xref: /kernel/linux/linux-5.10/drivers/char/hpet.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Intel & MS High Precision Event Timer Implementation.
4 *
5 * Copyright (C) 2003 Intel Corporation
6 *	Venki Pallipadi
7 * (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
8 *	Bob Picco <robert.picco@hp.com>
9 */
10
11#include <linux/interrupt.h>
12#include <linux/kernel.h>
13#include <linux/types.h>
14#include <linux/miscdevice.h>
15#include <linux/major.h>
16#include <linux/ioport.h>
17#include <linux/fcntl.h>
18#include <linux/init.h>
19#include <linux/poll.h>
20#include <linux/mm.h>
21#include <linux/proc_fs.h>
22#include <linux/spinlock.h>
23#include <linux/sysctl.h>
24#include <linux/wait.h>
25#include <linux/sched/signal.h>
26#include <linux/bcd.h>
27#include <linux/seq_file.h>
28#include <linux/bitops.h>
29#include <linux/compat.h>
30#include <linux/clocksource.h>
31#include <linux/uaccess.h>
32#include <linux/slab.h>
33#include <linux/io.h>
34#include <linux/acpi.h>
35#include <linux/hpet.h>
36#include <asm/current.h>
37#include <asm/irq.h>
38#include <asm/div64.h>
39
40/*
41 * The High Precision Event Timer driver.
42 * This driver is closely modelled after the rtc.c driver.
43 * See HPET spec revision 1.
44 */
45#define	HPET_USER_FREQ	(64)
46#define	HPET_DRIFT	(500)
47
48#define HPET_RANGE_SIZE		1024	/* from HPET spec */
49
50
51/* WARNING -- don't get confused.  These macros are never used
52 * to write the (single) counter, and rarely to read it.
53 * They're badly named; to fix, someday.
54 */
55#if BITS_PER_LONG == 64
56#define	write_counter(V, MC)	writeq(V, MC)
57#define	read_counter(MC)	readq(MC)
58#else
59#define	write_counter(V, MC)	writel(V, MC)
60#define	read_counter(MC)	readl(MC)
61#endif
62
63static DEFINE_MUTEX(hpet_mutex); /* replaces BKL */
64static u32 hpet_nhpet, hpet_max_freq = HPET_USER_FREQ;
65
66/* This clocksource driver currently only works on ia64 */
67#ifdef CONFIG_IA64
68static void __iomem *hpet_mctr;
69
70static u64 read_hpet(struct clocksource *cs)
71{
72	return (u64)read_counter((void __iomem *)hpet_mctr);
73}
74
75static struct clocksource clocksource_hpet = {
76	.name		= "hpet",
77	.rating		= 250,
78	.read		= read_hpet,
79	.mask		= CLOCKSOURCE_MASK(64),
80	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
81};
82static struct clocksource *hpet_clocksource;
83#endif
84
85/* A lock for concurrent access by app and isr hpet activity. */
86static DEFINE_SPINLOCK(hpet_lock);
87
88#define	HPET_DEV_NAME	(7)
89
90struct hpet_dev {
91	struct hpets *hd_hpets;
92	struct hpet __iomem *hd_hpet;
93	struct hpet_timer __iomem *hd_timer;
94	unsigned long hd_ireqfreq;
95	unsigned long hd_irqdata;
96	wait_queue_head_t hd_waitqueue;
97	struct fasync_struct *hd_async_queue;
98	unsigned int hd_flags;
99	unsigned int hd_irq;
100	unsigned int hd_hdwirq;
101	char hd_name[HPET_DEV_NAME];
102};
103
104struct hpets {
105	struct hpets *hp_next;
106	struct hpet __iomem *hp_hpet;
107	unsigned long hp_hpet_phys;
108	struct clocksource *hp_clocksource;
109	unsigned long long hp_tick_freq;
110	unsigned long hp_delta;
111	unsigned int hp_ntimer;
112	unsigned int hp_which;
113	struct hpet_dev hp_dev[];
114};
115
116static struct hpets *hpets;
117
118#define	HPET_OPEN		0x0001
119#define	HPET_IE			0x0002	/* interrupt enabled */
120#define	HPET_PERIODIC		0x0004
121#define	HPET_SHARED_IRQ		0x0008
122
123
124#ifndef readq
125static inline unsigned long long readq(void __iomem *addr)
126{
127	return readl(addr) | (((unsigned long long)readl(addr + 4)) << 32LL);
128}
129#endif
130
131#ifndef writeq
132static inline void writeq(unsigned long long v, void __iomem *addr)
133{
134	writel(v & 0xffffffff, addr);
135	writel(v >> 32, addr + 4);
136}
137#endif
138
139static irqreturn_t hpet_interrupt(int irq, void *data)
140{
141	struct hpet_dev *devp;
142	unsigned long isr;
143
144	devp = data;
145	isr = 1 << (devp - devp->hd_hpets->hp_dev);
146
147	if ((devp->hd_flags & HPET_SHARED_IRQ) &&
148	    !(isr & readl(&devp->hd_hpet->hpet_isr)))
149		return IRQ_NONE;
150
151	spin_lock(&hpet_lock);
152	devp->hd_irqdata++;
153
154	/*
155	 * For non-periodic timers, increment the accumulator.
156	 * This has the effect of treating non-periodic like periodic.
157	 */
158	if ((devp->hd_flags & (HPET_IE | HPET_PERIODIC)) == HPET_IE) {
159		unsigned long m, t, mc, base, k;
160		struct hpet __iomem *hpet = devp->hd_hpet;
161		struct hpets *hpetp = devp->hd_hpets;
162
163		t = devp->hd_ireqfreq;
164		m = read_counter(&devp->hd_timer->hpet_compare);
165		mc = read_counter(&hpet->hpet_mc);
166		/* The time for the next interrupt would logically be t + m,
167		 * however, if we are very unlucky and the interrupt is delayed
168		 * for longer than t then we will completely miss the next
169		 * interrupt if we set t + m and an application will hang.
170		 * Therefore we need to make a more complex computation assuming
171		 * that there exists a k for which the following is true:
172		 * k * t + base < mc + delta
173		 * (k + 1) * t + base > mc + delta
174		 * where t is the interval in hpet ticks for the given freq,
175		 * base is the theoretical start value 0 < base < t,
176		 * mc is the main counter value at the time of the interrupt,
177		 * delta is the time it takes to write the a value to the
178		 * comparator.
179		 * k may then be computed as (mc - base + delta) / t .
180		 */
181		base = mc % t;
182		k = (mc - base + hpetp->hp_delta) / t;
183		write_counter(t * (k + 1) + base,
184			      &devp->hd_timer->hpet_compare);
185	}
186
187	if (devp->hd_flags & HPET_SHARED_IRQ)
188		writel(isr, &devp->hd_hpet->hpet_isr);
189	spin_unlock(&hpet_lock);
190
191	wake_up_interruptible(&devp->hd_waitqueue);
192
193	kill_fasync(&devp->hd_async_queue, SIGIO, POLL_IN);
194
195	return IRQ_HANDLED;
196}
197
198static void hpet_timer_set_irq(struct hpet_dev *devp)
199{
200	unsigned long v;
201	int irq, gsi;
202	struct hpet_timer __iomem *timer;
203
204	spin_lock_irq(&hpet_lock);
205	if (devp->hd_hdwirq) {
206		spin_unlock_irq(&hpet_lock);
207		return;
208	}
209
210	timer = devp->hd_timer;
211
212	/* we prefer level triggered mode */
213	v = readl(&timer->hpet_config);
214	if (!(v & Tn_INT_TYPE_CNF_MASK)) {
215		v |= Tn_INT_TYPE_CNF_MASK;
216		writel(v, &timer->hpet_config);
217	}
218	spin_unlock_irq(&hpet_lock);
219
220	v = (readq(&timer->hpet_config) & Tn_INT_ROUTE_CAP_MASK) >>
221				 Tn_INT_ROUTE_CAP_SHIFT;
222
223	/*
224	 * In PIC mode, skip IRQ0-4, IRQ6-9, IRQ12-15 which is always used by
225	 * legacy device. In IO APIC mode, we skip all the legacy IRQS.
226	 */
227	if (acpi_irq_model == ACPI_IRQ_MODEL_PIC)
228		v &= ~0xf3df;
229	else
230		v &= ~0xffff;
231
232	for_each_set_bit(irq, &v, HPET_MAX_IRQ) {
233		if (irq >= nr_irqs) {
234			irq = HPET_MAX_IRQ;
235			break;
236		}
237
238		gsi = acpi_register_gsi(NULL, irq, ACPI_LEVEL_SENSITIVE,
239					ACPI_ACTIVE_LOW);
240		if (gsi > 0)
241			break;
242
243		/* FIXME: Setup interrupt source table */
244	}
245
246	if (irq < HPET_MAX_IRQ) {
247		spin_lock_irq(&hpet_lock);
248		v = readl(&timer->hpet_config);
249		v |= irq << Tn_INT_ROUTE_CNF_SHIFT;
250		writel(v, &timer->hpet_config);
251		devp->hd_hdwirq = gsi;
252		spin_unlock_irq(&hpet_lock);
253	}
254	return;
255}
256
257static int hpet_open(struct inode *inode, struct file *file)
258{
259	struct hpet_dev *devp;
260	struct hpets *hpetp;
261	int i;
262
263	if (file->f_mode & FMODE_WRITE)
264		return -EINVAL;
265
266	mutex_lock(&hpet_mutex);
267	spin_lock_irq(&hpet_lock);
268
269	for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next)
270		for (i = 0; i < hpetp->hp_ntimer; i++)
271			if (hpetp->hp_dev[i].hd_flags & HPET_OPEN)
272				continue;
273			else {
274				devp = &hpetp->hp_dev[i];
275				break;
276			}
277
278	if (!devp) {
279		spin_unlock_irq(&hpet_lock);
280		mutex_unlock(&hpet_mutex);
281		return -EBUSY;
282	}
283
284	file->private_data = devp;
285	devp->hd_irqdata = 0;
286	devp->hd_flags |= HPET_OPEN;
287	spin_unlock_irq(&hpet_lock);
288	mutex_unlock(&hpet_mutex);
289
290	hpet_timer_set_irq(devp);
291
292	return 0;
293}
294
295static ssize_t
296hpet_read(struct file *file, char __user *buf, size_t count, loff_t * ppos)
297{
298	DECLARE_WAITQUEUE(wait, current);
299	unsigned long data;
300	ssize_t retval;
301	struct hpet_dev *devp;
302
303	devp = file->private_data;
304	if (!devp->hd_ireqfreq)
305		return -EIO;
306
307	if (count < sizeof(unsigned long))
308		return -EINVAL;
309
310	add_wait_queue(&devp->hd_waitqueue, &wait);
311
312	for ( ; ; ) {
313		set_current_state(TASK_INTERRUPTIBLE);
314
315		spin_lock_irq(&hpet_lock);
316		data = devp->hd_irqdata;
317		devp->hd_irqdata = 0;
318		spin_unlock_irq(&hpet_lock);
319
320		if (data)
321			break;
322		else if (file->f_flags & O_NONBLOCK) {
323			retval = -EAGAIN;
324			goto out;
325		} else if (signal_pending(current)) {
326			retval = -ERESTARTSYS;
327			goto out;
328		}
329		schedule();
330	}
331
332	retval = put_user(data, (unsigned long __user *)buf);
333	if (!retval)
334		retval = sizeof(unsigned long);
335out:
336	__set_current_state(TASK_RUNNING);
337	remove_wait_queue(&devp->hd_waitqueue, &wait);
338
339	return retval;
340}
341
342static __poll_t hpet_poll(struct file *file, poll_table * wait)
343{
344	unsigned long v;
345	struct hpet_dev *devp;
346
347	devp = file->private_data;
348
349	if (!devp->hd_ireqfreq)
350		return 0;
351
352	poll_wait(file, &devp->hd_waitqueue, wait);
353
354	spin_lock_irq(&hpet_lock);
355	v = devp->hd_irqdata;
356	spin_unlock_irq(&hpet_lock);
357
358	if (v != 0)
359		return EPOLLIN | EPOLLRDNORM;
360
361	return 0;
362}
363
364#ifdef CONFIG_HPET_MMAP
365#ifdef CONFIG_HPET_MMAP_DEFAULT
366static int hpet_mmap_enabled = 1;
367#else
368static int hpet_mmap_enabled = 0;
369#endif
370
371static __init int hpet_mmap_enable(char *str)
372{
373	get_option(&str, &hpet_mmap_enabled);
374	pr_info("HPET mmap %s\n", hpet_mmap_enabled ? "enabled" : "disabled");
375	return 1;
376}
377__setup("hpet_mmap=", hpet_mmap_enable);
378
379static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
380{
381	struct hpet_dev *devp;
382	unsigned long addr;
383
384	if (!hpet_mmap_enabled)
385		return -EACCES;
386
387	devp = file->private_data;
388	addr = devp->hd_hpets->hp_hpet_phys;
389
390	if (addr & (PAGE_SIZE - 1))
391		return -ENOSYS;
392
393	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
394	return vm_iomap_memory(vma, addr, PAGE_SIZE);
395}
396#else
397static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
398{
399	return -ENOSYS;
400}
401#endif
402
403static int hpet_fasync(int fd, struct file *file, int on)
404{
405	struct hpet_dev *devp;
406
407	devp = file->private_data;
408
409	if (fasync_helper(fd, file, on, &devp->hd_async_queue) >= 0)
410		return 0;
411	else
412		return -EIO;
413}
414
415static int hpet_release(struct inode *inode, struct file *file)
416{
417	struct hpet_dev *devp;
418	struct hpet_timer __iomem *timer;
419	int irq = 0;
420
421	devp = file->private_data;
422	timer = devp->hd_timer;
423
424	spin_lock_irq(&hpet_lock);
425
426	writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
427	       &timer->hpet_config);
428
429	irq = devp->hd_irq;
430	devp->hd_irq = 0;
431
432	devp->hd_ireqfreq = 0;
433
434	if (devp->hd_flags & HPET_PERIODIC
435	    && readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
436		unsigned long v;
437
438		v = readq(&timer->hpet_config);
439		v ^= Tn_TYPE_CNF_MASK;
440		writeq(v, &timer->hpet_config);
441	}
442
443	devp->hd_flags &= ~(HPET_OPEN | HPET_IE | HPET_PERIODIC);
444	spin_unlock_irq(&hpet_lock);
445
446	if (irq)
447		free_irq(irq, devp);
448
449	file->private_data = NULL;
450	return 0;
451}
452
453static int hpet_ioctl_ieon(struct hpet_dev *devp)
454{
455	struct hpet_timer __iomem *timer;
456	struct hpet __iomem *hpet;
457	struct hpets *hpetp;
458	int irq;
459	unsigned long g, v, t, m;
460	unsigned long flags, isr;
461
462	timer = devp->hd_timer;
463	hpet = devp->hd_hpet;
464	hpetp = devp->hd_hpets;
465
466	if (!devp->hd_ireqfreq)
467		return -EIO;
468
469	spin_lock_irq(&hpet_lock);
470
471	if (devp->hd_flags & HPET_IE) {
472		spin_unlock_irq(&hpet_lock);
473		return -EBUSY;
474	}
475
476	devp->hd_flags |= HPET_IE;
477
478	if (readl(&timer->hpet_config) & Tn_INT_TYPE_CNF_MASK)
479		devp->hd_flags |= HPET_SHARED_IRQ;
480	spin_unlock_irq(&hpet_lock);
481
482	irq = devp->hd_hdwirq;
483
484	if (irq) {
485		unsigned long irq_flags;
486
487		if (devp->hd_flags & HPET_SHARED_IRQ) {
488			/*
489			 * To prevent the interrupt handler from seeing an
490			 * unwanted interrupt status bit, program the timer
491			 * so that it will not fire in the near future ...
492			 */
493			writel(readl(&timer->hpet_config) & ~Tn_TYPE_CNF_MASK,
494			       &timer->hpet_config);
495			write_counter(read_counter(&hpet->hpet_mc),
496				      &timer->hpet_compare);
497			/* ... and clear any left-over status. */
498			isr = 1 << (devp - devp->hd_hpets->hp_dev);
499			writel(isr, &hpet->hpet_isr);
500		}
501
502		sprintf(devp->hd_name, "hpet%d", (int)(devp - hpetp->hp_dev));
503		irq_flags = devp->hd_flags & HPET_SHARED_IRQ ? IRQF_SHARED : 0;
504		if (request_irq(irq, hpet_interrupt, irq_flags,
505				devp->hd_name, (void *)devp)) {
506			printk(KERN_ERR "hpet: IRQ %d is not free\n", irq);
507			irq = 0;
508		}
509	}
510
511	if (irq == 0) {
512		spin_lock_irq(&hpet_lock);
513		devp->hd_flags ^= HPET_IE;
514		spin_unlock_irq(&hpet_lock);
515		return -EIO;
516	}
517
518	devp->hd_irq = irq;
519	t = devp->hd_ireqfreq;
520	v = readq(&timer->hpet_config);
521
522	/* 64-bit comparators are not yet supported through the ioctls,
523	 * so force this into 32-bit mode if it supports both modes
524	 */
525	g = v | Tn_32MODE_CNF_MASK | Tn_INT_ENB_CNF_MASK;
526
527	if (devp->hd_flags & HPET_PERIODIC) {
528		g |= Tn_TYPE_CNF_MASK;
529		v |= Tn_TYPE_CNF_MASK | Tn_VAL_SET_CNF_MASK;
530		writeq(v, &timer->hpet_config);
531		local_irq_save(flags);
532
533		/*
534		 * NOTE: First we modify the hidden accumulator
535		 * register supported by periodic-capable comparators.
536		 * We never want to modify the (single) counter; that
537		 * would affect all the comparators. The value written
538		 * is the counter value when the first interrupt is due.
539		 */
540		m = read_counter(&hpet->hpet_mc);
541		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
542		/*
543		 * Then we modify the comparator, indicating the period
544		 * for subsequent interrupt.
545		 */
546		write_counter(t, &timer->hpet_compare);
547	} else {
548		local_irq_save(flags);
549		m = read_counter(&hpet->hpet_mc);
550		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
551	}
552
553	if (devp->hd_flags & HPET_SHARED_IRQ) {
554		isr = 1 << (devp - devp->hd_hpets->hp_dev);
555		writel(isr, &hpet->hpet_isr);
556	}
557	writeq(g, &timer->hpet_config);
558	local_irq_restore(flags);
559
560	return 0;
561}
562
563/* converts Hz to number of timer ticks */
564static inline unsigned long hpet_time_div(struct hpets *hpets,
565					  unsigned long dis)
566{
567	unsigned long long m;
568
569	m = hpets->hp_tick_freq + (dis >> 1);
570	return div64_ul(m, dis);
571}
572
573static int
574hpet_ioctl_common(struct hpet_dev *devp, unsigned int cmd, unsigned long arg,
575		  struct hpet_info *info)
576{
577	struct hpet_timer __iomem *timer;
578	struct hpets *hpetp;
579	int err;
580	unsigned long v;
581
582	switch (cmd) {
583	case HPET_IE_OFF:
584	case HPET_INFO:
585	case HPET_EPI:
586	case HPET_DPI:
587	case HPET_IRQFREQ:
588		timer = devp->hd_timer;
589		hpetp = devp->hd_hpets;
590		break;
591	case HPET_IE_ON:
592		return hpet_ioctl_ieon(devp);
593	default:
594		return -EINVAL;
595	}
596
597	err = 0;
598
599	switch (cmd) {
600	case HPET_IE_OFF:
601		if ((devp->hd_flags & HPET_IE) == 0)
602			break;
603		v = readq(&timer->hpet_config);
604		v &= ~Tn_INT_ENB_CNF_MASK;
605		writeq(v, &timer->hpet_config);
606		if (devp->hd_irq) {
607			free_irq(devp->hd_irq, devp);
608			devp->hd_irq = 0;
609		}
610		devp->hd_flags ^= HPET_IE;
611		break;
612	case HPET_INFO:
613		{
614			memset(info, 0, sizeof(*info));
615			if (devp->hd_ireqfreq)
616				info->hi_ireqfreq =
617					hpet_time_div(hpetp, devp->hd_ireqfreq);
618			info->hi_flags =
619			    readq(&timer->hpet_config) & Tn_PER_INT_CAP_MASK;
620			info->hi_hpet = hpetp->hp_which;
621			info->hi_timer = devp - hpetp->hp_dev;
622			break;
623		}
624	case HPET_EPI:
625		v = readq(&timer->hpet_config);
626		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
627			err = -ENXIO;
628			break;
629		}
630		devp->hd_flags |= HPET_PERIODIC;
631		break;
632	case HPET_DPI:
633		v = readq(&timer->hpet_config);
634		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
635			err = -ENXIO;
636			break;
637		}
638		if (devp->hd_flags & HPET_PERIODIC &&
639		    readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
640			v = readq(&timer->hpet_config);
641			v ^= Tn_TYPE_CNF_MASK;
642			writeq(v, &timer->hpet_config);
643		}
644		devp->hd_flags &= ~HPET_PERIODIC;
645		break;
646	case HPET_IRQFREQ:
647		if ((arg > hpet_max_freq) &&
648		    !capable(CAP_SYS_RESOURCE)) {
649			err = -EACCES;
650			break;
651		}
652
653		if (!arg) {
654			err = -EINVAL;
655			break;
656		}
657
658		devp->hd_ireqfreq = hpet_time_div(hpetp, arg);
659	}
660
661	return err;
662}
663
664static long
665hpet_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
666{
667	struct hpet_info info;
668	int err;
669
670	mutex_lock(&hpet_mutex);
671	err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
672	mutex_unlock(&hpet_mutex);
673
674	if ((cmd == HPET_INFO) && !err &&
675	    (copy_to_user((void __user *)arg, &info, sizeof(info))))
676		err = -EFAULT;
677
678	return err;
679}
680
681#ifdef CONFIG_COMPAT
682struct compat_hpet_info {
683	compat_ulong_t hi_ireqfreq;	/* Hz */
684	compat_ulong_t hi_flags;	/* information */
685	unsigned short hi_hpet;
686	unsigned short hi_timer;
687};
688
689static long
690hpet_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
691{
692	struct hpet_info info;
693	int err;
694
695	mutex_lock(&hpet_mutex);
696	err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
697	mutex_unlock(&hpet_mutex);
698
699	if ((cmd == HPET_INFO) && !err) {
700		struct compat_hpet_info __user *u = compat_ptr(arg);
701		if (put_user(info.hi_ireqfreq, &u->hi_ireqfreq) ||
702		    put_user(info.hi_flags, &u->hi_flags) ||
703		    put_user(info.hi_hpet, &u->hi_hpet) ||
704		    put_user(info.hi_timer, &u->hi_timer))
705			err = -EFAULT;
706	}
707
708	return err;
709}
710#endif
711
712static const struct file_operations hpet_fops = {
713	.owner = THIS_MODULE,
714	.llseek = no_llseek,
715	.read = hpet_read,
716	.poll = hpet_poll,
717	.unlocked_ioctl = hpet_ioctl,
718#ifdef CONFIG_COMPAT
719	.compat_ioctl = hpet_compat_ioctl,
720#endif
721	.open = hpet_open,
722	.release = hpet_release,
723	.fasync = hpet_fasync,
724	.mmap = hpet_mmap,
725};
726
727static int hpet_is_known(struct hpet_data *hdp)
728{
729	struct hpets *hpetp;
730
731	for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
732		if (hpetp->hp_hpet_phys == hdp->hd_phys_address)
733			return 1;
734
735	return 0;
736}
737
738static struct ctl_table hpet_table[] = {
739	{
740	 .procname = "max-user-freq",
741	 .data = &hpet_max_freq,
742	 .maxlen = sizeof(int),
743	 .mode = 0644,
744	 .proc_handler = proc_dointvec,
745	 },
746	{}
747};
748
749static struct ctl_table hpet_root[] = {
750	{
751	 .procname = "hpet",
752	 .maxlen = 0,
753	 .mode = 0555,
754	 .child = hpet_table,
755	 },
756	{}
757};
758
759static struct ctl_table dev_root[] = {
760	{
761	 .procname = "dev",
762	 .maxlen = 0,
763	 .mode = 0555,
764	 .child = hpet_root,
765	 },
766	{}
767};
768
769static struct ctl_table_header *sysctl_header;
770
771/*
772 * Adjustment for when arming the timer with
773 * initial conditions.  That is, main counter
774 * ticks expired before interrupts are enabled.
775 */
776#define	TICK_CALIBRATE	(1000UL)
777
778static unsigned long __hpet_calibrate(struct hpets *hpetp)
779{
780	struct hpet_timer __iomem *timer = NULL;
781	unsigned long t, m, count, i, flags, start;
782	struct hpet_dev *devp;
783	int j;
784	struct hpet __iomem *hpet;
785
786	for (j = 0, devp = hpetp->hp_dev; j < hpetp->hp_ntimer; j++, devp++)
787		if ((devp->hd_flags & HPET_OPEN) == 0) {
788			timer = devp->hd_timer;
789			break;
790		}
791
792	if (!timer)
793		return 0;
794
795	hpet = hpetp->hp_hpet;
796	t = read_counter(&timer->hpet_compare);
797
798	i = 0;
799	count = hpet_time_div(hpetp, TICK_CALIBRATE);
800
801	local_irq_save(flags);
802
803	start = read_counter(&hpet->hpet_mc);
804
805	do {
806		m = read_counter(&hpet->hpet_mc);
807		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
808	} while (i++, (m - start) < count);
809
810	local_irq_restore(flags);
811
812	return (m - start) / i;
813}
814
815static unsigned long hpet_calibrate(struct hpets *hpetp)
816{
817	unsigned long ret = ~0UL;
818	unsigned long tmp;
819
820	/*
821	 * Try to calibrate until return value becomes stable small value.
822	 * If SMI interruption occurs in calibration loop, the return value
823	 * will be big. This avoids its impact.
824	 */
825	for ( ; ; ) {
826		tmp = __hpet_calibrate(hpetp);
827		if (ret <= tmp)
828			break;
829		ret = tmp;
830	}
831
832	return ret;
833}
834
835int hpet_alloc(struct hpet_data *hdp)
836{
837	u64 cap, mcfg;
838	struct hpet_dev *devp;
839	u32 i, ntimer;
840	struct hpets *hpetp;
841	struct hpet __iomem *hpet;
842	static struct hpets *last;
843	unsigned long period;
844	unsigned long long temp;
845	u32 remainder;
846
847	/*
848	 * hpet_alloc can be called by platform dependent code.
849	 * If platform dependent code has allocated the hpet that
850	 * ACPI has also reported, then we catch it here.
851	 */
852	if (hpet_is_known(hdp)) {
853		printk(KERN_DEBUG "%s: duplicate HPET ignored\n",
854			__func__);
855		return 0;
856	}
857
858	hpetp = kzalloc(struct_size(hpetp, hp_dev, hdp->hd_nirqs),
859			GFP_KERNEL);
860
861	if (!hpetp)
862		return -ENOMEM;
863
864	hpetp->hp_which = hpet_nhpet++;
865	hpetp->hp_hpet = hdp->hd_address;
866	hpetp->hp_hpet_phys = hdp->hd_phys_address;
867
868	hpetp->hp_ntimer = hdp->hd_nirqs;
869
870	for (i = 0; i < hdp->hd_nirqs; i++)
871		hpetp->hp_dev[i].hd_hdwirq = hdp->hd_irq[i];
872
873	hpet = hpetp->hp_hpet;
874
875	cap = readq(&hpet->hpet_cap);
876
877	ntimer = ((cap & HPET_NUM_TIM_CAP_MASK) >> HPET_NUM_TIM_CAP_SHIFT) + 1;
878
879	if (hpetp->hp_ntimer != ntimer) {
880		printk(KERN_WARNING "hpet: number irqs doesn't agree"
881		       " with number of timers\n");
882		kfree(hpetp);
883		return -ENODEV;
884	}
885
886	if (last)
887		last->hp_next = hpetp;
888	else
889		hpets = hpetp;
890
891	last = hpetp;
892
893	period = (cap & HPET_COUNTER_CLK_PERIOD_MASK) >>
894		HPET_COUNTER_CLK_PERIOD_SHIFT; /* fs, 10^-15 */
895	temp = 1000000000000000uLL; /* 10^15 femtoseconds per second */
896	temp += period >> 1; /* round */
897	do_div(temp, period);
898	hpetp->hp_tick_freq = temp; /* ticks per second */
899
900	printk(KERN_INFO "hpet%d: at MMIO 0x%lx, IRQ%s",
901		hpetp->hp_which, hdp->hd_phys_address,
902		hpetp->hp_ntimer > 1 ? "s" : "");
903	for (i = 0; i < hpetp->hp_ntimer; i++)
904		printk(KERN_CONT "%s %d", i > 0 ? "," : "", hdp->hd_irq[i]);
905	printk(KERN_CONT "\n");
906
907	temp = hpetp->hp_tick_freq;
908	remainder = do_div(temp, 1000000);
909	printk(KERN_INFO
910		"hpet%u: %u comparators, %d-bit %u.%06u MHz counter\n",
911		hpetp->hp_which, hpetp->hp_ntimer,
912		cap & HPET_COUNTER_SIZE_MASK ? 64 : 32,
913		(unsigned) temp, remainder);
914
915	mcfg = readq(&hpet->hpet_config);
916	if ((mcfg & HPET_ENABLE_CNF_MASK) == 0) {
917		write_counter(0L, &hpet->hpet_mc);
918		mcfg |= HPET_ENABLE_CNF_MASK;
919		writeq(mcfg, &hpet->hpet_config);
920	}
921
922	for (i = 0, devp = hpetp->hp_dev; i < hpetp->hp_ntimer; i++, devp++) {
923		struct hpet_timer __iomem *timer;
924
925		timer = &hpet->hpet_timers[devp - hpetp->hp_dev];
926
927		devp->hd_hpets = hpetp;
928		devp->hd_hpet = hpet;
929		devp->hd_timer = timer;
930
931		/*
932		 * If the timer was reserved by platform code,
933		 * then make timer unavailable for opens.
934		 */
935		if (hdp->hd_state & (1 << i)) {
936			devp->hd_flags = HPET_OPEN;
937			continue;
938		}
939
940		init_waitqueue_head(&devp->hd_waitqueue);
941	}
942
943	hpetp->hp_delta = hpet_calibrate(hpetp);
944
945/* This clocksource driver currently only works on ia64 */
946#ifdef CONFIG_IA64
947	if (!hpet_clocksource) {
948		hpet_mctr = (void __iomem *)&hpetp->hp_hpet->hpet_mc;
949		clocksource_hpet.archdata.fsys_mmio = hpet_mctr;
950		clocksource_register_hz(&clocksource_hpet, hpetp->hp_tick_freq);
951		hpetp->hp_clocksource = &clocksource_hpet;
952		hpet_clocksource = &clocksource_hpet;
953	}
954#endif
955
956	return 0;
957}
958
959static acpi_status hpet_resources(struct acpi_resource *res, void *data)
960{
961	struct hpet_data *hdp;
962	acpi_status status;
963	struct acpi_resource_address64 addr;
964
965	hdp = data;
966
967	status = acpi_resource_to_address64(res, &addr);
968
969	if (ACPI_SUCCESS(status)) {
970		hdp->hd_phys_address = addr.address.minimum;
971		hdp->hd_address = ioremap(addr.address.minimum, addr.address.address_length);
972		if (!hdp->hd_address)
973			return AE_ERROR;
974
975		if (hpet_is_known(hdp)) {
976			iounmap(hdp->hd_address);
977			return AE_ALREADY_EXISTS;
978		}
979	} else if (res->type == ACPI_RESOURCE_TYPE_FIXED_MEMORY32) {
980		struct acpi_resource_fixed_memory32 *fixmem32;
981
982		fixmem32 = &res->data.fixed_memory32;
983
984		hdp->hd_phys_address = fixmem32->address;
985		hdp->hd_address = ioremap(fixmem32->address,
986						HPET_RANGE_SIZE);
987		if (!hdp->hd_address)
988			return AE_ERROR;
989
990		if (hpet_is_known(hdp)) {
991			iounmap(hdp->hd_address);
992			return AE_ALREADY_EXISTS;
993		}
994	} else if (res->type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ) {
995		struct acpi_resource_extended_irq *irqp;
996		int i, irq;
997
998		irqp = &res->data.extended_irq;
999
1000		for (i = 0; i < irqp->interrupt_count; i++) {
1001			if (hdp->hd_nirqs >= HPET_MAX_TIMERS)
1002				break;
1003
1004			irq = acpi_register_gsi(NULL, irqp->interrupts[i],
1005				      irqp->triggering, irqp->polarity);
1006			if (irq < 0)
1007				return AE_ERROR;
1008
1009			hdp->hd_irq[hdp->hd_nirqs] = irq;
1010			hdp->hd_nirqs++;
1011		}
1012	}
1013
1014	return AE_OK;
1015}
1016
1017static int hpet_acpi_add(struct acpi_device *device)
1018{
1019	acpi_status result;
1020	struct hpet_data data;
1021
1022	memset(&data, 0, sizeof(data));
1023
1024	result =
1025	    acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1026				hpet_resources, &data);
1027
1028	if (ACPI_FAILURE(result))
1029		return -ENODEV;
1030
1031	if (!data.hd_address || !data.hd_nirqs) {
1032		if (data.hd_address)
1033			iounmap(data.hd_address);
1034		printk("%s: no address or irqs in _CRS\n", __func__);
1035		return -ENODEV;
1036	}
1037
1038	return hpet_alloc(&data);
1039}
1040
1041static const struct acpi_device_id hpet_device_ids[] = {
1042	{"PNP0103", 0},
1043	{"", 0},
1044};
1045
1046static struct acpi_driver hpet_acpi_driver = {
1047	.name = "hpet",
1048	.ids = hpet_device_ids,
1049	.ops = {
1050		.add = hpet_acpi_add,
1051		},
1052};
1053
1054static struct miscdevice hpet_misc = { HPET_MINOR, "hpet", &hpet_fops };
1055
1056static int __init hpet_init(void)
1057{
1058	int result;
1059
1060	result = misc_register(&hpet_misc);
1061	if (result < 0)
1062		return -ENODEV;
1063
1064	sysctl_header = register_sysctl_table(dev_root);
1065
1066	result = acpi_bus_register_driver(&hpet_acpi_driver);
1067	if (result < 0) {
1068		if (sysctl_header)
1069			unregister_sysctl_table(sysctl_header);
1070		misc_deregister(&hpet_misc);
1071		return result;
1072	}
1073
1074	return 0;
1075}
1076device_initcall(hpet_init);
1077
1078/*
1079MODULE_AUTHOR("Bob Picco <Robert.Picco@hp.com>");
1080MODULE_LICENSE("GPL");
1081*/
1082