xref: /kernel/linux/linux-5.10/drivers/char/mem.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 *  linux/drivers/char/mem.c
4 *
5 *  Copyright (C) 1991, 1992  Linus Torvalds
6 *
7 *  Added devfs support.
8 *    Jan-11-1998, C. Scott Ananian <cananian@alumni.princeton.edu>
9 *  Shared /dev/zero mmapping support, Feb 2000, Kanoj Sarcar <kanoj@sgi.com>
10 */
11
12#include <linux/mm.h>
13#include <linux/miscdevice.h>
14#include <linux/slab.h>
15#include <linux/vmalloc.h>
16#include <linux/mman.h>
17#include <linux/random.h>
18#include <linux/init.h>
19#include <linux/raw.h>
20#include <linux/tty.h>
21#include <linux/capability.h>
22#include <linux/ptrace.h>
23#include <linux/device.h>
24#include <linux/highmem.h>
25#include <linux/backing-dev.h>
26#include <linux/shmem_fs.h>
27#include <linux/splice.h>
28#include <linux/pfn.h>
29#include <linux/export.h>
30#include <linux/io.h>
31#include <linux/uio.h>
32#include <linux/uaccess.h>
33#include <linux/security.h>
34#include <linux/pseudo_fs.h>
35#include <uapi/linux/magic.h>
36#include <linux/mount.h>
37
38#ifdef CONFIG_IA64
39# include <linux/efi.h>
40#endif
41
42#define DEVMEM_MINOR	1
43#define DEVPORT_MINOR	4
44
45static inline unsigned long size_inside_page(unsigned long start,
46					     unsigned long size)
47{
48	unsigned long sz;
49
50	sz = PAGE_SIZE - (start & (PAGE_SIZE - 1));
51
52	return min(sz, size);
53}
54
55#ifndef ARCH_HAS_VALID_PHYS_ADDR_RANGE
56static inline int valid_phys_addr_range(phys_addr_t addr, size_t count)
57{
58	return addr + count <= __pa(high_memory);
59}
60
61static inline int valid_mmap_phys_addr_range(unsigned long pfn, size_t size)
62{
63	return 1;
64}
65#endif
66
67#ifdef CONFIG_STRICT_DEVMEM
68static inline int page_is_allowed(unsigned long pfn)
69{
70	return devmem_is_allowed(pfn);
71}
72static inline int range_is_allowed(unsigned long pfn, unsigned long size)
73{
74	u64 from = ((u64)pfn) << PAGE_SHIFT;
75	u64 to = from + size;
76	u64 cursor = from;
77
78	while (cursor < to) {
79		if (!devmem_is_allowed(pfn))
80			return 0;
81		cursor += PAGE_SIZE;
82		pfn++;
83	}
84	return 1;
85}
86#else
87static inline int page_is_allowed(unsigned long pfn)
88{
89	return 1;
90}
91static inline int range_is_allowed(unsigned long pfn, unsigned long size)
92{
93	return 1;
94}
95#endif
96
97#ifndef unxlate_dev_mem_ptr
98#define unxlate_dev_mem_ptr unxlate_dev_mem_ptr
99void __weak unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
100{
101}
102#endif
103
104static inline bool should_stop_iteration(void)
105{
106	if (need_resched())
107		cond_resched();
108	return fatal_signal_pending(current);
109}
110
111/*
112 * This funcion reads the *physical* memory. The f_pos points directly to the
113 * memory location.
114 */
115static ssize_t read_mem(struct file *file, char __user *buf,
116			size_t count, loff_t *ppos)
117{
118	phys_addr_t p = *ppos;
119	ssize_t read, sz;
120	void *ptr;
121	char *bounce;
122	int err;
123
124	if (p != *ppos)
125		return 0;
126
127	if (!valid_phys_addr_range(p, count))
128		return -EFAULT;
129	read = 0;
130#ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
131	/* we don't have page 0 mapped on sparc and m68k.. */
132	if (p < PAGE_SIZE) {
133		sz = size_inside_page(p, count);
134		if (sz > 0) {
135			if (clear_user(buf, sz))
136				return -EFAULT;
137			buf += sz;
138			p += sz;
139			count -= sz;
140			read += sz;
141		}
142	}
143#endif
144
145	bounce = kmalloc(PAGE_SIZE, GFP_KERNEL);
146	if (!bounce)
147		return -ENOMEM;
148
149	while (count > 0) {
150		unsigned long remaining;
151		int allowed, probe;
152
153		sz = size_inside_page(p, count);
154
155		err = -EPERM;
156		allowed = page_is_allowed(p >> PAGE_SHIFT);
157		if (!allowed)
158			goto failed;
159
160		err = -EFAULT;
161		if (allowed == 2) {
162			/* Show zeros for restricted memory. */
163			remaining = clear_user(buf, sz);
164		} else {
165			/*
166			 * On ia64 if a page has been mapped somewhere as
167			 * uncached, then it must also be accessed uncached
168			 * by the kernel or data corruption may occur.
169			 */
170			ptr = xlate_dev_mem_ptr(p);
171			if (!ptr)
172				goto failed;
173
174			probe = copy_from_kernel_nofault(bounce, ptr, sz);
175			unxlate_dev_mem_ptr(p, ptr);
176			if (probe)
177				goto failed;
178
179			remaining = copy_to_user(buf, bounce, sz);
180		}
181
182		if (remaining)
183			goto failed;
184
185		buf += sz;
186		p += sz;
187		count -= sz;
188		read += sz;
189		if (should_stop_iteration())
190			break;
191	}
192	kfree(bounce);
193
194	*ppos += read;
195	return read;
196
197failed:
198	kfree(bounce);
199	return err;
200}
201
202static ssize_t write_mem(struct file *file, const char __user *buf,
203			 size_t count, loff_t *ppos)
204{
205	phys_addr_t p = *ppos;
206	ssize_t written, sz;
207	unsigned long copied;
208	void *ptr;
209
210	if (p != *ppos)
211		return -EFBIG;
212
213	if (!valid_phys_addr_range(p, count))
214		return -EFAULT;
215
216	written = 0;
217
218#ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
219	/* we don't have page 0 mapped on sparc and m68k.. */
220	if (p < PAGE_SIZE) {
221		sz = size_inside_page(p, count);
222		/* Hmm. Do something? */
223		buf += sz;
224		p += sz;
225		count -= sz;
226		written += sz;
227	}
228#endif
229
230	while (count > 0) {
231		int allowed;
232
233		sz = size_inside_page(p, count);
234
235		allowed = page_is_allowed(p >> PAGE_SHIFT);
236		if (!allowed)
237			return -EPERM;
238
239		/* Skip actual writing when a page is marked as restricted. */
240		if (allowed == 1) {
241			/*
242			 * On ia64 if a page has been mapped somewhere as
243			 * uncached, then it must also be accessed uncached
244			 * by the kernel or data corruption may occur.
245			 */
246			ptr = xlate_dev_mem_ptr(p);
247			if (!ptr) {
248				if (written)
249					break;
250				return -EFAULT;
251			}
252
253			copied = copy_from_user(ptr, buf, sz);
254			unxlate_dev_mem_ptr(p, ptr);
255			if (copied) {
256				written += sz - copied;
257				if (written)
258					break;
259				return -EFAULT;
260			}
261		}
262
263		buf += sz;
264		p += sz;
265		count -= sz;
266		written += sz;
267		if (should_stop_iteration())
268			break;
269	}
270
271	*ppos += written;
272	return written;
273}
274
275int __weak phys_mem_access_prot_allowed(struct file *file,
276	unsigned long pfn, unsigned long size, pgprot_t *vma_prot)
277{
278	return 1;
279}
280
281#ifndef __HAVE_PHYS_MEM_ACCESS_PROT
282
283/*
284 * Architectures vary in how they handle caching for addresses
285 * outside of main memory.
286 *
287 */
288#ifdef pgprot_noncached
289static int uncached_access(struct file *file, phys_addr_t addr)
290{
291#if defined(CONFIG_IA64)
292	/*
293	 * On ia64, we ignore O_DSYNC because we cannot tolerate memory
294	 * attribute aliases.
295	 */
296	return !(efi_mem_attributes(addr) & EFI_MEMORY_WB);
297#elif defined(CONFIG_MIPS)
298	{
299		extern int __uncached_access(struct file *file,
300					     unsigned long addr);
301
302		return __uncached_access(file, addr);
303	}
304#else
305	/*
306	 * Accessing memory above the top the kernel knows about or through a
307	 * file pointer
308	 * that was marked O_DSYNC will be done non-cached.
309	 */
310	if (file->f_flags & O_DSYNC)
311		return 1;
312	return addr >= __pa(high_memory);
313#endif
314}
315#endif
316
317static pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
318				     unsigned long size, pgprot_t vma_prot)
319{
320#ifdef pgprot_noncached
321	phys_addr_t offset = pfn << PAGE_SHIFT;
322
323	if (uncached_access(file, offset))
324		return pgprot_noncached(vma_prot);
325#endif
326	return vma_prot;
327}
328#endif
329
330#ifndef CONFIG_MMU
331static unsigned long get_unmapped_area_mem(struct file *file,
332					   unsigned long addr,
333					   unsigned long len,
334					   unsigned long pgoff,
335					   unsigned long flags)
336{
337	if (!valid_mmap_phys_addr_range(pgoff, len))
338		return (unsigned long) -EINVAL;
339	return pgoff << PAGE_SHIFT;
340}
341
342/* permit direct mmap, for read, write or exec */
343static unsigned memory_mmap_capabilities(struct file *file)
344{
345	return NOMMU_MAP_DIRECT |
346		NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC;
347}
348
349static unsigned zero_mmap_capabilities(struct file *file)
350{
351	return NOMMU_MAP_COPY;
352}
353
354/* can't do an in-place private mapping if there's no MMU */
355static inline int private_mapping_ok(struct vm_area_struct *vma)
356{
357	return vma->vm_flags & VM_MAYSHARE;
358}
359#else
360
361static inline int private_mapping_ok(struct vm_area_struct *vma)
362{
363	return 1;
364}
365#endif
366
367static const struct vm_operations_struct mmap_mem_ops = {
368#ifdef CONFIG_HAVE_IOREMAP_PROT
369	.access = generic_access_phys
370#endif
371};
372
373static int mmap_mem(struct file *file, struct vm_area_struct *vma)
374{
375	size_t size = vma->vm_end - vma->vm_start;
376	phys_addr_t offset = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
377
378	/* Does it even fit in phys_addr_t? */
379	if (offset >> PAGE_SHIFT != vma->vm_pgoff)
380		return -EINVAL;
381
382	/* It's illegal to wrap around the end of the physical address space. */
383	if (offset + (phys_addr_t)size - 1 < offset)
384		return -EINVAL;
385
386	if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
387		return -EINVAL;
388
389	if (!private_mapping_ok(vma))
390		return -ENOSYS;
391
392	if (!range_is_allowed(vma->vm_pgoff, size))
393		return -EPERM;
394
395	if (!phys_mem_access_prot_allowed(file, vma->vm_pgoff, size,
396						&vma->vm_page_prot))
397		return -EINVAL;
398
399	vma->vm_page_prot = phys_mem_access_prot(file, vma->vm_pgoff,
400						 size,
401						 vma->vm_page_prot);
402
403	vma->vm_ops = &mmap_mem_ops;
404
405	/* Remap-pfn-range will mark the range VM_IO */
406	if (remap_pfn_range(vma,
407			    vma->vm_start,
408			    vma->vm_pgoff,
409			    size,
410			    vma->vm_page_prot)) {
411		return -EAGAIN;
412	}
413	return 0;
414}
415
416static int mmap_kmem(struct file *file, struct vm_area_struct *vma)
417{
418	unsigned long pfn;
419
420	/* Turn a kernel-virtual address into a physical page frame */
421	pfn = __pa((u64)vma->vm_pgoff << PAGE_SHIFT) >> PAGE_SHIFT;
422
423	/*
424	 * RED-PEN: on some architectures there is more mapped memory than
425	 * available in mem_map which pfn_valid checks for. Perhaps should add a
426	 * new macro here.
427	 *
428	 * RED-PEN: vmalloc is not supported right now.
429	 */
430	if (!pfn_valid(pfn))
431		return -EIO;
432
433	vma->vm_pgoff = pfn;
434	return mmap_mem(file, vma);
435}
436
437/*
438 * This function reads the *virtual* memory as seen by the kernel.
439 */
440static ssize_t read_kmem(struct file *file, char __user *buf,
441			 size_t count, loff_t *ppos)
442{
443	unsigned long p = *ppos;
444	ssize_t low_count, read, sz;
445	char *kbuf; /* k-addr because vread() takes vmlist_lock rwlock */
446	int err = 0;
447
448	read = 0;
449	if (p < (unsigned long) high_memory) {
450		low_count = count;
451		if (count > (unsigned long)high_memory - p)
452			low_count = (unsigned long)high_memory - p;
453
454#ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
455		/* we don't have page 0 mapped on sparc and m68k.. */
456		if (p < PAGE_SIZE && low_count > 0) {
457			sz = size_inside_page(p, low_count);
458			if (clear_user(buf, sz))
459				return -EFAULT;
460			buf += sz;
461			p += sz;
462			read += sz;
463			low_count -= sz;
464			count -= sz;
465		}
466#endif
467		while (low_count > 0) {
468			sz = size_inside_page(p, low_count);
469
470			/*
471			 * On ia64 if a page has been mapped somewhere as
472			 * uncached, then it must also be accessed uncached
473			 * by the kernel or data corruption may occur
474			 */
475			kbuf = xlate_dev_kmem_ptr((void *)p);
476			if (!virt_addr_valid(kbuf))
477				return -ENXIO;
478
479			if (copy_to_user(buf, kbuf, sz))
480				return -EFAULT;
481			buf += sz;
482			p += sz;
483			read += sz;
484			low_count -= sz;
485			count -= sz;
486			if (should_stop_iteration()) {
487				count = 0;
488				break;
489			}
490		}
491	}
492
493	if (count > 0) {
494		kbuf = (char *)__get_free_page(GFP_KERNEL);
495		if (!kbuf)
496			return -ENOMEM;
497		while (count > 0) {
498			sz = size_inside_page(p, count);
499			if (!is_vmalloc_or_module_addr((void *)p)) {
500				err = -ENXIO;
501				break;
502			}
503			sz = vread(kbuf, (char *)p, sz);
504			if (!sz)
505				break;
506			if (copy_to_user(buf, kbuf, sz)) {
507				err = -EFAULT;
508				break;
509			}
510			count -= sz;
511			buf += sz;
512			read += sz;
513			p += sz;
514			if (should_stop_iteration())
515				break;
516		}
517		free_page((unsigned long)kbuf);
518	}
519	*ppos = p;
520	return read ? read : err;
521}
522
523
524static ssize_t do_write_kmem(unsigned long p, const char __user *buf,
525				size_t count, loff_t *ppos)
526{
527	ssize_t written, sz;
528	unsigned long copied;
529
530	written = 0;
531#ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
532	/* we don't have page 0 mapped on sparc and m68k.. */
533	if (p < PAGE_SIZE) {
534		sz = size_inside_page(p, count);
535		/* Hmm. Do something? */
536		buf += sz;
537		p += sz;
538		count -= sz;
539		written += sz;
540	}
541#endif
542
543	while (count > 0) {
544		void *ptr;
545
546		sz = size_inside_page(p, count);
547
548		/*
549		 * On ia64 if a page has been mapped somewhere as uncached, then
550		 * it must also be accessed uncached by the kernel or data
551		 * corruption may occur.
552		 */
553		ptr = xlate_dev_kmem_ptr((void *)p);
554		if (!virt_addr_valid(ptr))
555			return -ENXIO;
556
557		copied = copy_from_user(ptr, buf, sz);
558		if (copied) {
559			written += sz - copied;
560			if (written)
561				break;
562			return -EFAULT;
563		}
564		buf += sz;
565		p += sz;
566		count -= sz;
567		written += sz;
568		if (should_stop_iteration())
569			break;
570	}
571
572	*ppos += written;
573	return written;
574}
575
576/*
577 * This function writes to the *virtual* memory as seen by the kernel.
578 */
579static ssize_t write_kmem(struct file *file, const char __user *buf,
580			  size_t count, loff_t *ppos)
581{
582	unsigned long p = *ppos;
583	ssize_t wrote = 0;
584	ssize_t virtr = 0;
585	char *kbuf; /* k-addr because vwrite() takes vmlist_lock rwlock */
586	int err = 0;
587
588	if (p < (unsigned long) high_memory) {
589		unsigned long to_write = min_t(unsigned long, count,
590					       (unsigned long)high_memory - p);
591		wrote = do_write_kmem(p, buf, to_write, ppos);
592		if (wrote != to_write)
593			return wrote;
594		p += wrote;
595		buf += wrote;
596		count -= wrote;
597	}
598
599	if (count > 0) {
600		kbuf = (char *)__get_free_page(GFP_KERNEL);
601		if (!kbuf)
602			return wrote ? wrote : -ENOMEM;
603		while (count > 0) {
604			unsigned long sz = size_inside_page(p, count);
605			unsigned long n;
606
607			if (!is_vmalloc_or_module_addr((void *)p)) {
608				err = -ENXIO;
609				break;
610			}
611			n = copy_from_user(kbuf, buf, sz);
612			if (n) {
613				err = -EFAULT;
614				break;
615			}
616			vwrite(kbuf, (char *)p, sz);
617			count -= sz;
618			buf += sz;
619			virtr += sz;
620			p += sz;
621			if (should_stop_iteration())
622				break;
623		}
624		free_page((unsigned long)kbuf);
625	}
626
627	*ppos = p;
628	return virtr + wrote ? : err;
629}
630
631static ssize_t read_port(struct file *file, char __user *buf,
632			 size_t count, loff_t *ppos)
633{
634	unsigned long i = *ppos;
635	char __user *tmp = buf;
636
637	if (!access_ok(buf, count))
638		return -EFAULT;
639	while (count-- > 0 && i < 65536) {
640		if (__put_user(inb(i), tmp) < 0)
641			return -EFAULT;
642		i++;
643		tmp++;
644	}
645	*ppos = i;
646	return tmp-buf;
647}
648
649static ssize_t write_port(struct file *file, const char __user *buf,
650			  size_t count, loff_t *ppos)
651{
652	unsigned long i = *ppos;
653	const char __user *tmp = buf;
654
655	if (!access_ok(buf, count))
656		return -EFAULT;
657	while (count-- > 0 && i < 65536) {
658		char c;
659
660		if (__get_user(c, tmp)) {
661			if (tmp > buf)
662				break;
663			return -EFAULT;
664		}
665		outb(c, i);
666		i++;
667		tmp++;
668	}
669	*ppos = i;
670	return tmp-buf;
671}
672
673static ssize_t read_null(struct file *file, char __user *buf,
674			 size_t count, loff_t *ppos)
675{
676	return 0;
677}
678
679static ssize_t write_null(struct file *file, const char __user *buf,
680			  size_t count, loff_t *ppos)
681{
682	return count;
683}
684
685static ssize_t read_iter_null(struct kiocb *iocb, struct iov_iter *to)
686{
687	return 0;
688}
689
690static ssize_t write_iter_null(struct kiocb *iocb, struct iov_iter *from)
691{
692	size_t count = iov_iter_count(from);
693	iov_iter_advance(from, count);
694	return count;
695}
696
697static int pipe_to_null(struct pipe_inode_info *info, struct pipe_buffer *buf,
698			struct splice_desc *sd)
699{
700	return sd->len;
701}
702
703static ssize_t splice_write_null(struct pipe_inode_info *pipe, struct file *out,
704				 loff_t *ppos, size_t len, unsigned int flags)
705{
706	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_null);
707}
708
709static ssize_t read_iter_zero(struct kiocb *iocb, struct iov_iter *iter)
710{
711	size_t written = 0;
712
713	while (iov_iter_count(iter)) {
714		size_t chunk = iov_iter_count(iter), n;
715
716		if (chunk > PAGE_SIZE)
717			chunk = PAGE_SIZE;	/* Just for latency reasons */
718		n = iov_iter_zero(chunk, iter);
719		if (!n && iov_iter_count(iter))
720			return written ? written : -EFAULT;
721		written += n;
722		if (signal_pending(current))
723			return written ? written : -ERESTARTSYS;
724		cond_resched();
725	}
726	return written;
727}
728
729static ssize_t read_zero(struct file *file, char __user *buf,
730			 size_t count, loff_t *ppos)
731{
732	size_t cleared = 0;
733
734	while (count) {
735		size_t chunk = min_t(size_t, count, PAGE_SIZE);
736		size_t left;
737
738		left = clear_user(buf + cleared, chunk);
739		if (unlikely(left)) {
740			cleared += (chunk - left);
741			if (!cleared)
742				return -EFAULT;
743			break;
744		}
745		cleared += chunk;
746		count -= chunk;
747
748		if (signal_pending(current))
749			break;
750		cond_resched();
751	}
752
753	return cleared;
754}
755
756static int mmap_zero(struct file *file, struct vm_area_struct *vma)
757{
758#ifndef CONFIG_MMU
759	return -ENOSYS;
760#endif
761	if (vma->vm_flags & VM_SHARED)
762		return shmem_zero_setup(vma);
763	vma_set_anonymous(vma);
764	return 0;
765}
766
767static unsigned long get_unmapped_area_zero(struct file *file,
768				unsigned long addr, unsigned long len,
769				unsigned long pgoff, unsigned long flags)
770{
771#ifdef CONFIG_MMU
772	if (flags & MAP_SHARED) {
773		/*
774		 * mmap_zero() will call shmem_zero_setup() to create a file,
775		 * so use shmem's get_unmapped_area in case it can be huge;
776		 * and pass NULL for file as in mmap.c's get_unmapped_area(),
777		 * so as not to confuse shmem with our handle on "/dev/zero".
778		 */
779		return shmem_get_unmapped_area(NULL, addr, len, pgoff, flags);
780	}
781
782	/* Otherwise flags & MAP_PRIVATE: with no shmem object beneath it */
783	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
784#else
785	return -ENOSYS;
786#endif
787}
788
789static ssize_t write_full(struct file *file, const char __user *buf,
790			  size_t count, loff_t *ppos)
791{
792	return -ENOSPC;
793}
794
795/*
796 * Special lseek() function for /dev/null and /dev/zero.  Most notably, you
797 * can fopen() both devices with "a" now.  This was previously impossible.
798 * -- SRB.
799 */
800static loff_t null_lseek(struct file *file, loff_t offset, int orig)
801{
802	return file->f_pos = 0;
803}
804
805/*
806 * The memory devices use the full 32/64 bits of the offset, and so we cannot
807 * check against negative addresses: they are ok. The return value is weird,
808 * though, in that case (0).
809 *
810 * also note that seeking relative to the "end of file" isn't supported:
811 * it has no meaning, so it returns -EINVAL.
812 */
813static loff_t memory_lseek(struct file *file, loff_t offset, int orig)
814{
815	loff_t ret;
816
817	inode_lock(file_inode(file));
818	switch (orig) {
819	case SEEK_CUR:
820		offset += file->f_pos;
821		fallthrough;
822	case SEEK_SET:
823		/* to avoid userland mistaking f_pos=-9 as -EBADF=-9 */
824		if ((unsigned long long)offset >= -MAX_ERRNO) {
825			ret = -EOVERFLOW;
826			break;
827		}
828		file->f_pos = offset;
829		ret = file->f_pos;
830		force_successful_syscall_return();
831		break;
832	default:
833		ret = -EINVAL;
834	}
835	inode_unlock(file_inode(file));
836	return ret;
837}
838
839static struct inode *devmem_inode;
840
841#ifdef CONFIG_IO_STRICT_DEVMEM
842void revoke_devmem(struct resource *res)
843{
844	/* pairs with smp_store_release() in devmem_init_inode() */
845	struct inode *inode = smp_load_acquire(&devmem_inode);
846
847	/*
848	 * Check that the initialization has completed. Losing the race
849	 * is ok because it means drivers are claiming resources before
850	 * the fs_initcall level of init and prevent /dev/mem from
851	 * establishing mappings.
852	 */
853	if (!inode)
854		return;
855
856	/*
857	 * The expectation is that the driver has successfully marked
858	 * the resource busy by this point, so devmem_is_allowed()
859	 * should start returning false, however for performance this
860	 * does not iterate the entire resource range.
861	 */
862	if (devmem_is_allowed(PHYS_PFN(res->start)) &&
863	    devmem_is_allowed(PHYS_PFN(res->end))) {
864		/*
865		 * *cringe* iomem=relaxed says "go ahead, what's the
866		 * worst that can happen?"
867		 */
868		return;
869	}
870
871	unmap_mapping_range(inode->i_mapping, res->start, resource_size(res), 1);
872}
873#endif
874
875static int open_port(struct inode *inode, struct file *filp)
876{
877	int rc;
878
879	if (!capable(CAP_SYS_RAWIO))
880		return -EPERM;
881
882	rc = security_locked_down(LOCKDOWN_DEV_MEM);
883	if (rc)
884		return rc;
885
886	if (iminor(inode) != DEVMEM_MINOR)
887		return 0;
888
889	/*
890	 * Use a unified address space to have a single point to manage
891	 * revocations when drivers want to take over a /dev/mem mapped
892	 * range.
893	 */
894	inode->i_mapping = devmem_inode->i_mapping;
895	filp->f_mapping = inode->i_mapping;
896
897	return 0;
898}
899
900#define zero_lseek	null_lseek
901#define full_lseek      null_lseek
902#define write_zero	write_null
903#define write_iter_zero	write_iter_null
904#define open_mem	open_port
905#define open_kmem	open_mem
906
907static const struct file_operations __maybe_unused mem_fops = {
908	.llseek		= memory_lseek,
909	.read		= read_mem,
910	.write		= write_mem,
911	.mmap		= mmap_mem,
912	.open		= open_mem,
913#ifndef CONFIG_MMU
914	.get_unmapped_area = get_unmapped_area_mem,
915	.mmap_capabilities = memory_mmap_capabilities,
916#endif
917};
918
919static const struct file_operations __maybe_unused kmem_fops = {
920	.llseek		= memory_lseek,
921	.read		= read_kmem,
922	.write		= write_kmem,
923	.mmap		= mmap_kmem,
924	.open		= open_kmem,
925#ifndef CONFIG_MMU
926	.get_unmapped_area = get_unmapped_area_mem,
927	.mmap_capabilities = memory_mmap_capabilities,
928#endif
929};
930
931static const struct file_operations null_fops = {
932	.llseek		= null_lseek,
933	.read		= read_null,
934	.write		= write_null,
935	.read_iter	= read_iter_null,
936	.write_iter	= write_iter_null,
937	.splice_write	= splice_write_null,
938};
939
940static const struct file_operations __maybe_unused port_fops = {
941	.llseek		= memory_lseek,
942	.read		= read_port,
943	.write		= write_port,
944	.open		= open_port,
945};
946
947static const struct file_operations zero_fops = {
948	.llseek		= zero_lseek,
949	.write		= write_zero,
950	.read_iter	= read_iter_zero,
951	.read		= read_zero,
952	.write_iter	= write_iter_zero,
953	.mmap		= mmap_zero,
954	.get_unmapped_area = get_unmapped_area_zero,
955#ifndef CONFIG_MMU
956	.mmap_capabilities = zero_mmap_capabilities,
957#endif
958};
959
960static const struct file_operations full_fops = {
961	.llseek		= full_lseek,
962	.read_iter	= read_iter_zero,
963	.write		= write_full,
964};
965
966static const struct memdev {
967	const char *name;
968	umode_t mode;
969	const struct file_operations *fops;
970	fmode_t fmode;
971} devlist[] = {
972#ifdef CONFIG_DEVMEM
973	 [DEVMEM_MINOR] = { "mem", 0, &mem_fops, FMODE_UNSIGNED_OFFSET },
974#endif
975#ifdef CONFIG_DEVKMEM
976	 [2] = { "kmem", 0, &kmem_fops, FMODE_UNSIGNED_OFFSET },
977#endif
978	 [3] = { "null", 0666, &null_fops, 0 },
979#ifdef CONFIG_DEVPORT
980	 [4] = { "port", 0, &port_fops, 0 },
981#endif
982	 [5] = { "zero", 0666, &zero_fops, 0 },
983	 [7] = { "full", 0666, &full_fops, 0 },
984	 [8] = { "random", 0666, &random_fops, FMODE_NOWAIT },
985	 [9] = { "urandom", 0666, &urandom_fops, FMODE_NOWAIT },
986#ifdef CONFIG_PRINTK
987	[11] = { "kmsg", 0644, &kmsg_fops, 0 },
988#endif
989};
990
991static int memory_open(struct inode *inode, struct file *filp)
992{
993	int minor;
994	const struct memdev *dev;
995
996	minor = iminor(inode);
997	if (minor >= ARRAY_SIZE(devlist))
998		return -ENXIO;
999
1000	dev = &devlist[minor];
1001	if (!dev->fops)
1002		return -ENXIO;
1003
1004	filp->f_op = dev->fops;
1005	filp->f_mode |= dev->fmode;
1006
1007	if (dev->fops->open)
1008		return dev->fops->open(inode, filp);
1009
1010	return 0;
1011}
1012
1013static const struct file_operations memory_fops = {
1014	.open = memory_open,
1015	.llseek = noop_llseek,
1016};
1017
1018static char *mem_devnode(struct device *dev, umode_t *mode)
1019{
1020	if (mode && devlist[MINOR(dev->devt)].mode)
1021		*mode = devlist[MINOR(dev->devt)].mode;
1022	return NULL;
1023}
1024
1025static struct class *mem_class;
1026
1027static int devmem_fs_init_fs_context(struct fs_context *fc)
1028{
1029	return init_pseudo(fc, DEVMEM_MAGIC) ? 0 : -ENOMEM;
1030}
1031
1032static struct file_system_type devmem_fs_type = {
1033	.name		= "devmem",
1034	.owner		= THIS_MODULE,
1035	.init_fs_context = devmem_fs_init_fs_context,
1036	.kill_sb	= kill_anon_super,
1037};
1038
1039static int devmem_init_inode(void)
1040{
1041	static struct vfsmount *devmem_vfs_mount;
1042	static int devmem_fs_cnt;
1043	struct inode *inode;
1044	int rc;
1045
1046	rc = simple_pin_fs(&devmem_fs_type, &devmem_vfs_mount, &devmem_fs_cnt);
1047	if (rc < 0) {
1048		pr_err("Cannot mount /dev/mem pseudo filesystem: %d\n", rc);
1049		return rc;
1050	}
1051
1052	inode = alloc_anon_inode(devmem_vfs_mount->mnt_sb);
1053	if (IS_ERR(inode)) {
1054		rc = PTR_ERR(inode);
1055		pr_err("Cannot allocate inode for /dev/mem: %d\n", rc);
1056		simple_release_fs(&devmem_vfs_mount, &devmem_fs_cnt);
1057		return rc;
1058	}
1059
1060	/*
1061	 * Publish /dev/mem initialized.
1062	 * Pairs with smp_load_acquire() in revoke_devmem().
1063	 */
1064	smp_store_release(&devmem_inode, inode);
1065
1066	return 0;
1067}
1068
1069static int __init chr_dev_init(void)
1070{
1071	int minor;
1072
1073	if (register_chrdev(MEM_MAJOR, "mem", &memory_fops))
1074		printk("unable to get major %d for memory devs\n", MEM_MAJOR);
1075
1076	mem_class = class_create(THIS_MODULE, "mem");
1077	if (IS_ERR(mem_class))
1078		return PTR_ERR(mem_class);
1079
1080	mem_class->devnode = mem_devnode;
1081	for (minor = 1; minor < ARRAY_SIZE(devlist); minor++) {
1082		if (!devlist[minor].name)
1083			continue;
1084
1085		/*
1086		 * Create /dev/port?
1087		 */
1088		if ((minor == DEVPORT_MINOR) && !arch_has_dev_port())
1089			continue;
1090		if ((minor == DEVMEM_MINOR) && devmem_init_inode() != 0)
1091			continue;
1092
1093		device_create(mem_class, NULL, MKDEV(MEM_MAJOR, minor),
1094			      NULL, devlist[minor].name);
1095	}
1096
1097	return tty_init();
1098}
1099
1100fs_initcall(chr_dev_init);
1101