xref: /kernel/linux/linux-5.10/drivers/block/umem.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
4 *
5 * (C) 2001 San Mehat <nettwerk@valinux.com>
6 * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
7 * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
8 *
9 * This driver for the Micro Memory PCI Memory Module with Battery Backup
10 * is Copyright Micro Memory Inc 2001-2002.  All rights reserved.
11 *
12 * This driver provides a standard block device interface for Micro Memory(tm)
13 * PCI based RAM boards.
14 * 10/05/01: Phap Nguyen - Rebuilt the driver
15 * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
16 * 29oct2001:NeilBrown   - Use make_request_fn instead of request_fn
17 *                       - use stand disk partitioning (so fdisk works).
18 * 08nov2001:NeilBrown	 - change driver name from "mm" to "umem"
19 *			 - incorporate into main kernel
20 * 08apr2002:NeilBrown   - Move some of interrupt handle to tasklet
21 *			 - use spin_lock_bh instead of _irq
22 *			 - Never block on make_request.  queue
23 *			   bh's instead.
24 *			 - unregister umem from devfs at mod unload
25 *			 - Change version to 2.3
26 * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
27 * 07Jan2002: P. Nguyen  - Used PCI Memory Write & Invalidate for DMA
28 * 15May2002:NeilBrown   - convert to bio for 2.5
29 * 17May2002:NeilBrown   - remove init_mem initialisation.  Instead detect
30 *			 - a sequence of writes that cover the card, and
31 *			 - set initialised bit then.
32 */
33
34#undef DEBUG	/* #define DEBUG if you want debugging info (pr_debug) */
35#include <linux/fs.h>
36#include <linux/bio.h>
37#include <linux/kernel.h>
38#include <linux/mm.h>
39#include <linux/mman.h>
40#include <linux/gfp.h>
41#include <linux/ioctl.h>
42#include <linux/module.h>
43#include <linux/init.h>
44#include <linux/interrupt.h>
45#include <linux/timer.h>
46#include <linux/pci.h>
47#include <linux/dma-mapping.h>
48
49#include <linux/fcntl.h>        /* O_ACCMODE */
50#include <linux/hdreg.h>  /* HDIO_GETGEO */
51
52#include "umem.h"
53
54#include <linux/uaccess.h>
55#include <asm/io.h>
56
57#define MM_MAXCARDS 4
58#define MM_RAHEAD 2      /* two sectors */
59#define MM_BLKSIZE 1024  /* 1k blocks */
60#define MM_HARDSECT 512  /* 512-byte hardware sectors */
61#define MM_SHIFT 6       /* max 64 partitions on 4 cards  */
62
63/*
64 * Version Information
65 */
66
67#define DRIVER_NAME	"umem"
68#define DRIVER_VERSION	"v2.3"
69#define DRIVER_AUTHOR	"San Mehat, Johannes Erdfelt, NeilBrown"
70#define DRIVER_DESC	"Micro Memory(tm) PCI memory board block driver"
71
72static int debug;
73/* #define HW_TRACE(x)     writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
74#define HW_TRACE(x)
75
76#define DEBUG_LED_ON_TRANSFER	0x01
77#define DEBUG_BATTERY_POLLING	0x02
78
79module_param(debug, int, 0644);
80MODULE_PARM_DESC(debug, "Debug bitmask");
81
82static int pci_read_cmd = 0x0C;		/* Read Multiple */
83module_param(pci_read_cmd, int, 0);
84MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
85
86static int pci_write_cmd = 0x0F;	/* Write and Invalidate */
87module_param(pci_write_cmd, int, 0);
88MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
89
90static int pci_cmds;
91
92static int major_nr;
93
94#include <linux/blkdev.h>
95#include <linux/blkpg.h>
96
97struct cardinfo {
98	struct pci_dev	*dev;
99
100	unsigned char	__iomem *csr_remap;
101	unsigned int	mm_size;  /* size in kbytes */
102
103	unsigned int	init_size; /* initial segment, in sectors,
104				    * that we know to
105				    * have been written
106				    */
107	struct bio	*bio, *currentbio, **biotail;
108	struct bvec_iter current_iter;
109
110	struct request_queue *queue;
111
112	struct mm_page {
113		dma_addr_t		page_dma;
114		struct mm_dma_desc	*desc;
115		int	 		cnt, headcnt;
116		struct bio		*bio, **biotail;
117		struct bvec_iter	iter;
118	} mm_pages[2];
119#define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
120
121	int  Active, Ready;
122
123	struct tasklet_struct	tasklet;
124	unsigned int dma_status;
125
126	struct {
127		int		good;
128		int		warned;
129		unsigned long	last_change;
130	} battery[2];
131
132	spinlock_t 	lock;
133	int		check_batteries;
134
135	int		flags;
136};
137
138static struct cardinfo cards[MM_MAXCARDS];
139static struct timer_list battery_timer;
140
141static int num_cards;
142
143static struct gendisk *mm_gendisk[MM_MAXCARDS];
144
145static void check_batteries(struct cardinfo *card);
146
147static int get_userbit(struct cardinfo *card, int bit)
148{
149	unsigned char led;
150
151	led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
152	return led & bit;
153}
154
155static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
156{
157	unsigned char led;
158
159	led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
160	if (state)
161		led |= bit;
162	else
163		led &= ~bit;
164	writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
165
166	return 0;
167}
168
169/*
170 * NOTE: For the power LED, use the LED_POWER_* macros since they differ
171 */
172static void set_led(struct cardinfo *card, int shift, unsigned char state)
173{
174	unsigned char led;
175
176	led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
177	if (state == LED_FLIP)
178		led ^= (1<<shift);
179	else {
180		led &= ~(0x03 << shift);
181		led |= (state << shift);
182	}
183	writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
184
185}
186
187#ifdef MM_DIAG
188static void dump_regs(struct cardinfo *card)
189{
190	unsigned char *p;
191	int i, i1;
192
193	p = card->csr_remap;
194	for (i = 0; i < 8; i++) {
195		printk(KERN_DEBUG "%p   ", p);
196
197		for (i1 = 0; i1 < 16; i1++)
198			printk("%02x ", *p++);
199
200		printk("\n");
201	}
202}
203#endif
204
205static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
206{
207	dev_printk(KERN_DEBUG, &card->dev->dev, "DMAstat - ");
208	if (dmastat & DMASCR_ANY_ERR)
209		printk(KERN_CONT "ANY_ERR ");
210	if (dmastat & DMASCR_MBE_ERR)
211		printk(KERN_CONT "MBE_ERR ");
212	if (dmastat & DMASCR_PARITY_ERR_REP)
213		printk(KERN_CONT "PARITY_ERR_REP ");
214	if (dmastat & DMASCR_PARITY_ERR_DET)
215		printk(KERN_CONT "PARITY_ERR_DET ");
216	if (dmastat & DMASCR_SYSTEM_ERR_SIG)
217		printk(KERN_CONT "SYSTEM_ERR_SIG ");
218	if (dmastat & DMASCR_TARGET_ABT)
219		printk(KERN_CONT "TARGET_ABT ");
220	if (dmastat & DMASCR_MASTER_ABT)
221		printk(KERN_CONT "MASTER_ABT ");
222	if (dmastat & DMASCR_CHAIN_COMPLETE)
223		printk(KERN_CONT "CHAIN_COMPLETE ");
224	if (dmastat & DMASCR_DMA_COMPLETE)
225		printk(KERN_CONT "DMA_COMPLETE ");
226	printk("\n");
227}
228
229/*
230 * Theory of request handling
231 *
232 * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
233 * We have two pages of mm_dma_desc, holding about 64 descriptors
234 * each.  These are allocated at init time.
235 * One page is "Ready" and is either full, or can have request added.
236 * The other page might be "Active", which DMA is happening on it.
237 *
238 * Whenever IO on the active page completes, the Ready page is activated
239 * and the ex-Active page is clean out and made Ready.
240 * Otherwise the Ready page is only activated when it becomes full.
241 *
242 * If a request arrives while both pages a full, it is queued, and b_rdev is
243 * overloaded to record whether it was a read or a write.
244 *
245 * The interrupt handler only polls the device to clear the interrupt.
246 * The processing of the result is done in a tasklet.
247 */
248
249static void mm_start_io(struct cardinfo *card)
250{
251	/* we have the lock, we know there is
252	 * no IO active, and we know that card->Active
253	 * is set
254	 */
255	struct mm_dma_desc *desc;
256	struct mm_page *page;
257	int offset;
258
259	/* make the last descriptor end the chain */
260	page = &card->mm_pages[card->Active];
261	pr_debug("start_io: %d %d->%d\n",
262		card->Active, page->headcnt, page->cnt - 1);
263	desc = &page->desc[page->cnt-1];
264
265	desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
266	desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
267	desc->sem_control_bits = desc->control_bits;
268
269
270	if (debug & DEBUG_LED_ON_TRANSFER)
271		set_led(card, LED_REMOVE, LED_ON);
272
273	desc = &page->desc[page->headcnt];
274	writel(0, card->csr_remap + DMA_PCI_ADDR);
275	writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
276
277	writel(0, card->csr_remap + DMA_LOCAL_ADDR);
278	writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
279
280	writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
281	writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
282
283	writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
284	writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
285
286	offset = ((char *)desc) - ((char *)page->desc);
287	writel(cpu_to_le32((page->page_dma+offset) & 0xffffffff),
288	       card->csr_remap + DMA_DESCRIPTOR_ADDR);
289	/* Force the value to u64 before shifting otherwise >> 32 is undefined C
290	 * and on some ports will do nothing ! */
291	writel(cpu_to_le32(((u64)page->page_dma)>>32),
292	       card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
293
294	/* Go, go, go */
295	writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
296	       card->csr_remap + DMA_STATUS_CTRL);
297}
298
299static int add_bio(struct cardinfo *card);
300
301static void activate(struct cardinfo *card)
302{
303	/* if No page is Active, and Ready is
304	 * not empty, then switch Ready page
305	 * to active and start IO.
306	 * Then add any bh's that are available to Ready
307	 */
308
309	do {
310		while (add_bio(card))
311			;
312
313		if (card->Active == -1 &&
314		    card->mm_pages[card->Ready].cnt > 0) {
315			card->Active = card->Ready;
316			card->Ready = 1-card->Ready;
317			mm_start_io(card);
318		}
319
320	} while (card->Active == -1 && add_bio(card));
321}
322
323static inline void reset_page(struct mm_page *page)
324{
325	page->cnt = 0;
326	page->headcnt = 0;
327	page->bio = NULL;
328	page->biotail = &page->bio;
329}
330
331/*
332 * If there is room on Ready page, take
333 * one bh off list and add it.
334 * return 1 if there was room, else 0.
335 */
336static int add_bio(struct cardinfo *card)
337{
338	struct mm_page *p;
339	struct mm_dma_desc *desc;
340	dma_addr_t dma_handle;
341	int offset;
342	struct bio *bio;
343	struct bio_vec vec;
344
345	bio = card->currentbio;
346	if (!bio && card->bio) {
347		card->currentbio = card->bio;
348		card->current_iter = card->bio->bi_iter;
349		card->bio = card->bio->bi_next;
350		if (card->bio == NULL)
351			card->biotail = &card->bio;
352		card->currentbio->bi_next = NULL;
353		return 1;
354	}
355	if (!bio)
356		return 0;
357
358	if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
359		return 0;
360
361	vec = bio_iter_iovec(bio, card->current_iter);
362
363	dma_handle = dma_map_page(&card->dev->dev,
364				  vec.bv_page,
365				  vec.bv_offset,
366				  vec.bv_len,
367				  bio_op(bio) == REQ_OP_READ ?
368				  DMA_FROM_DEVICE : DMA_TO_DEVICE);
369
370	p = &card->mm_pages[card->Ready];
371	desc = &p->desc[p->cnt];
372	p->cnt++;
373	if (p->bio == NULL)
374		p->iter = card->current_iter;
375	if ((p->biotail) != &bio->bi_next) {
376		*(p->biotail) = bio;
377		p->biotail = &(bio->bi_next);
378		bio->bi_next = NULL;
379	}
380
381	desc->data_dma_handle = dma_handle;
382
383	desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
384	desc->local_addr = cpu_to_le64(card->current_iter.bi_sector << 9);
385	desc->transfer_size = cpu_to_le32(vec.bv_len);
386	offset = (((char *)&desc->sem_control_bits) - ((char *)p->desc));
387	desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
388	desc->zero1 = desc->zero2 = 0;
389	offset = (((char *)(desc+1)) - ((char *)p->desc));
390	desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
391	desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
392					 DMASCR_PARITY_INT_EN|
393					 DMASCR_CHAIN_EN |
394					 DMASCR_SEM_EN |
395					 pci_cmds);
396	if (bio_op(bio) == REQ_OP_WRITE)
397		desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
398	desc->sem_control_bits = desc->control_bits;
399
400
401	bio_advance_iter(bio, &card->current_iter, vec.bv_len);
402	if (!card->current_iter.bi_size)
403		card->currentbio = NULL;
404
405	return 1;
406}
407
408static void process_page(unsigned long data)
409{
410	/* check if any of the requests in the page are DMA_COMPLETE,
411	 * and deal with them appropriately.
412	 * If we find a descriptor without DMA_COMPLETE in the semaphore, then
413	 * dma must have hit an error on that descriptor, so use dma_status
414	 * instead and assume that all following descriptors must be re-tried.
415	 */
416	struct mm_page *page;
417	struct bio *return_bio = NULL;
418	struct cardinfo *card = (struct cardinfo *)data;
419	unsigned int dma_status = card->dma_status;
420
421	spin_lock(&card->lock);
422	if (card->Active < 0)
423		goto out_unlock;
424	page = &card->mm_pages[card->Active];
425
426	while (page->headcnt < page->cnt) {
427		struct bio *bio = page->bio;
428		struct mm_dma_desc *desc = &page->desc[page->headcnt];
429		int control = le32_to_cpu(desc->sem_control_bits);
430		int last = 0;
431		struct bio_vec vec;
432
433		if (!(control & DMASCR_DMA_COMPLETE)) {
434			control = dma_status;
435			last = 1;
436		}
437
438		page->headcnt++;
439		vec = bio_iter_iovec(bio, page->iter);
440		bio_advance_iter(bio, &page->iter, vec.bv_len);
441
442		if (!page->iter.bi_size) {
443			page->bio = bio->bi_next;
444			if (page->bio)
445				page->iter = page->bio->bi_iter;
446		}
447
448		dma_unmap_page(&card->dev->dev, desc->data_dma_handle,
449			       vec.bv_len,
450				 (control & DMASCR_TRANSFER_READ) ?
451				DMA_TO_DEVICE : DMA_FROM_DEVICE);
452		if (control & DMASCR_HARD_ERROR) {
453			/* error */
454			bio->bi_status = BLK_STS_IOERR;
455			dev_printk(KERN_WARNING, &card->dev->dev,
456				"I/O error on sector %d/%d\n",
457				le32_to_cpu(desc->local_addr)>>9,
458				le32_to_cpu(desc->transfer_size));
459			dump_dmastat(card, control);
460		} else if (op_is_write(bio_op(bio)) &&
461			   le32_to_cpu(desc->local_addr) >> 9 ==
462				card->init_size) {
463			card->init_size += le32_to_cpu(desc->transfer_size) >> 9;
464			if (card->init_size >> 1 >= card->mm_size) {
465				dev_printk(KERN_INFO, &card->dev->dev,
466					"memory now initialised\n");
467				set_userbit(card, MEMORY_INITIALIZED, 1);
468			}
469		}
470		if (bio != page->bio) {
471			bio->bi_next = return_bio;
472			return_bio = bio;
473		}
474
475		if (last)
476			break;
477	}
478
479	if (debug & DEBUG_LED_ON_TRANSFER)
480		set_led(card, LED_REMOVE, LED_OFF);
481
482	if (card->check_batteries) {
483		card->check_batteries = 0;
484		check_batteries(card);
485	}
486	if (page->headcnt >= page->cnt) {
487		reset_page(page);
488		card->Active = -1;
489		activate(card);
490	} else {
491		/* haven't finished with this one yet */
492		pr_debug("do some more\n");
493		mm_start_io(card);
494	}
495 out_unlock:
496	spin_unlock(&card->lock);
497
498	while (return_bio) {
499		struct bio *bio = return_bio;
500
501		return_bio = bio->bi_next;
502		bio->bi_next = NULL;
503		bio_endio(bio);
504	}
505}
506
507static void mm_unplug(struct blk_plug_cb *cb, bool from_schedule)
508{
509	struct cardinfo *card = cb->data;
510
511	spin_lock_irq(&card->lock);
512	activate(card);
513	spin_unlock_irq(&card->lock);
514	kfree(cb);
515}
516
517static int mm_check_plugged(struct cardinfo *card)
518{
519	return !!blk_check_plugged(mm_unplug, card, sizeof(struct blk_plug_cb));
520}
521
522static blk_qc_t mm_submit_bio(struct bio *bio)
523{
524	struct cardinfo *card = bio->bi_disk->private_data;
525
526	pr_debug("mm_make_request %llu %u\n",
527		 (unsigned long long)bio->bi_iter.bi_sector,
528		 bio->bi_iter.bi_size);
529
530	blk_queue_split(&bio);
531
532	spin_lock_irq(&card->lock);
533	*card->biotail = bio;
534	bio->bi_next = NULL;
535	card->biotail = &bio->bi_next;
536	if (op_is_sync(bio->bi_opf) || !mm_check_plugged(card))
537		activate(card);
538	spin_unlock_irq(&card->lock);
539
540	return BLK_QC_T_NONE;
541}
542
543static irqreturn_t mm_interrupt(int irq, void *__card)
544{
545	struct cardinfo *card = (struct cardinfo *) __card;
546	unsigned int dma_status;
547	unsigned short cfg_status;
548
549HW_TRACE(0x30);
550
551	dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
552
553	if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
554		/* interrupt wasn't for me ... */
555		return IRQ_NONE;
556	}
557
558	/* clear COMPLETION interrupts */
559	if (card->flags & UM_FLAG_NO_BYTE_STATUS)
560		writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
561		       card->csr_remap + DMA_STATUS_CTRL);
562	else
563		writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
564		       card->csr_remap + DMA_STATUS_CTRL + 2);
565
566	/* log errors and clear interrupt status */
567	if (dma_status & DMASCR_ANY_ERR) {
568		unsigned int	data_log1, data_log2;
569		unsigned int	addr_log1, addr_log2;
570		unsigned char	stat, count, syndrome, check;
571
572		stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
573
574		data_log1 = le32_to_cpu(readl(card->csr_remap +
575						ERROR_DATA_LOG));
576		data_log2 = le32_to_cpu(readl(card->csr_remap +
577						ERROR_DATA_LOG + 4));
578		addr_log1 = le32_to_cpu(readl(card->csr_remap +
579						ERROR_ADDR_LOG));
580		addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
581
582		count = readb(card->csr_remap + ERROR_COUNT);
583		syndrome = readb(card->csr_remap + ERROR_SYNDROME);
584		check = readb(card->csr_remap + ERROR_CHECK);
585
586		dump_dmastat(card, dma_status);
587
588		if (stat & 0x01)
589			dev_printk(KERN_ERR, &card->dev->dev,
590				"Memory access error detected (err count %d)\n",
591				count);
592		if (stat & 0x02)
593			dev_printk(KERN_ERR, &card->dev->dev,
594				"Multi-bit EDC error\n");
595
596		dev_printk(KERN_ERR, &card->dev->dev,
597			"Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
598			addr_log2, addr_log1, data_log2, data_log1);
599		dev_printk(KERN_ERR, &card->dev->dev,
600			"Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
601			check, syndrome);
602
603		writeb(0, card->csr_remap + ERROR_COUNT);
604	}
605
606	if (dma_status & DMASCR_PARITY_ERR_REP) {
607		dev_printk(KERN_ERR, &card->dev->dev,
608			"PARITY ERROR REPORTED\n");
609		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
610		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
611	}
612
613	if (dma_status & DMASCR_PARITY_ERR_DET) {
614		dev_printk(KERN_ERR, &card->dev->dev,
615			"PARITY ERROR DETECTED\n");
616		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
617		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
618	}
619
620	if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
621		dev_printk(KERN_ERR, &card->dev->dev, "SYSTEM ERROR\n");
622		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
623		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
624	}
625
626	if (dma_status & DMASCR_TARGET_ABT) {
627		dev_printk(KERN_ERR, &card->dev->dev, "TARGET ABORT\n");
628		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
629		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
630	}
631
632	if (dma_status & DMASCR_MASTER_ABT) {
633		dev_printk(KERN_ERR, &card->dev->dev, "MASTER ABORT\n");
634		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
635		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
636	}
637
638	/* and process the DMA descriptors */
639	card->dma_status = dma_status;
640	tasklet_schedule(&card->tasklet);
641
642HW_TRACE(0x36);
643
644	return IRQ_HANDLED;
645}
646
647/*
648 * If both batteries are good, no LED
649 * If either battery has been warned, solid LED
650 * If both batteries are bad, flash the LED quickly
651 * If either battery is bad, flash the LED semi quickly
652 */
653static void set_fault_to_battery_status(struct cardinfo *card)
654{
655	if (card->battery[0].good && card->battery[1].good)
656		set_led(card, LED_FAULT, LED_OFF);
657	else if (card->battery[0].warned || card->battery[1].warned)
658		set_led(card, LED_FAULT, LED_ON);
659	else if (!card->battery[0].good && !card->battery[1].good)
660		set_led(card, LED_FAULT, LED_FLASH_7_0);
661	else
662		set_led(card, LED_FAULT, LED_FLASH_3_5);
663}
664
665static void init_battery_timer(void);
666
667static int check_battery(struct cardinfo *card, int battery, int status)
668{
669	if (status != card->battery[battery].good) {
670		card->battery[battery].good = !card->battery[battery].good;
671		card->battery[battery].last_change = jiffies;
672
673		if (card->battery[battery].good) {
674			dev_printk(KERN_ERR, &card->dev->dev,
675				"Battery %d now good\n", battery + 1);
676			card->battery[battery].warned = 0;
677		} else
678			dev_printk(KERN_ERR, &card->dev->dev,
679				"Battery %d now FAILED\n", battery + 1);
680
681		return 1;
682	} else if (!card->battery[battery].good &&
683		   !card->battery[battery].warned &&
684		   time_after_eq(jiffies, card->battery[battery].last_change +
685				 (HZ * 60 * 60 * 5))) {
686		dev_printk(KERN_ERR, &card->dev->dev,
687			"Battery %d still FAILED after 5 hours\n", battery + 1);
688		card->battery[battery].warned = 1;
689
690		return 1;
691	}
692
693	return 0;
694}
695
696static void check_batteries(struct cardinfo *card)
697{
698	/* NOTE: this must *never* be called while the card
699	 * is doing (bus-to-card) DMA, or you will need the
700	 * reset switch
701	 */
702	unsigned char status;
703	int ret1, ret2;
704
705	status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
706	if (debug & DEBUG_BATTERY_POLLING)
707		dev_printk(KERN_DEBUG, &card->dev->dev,
708			"checking battery status, 1 = %s, 2 = %s\n",
709		       (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
710		       (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
711
712	ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
713	ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
714
715	if (ret1 || ret2)
716		set_fault_to_battery_status(card);
717}
718
719static void check_all_batteries(struct timer_list *unused)
720{
721	int i;
722
723	for (i = 0; i < num_cards; i++)
724		if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
725			struct cardinfo *card = &cards[i];
726			spin_lock_bh(&card->lock);
727			if (card->Active >= 0)
728				card->check_batteries = 1;
729			else
730				check_batteries(card);
731			spin_unlock_bh(&card->lock);
732		}
733
734	init_battery_timer();
735}
736
737static void init_battery_timer(void)
738{
739	timer_setup(&battery_timer, check_all_batteries, 0);
740	battery_timer.expires = jiffies + (HZ * 60);
741	add_timer(&battery_timer);
742}
743
744static void del_battery_timer(void)
745{
746	del_timer(&battery_timer);
747}
748
749/*
750 * Note no locks taken out here.  In a worst case scenario, we could drop
751 * a chunk of system memory.  But that should never happen, since validation
752 * happens at open or mount time, when locks are held.
753 *
754 *	That's crap, since doing that while some partitions are opened
755 * or mounted will give you really nasty results.
756 */
757static int mm_revalidate(struct gendisk *disk)
758{
759	struct cardinfo *card = disk->private_data;
760	set_capacity(disk, card->mm_size << 1);
761	return 0;
762}
763
764static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
765{
766	struct cardinfo *card = bdev->bd_disk->private_data;
767	int size = card->mm_size * (1024 / MM_HARDSECT);
768
769	/*
770	 * get geometry: we have to fake one...  trim the size to a
771	 * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
772	 * whatever cylinders.
773	 */
774	geo->heads     = 64;
775	geo->sectors   = 32;
776	geo->cylinders = size / (geo->heads * geo->sectors);
777	return 0;
778}
779
780static const struct block_device_operations mm_fops = {
781	.owner		= THIS_MODULE,
782	.submit_bio	= mm_submit_bio,
783	.getgeo		= mm_getgeo,
784	.revalidate_disk = mm_revalidate,
785};
786
787static int mm_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
788{
789	int ret;
790	struct cardinfo *card = &cards[num_cards];
791	unsigned char	mem_present;
792	unsigned char	batt_status;
793	unsigned int	saved_bar, data;
794	unsigned long	csr_base;
795	unsigned long	csr_len;
796	int		magic_number;
797	static int	printed_version;
798
799	if (!printed_version++)
800		printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
801
802	ret = pci_enable_device(dev);
803	if (ret)
804		return ret;
805
806	pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
807	pci_set_master(dev);
808
809	card->dev         = dev;
810
811	csr_base = pci_resource_start(dev, 0);
812	csr_len  = pci_resource_len(dev, 0);
813	if (!csr_base || !csr_len)
814		return -ENODEV;
815
816	dev_printk(KERN_INFO, &dev->dev,
817	  "Micro Memory(tm) controller found (PCI Mem Module (Battery Backup))\n");
818
819	if (dma_set_mask(&dev->dev, DMA_BIT_MASK(64)) &&
820	    dma_set_mask(&dev->dev, DMA_BIT_MASK(32))) {
821		dev_printk(KERN_WARNING, &dev->dev, "NO suitable DMA found\n");
822		return  -ENOMEM;
823	}
824
825	ret = pci_request_regions(dev, DRIVER_NAME);
826	if (ret) {
827		dev_printk(KERN_ERR, &card->dev->dev,
828			"Unable to request memory region\n");
829		goto failed_req_csr;
830	}
831
832	card->csr_remap = ioremap(csr_base, csr_len);
833	if (!card->csr_remap) {
834		dev_printk(KERN_ERR, &card->dev->dev,
835			"Unable to remap memory region\n");
836		ret = -ENOMEM;
837
838		goto failed_remap_csr;
839	}
840
841	dev_printk(KERN_INFO, &card->dev->dev,
842		"CSR 0x%08lx -> 0x%p (0x%lx)\n",
843	       csr_base, card->csr_remap, csr_len);
844
845	switch (card->dev->device) {
846	case 0x5415:
847		card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
848		magic_number = 0x59;
849		break;
850
851	case 0x5425:
852		card->flags |= UM_FLAG_NO_BYTE_STATUS;
853		magic_number = 0x5C;
854		break;
855
856	case 0x6155:
857		card->flags |= UM_FLAG_NO_BYTE_STATUS |
858				UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
859		magic_number = 0x99;
860		break;
861
862	default:
863		magic_number = 0x100;
864		break;
865	}
866
867	if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
868		dev_printk(KERN_ERR, &card->dev->dev, "Magic number invalid\n");
869		ret = -ENOMEM;
870		goto failed_magic;
871	}
872
873	card->mm_pages[0].desc = dma_alloc_coherent(&card->dev->dev,
874			PAGE_SIZE * 2, &card->mm_pages[0].page_dma, GFP_KERNEL);
875	card->mm_pages[1].desc = dma_alloc_coherent(&card->dev->dev,
876			PAGE_SIZE * 2, &card->mm_pages[1].page_dma, GFP_KERNEL);
877	if (card->mm_pages[0].desc == NULL ||
878	    card->mm_pages[1].desc == NULL) {
879		dev_printk(KERN_ERR, &card->dev->dev, "alloc failed\n");
880		ret = -ENOMEM;
881		goto failed_alloc;
882	}
883	reset_page(&card->mm_pages[0]);
884	reset_page(&card->mm_pages[1]);
885	card->Ready = 0;	/* page 0 is ready */
886	card->Active = -1;	/* no page is active */
887	card->bio = NULL;
888	card->biotail = &card->bio;
889	spin_lock_init(&card->lock);
890
891	card->queue = blk_alloc_queue(NUMA_NO_NODE);
892	if (!card->queue) {
893		ret = -ENOMEM;
894		goto failed_alloc;
895	}
896
897	tasklet_init(&card->tasklet, process_page, (unsigned long)card);
898
899	card->check_batteries = 0;
900
901	mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
902	switch (mem_present) {
903	case MEM_128_MB:
904		card->mm_size = 1024 * 128;
905		break;
906	case MEM_256_MB:
907		card->mm_size = 1024 * 256;
908		break;
909	case MEM_512_MB:
910		card->mm_size = 1024 * 512;
911		break;
912	case MEM_1_GB:
913		card->mm_size = 1024 * 1024;
914		break;
915	case MEM_2_GB:
916		card->mm_size = 1024 * 2048;
917		break;
918	default:
919		card->mm_size = 0;
920		break;
921	}
922
923	/* Clear the LED's we control */
924	set_led(card, LED_REMOVE, LED_OFF);
925	set_led(card, LED_FAULT, LED_OFF);
926
927	batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
928
929	card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
930	card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
931	card->battery[0].last_change = card->battery[1].last_change = jiffies;
932
933	if (card->flags & UM_FLAG_NO_BATT)
934		dev_printk(KERN_INFO, &card->dev->dev,
935			"Size %d KB\n", card->mm_size);
936	else {
937		dev_printk(KERN_INFO, &card->dev->dev,
938			"Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
939		       card->mm_size,
940		       batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled",
941		       card->battery[0].good ? "OK" : "FAILURE",
942		       batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled",
943		       card->battery[1].good ? "OK" : "FAILURE");
944
945		set_fault_to_battery_status(card);
946	}
947
948	pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
949	data = 0xffffffff;
950	pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
951	pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
952	pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
953	data &= 0xfffffff0;
954	data = ~data;
955	data += 1;
956
957	if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, DRIVER_NAME,
958			card)) {
959		dev_printk(KERN_ERR, &card->dev->dev,
960			"Unable to allocate IRQ\n");
961		ret = -ENODEV;
962		goto failed_req_irq;
963	}
964
965	dev_printk(KERN_INFO, &card->dev->dev,
966		"Window size %d bytes, IRQ %d\n", data, dev->irq);
967
968	pci_set_drvdata(dev, card);
969
970	if (pci_write_cmd != 0x0F) 	/* If not Memory Write & Invalidate */
971		pci_write_cmd = 0x07;	/* then Memory Write command */
972
973	if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
974		unsigned short cfg_command;
975		pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
976		cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
977		pci_write_config_word(dev, PCI_COMMAND, cfg_command);
978	}
979	pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
980
981	num_cards++;
982
983	if (!get_userbit(card, MEMORY_INITIALIZED)) {
984		dev_printk(KERN_INFO, &card->dev->dev,
985		  "memory NOT initialized. Consider over-writing whole device.\n");
986		card->init_size = 0;
987	} else {
988		dev_printk(KERN_INFO, &card->dev->dev,
989			"memory already initialized\n");
990		card->init_size = card->mm_size;
991	}
992
993	/* Enable ECC */
994	writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
995
996	return 0;
997
998 failed_req_irq:
999 failed_alloc:
1000	if (card->mm_pages[0].desc)
1001		dma_free_coherent(&card->dev->dev, PAGE_SIZE * 2,
1002				  card->mm_pages[0].desc,
1003				  card->mm_pages[0].page_dma);
1004	if (card->mm_pages[1].desc)
1005		dma_free_coherent(&card->dev->dev, PAGE_SIZE * 2,
1006				  card->mm_pages[1].desc,
1007				  card->mm_pages[1].page_dma);
1008 failed_magic:
1009	iounmap(card->csr_remap);
1010 failed_remap_csr:
1011	pci_release_regions(dev);
1012 failed_req_csr:
1013
1014	return ret;
1015}
1016
1017static void mm_pci_remove(struct pci_dev *dev)
1018{
1019	struct cardinfo *card = pci_get_drvdata(dev);
1020
1021	tasklet_kill(&card->tasklet);
1022	free_irq(dev->irq, card);
1023	iounmap(card->csr_remap);
1024
1025	if (card->mm_pages[0].desc)
1026		dma_free_coherent(&card->dev->dev, PAGE_SIZE * 2,
1027				    card->mm_pages[0].desc,
1028				    card->mm_pages[0].page_dma);
1029	if (card->mm_pages[1].desc)
1030		dma_free_coherent(&card->dev->dev, PAGE_SIZE * 2,
1031				    card->mm_pages[1].desc,
1032				    card->mm_pages[1].page_dma);
1033	blk_cleanup_queue(card->queue);
1034
1035	pci_release_regions(dev);
1036	pci_disable_device(dev);
1037}
1038
1039static const struct pci_device_id mm_pci_ids[] = {
1040    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5415CN)},
1041    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5425CN)},
1042    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_6155)},
1043    {
1044	.vendor	=	0x8086,
1045	.device	=	0xB555,
1046	.subvendor =	0x1332,
1047	.subdevice =	0x5460,
1048	.class =	0x050000,
1049	.class_mask =	0,
1050    }, { /* end: all zeroes */ }
1051};
1052
1053MODULE_DEVICE_TABLE(pci, mm_pci_ids);
1054
1055static struct pci_driver mm_pci_driver = {
1056	.name		= DRIVER_NAME,
1057	.id_table	= mm_pci_ids,
1058	.probe		= mm_pci_probe,
1059	.remove		= mm_pci_remove,
1060};
1061
1062static int __init mm_init(void)
1063{
1064	int retval, i;
1065	int err;
1066
1067	retval = pci_register_driver(&mm_pci_driver);
1068	if (retval)
1069		return -ENOMEM;
1070
1071	err = major_nr = register_blkdev(0, DRIVER_NAME);
1072	if (err < 0) {
1073		pci_unregister_driver(&mm_pci_driver);
1074		return -EIO;
1075	}
1076
1077	for (i = 0; i < num_cards; i++) {
1078		mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
1079		if (!mm_gendisk[i])
1080			goto out;
1081	}
1082
1083	for (i = 0; i < num_cards; i++) {
1084		struct gendisk *disk = mm_gendisk[i];
1085		sprintf(disk->disk_name, "umem%c", 'a'+i);
1086		spin_lock_init(&cards[i].lock);
1087		disk->major = major_nr;
1088		disk->first_minor  = i << MM_SHIFT;
1089		disk->fops = &mm_fops;
1090		disk->private_data = &cards[i];
1091		disk->queue = cards[i].queue;
1092		set_capacity(disk, cards[i].mm_size << 1);
1093		add_disk(disk);
1094	}
1095
1096	init_battery_timer();
1097	printk(KERN_INFO "MM: desc_per_page = %ld\n", DESC_PER_PAGE);
1098/* printk("mm_init: Done. 10-19-01 9:00\n"); */
1099	return 0;
1100
1101out:
1102	pci_unregister_driver(&mm_pci_driver);
1103	unregister_blkdev(major_nr, DRIVER_NAME);
1104	while (i--)
1105		put_disk(mm_gendisk[i]);
1106	return -ENOMEM;
1107}
1108
1109static void __exit mm_cleanup(void)
1110{
1111	int i;
1112
1113	del_battery_timer();
1114
1115	for (i = 0; i < num_cards ; i++) {
1116		del_gendisk(mm_gendisk[i]);
1117		put_disk(mm_gendisk[i]);
1118	}
1119
1120	pci_unregister_driver(&mm_pci_driver);
1121
1122	unregister_blkdev(major_nr, DRIVER_NAME);
1123}
1124
1125module_init(mm_init);
1126module_exit(mm_cleanup);
1127
1128MODULE_AUTHOR(DRIVER_AUTHOR);
1129MODULE_DESCRIPTION(DRIVER_DESC);
1130MODULE_LICENSE("GPL");
1131