;
478
479		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
480		if (ret % PAGE_SIZE == 0) {
481			if (signal_pending(current))
482				break;
483			cond_resched();
484		}
485	}
486
487	memzero_explicit(block, sizeof(block));
488out_zero_chacha:
489	memzero_explicit(chacha_state, sizeof(chacha_state));
490	return ret ? ret : -EFAULT;
491}
492
493/*
494 * Batched entropy returns random integers. The quality of the random
495 * number is good as /dev/urandom. In order to ensure that the randomness
496 * provided by this function is okay, the function wait_for_random_bytes()
497 * should be called and return 0 at least once at any point prior.
498 */
499
500#define DEFINE_BATCHED_ENTROPY(type)						\
501struct batch_ ##type {								\
502	/*									\
503	 * We make this 1.5x a ChaCha block, so that we get the			\
504	 * remaining 32 bytes from fast key erasure, plus one full		\
505	 * block from the detached ChaCha state. We can increase		\
506	 * the size of this later if needed so long as we keep the		\
507	 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.		\
508	 */									\
509	type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))];		\
510	local_lock_t lock;							\
511	unsigned long generation;						\
512	unsigned int position;							\
513};										\
514										\
515static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = {	\
516	.lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock),			\
517	.position = UINT_MAX							\
518};										\
519										\
520type get_random_ ##type(void)							\
521{										\
522	type ret;								\
523	unsigned long flags;							\
524	struct batch_ ##type *batch;						\
525	unsigned long next_gen;							\
526										\
527	warn_unseeded_randomness();						\
528										\
529	if  (!crng_ready()) {							\
530		_get_random_bytes(&ret, sizeof(ret));				\
531		return ret;							\
532	}									\
533										\
534	local_lock_irqsave(&batched_entropy_ ##type.lock, flags);		\
535	batch = raw_cpu_ptr(&batched_entropy_##type);				\
536										\
537	next_gen = READ_ONCE(base_crng.generation);				\
538	if (batch->position >= ARRAY_SIZE(batch->entropy) ||			\
539	    next_gen != batch->generation) {					\
540		_get_random_bytes(batch->entropy, sizeof(batch->entropy));	\
541		batch->position = 0;						\
542		batch->generation = next_gen;					\
543	}									\
544										\
545	ret = batch->entropy[batch->position];					\
546	batch->entropy[batch->position] = 0;					\
547	++batch->position;							\
548	local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags);		\
549	return ret;								\
550}										\
551EXPORT_SYMBOL(get_random_ ##type);
552
553DEFINE_BATCHED_ENTROPY(u64)
554DEFINE_BATCHED_ENTROPY(u32)
555
556#ifdef CONFIG_SMP
557/*
558 * This function is called when the CPU is coming up, with entry
559 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
560 */
561int __cold random_prepare_cpu(unsigned int cpu)
562{
563	/*
564	 * When the cpu comes back online, immediately invalidate both
565	 * the per-cpu crng and all batches, so that we serve fresh
566	 * randomness.
567	 */
568	per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
569	per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
570	per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
571	return 0;
572}
573#endif
574
575/*
576 * This function will use the architecture-specific hardware random
577 * number generator if it is available. It is not recommended for
578 * use. Use get_random_bytes() instead. It returns the number of
579 * bytes filled in.
580 */
581size_t __must_check get_random_bytes_arch(void *buf, size_t len)
582{
583	size_t left = len;
584	u8 *p = buf;
585
586	while (left) {
587		unsigned long v;
588		size_t block_len = min_t(size_t, left, sizeof(unsigned long));
589
590		if (!arch_get_random_long(&v))
591			break;
592
593		memcpy(p, &v, block_len);
594		p += block_len;
595		left -= block_len;
596	}
597
598	return len - left;
599}
600EXPORT_SYMBOL(get_random_bytes_arch);
601
602
603/**********************************************************************
604 *
605 * Entropy accumulation and extraction routines.
606 *
607 * Callers may add entropy via:
608 *
609 *     static void mix_pool_bytes(const void *buf, size_t len)
610 *
611 * After which, if added entropy should be credited:
612 *
613 *     static void credit_init_bits(size_t bits)
614 *
615 * Finally, extract entropy via:
616 *
617 *     static void extract_entropy(void *buf, size_t len)
618 *
619 **********************************************************************/
620
621enum {
622	POOL_BITS = BLAKE2S_HASH_SIZE * 8,
623	POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */
624	POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */
625};
626
627static struct {
628	struct blake2s_state hash;
629	spinlock_t lock;
630	unsigned int init_bits;
631} input_pool = {
632	.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
633		    BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
634		    BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
635	.hash.outlen = BLAKE2S_HASH_SIZE,
636	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
637};
638
639static void _mix_pool_bytes(const void *buf, size_t len)
640{
641	blake2s_update(&input_pool.hash, buf, len);
642}
643
644/*
645 * This function adds bytes into the input pool. It does not
646 * update the initialization bit counter; the caller should call
647 * credit_init_bits if this is appropriate.
648 */
649static void mix_pool_bytes(const void *buf, size_t len)
650{
651	unsigned long flags;
652
653	spin_lock_irqsave(&input_pool.lock, flags);
654	_mix_pool_bytes(buf, len);
655	spin_unlock_irqrestore(&input_pool.lock, flags);
656}
657
658/*
659 * This is an HKDF-like construction for using the hashed collected entropy
660 * as a PRF key, that's then expanded block-by-block.
661 */
662static void extract_entropy(void *buf, size_t len)
663{
664	unsigned long flags;
665	u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
666	struct {
667		unsigned long rdseed[32 / sizeof(long)];
668		size_t counter;
669	} block;
670	size_t i;
671
672	for (i = 0; i < ARRAY_SIZE(block.rdseed); ++i) {
673		if (!arch_get_random_seed_long(&block.rdseed[i]) &&
674		    !arch_get_random_long(&block.rdseed[i]))
675			block.rdseed[i] = random_get_entropy();
676	}
677
678	spin_lock_irqsave(&input_pool.lock, flags);
679
680	/* seed = HASHPRF(last_key, entropy_input) */
681	blake2s_final(&input_pool.hash, seed);
682
683	/* next_key = HASHPRF(seed, RDSEED || 0) */
684	block.counter = 0;
685	blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
686	blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));
687
688	spin_unlock_irqrestore(&input_pool.lock, flags);
689	memzero_explicit(next_key, sizeof(next_key));
690
691	while (len) {
692		i = min_t(size_t, len, BLAKE2S_HASH_SIZE);
693		/* output = HASHPRF(seed, RDSEED || ++counter) */
694		++block.counter;
695		blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
696		len -= i;
697		buf += i;
698	}
699
700	memzero_explicit(seed, sizeof(seed));
701	memzero_explicit(&block, sizeof(block));
702}
703
704#define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits)
705
706static void __cold _credit_init_bits(size_t bits)
707{
708	unsigned int new, orig, add;
709	unsigned long flags;
710
711	if (!bits)
712		return;
713
714	add = min_t(size_t, bits, POOL_BITS);
715
716	do {
717		orig = READ_ONCE(input_pool.init_bits);
718		new = min_t(unsigned int, POOL_BITS, orig + add);
719	} while (cmpxchg(&input_pool.init_bits, orig, new) != orig);
720
721	if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) {
722		crng_reseed(); /* Sets crng_init to CRNG_READY under base_crng.lock. */
723		process_random_ready_list();
724		wake_up_interruptible(&crng_init_wait);
725		kill_fasync(&fasync, SIGIO, POLL_IN);
726		pr_notice("crng init done\n");
727		if (urandom_warning.missed)
728			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
729				  urandom_warning.missed);
730	} else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) {
731		spin_lock_irqsave(&base_crng.lock, flags);
732		/* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */
733		if (crng_init == CRNG_EMPTY) {
734			extract_entropy(base_crng.key, sizeof(base_crng.key));
735			crng_init = CRNG_EARLY;
736		}
737		spin_unlock_irqrestore(&base_crng.lock, flags);
738	}
739}
740
741
742/**********************************************************************
743 *
744 * Entropy collection routines.
745 *
746 * The following exported functions are used for pushing entropy into
747 * the above entropy accumulation routines:
748 *
749 *	void add_device_randomness(const void *buf, size_t len);
750 *	void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy);
751 *	void add_bootloader_randomness(const void *buf, size_t len);
752 *	void add_interrupt_randomness(int irq);
753 *	void add_input_randomness(unsigned int type, unsigned int code, unsigned int value);
754 *	void add_disk_randomness(struct gendisk *disk);
755 *
756 * add_device_randomness() adds data to the input pool that
757 * is likely to differ between two devices (or possibly even per boot).
758 * This would be things like MAC addresses or serial numbers, or the
759 * read-out of the RTC. This does *not* credit any actual entropy to
760 * the pool, but it initializes the pool to different values for devices
761 * that might otherwise be identical and have very little entropy
762 * available to them (particularly common in the embedded world).
763 *
764 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
765 * entropy as specified by the caller. If the entropy pool is full it will
766 * block until more entropy is needed.
767 *
768 * add_bootloader_randomness() is called by bootloader drivers, such as EFI
769 * and device tree, and credits its input depending on whether or not the
770 * configuration option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
771 *
772 * add_interrupt_randomness() uses the interrupt timing as random
773 * inputs to the entropy pool. Using the cycle counters and the irq source
774 * as inputs, it feeds the input pool roughly once a second or after 64
775 * interrupts, crediting 1 bit of entropy for whichever comes first.
776 *
777 * add_input_randomness() uses the input layer interrupt timing, as well
778 * as the event type information from the hardware.
779 *
780 * add_disk_randomness() uses what amounts to the seek time of block
781 * layer request events, on a per-disk_devt basis, as input to the
782 * entropy pool. Note that high-speed solid state drives with very low
783 * seek times do not make for good sources of entropy, as their seek
784 * times are usually fairly consistent.
785 *
786 * The last two routines try to estimate how many bits of entropy
787 * to credit. They do this by keeping track of the first and second
788 * order deltas of the event timings.
789 *
790 **********************************************************************/
791
792static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
793static bool trust_bootloader __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER);
794static int __init parse_trust_cpu(char *arg)
795{
796	return kstrtobool(arg, &trust_cpu);
797}
798static int __init parse_trust_bootloader(char *arg)
799{
800	return kstrtobool(arg, &trust_bootloader);
801}
802early_param("random.trust_cpu", parse_trust_cpu);
803early_param("random.trust_bootloader", parse_trust_bootloader);
804
805/*
806 * The first collection of entropy occurs at system boot while interrupts
807 * are still turned off. Here we push in latent entropy, RDSEED, a timestamp,
808 * utsname(), and the command line. Depending on the above configuration knob,
809 * RDSEED may be considered sufficient for initialization. Note that much
810 * earlier setup may already have pushed entropy into the input pool by the
811 * time we get here.
812 */
813int __init random_init(const char *command_line)
814{
815	ktime_t now = ktime_get_real();
816	unsigned int i, arch_bytes;
817	unsigned long entropy;
818
819#if defined(LATENT_ENTROPY_PLUGIN)
820	static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
821	_mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
822#endif
823
824	for (i = 0, arch_bytes = BLAKE2S_BLOCK_SIZE;
825	     i < BLAKE2S_BLOCK_SIZE; i += sizeof(entropy)) {
826		if (!arch_get_random_seed_long_early(&entropy) &&
827		    !arch_get_random_long_early(&entropy)) {
828			entropy = random_get_entropy();
829			arch_bytes -= sizeof(entropy);
830		}
831		_mix_pool_bytes(&entropy, sizeof(entropy));
832	}
833	_mix_pool_bytes(&now, sizeof(now));
834	_mix_pool_bytes(utsname(), sizeof(*(utsname())));
835	_mix_pool_bytes(command_line, strlen(command_line));
836	add_latent_entropy();
837
838	if (crng_ready())
839		crng_reseed();
840	else if (trust_cpu)
841		credit_init_bits(arch_bytes * 8);
842
843	return 0;
844}
845
846/*
847 * Add device- or boot-specific data to the input pool to help
848 * initialize it.
849 *
850 * None of this adds any entropy; it is meant to avoid the problem of
851 * the entropy pool having similar initial state across largely
852 * identical devices.
853 */
854void add_device_randomness(const void *buf, size_t len)
855{
856	unsigned long entropy = random_get_entropy();
857	unsigned long flags;
858
859	spin_lock_irqsave(&input_pool.lock, flags);
860	_mix_pool_bytes(&entropy, sizeof(entropy));
861	_mix_pool_bytes(buf, len);
862	spin_unlock_irqrestore(&input_pool.lock, flags);
863}
864EXPORT_SYMBOL(add_device_randomness);
865
866/*
867 * Interface for in-kernel drivers of true hardware RNGs.
868 * Those devices may produce endless random bits and will be throttled
869 * when our pool is full.
870 */
871void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy)
872{
873	mix_pool_bytes(buf, len);
874	credit_init_bits(entropy);
875
876	/*
877	 * Throttle writing to once every CRNG_RESEED_INTERVAL, unless
878	 * we're not yet initialized.
879	 */
880	if (!kthread_should_stop() && crng_ready())
881		schedule_timeout_interruptible(CRNG_RESEED_INTERVAL);
882}
883EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
884
885/*
886 * Handle random seed passed by bootloader, and credit it if
887 * CONFIG_RANDOM_TRUST_BOOTLOADER is set.
888 */
889void __cold add_bootloader_randomness(const void *buf, size_t len)
890{
891	mix_pool_bytes(buf, len);
892	if (trust_bootloader)
893		credit_init_bits(len * 8);
894}
895EXPORT_SYMBOL_GPL(add_bootloader_randomness);
896
897struct fast_pool {
898	unsigned long pool[4];
899	unsigned long last;
900	unsigned int count;
901	struct timer_list mix;
902};
903
904static void mix_interrupt_randomness(struct timer_list *work);
905
906static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
907#ifdef CONFIG_64BIT
908#define FASTMIX_PERM SIPHASH_PERMUTATION
909	.pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 },
910#else
911#define FASTMIX_PERM HSIPHASH_PERMUTATION
912	.pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 },
913#endif
914	.mix = __TIMER_INITIALIZER(mix_interrupt_randomness, 0)
915};
916
917/*
918 * This is [Half]SipHash-1-x, starting from an empty key. Because
919 * the key is fixed, it assumes that its inputs are non-malicious,
920 * and therefore this has no security on its own. s represents the
921 * four-word SipHash state, while v represents a two-word input.
922 */
923static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2)
924{
925	s[3] ^= v1;
926	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
927	s[0] ^= v1;
928	s[3] ^= v2;
929	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
930	s[0] ^= v2;
931}
932
933#ifdef CONFIG_SMP
934/*
935 * This function is called when the CPU has just come online, with
936 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
937 */
938int __cold random_online_cpu(unsigned int cpu)
939{
940	/*
941	 * During CPU shutdown and before CPU onlining, add_interrupt_
942	 * randomness() may schedule mix_interrupt_randomness(), and
943	 * set the MIX_INFLIGHT flag. However, because the worker can
944	 * be scheduled on a different CPU during this period, that
945	 * flag will never be cleared. For that reason, we zero out
946	 * the flag here, which runs just after workqueues are onlined
947	 * for the CPU again. This also has the effect of setting the
948	 * irq randomness count to zero so that new accumulated irqs
949	 * are fresh.
950	 */
951	per_cpu_ptr(&irq_randomness, cpu)->count = 0;
952	return 0;
953}
954#endif
955
956static void mix_interrupt_randomness(struct timer_list *work)
957{
958	struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
959	/*
960	 * The size of the copied stack pool is explicitly 2 longs so that we
961	 * only ever ingest half of the siphash output each time, retaining
962	 * the other half as the next "key" that carries over. The entropy is
963	 * supposed to be sufficiently dispersed between bits so on average
964	 * we don't wind up "losing" some.
965	 */
966	unsigned long pool[2];
967	unsigned int count;
968
969	/* Check to see if we're running on the wrong CPU due to hotplug. */
970	local_irq_disable();
971	if (fast_pool != this_cpu_ptr(&irq_randomness)) {
972		local_irq_enable();
973		return;
974	}
975
976	/*
977	 * Copy the pool to the stack so that the mixer always has a
978	 * consistent view, before we reenable irqs again.
979	 */
980	memcpy(pool, fast_pool->pool, sizeof(pool));
981	count = fast_pool->count;
982	fast_pool->count = 0;
983	fast_pool->last = jiffies;
984	local_irq_enable();
985
986	mix_pool_bytes(pool, sizeof(pool));
987	credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8));
988
989	memzero_explicit(pool, sizeof(pool));
990}
991
992void add_interrupt_randomness(int irq)
993{
994	enum { MIX_INFLIGHT = 1U << 31 };
995	unsigned long entropy = random_get_entropy();
996	struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
997	struct pt_regs *regs = get_irq_regs();
998	unsigned int new_count;
999
1000	fast_mix(fast_pool->pool, entropy,
1001		 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq));
1002	new_count = ++fast_pool->count;
1003
1004	if (new_count & MIX_INFLIGHT)
1005		return;
1006
1007	if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ))
1008		return;
1009
1010	fast_pool->count |= MIX_INFLIGHT;
1011	if (!timer_pending(&fast_pool->mix)) {
1012		fast_pool->mix.expires = jiffies;
1013		add_timer_on(&fast_pool->mix, raw_smp_processor_id());
1014	}
1015}
1016EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1017
1018/* There is one of these per entropy source */
1019struct timer_rand_state {
1020	unsigned long last_time;
1021	long last_delta, last_delta2;
1022};
1023
1024/*
1025 * This function adds entropy to the entropy "pool" by using timing
1026 * delays. It uses the timer_rand_state structure to make an estimate
1027 * of how many bits of entropy this call has added to the pool. The
1028 * value "num" is also added to the pool; it should somehow describe
1029 * the type of event that just happened.
1030 */
1031static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
1032{
1033	unsigned long entropy = random_get_entropy(), now = jiffies, flags;
1034	long delta, delta2, delta3;
1035	unsigned int bits;
1036
1037	/*
1038	 * If we're in a hard IRQ, add_interrupt_randomness() will be called
1039	 * sometime after, so mix into the fast pool.
1040	 */
1041	if (in_irq()) {
1042		fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num);
1043	} else {
1044		spin_lock_irqsave(&input_pool.lock, flags);
1045		_mix_pool_bytes(&entropy, sizeof(entropy));
1046		_mix_pool_bytes(&num, sizeof(num));
1047		spin_unlock_irqrestore(&input_pool.lock, flags);
1048	}
1049
1050	if (crng_ready())
1051		return;
1052
1053	/*
1054	 * Calculate number of bits of randomness we probably added.
1055	 * We take into account the first, second and third-order deltas
1056	 * in order to make our estimate.
1057	 */
1058	delta = now - READ_ONCE(state->last_time);
1059	WRITE_ONCE(state->last_time, now);
1060
1061	delta2 = delta - READ_ONCE(state->last_delta);
1062	WRITE_ONCE(state->last_delta, delta);
1063
1064	delta3 = delta2 - READ_ONCE(state->last_delta2);
1065	WRITE_ONCE(state->last_delta2, delta2);
1066
1067	if (delta < 0)
1068		delta = -delta;
1069	if (delta2 < 0)
1070		delta2 = -delta2;
1071	if (delta3 < 0)
1072		delta3 = -delta3;
1073	if (delta > delta2)
1074		delta = delta2;
1075	if (delta > delta3)
1076		delta = delta3;
1077
1078	/*
1079	 * delta is now minimum absolute delta. Round down by 1 bit
1080	 * on general principles, and limit entropy estimate to 11 bits.
1081	 */
1082	bits = min(fls(delta >> 1), 11);
1083
1084	/*
1085	 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
1086	 * will run after this, which uses a different crediting scheme of 1 bit
1087	 * per every 64 interrupts. In order to let that function do accounting
1088	 * close to the one in this function, we credit a full 64/64 bit per bit,
1089	 * and then subtract one to account for the extra one added.
1090	 */
1091	if (in_irq())
1092		this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;
1093	else
1094		_credit_init_bits(bits);
1095}
1096
1097void add_input_randomness(unsigned int type, unsigned int code, unsigned int value)
1098{
1099	static unsigned char last_value;
1100	static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };
1101
1102	/* Ignore autorepeat and the like. */
1103	if (value == last_value)
1104		return;
1105
1106	last_value = value;
1107	add_timer_randomness(&input_timer_state,
1108			     (type << 4) ^ code ^ (code >> 4) ^ value);
1109}
1110EXPORT_SYMBOL_GPL(add_input_randomness);
1111
1112#ifdef CONFIG_BLOCK
1113void add_disk_randomness(struct gendisk *disk)
1114{
1115	if (!disk || !disk->random)
1116		return;
1117	/* First major is 1, so we get >= 0x200 here. */
1118	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1119}
1120EXPORT_SYMBOL_GPL(add_disk_randomness);
1121
1122void __cold rand_initialize_disk(struct gendisk *disk)
1123{
1124	struct timer_rand_state *state;
1125
1126	/*
1127	 * If kzalloc returns null, we just won't use that entropy
1128	 * source.
1129	 */
1130	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1131	if (state) {
1132		state->last_time = INITIAL_JIFFIES;
1133		disk->random = state;
1134	}
1135}
1136#endif
1137
1138/*
1139 * Each time the timer fires, we expect that we got an unpredictable
1140 * jump in the cycle counter. Even if the timer is running on another
1141 * CPU, the timer activity will be touching the stack of the CPU that is
1142 * generating entropy..
1143 *
1144 * Note that we don't re-arm the timer in the timer itself - we are
1145 * happy to be scheduled away, since that just makes the load more
1146 * complex, but we do not want the timer to keep ticking unless the
1147 * entropy loop is running.
1148 *
1149 * So the re-arming always happens in the entropy loop itself.
1150 */
1151static void __cold entropy_timer(struct timer_list *t)
1152{
1153	credit_init_bits(1);
1154}
1155
1156/*
1157 * If we have an actual cycle counter, see if we can
1158 * generate enough entropy with timing noise
1159 */
1160static void __cold try_to_generate_entropy(void)
1161{
1162	struct {
1163		unsigned long entropy;
1164		struct timer_list timer;
1165	} stack;
1166
1167	stack.entropy = random_get_entropy();
1168
1169	/* Slow counter - or none. Don't even bother */
1170	if (stack.entropy == random_get_entropy())
1171		return;
1172
1173	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1174	while (!crng_ready() && !signal_pending(current)) {
1175		if (!timer_pending(&stack.timer))
1176			mod_timer(&stack.timer, jiffies + 1);
1177		mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1178		schedule();
1179		stack.entropy = random_get_entropy();
1180	}
1181
1182	del_timer_sync(&stack.timer);
1183	destroy_timer_on_stack(&stack.timer);
1184	mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1185}
1186
1187
1188/**********************************************************************
1189 *
1190 * Userspace reader/writer interfaces.
1191 *
1192 * getrandom(2) is the primary modern interface into the RNG and should
1193 * be used in preference to anything else.
1194 *
1195 * Reading from /dev/random has the same functionality as calling
1196 * getrandom(2) with flags=0. In earlier versions, however, it had
1197 * vastly different semantics and should therefore be avoided, to
1198 * prevent backwards compatibility issues.
1199 *
1200 * Reading from /dev/urandom has the same functionality as calling
1201 * getrandom(2) with flags=GRND_INSECURE. Because it does not block
1202 * waiting for the RNG to be ready, it should not be used.
1203 *
1204 * Writing to either /dev/random or /dev/urandom adds entropy to
1205 * the input pool but does not credit it.
1206 *
1207 * Polling on /dev/random indicates when the RNG is initialized, on
1208 * the read side, and when it wants new entropy, on the write side.
1209 *
1210 * Both /dev/random and /dev/urandom have the same set of ioctls for
1211 * adding entropy, getting the entropy count, zeroing the count, and
1212 * reseeding the crng.
1213 *
1214 **********************************************************************/
1215
1216SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags)
1217{
1218	struct iov_iter iter;
1219	struct iovec iov;
1220	int ret;
1221
1222	if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
1223		return -EINVAL;
1224
1225	/*
1226	 * Requesting insecure and blocking randomness at the same time makes
1227	 * no sense.
1228	 */
1229	if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
1230		return -EINVAL;
1231
1232	if (!crng_ready() && !(flags & GRND_INSECURE)) {
1233		if (flags & GRND_NONBLOCK)
1234			return -EAGAIN;
1235		ret = wait_for_random_bytes();
1236		if (unlikely(ret))
1237			return ret;
1238	}
1239
1240	ret = import_single_range(READ, ubuf, len, &iov, &iter);
1241	if (unlikely(ret))
1242		return ret;
1243	return get_random_bytes_user(&iter);
1244}
1245
1246static __poll_t random_poll(struct file *file, poll_table *wait)
1247{
1248	poll_wait(file, &crng_init_wait, wait);
1249	return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;
1250}
1251
1252static ssize_t write_pool_user(struct iov_iter *iter)
1253{
1254	u8 block[BLAKE2S_BLOCK_SIZE];
1255	ssize_t ret = 0;
1256	size_t copied;
1257
1258	if (unlikely(!iov_iter_count(iter)))
1259		return 0;
1260
1261	for (;;) {
1262		copied = copy_from_iter(block, sizeof(block), iter);
1263		ret += copied;
1264		mix_pool_bytes(block, copied);
1265		if (!iov_iter_count(iter) || copied != sizeof(block))
1266			break;
1267
1268		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
1269		if (ret % PAGE_SIZE == 0) {
1270			if (signal_pending(current))
1271				break;
1272			cond_resched();
1273		}
1274	}
1275
1276	memzero_explicit(block, sizeof(block));
1277	return ret ? ret : -EFAULT;
1278}
1279
1280static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter)
1281{
1282	return write_pool_user(iter);
1283}
1284
1285static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1286{
1287	static int maxwarn = 10;
1288
1289	if (!crng_ready()) {
1290		if (!ratelimit_disable && maxwarn <= 0)
1291			++urandom_warning.missed;
1292		else if (ratelimit_disable || __ratelimit(&urandom_warning)) {
1293			--maxwarn;
1294			pr_notice("%s: uninitialized urandom read (%zu bytes read)\n",
1295				  current->comm, iov_iter_count(iter));
1296		}
1297	}
1298
1299	return get_random_bytes_user(iter);
1300}
1301
1302static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1303{
1304	int ret;
1305
1306	if (!crng_ready() &&
1307	    ((kiocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) ||
1308	     (kiocb->ki_filp->f_flags & O_NONBLOCK)))
1309		return -EAGAIN;
1310
1311	ret = wait_for_random_bytes();
1312	if (ret != 0)
1313		return ret;
1314	return get_random_bytes_user(iter);
1315}
1316
1317static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1318{
1319	int __user *p = (int __user *)arg;
1320	int ent_count;
1321
1322	switch (cmd) {
1323	case RNDGETENTCNT:
1324		/* Inherently racy, no point locking. */
1325		if (put_user(input_pool.init_bits, p))
1326			return -EFAULT;
1327		return 0;
1328	case RNDADDTOENTCNT:
1329		if (!capable(CAP_SYS_ADMIN))
1330			return -EPERM;
1331		if (get_user(ent_count, p))
1332			return -EFAULT;
1333		if (ent_count < 0)
1334			return -EINVAL;
1335		credit_init_bits(ent_count);
1336		return 0;
1337	case RNDADDENTROPY: {
1338		struct iov_iter iter;
1339		struct iovec iov;
1340		ssize_t ret;
1341		int len;
1342
1343		if (!capable(CAP_SYS_ADMIN))
1344			return -EPERM;
1345		if (get_user(ent_count, p++))
1346			return -EFAULT;
1347		if (ent_count < 0)
1348			return -EINVAL;
1349		if (get_user(len, p++))
1350			return -EFAULT;
1351		ret = import_single_range(WRITE, p, len, &iov, &iter);
1352		if (unlikely(ret))
1353			return ret;
1354		ret = write_pool_user(&iter);
1355		if (unlikely(ret < 0))
1356			return ret;
1357		/* Since we're crediting, enforce that it was all written into the pool. */
1358		if (unlikely(ret != len))
1359			return -EFAULT;
1360		credit_init_bits(ent_count);
1361		return 0;
1362	}
1363	case RNDZAPENTCNT:
1364	case RNDCLEARPOOL:
1365		/* No longer has any effect. */
1366		if (!capable(CAP_SYS_ADMIN))
1367			return -EPERM;
1368		return 0;
1369	case RNDRESEEDCRNG:
1370		if (!capable(CAP_SYS_ADMIN))
1371			return -EPERM;
1372		if (!crng_ready())
1373			return -ENODATA;
1374		crng_reseed();
1375		return 0;
1376	default:
1377		return -EINVAL;
1378	}
1379}
1380
1381static int random_fasync(int fd, struct file *filp, int on)
1382{
1383	return fasync_helper(fd, filp, on, &fasync);
1384}
1385
1386const struct file_operations random_fops = {
1387	.read_iter = random_read_iter,
1388	.write_iter = random_write_iter,
1389	.poll = random_poll,
1390	.unlocked_ioctl = random_ioctl,
1391	.compat_ioctl = compat_ptr_ioctl,
1392	.fasync = random_fasync,
1393	.llseek = noop_llseek,
1394	.splice_read = generic_file_splice_read,
1395	.splice_write = iter_file_splice_write,
1396};
1397
1398const struct file_operations urandom_fops = {
1399	.read_iter = urandom_read_iter,
1400	.write_iter = random_write_iter,
1401	.unlocked_ioctl = random_ioctl,
1402	.compat_ioctl = compat_ptr_ioctl,
1403	.fasync = random_fasync,
1404	.llseek = noop_llseek,
1405	.splice_read = generic_file_splice_read,
1406	.splice_write = iter_file_splice_write,
1407};
1408
1409
1410/********************************************************************
1411 *
1412 * Sysctl interface.
1413 *
1414 * These are partly unused legacy knobs with dummy values to not break
1415 * userspace and partly still useful things. They are usually accessible
1416 * in /proc/sys/kernel/random/ and are as follows:
1417 *
1418 * - boot_id - a UUID representing the current boot.
1419 *
1420 * - uuid - a random UUID, different each time the file is read.
1421 *
1422 * - poolsize - the number of bits of entropy that the input pool can
1423 *   hold, tied to the POOL_BITS constant.
1424 *
1425 * - entropy_avail - the number of bits of entropy currently in the
1426 *   input pool. Always <= poolsize.
1427 *
1428 * - write_wakeup_threshold - the amount of entropy in the input pool
1429 *   below which write polls to /dev/random will unblock, requesting
1430 *   more entropy, tied to the POOL_READY_BITS constant. It is writable
1431 *   to avoid breaking old userspaces, but writing to it does not
1432 *   change any behavior of the RNG.
1433 *
1434 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1435 *   It is writable to avoid breaking old userspaces, but writing
1436 *   to it does not change any behavior of the RNG.
1437 *
1438 ********************************************************************/
1439
1440#ifdef CONFIG_SYSCTL
1441
1442#include <linux/sysctl.h>
1443
1444static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1445static int sysctl_random_write_wakeup_bits = POOL_READY_BITS;
1446static int sysctl_poolsize = POOL_BITS;
1447static u8 sysctl_bootid[UUID_SIZE];
1448
1449/*
1450 * This function is used to return both the bootid UUID, and random
1451 * UUID. The difference is in whether table->data is NULL; if it is,
1452 * then a new UUID is generated and returned to the user.
1453 */
1454static int proc_do_uuid(struct ctl_table *table, int write, void *buf,
1455			size_t *lenp, loff_t *ppos)
1456{
1457	u8 tmp_uuid[UUID_SIZE], *uuid;
1458	char uuid_string[UUID_STRING_LEN + 1];
1459	struct ctl_table fake_table = {
1460		.data = uuid_string,
1461		.maxlen = UUID_STRING_LEN
1462	};
1463
1464	if (write)
1465		return -EPERM;
1466
1467	uuid = table->data;
1468	if (!uuid) {
1469		uuid = tmp_uuid;
1470		generate_random_uuid(uuid);
1471	} else {
1472		static DEFINE_SPINLOCK(bootid_spinlock);
1473
1474		spin_lock(&bootid_spinlock);
1475		if (!uuid[8])
1476			generate_random_uuid(uuid);
1477		spin_unlock(&bootid_spinlock);
1478	}
1479
1480	snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
1481	return proc_dostring(&fake_table, 0, buf, lenp, ppos);
1482}
1483
1484/* The same as proc_dointvec, but writes don't change anything. */
1485static int proc_do_rointvec(struct ctl_table *table, int write, void *buf,
1486			    size_t *lenp, loff_t *ppos)
1487{
1488	return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos);
1489}
1490
1491extern struct ctl_table random_table[];
1492struct ctl_table random_table[] = {
1493	{
1494		.procname	= "poolsize",
1495		.data		= &sysctl_poolsize,
1496		.maxlen		= sizeof(int),
1497		.mode		= 0444,
1498		.proc_handler	= proc_dointvec,
1499	},
1500	{
1501		.procname	= "entropy_avail",
1502		.data		= &input_pool.init_bits,
1503		.maxlen		= sizeof(int),
1504		.mode		= 0444,
1505		.proc_handler	= proc_dointvec,
1506	},
1507	{
1508		.procname	= "write_wakeup_threshold",
1509		.data		= &sysctl_random_write_wakeup_bits,
1510		.maxlen		= sizeof(int),
1511		.mode		= 0644,
1512		.proc_handler	= proc_do_rointvec,
1513	},
1514	{
1515		.procname	= "urandom_min_reseed_secs",
1516		.data		= &sysctl_random_min_urandom_seed,
1517		.maxlen		= sizeof(int),
1518		.mode		= 0644,
1519		.proc_handler	= proc_do_rointvec,
1520	},
1521	{
1522		.procname	= "boot_id",
1523		.data		= &sysctl_bootid,
1524		.mode		= 0444,
1525		.proc_handler	= proc_do_uuid,
1526	},
1527	{
1528		.procname	= "uuid",
1529		.mode		= 0444,
1530		.proc_handler	= proc_do_uuid,
1531	},
1532	{ }
1533};
1534#endif	/* CONFIG_SYSCTL */
1535