xref: /kernel/linux/linux-5.10/drivers/block/rbd.c (revision 8c2ecf20)
1
2/*
3   rbd.c -- Export ceph rados objects as a Linux block device
4
5
6   based on drivers/block/osdblk.c:
7
8   Copyright 2009 Red Hat, Inc.
9
10   This program is free software; you can redistribute it and/or modify
11   it under the terms of the GNU General Public License as published by
12   the Free Software Foundation.
13
14   This program is distributed in the hope that it will be useful,
15   but WITHOUT ANY WARRANTY; without even the implied warranty of
16   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17   GNU General Public License for more details.
18
19   You should have received a copy of the GNU General Public License
20   along with this program; see the file COPYING.  If not, write to
21   the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25   For usage instructions, please refer to:
26
27                 Documentation/ABI/testing/sysfs-bus-rbd
28
29 */
30
31#include <linux/ceph/libceph.h>
32#include <linux/ceph/osd_client.h>
33#include <linux/ceph/mon_client.h>
34#include <linux/ceph/cls_lock_client.h>
35#include <linux/ceph/striper.h>
36#include <linux/ceph/decode.h>
37#include <linux/fs_parser.h>
38#include <linux/bsearch.h>
39
40#include <linux/kernel.h>
41#include <linux/device.h>
42#include <linux/module.h>
43#include <linux/blk-mq.h>
44#include <linux/fs.h>
45#include <linux/blkdev.h>
46#include <linux/slab.h>
47#include <linux/idr.h>
48#include <linux/workqueue.h>
49
50#include "rbd_types.h"
51
52#define RBD_DEBUG	/* Activate rbd_assert() calls */
53
54/*
55 * Increment the given counter and return its updated value.
56 * If the counter is already 0 it will not be incremented.
57 * If the counter is already at its maximum value returns
58 * -EINVAL without updating it.
59 */
60static int atomic_inc_return_safe(atomic_t *v)
61{
62	unsigned int counter;
63
64	counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65	if (counter <= (unsigned int)INT_MAX)
66		return (int)counter;
67
68	atomic_dec(v);
69
70	return -EINVAL;
71}
72
73/* Decrement the counter.  Return the resulting value, or -EINVAL */
74static int atomic_dec_return_safe(atomic_t *v)
75{
76	int counter;
77
78	counter = atomic_dec_return(v);
79	if (counter >= 0)
80		return counter;
81
82	atomic_inc(v);
83
84	return -EINVAL;
85}
86
87#define RBD_DRV_NAME "rbd"
88
89#define RBD_MINORS_PER_MAJOR		256
90#define RBD_SINGLE_MAJOR_PART_SHIFT	4
91
92#define RBD_MAX_PARENT_CHAIN_LEN	16
93
94#define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
95#define RBD_MAX_SNAP_NAME_LEN	\
96			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97
98#define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
99
100#define RBD_SNAP_HEAD_NAME	"-"
101
102#define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
103
104/* This allows a single page to hold an image name sent by OSD */
105#define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
106#define RBD_IMAGE_ID_LEN_MAX	64
107
108#define RBD_OBJ_PREFIX_LEN_MAX	64
109
110#define RBD_NOTIFY_TIMEOUT	5	/* seconds */
111#define RBD_RETRY_DELAY		msecs_to_jiffies(1000)
112
113/* Feature bits */
114
115#define RBD_FEATURE_LAYERING		(1ULL<<0)
116#define RBD_FEATURE_STRIPINGV2		(1ULL<<1)
117#define RBD_FEATURE_EXCLUSIVE_LOCK	(1ULL<<2)
118#define RBD_FEATURE_OBJECT_MAP		(1ULL<<3)
119#define RBD_FEATURE_FAST_DIFF		(1ULL<<4)
120#define RBD_FEATURE_DEEP_FLATTEN	(1ULL<<5)
121#define RBD_FEATURE_DATA_POOL		(1ULL<<7)
122#define RBD_FEATURE_OPERATIONS		(1ULL<<8)
123
124#define RBD_FEATURES_ALL	(RBD_FEATURE_LAYERING |		\
125				 RBD_FEATURE_STRIPINGV2 |	\
126				 RBD_FEATURE_EXCLUSIVE_LOCK |	\
127				 RBD_FEATURE_OBJECT_MAP |	\
128				 RBD_FEATURE_FAST_DIFF |	\
129				 RBD_FEATURE_DEEP_FLATTEN |	\
130				 RBD_FEATURE_DATA_POOL |	\
131				 RBD_FEATURE_OPERATIONS)
132
133/* Features supported by this (client software) implementation. */
134
135#define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
136
137/*
138 * An RBD device name will be "rbd#", where the "rbd" comes from
139 * RBD_DRV_NAME above, and # is a unique integer identifier.
140 */
141#define DEV_NAME_LEN		32
142
143/*
144 * block device image metadata (in-memory version)
145 */
146struct rbd_image_header {
147	/* These six fields never change for a given rbd image */
148	char *object_prefix;
149	__u8 obj_order;
150	u64 stripe_unit;
151	u64 stripe_count;
152	s64 data_pool_id;
153	u64 features;		/* Might be changeable someday? */
154
155	/* The remaining fields need to be updated occasionally */
156	u64 image_size;
157	struct ceph_snap_context *snapc;
158	char *snap_names;	/* format 1 only */
159	u64 *snap_sizes;	/* format 1 only */
160};
161
162/*
163 * An rbd image specification.
164 *
165 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166 * identify an image.  Each rbd_dev structure includes a pointer to
167 * an rbd_spec structure that encapsulates this identity.
168 *
169 * Each of the id's in an rbd_spec has an associated name.  For a
170 * user-mapped image, the names are supplied and the id's associated
171 * with them are looked up.  For a layered image, a parent image is
172 * defined by the tuple, and the names are looked up.
173 *
174 * An rbd_dev structure contains a parent_spec pointer which is
175 * non-null if the image it represents is a child in a layered
176 * image.  This pointer will refer to the rbd_spec structure used
177 * by the parent rbd_dev for its own identity (i.e., the structure
178 * is shared between the parent and child).
179 *
180 * Since these structures are populated once, during the discovery
181 * phase of image construction, they are effectively immutable so
182 * we make no effort to synchronize access to them.
183 *
184 * Note that code herein does not assume the image name is known (it
185 * could be a null pointer).
186 */
187struct rbd_spec {
188	u64		pool_id;
189	const char	*pool_name;
190	const char	*pool_ns;	/* NULL if default, never "" */
191
192	const char	*image_id;
193	const char	*image_name;
194
195	u64		snap_id;
196	const char	*snap_name;
197
198	struct kref	kref;
199};
200
201/*
202 * an instance of the client.  multiple devices may share an rbd client.
203 */
204struct rbd_client {
205	struct ceph_client	*client;
206	struct kref		kref;
207	struct list_head	node;
208};
209
210struct pending_result {
211	int			result;		/* first nonzero result */
212	int			num_pending;
213};
214
215struct rbd_img_request;
216
217enum obj_request_type {
218	OBJ_REQUEST_NODATA = 1,
219	OBJ_REQUEST_BIO,	/* pointer into provided bio (list) */
220	OBJ_REQUEST_BVECS,	/* pointer into provided bio_vec array */
221	OBJ_REQUEST_OWN_BVECS,	/* private bio_vec array, doesn't own pages */
222};
223
224enum obj_operation_type {
225	OBJ_OP_READ = 1,
226	OBJ_OP_WRITE,
227	OBJ_OP_DISCARD,
228	OBJ_OP_ZEROOUT,
229};
230
231#define RBD_OBJ_FLAG_DELETION			(1U << 0)
232#define RBD_OBJ_FLAG_COPYUP_ENABLED		(1U << 1)
233#define RBD_OBJ_FLAG_COPYUP_ZEROS		(1U << 2)
234#define RBD_OBJ_FLAG_MAY_EXIST			(1U << 3)
235#define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT	(1U << 4)
236
237enum rbd_obj_read_state {
238	RBD_OBJ_READ_START = 1,
239	RBD_OBJ_READ_OBJECT,
240	RBD_OBJ_READ_PARENT,
241};
242
243/*
244 * Writes go through the following state machine to deal with
245 * layering:
246 *
247 *            . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
248 *            .                 |                                    .
249 *            .                 v                                    .
250 *            .    RBD_OBJ_WRITE_READ_FROM_PARENT. . .               .
251 *            .                 |                    .               .
252 *            .                 v                    v (deep-copyup  .
253 *    (image  .   RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC   .  not needed)  .
254 * flattened) v                 |                    .               .
255 *            .                 v                    .               .
256 *            . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . .      (copyup  .
257 *                              |                        not needed) v
258 *                              v                                    .
259 *                            done . . . . . . . . . . . . . . . . . .
260 *                              ^
261 *                              |
262 *                     RBD_OBJ_WRITE_FLAT
263 *
264 * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265 * assert_exists guard is needed or not (in some cases it's not needed
266 * even if there is a parent).
267 */
268enum rbd_obj_write_state {
269	RBD_OBJ_WRITE_START = 1,
270	RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271	RBD_OBJ_WRITE_OBJECT,
272	__RBD_OBJ_WRITE_COPYUP,
273	RBD_OBJ_WRITE_COPYUP,
274	RBD_OBJ_WRITE_POST_OBJECT_MAP,
275};
276
277enum rbd_obj_copyup_state {
278	RBD_OBJ_COPYUP_START = 1,
279	RBD_OBJ_COPYUP_READ_PARENT,
280	__RBD_OBJ_COPYUP_OBJECT_MAPS,
281	RBD_OBJ_COPYUP_OBJECT_MAPS,
282	__RBD_OBJ_COPYUP_WRITE_OBJECT,
283	RBD_OBJ_COPYUP_WRITE_OBJECT,
284};
285
286struct rbd_obj_request {
287	struct ceph_object_extent ex;
288	unsigned int		flags;	/* RBD_OBJ_FLAG_* */
289	union {
290		enum rbd_obj_read_state	 read_state;	/* for reads */
291		enum rbd_obj_write_state write_state;	/* for writes */
292	};
293
294	struct rbd_img_request	*img_request;
295	struct ceph_file_extent	*img_extents;
296	u32			num_img_extents;
297
298	union {
299		struct ceph_bio_iter	bio_pos;
300		struct {
301			struct ceph_bvec_iter	bvec_pos;
302			u32			bvec_count;
303			u32			bvec_idx;
304		};
305	};
306
307	enum rbd_obj_copyup_state copyup_state;
308	struct bio_vec		*copyup_bvecs;
309	u32			copyup_bvec_count;
310
311	struct list_head	osd_reqs;	/* w/ r_private_item */
312
313	struct mutex		state_mutex;
314	struct pending_result	pending;
315	struct kref		kref;
316};
317
318enum img_req_flags {
319	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
320	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
321};
322
323enum rbd_img_state {
324	RBD_IMG_START = 1,
325	RBD_IMG_EXCLUSIVE_LOCK,
326	__RBD_IMG_OBJECT_REQUESTS,
327	RBD_IMG_OBJECT_REQUESTS,
328};
329
330struct rbd_img_request {
331	struct rbd_device	*rbd_dev;
332	enum obj_operation_type	op_type;
333	enum obj_request_type	data_type;
334	unsigned long		flags;
335	enum rbd_img_state	state;
336	union {
337		u64			snap_id;	/* for reads */
338		struct ceph_snap_context *snapc;	/* for writes */
339	};
340	struct rbd_obj_request	*obj_request;	/* obj req initiator */
341
342	struct list_head	lock_item;
343	struct list_head	object_extents;	/* obj_req.ex structs */
344
345	struct mutex		state_mutex;
346	struct pending_result	pending;
347	struct work_struct	work;
348	int			work_result;
349};
350
351#define for_each_obj_request(ireq, oreq) \
352	list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
353#define for_each_obj_request_safe(ireq, oreq, n) \
354	list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
355
356enum rbd_watch_state {
357	RBD_WATCH_STATE_UNREGISTERED,
358	RBD_WATCH_STATE_REGISTERED,
359	RBD_WATCH_STATE_ERROR,
360};
361
362enum rbd_lock_state {
363	RBD_LOCK_STATE_UNLOCKED,
364	RBD_LOCK_STATE_LOCKED,
365	RBD_LOCK_STATE_RELEASING,
366};
367
368/* WatchNotify::ClientId */
369struct rbd_client_id {
370	u64 gid;
371	u64 handle;
372};
373
374struct rbd_mapping {
375	u64                     size;
376};
377
378/*
379 * a single device
380 */
381struct rbd_device {
382	int			dev_id;		/* blkdev unique id */
383
384	int			major;		/* blkdev assigned major */
385	int			minor;
386	struct gendisk		*disk;		/* blkdev's gendisk and rq */
387
388	u32			image_format;	/* Either 1 or 2 */
389	struct rbd_client	*rbd_client;
390
391	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
392
393	spinlock_t		lock;		/* queue, flags, open_count */
394
395	struct rbd_image_header	header;
396	unsigned long		flags;		/* possibly lock protected */
397	struct rbd_spec		*spec;
398	struct rbd_options	*opts;
399	char			*config_info;	/* add{,_single_major} string */
400
401	struct ceph_object_id	header_oid;
402	struct ceph_object_locator header_oloc;
403
404	struct ceph_file_layout	layout;		/* used for all rbd requests */
405
406	struct mutex		watch_mutex;
407	enum rbd_watch_state	watch_state;
408	struct ceph_osd_linger_request *watch_handle;
409	u64			watch_cookie;
410	struct delayed_work	watch_dwork;
411
412	struct rw_semaphore	lock_rwsem;
413	enum rbd_lock_state	lock_state;
414	char			lock_cookie[32];
415	struct rbd_client_id	owner_cid;
416	struct work_struct	acquired_lock_work;
417	struct work_struct	released_lock_work;
418	struct delayed_work	lock_dwork;
419	struct work_struct	unlock_work;
420	spinlock_t		lock_lists_lock;
421	struct list_head	acquiring_list;
422	struct list_head	running_list;
423	struct completion	acquire_wait;
424	int			acquire_err;
425	struct completion	releasing_wait;
426
427	spinlock_t		object_map_lock;
428	u8			*object_map;
429	u64			object_map_size;	/* in objects */
430	u64			object_map_flags;
431
432	struct workqueue_struct	*task_wq;
433
434	struct rbd_spec		*parent_spec;
435	u64			parent_overlap;
436	atomic_t		parent_ref;
437	struct rbd_device	*parent;
438
439	/* Block layer tags. */
440	struct blk_mq_tag_set	tag_set;
441
442	/* protects updating the header */
443	struct rw_semaphore     header_rwsem;
444
445	struct rbd_mapping	mapping;
446
447	struct list_head	node;
448
449	/* sysfs related */
450	struct device		dev;
451	unsigned long		open_count;	/* protected by lock */
452};
453
454/*
455 * Flag bits for rbd_dev->flags:
456 * - REMOVING (which is coupled with rbd_dev->open_count) is protected
457 *   by rbd_dev->lock
458 */
459enum rbd_dev_flags {
460	RBD_DEV_FLAG_EXISTS,	/* rbd_dev_device_setup() ran */
461	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
462	RBD_DEV_FLAG_READONLY,  /* -o ro or snapshot */
463};
464
465static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
466
467static LIST_HEAD(rbd_dev_list);    /* devices */
468static DEFINE_SPINLOCK(rbd_dev_list_lock);
469
470static LIST_HEAD(rbd_client_list);		/* clients */
471static DEFINE_SPINLOCK(rbd_client_list_lock);
472
473/* Slab caches for frequently-allocated structures */
474
475static struct kmem_cache	*rbd_img_request_cache;
476static struct kmem_cache	*rbd_obj_request_cache;
477
478static int rbd_major;
479static DEFINE_IDA(rbd_dev_id_ida);
480
481static struct workqueue_struct *rbd_wq;
482
483static struct ceph_snap_context rbd_empty_snapc = {
484	.nref = REFCOUNT_INIT(1),
485};
486
487/*
488 * single-major requires >= 0.75 version of userspace rbd utility.
489 */
490static bool single_major = true;
491module_param(single_major, bool, 0444);
492MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
493
494static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count);
495static ssize_t remove_store(struct bus_type *bus, const char *buf,
496			    size_t count);
497static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
498				      size_t count);
499static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
500					 size_t count);
501static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
502
503static int rbd_dev_id_to_minor(int dev_id)
504{
505	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
506}
507
508static int minor_to_rbd_dev_id(int minor)
509{
510	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
511}
512
513static bool rbd_is_ro(struct rbd_device *rbd_dev)
514{
515	return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
516}
517
518static bool rbd_is_snap(struct rbd_device *rbd_dev)
519{
520	return rbd_dev->spec->snap_id != CEPH_NOSNAP;
521}
522
523static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
524{
525	lockdep_assert_held(&rbd_dev->lock_rwsem);
526
527	return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
528	       rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
529}
530
531static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
532{
533	bool is_lock_owner;
534
535	down_read(&rbd_dev->lock_rwsem);
536	is_lock_owner = __rbd_is_lock_owner(rbd_dev);
537	up_read(&rbd_dev->lock_rwsem);
538	return is_lock_owner;
539}
540
541static ssize_t supported_features_show(struct bus_type *bus, char *buf)
542{
543	return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
544}
545
546static BUS_ATTR_WO(add);
547static BUS_ATTR_WO(remove);
548static BUS_ATTR_WO(add_single_major);
549static BUS_ATTR_WO(remove_single_major);
550static BUS_ATTR_RO(supported_features);
551
552static struct attribute *rbd_bus_attrs[] = {
553	&bus_attr_add.attr,
554	&bus_attr_remove.attr,
555	&bus_attr_add_single_major.attr,
556	&bus_attr_remove_single_major.attr,
557	&bus_attr_supported_features.attr,
558	NULL,
559};
560
561static umode_t rbd_bus_is_visible(struct kobject *kobj,
562				  struct attribute *attr, int index)
563{
564	if (!single_major &&
565	    (attr == &bus_attr_add_single_major.attr ||
566	     attr == &bus_attr_remove_single_major.attr))
567		return 0;
568
569	return attr->mode;
570}
571
572static const struct attribute_group rbd_bus_group = {
573	.attrs = rbd_bus_attrs,
574	.is_visible = rbd_bus_is_visible,
575};
576__ATTRIBUTE_GROUPS(rbd_bus);
577
578static struct bus_type rbd_bus_type = {
579	.name		= "rbd",
580	.bus_groups	= rbd_bus_groups,
581};
582
583static void rbd_root_dev_release(struct device *dev)
584{
585}
586
587static struct device rbd_root_dev = {
588	.init_name =    "rbd",
589	.release =      rbd_root_dev_release,
590};
591
592static __printf(2, 3)
593void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
594{
595	struct va_format vaf;
596	va_list args;
597
598	va_start(args, fmt);
599	vaf.fmt = fmt;
600	vaf.va = &args;
601
602	if (!rbd_dev)
603		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
604	else if (rbd_dev->disk)
605		printk(KERN_WARNING "%s: %s: %pV\n",
606			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
607	else if (rbd_dev->spec && rbd_dev->spec->image_name)
608		printk(KERN_WARNING "%s: image %s: %pV\n",
609			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
610	else if (rbd_dev->spec && rbd_dev->spec->image_id)
611		printk(KERN_WARNING "%s: id %s: %pV\n",
612			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
613	else	/* punt */
614		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
615			RBD_DRV_NAME, rbd_dev, &vaf);
616	va_end(args);
617}
618
619#ifdef RBD_DEBUG
620#define rbd_assert(expr)						\
621		if (unlikely(!(expr))) {				\
622			printk(KERN_ERR "\nAssertion failure in %s() "	\
623						"at line %d:\n\n"	\
624					"\trbd_assert(%s);\n\n",	\
625					__func__, __LINE__, #expr);	\
626			BUG();						\
627		}
628#else /* !RBD_DEBUG */
629#  define rbd_assert(expr)	((void) 0)
630#endif /* !RBD_DEBUG */
631
632static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
633
634static int rbd_dev_refresh(struct rbd_device *rbd_dev);
635static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev,
636				     struct rbd_image_header *header);
637static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
638					u64 snap_id);
639static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
640				u8 *order, u64 *snap_size);
641static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
642
643static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
644static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
645
646/*
647 * Return true if nothing else is pending.
648 */
649static bool pending_result_dec(struct pending_result *pending, int *result)
650{
651	rbd_assert(pending->num_pending > 0);
652
653	if (*result && !pending->result)
654		pending->result = *result;
655	if (--pending->num_pending)
656		return false;
657
658	*result = pending->result;
659	return true;
660}
661
662static int rbd_open(struct block_device *bdev, fmode_t mode)
663{
664	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
665	bool removing = false;
666
667	spin_lock_irq(&rbd_dev->lock);
668	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
669		removing = true;
670	else
671		rbd_dev->open_count++;
672	spin_unlock_irq(&rbd_dev->lock);
673	if (removing)
674		return -ENOENT;
675
676	(void) get_device(&rbd_dev->dev);
677
678	return 0;
679}
680
681static void rbd_release(struct gendisk *disk, fmode_t mode)
682{
683	struct rbd_device *rbd_dev = disk->private_data;
684	unsigned long open_count_before;
685
686	spin_lock_irq(&rbd_dev->lock);
687	open_count_before = rbd_dev->open_count--;
688	spin_unlock_irq(&rbd_dev->lock);
689	rbd_assert(open_count_before > 0);
690
691	put_device(&rbd_dev->dev);
692}
693
694static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
695{
696	int ro;
697
698	if (get_user(ro, (int __user *)arg))
699		return -EFAULT;
700
701	/*
702	 * Both images mapped read-only and snapshots can't be marked
703	 * read-write.
704	 */
705	if (!ro) {
706		if (rbd_is_ro(rbd_dev))
707			return -EROFS;
708
709		rbd_assert(!rbd_is_snap(rbd_dev));
710	}
711
712	/* Let blkdev_roset() handle it */
713	return -ENOTTY;
714}
715
716static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
717			unsigned int cmd, unsigned long arg)
718{
719	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
720	int ret;
721
722	switch (cmd) {
723	case BLKROSET:
724		ret = rbd_ioctl_set_ro(rbd_dev, arg);
725		break;
726	default:
727		ret = -ENOTTY;
728	}
729
730	return ret;
731}
732
733#ifdef CONFIG_COMPAT
734static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
735				unsigned int cmd, unsigned long arg)
736{
737	return rbd_ioctl(bdev, mode, cmd, arg);
738}
739#endif /* CONFIG_COMPAT */
740
741static const struct block_device_operations rbd_bd_ops = {
742	.owner			= THIS_MODULE,
743	.open			= rbd_open,
744	.release		= rbd_release,
745	.ioctl			= rbd_ioctl,
746#ifdef CONFIG_COMPAT
747	.compat_ioctl		= rbd_compat_ioctl,
748#endif
749};
750
751/*
752 * Initialize an rbd client instance.  Success or not, this function
753 * consumes ceph_opts.  Caller holds client_mutex.
754 */
755static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
756{
757	struct rbd_client *rbdc;
758	int ret = -ENOMEM;
759
760	dout("%s:\n", __func__);
761	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
762	if (!rbdc)
763		goto out_opt;
764
765	kref_init(&rbdc->kref);
766	INIT_LIST_HEAD(&rbdc->node);
767
768	rbdc->client = ceph_create_client(ceph_opts, rbdc);
769	if (IS_ERR(rbdc->client))
770		goto out_rbdc;
771	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
772
773	ret = ceph_open_session(rbdc->client);
774	if (ret < 0)
775		goto out_client;
776
777	spin_lock(&rbd_client_list_lock);
778	list_add_tail(&rbdc->node, &rbd_client_list);
779	spin_unlock(&rbd_client_list_lock);
780
781	dout("%s: rbdc %p\n", __func__, rbdc);
782
783	return rbdc;
784out_client:
785	ceph_destroy_client(rbdc->client);
786out_rbdc:
787	kfree(rbdc);
788out_opt:
789	if (ceph_opts)
790		ceph_destroy_options(ceph_opts);
791	dout("%s: error %d\n", __func__, ret);
792
793	return ERR_PTR(ret);
794}
795
796static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
797{
798	kref_get(&rbdc->kref);
799
800	return rbdc;
801}
802
803/*
804 * Find a ceph client with specific addr and configuration.  If
805 * found, bump its reference count.
806 */
807static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
808{
809	struct rbd_client *client_node;
810	bool found = false;
811
812	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
813		return NULL;
814
815	spin_lock(&rbd_client_list_lock);
816	list_for_each_entry(client_node, &rbd_client_list, node) {
817		if (!ceph_compare_options(ceph_opts, client_node->client)) {
818			__rbd_get_client(client_node);
819
820			found = true;
821			break;
822		}
823	}
824	spin_unlock(&rbd_client_list_lock);
825
826	return found ? client_node : NULL;
827}
828
829/*
830 * (Per device) rbd map options
831 */
832enum {
833	Opt_queue_depth,
834	Opt_alloc_size,
835	Opt_lock_timeout,
836	/* int args above */
837	Opt_pool_ns,
838	Opt_compression_hint,
839	/* string args above */
840	Opt_read_only,
841	Opt_read_write,
842	Opt_lock_on_read,
843	Opt_exclusive,
844	Opt_notrim,
845};
846
847enum {
848	Opt_compression_hint_none,
849	Opt_compression_hint_compressible,
850	Opt_compression_hint_incompressible,
851};
852
853static const struct constant_table rbd_param_compression_hint[] = {
854	{"none",		Opt_compression_hint_none},
855	{"compressible",	Opt_compression_hint_compressible},
856	{"incompressible",	Opt_compression_hint_incompressible},
857	{}
858};
859
860static const struct fs_parameter_spec rbd_parameters[] = {
861	fsparam_u32	("alloc_size",			Opt_alloc_size),
862	fsparam_enum	("compression_hint",		Opt_compression_hint,
863			 rbd_param_compression_hint),
864	fsparam_flag	("exclusive",			Opt_exclusive),
865	fsparam_flag	("lock_on_read",		Opt_lock_on_read),
866	fsparam_u32	("lock_timeout",		Opt_lock_timeout),
867	fsparam_flag	("notrim",			Opt_notrim),
868	fsparam_string	("_pool_ns",			Opt_pool_ns),
869	fsparam_u32	("queue_depth",			Opt_queue_depth),
870	fsparam_flag	("read_only",			Opt_read_only),
871	fsparam_flag	("read_write",			Opt_read_write),
872	fsparam_flag	("ro",				Opt_read_only),
873	fsparam_flag	("rw",				Opt_read_write),
874	{}
875};
876
877struct rbd_options {
878	int	queue_depth;
879	int	alloc_size;
880	unsigned long	lock_timeout;
881	bool	read_only;
882	bool	lock_on_read;
883	bool	exclusive;
884	bool	trim;
885
886	u32 alloc_hint_flags;  /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */
887};
888
889#define RBD_QUEUE_DEPTH_DEFAULT	BLKDEV_MAX_RQ
890#define RBD_ALLOC_SIZE_DEFAULT	(64 * 1024)
891#define RBD_LOCK_TIMEOUT_DEFAULT 0  /* no timeout */
892#define RBD_READ_ONLY_DEFAULT	false
893#define RBD_LOCK_ON_READ_DEFAULT false
894#define RBD_EXCLUSIVE_DEFAULT	false
895#define RBD_TRIM_DEFAULT	true
896
897struct rbd_parse_opts_ctx {
898	struct rbd_spec		*spec;
899	struct ceph_options	*copts;
900	struct rbd_options	*opts;
901};
902
903static char* obj_op_name(enum obj_operation_type op_type)
904{
905	switch (op_type) {
906	case OBJ_OP_READ:
907		return "read";
908	case OBJ_OP_WRITE:
909		return "write";
910	case OBJ_OP_DISCARD:
911		return "discard";
912	case OBJ_OP_ZEROOUT:
913		return "zeroout";
914	default:
915		return "???";
916	}
917}
918
919/*
920 * Destroy ceph client
921 *
922 * Caller must hold rbd_client_list_lock.
923 */
924static void rbd_client_release(struct kref *kref)
925{
926	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
927
928	dout("%s: rbdc %p\n", __func__, rbdc);
929	spin_lock(&rbd_client_list_lock);
930	list_del(&rbdc->node);
931	spin_unlock(&rbd_client_list_lock);
932
933	ceph_destroy_client(rbdc->client);
934	kfree(rbdc);
935}
936
937/*
938 * Drop reference to ceph client node. If it's not referenced anymore, release
939 * it.
940 */
941static void rbd_put_client(struct rbd_client *rbdc)
942{
943	if (rbdc)
944		kref_put(&rbdc->kref, rbd_client_release);
945}
946
947/*
948 * Get a ceph client with specific addr and configuration, if one does
949 * not exist create it.  Either way, ceph_opts is consumed by this
950 * function.
951 */
952static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
953{
954	struct rbd_client *rbdc;
955	int ret;
956
957	mutex_lock(&client_mutex);
958	rbdc = rbd_client_find(ceph_opts);
959	if (rbdc) {
960		ceph_destroy_options(ceph_opts);
961
962		/*
963		 * Using an existing client.  Make sure ->pg_pools is up to
964		 * date before we look up the pool id in do_rbd_add().
965		 */
966		ret = ceph_wait_for_latest_osdmap(rbdc->client,
967					rbdc->client->options->mount_timeout);
968		if (ret) {
969			rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
970			rbd_put_client(rbdc);
971			rbdc = ERR_PTR(ret);
972		}
973	} else {
974		rbdc = rbd_client_create(ceph_opts);
975	}
976	mutex_unlock(&client_mutex);
977
978	return rbdc;
979}
980
981static bool rbd_image_format_valid(u32 image_format)
982{
983	return image_format == 1 || image_format == 2;
984}
985
986static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
987{
988	size_t size;
989	u32 snap_count;
990
991	/* The header has to start with the magic rbd header text */
992	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
993		return false;
994
995	/* The bio layer requires at least sector-sized I/O */
996
997	if (ondisk->options.order < SECTOR_SHIFT)
998		return false;
999
1000	/* If we use u64 in a few spots we may be able to loosen this */
1001
1002	if (ondisk->options.order > 8 * sizeof (int) - 1)
1003		return false;
1004
1005	/*
1006	 * The size of a snapshot header has to fit in a size_t, and
1007	 * that limits the number of snapshots.
1008	 */
1009	snap_count = le32_to_cpu(ondisk->snap_count);
1010	size = SIZE_MAX - sizeof (struct ceph_snap_context);
1011	if (snap_count > size / sizeof (__le64))
1012		return false;
1013
1014	/*
1015	 * Not only that, but the size of the entire the snapshot
1016	 * header must also be representable in a size_t.
1017	 */
1018	size -= snap_count * sizeof (__le64);
1019	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
1020		return false;
1021
1022	return true;
1023}
1024
1025/*
1026 * returns the size of an object in the image
1027 */
1028static u32 rbd_obj_bytes(struct rbd_image_header *header)
1029{
1030	return 1U << header->obj_order;
1031}
1032
1033static void rbd_init_layout(struct rbd_device *rbd_dev)
1034{
1035	if (rbd_dev->header.stripe_unit == 0 ||
1036	    rbd_dev->header.stripe_count == 0) {
1037		rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
1038		rbd_dev->header.stripe_count = 1;
1039	}
1040
1041	rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
1042	rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
1043	rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
1044	rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
1045			  rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
1046	RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
1047}
1048
1049static void rbd_image_header_cleanup(struct rbd_image_header *header)
1050{
1051	kfree(header->object_prefix);
1052	ceph_put_snap_context(header->snapc);
1053	kfree(header->snap_sizes);
1054	kfree(header->snap_names);
1055
1056	memset(header, 0, sizeof(*header));
1057}
1058
1059/*
1060 * Fill an rbd image header with information from the given format 1
1061 * on-disk header.
1062 */
1063static int rbd_header_from_disk(struct rbd_image_header *header,
1064				struct rbd_image_header_ondisk *ondisk,
1065				bool first_time)
1066{
1067	struct ceph_snap_context *snapc;
1068	char *object_prefix = NULL;
1069	char *snap_names = NULL;
1070	u64 *snap_sizes = NULL;
1071	u32 snap_count;
1072	int ret = -ENOMEM;
1073	u32 i;
1074
1075	/* Allocate this now to avoid having to handle failure below */
1076
1077	if (first_time) {
1078		object_prefix = kstrndup(ondisk->object_prefix,
1079					 sizeof(ondisk->object_prefix),
1080					 GFP_KERNEL);
1081		if (!object_prefix)
1082			return -ENOMEM;
1083	}
1084
1085	/* Allocate the snapshot context and fill it in */
1086
1087	snap_count = le32_to_cpu(ondisk->snap_count);
1088	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1089	if (!snapc)
1090		goto out_err;
1091	snapc->seq = le64_to_cpu(ondisk->snap_seq);
1092	if (snap_count) {
1093		struct rbd_image_snap_ondisk *snaps;
1094		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1095
1096		/* We'll keep a copy of the snapshot names... */
1097
1098		if (snap_names_len > (u64)SIZE_MAX)
1099			goto out_2big;
1100		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1101		if (!snap_names)
1102			goto out_err;
1103
1104		/* ...as well as the array of their sizes. */
1105		snap_sizes = kmalloc_array(snap_count,
1106					   sizeof(*header->snap_sizes),
1107					   GFP_KERNEL);
1108		if (!snap_sizes)
1109			goto out_err;
1110
1111		/*
1112		 * Copy the names, and fill in each snapshot's id
1113		 * and size.
1114		 *
1115		 * Note that rbd_dev_v1_header_info() guarantees the
1116		 * ondisk buffer we're working with has
1117		 * snap_names_len bytes beyond the end of the
1118		 * snapshot id array, this memcpy() is safe.
1119		 */
1120		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1121		snaps = ondisk->snaps;
1122		for (i = 0; i < snap_count; i++) {
1123			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1124			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1125		}
1126	}
1127
1128	/* We won't fail any more, fill in the header */
1129
1130	if (first_time) {
1131		header->object_prefix = object_prefix;
1132		header->obj_order = ondisk->options.order;
1133	}
1134
1135	/* The remaining fields always get updated (when we refresh) */
1136
1137	header->image_size = le64_to_cpu(ondisk->image_size);
1138	header->snapc = snapc;
1139	header->snap_names = snap_names;
1140	header->snap_sizes = snap_sizes;
1141
1142	return 0;
1143out_2big:
1144	ret = -EIO;
1145out_err:
1146	kfree(snap_sizes);
1147	kfree(snap_names);
1148	ceph_put_snap_context(snapc);
1149	kfree(object_prefix);
1150
1151	return ret;
1152}
1153
1154static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1155{
1156	const char *snap_name;
1157
1158	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1159
1160	/* Skip over names until we find the one we are looking for */
1161
1162	snap_name = rbd_dev->header.snap_names;
1163	while (which--)
1164		snap_name += strlen(snap_name) + 1;
1165
1166	return kstrdup(snap_name, GFP_KERNEL);
1167}
1168
1169/*
1170 * Snapshot id comparison function for use with qsort()/bsearch().
1171 * Note that result is for snapshots in *descending* order.
1172 */
1173static int snapid_compare_reverse(const void *s1, const void *s2)
1174{
1175	u64 snap_id1 = *(u64 *)s1;
1176	u64 snap_id2 = *(u64 *)s2;
1177
1178	if (snap_id1 < snap_id2)
1179		return 1;
1180	return snap_id1 == snap_id2 ? 0 : -1;
1181}
1182
1183/*
1184 * Search a snapshot context to see if the given snapshot id is
1185 * present.
1186 *
1187 * Returns the position of the snapshot id in the array if it's found,
1188 * or BAD_SNAP_INDEX otherwise.
1189 *
1190 * Note: The snapshot array is in kept sorted (by the osd) in
1191 * reverse order, highest snapshot id first.
1192 */
1193static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1194{
1195	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1196	u64 *found;
1197
1198	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1199				sizeof (snap_id), snapid_compare_reverse);
1200
1201	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1202}
1203
1204static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1205					u64 snap_id)
1206{
1207	u32 which;
1208	const char *snap_name;
1209
1210	which = rbd_dev_snap_index(rbd_dev, snap_id);
1211	if (which == BAD_SNAP_INDEX)
1212		return ERR_PTR(-ENOENT);
1213
1214	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1215	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1216}
1217
1218static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1219{
1220	if (snap_id == CEPH_NOSNAP)
1221		return RBD_SNAP_HEAD_NAME;
1222
1223	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1224	if (rbd_dev->image_format == 1)
1225		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1226
1227	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1228}
1229
1230static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1231				u64 *snap_size)
1232{
1233	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1234	if (snap_id == CEPH_NOSNAP) {
1235		*snap_size = rbd_dev->header.image_size;
1236	} else if (rbd_dev->image_format == 1) {
1237		u32 which;
1238
1239		which = rbd_dev_snap_index(rbd_dev, snap_id);
1240		if (which == BAD_SNAP_INDEX)
1241			return -ENOENT;
1242
1243		*snap_size = rbd_dev->header.snap_sizes[which];
1244	} else {
1245		u64 size = 0;
1246		int ret;
1247
1248		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1249		if (ret)
1250			return ret;
1251
1252		*snap_size = size;
1253	}
1254	return 0;
1255}
1256
1257static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1258{
1259	u64 snap_id = rbd_dev->spec->snap_id;
1260	u64 size = 0;
1261	int ret;
1262
1263	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1264	if (ret)
1265		return ret;
1266
1267	rbd_dev->mapping.size = size;
1268	return 0;
1269}
1270
1271static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1272{
1273	rbd_dev->mapping.size = 0;
1274}
1275
1276static void zero_bvec(struct bio_vec *bv)
1277{
1278	void *buf;
1279	unsigned long flags;
1280
1281	buf = bvec_kmap_irq(bv, &flags);
1282	memset(buf, 0, bv->bv_len);
1283	flush_dcache_page(bv->bv_page);
1284	bvec_kunmap_irq(buf, &flags);
1285}
1286
1287static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1288{
1289	struct ceph_bio_iter it = *bio_pos;
1290
1291	ceph_bio_iter_advance(&it, off);
1292	ceph_bio_iter_advance_step(&it, bytes, ({
1293		zero_bvec(&bv);
1294	}));
1295}
1296
1297static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1298{
1299	struct ceph_bvec_iter it = *bvec_pos;
1300
1301	ceph_bvec_iter_advance(&it, off);
1302	ceph_bvec_iter_advance_step(&it, bytes, ({
1303		zero_bvec(&bv);
1304	}));
1305}
1306
1307/*
1308 * Zero a range in @obj_req data buffer defined by a bio (list) or
1309 * (private) bio_vec array.
1310 *
1311 * @off is relative to the start of the data buffer.
1312 */
1313static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1314			       u32 bytes)
1315{
1316	dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1317
1318	switch (obj_req->img_request->data_type) {
1319	case OBJ_REQUEST_BIO:
1320		zero_bios(&obj_req->bio_pos, off, bytes);
1321		break;
1322	case OBJ_REQUEST_BVECS:
1323	case OBJ_REQUEST_OWN_BVECS:
1324		zero_bvecs(&obj_req->bvec_pos, off, bytes);
1325		break;
1326	default:
1327		BUG();
1328	}
1329}
1330
1331static void rbd_obj_request_destroy(struct kref *kref);
1332static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1333{
1334	rbd_assert(obj_request != NULL);
1335	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1336		kref_read(&obj_request->kref));
1337	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1338}
1339
1340static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1341					struct rbd_obj_request *obj_request)
1342{
1343	rbd_assert(obj_request->img_request == NULL);
1344
1345	/* Image request now owns object's original reference */
1346	obj_request->img_request = img_request;
1347	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1348}
1349
1350static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1351					struct rbd_obj_request *obj_request)
1352{
1353	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1354	list_del(&obj_request->ex.oe_item);
1355	rbd_assert(obj_request->img_request == img_request);
1356	rbd_obj_request_put(obj_request);
1357}
1358
1359static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1360{
1361	struct rbd_obj_request *obj_req = osd_req->r_priv;
1362
1363	dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1364	     __func__, osd_req, obj_req, obj_req->ex.oe_objno,
1365	     obj_req->ex.oe_off, obj_req->ex.oe_len);
1366	ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1367}
1368
1369/*
1370 * The default/initial value for all image request flags is 0.  Each
1371 * is conditionally set to 1 at image request initialization time
1372 * and currently never change thereafter.
1373 */
1374static void img_request_layered_set(struct rbd_img_request *img_request)
1375{
1376	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1377}
1378
1379static bool img_request_layered_test(struct rbd_img_request *img_request)
1380{
1381	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1382}
1383
1384static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1385{
1386	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1387
1388	return !obj_req->ex.oe_off &&
1389	       obj_req->ex.oe_len == rbd_dev->layout.object_size;
1390}
1391
1392static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1393{
1394	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1395
1396	return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1397					rbd_dev->layout.object_size;
1398}
1399
1400/*
1401 * Must be called after rbd_obj_calc_img_extents().
1402 */
1403static void rbd_obj_set_copyup_enabled(struct rbd_obj_request *obj_req)
1404{
1405	rbd_assert(obj_req->img_request->snapc);
1406
1407	if (obj_req->img_request->op_type == OBJ_OP_DISCARD) {
1408		dout("%s %p objno %llu discard\n", __func__, obj_req,
1409		     obj_req->ex.oe_objno);
1410		return;
1411	}
1412
1413	if (!obj_req->num_img_extents) {
1414		dout("%s %p objno %llu not overlapping\n", __func__, obj_req,
1415		     obj_req->ex.oe_objno);
1416		return;
1417	}
1418
1419	if (rbd_obj_is_entire(obj_req) &&
1420	    !obj_req->img_request->snapc->num_snaps) {
1421		dout("%s %p objno %llu entire\n", __func__, obj_req,
1422		     obj_req->ex.oe_objno);
1423		return;
1424	}
1425
1426	obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
1427}
1428
1429static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1430{
1431	return ceph_file_extents_bytes(obj_req->img_extents,
1432				       obj_req->num_img_extents);
1433}
1434
1435static bool rbd_img_is_write(struct rbd_img_request *img_req)
1436{
1437	switch (img_req->op_type) {
1438	case OBJ_OP_READ:
1439		return false;
1440	case OBJ_OP_WRITE:
1441	case OBJ_OP_DISCARD:
1442	case OBJ_OP_ZEROOUT:
1443		return true;
1444	default:
1445		BUG();
1446	}
1447}
1448
1449static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1450{
1451	struct rbd_obj_request *obj_req = osd_req->r_priv;
1452	int result;
1453
1454	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1455	     osd_req->r_result, obj_req);
1456
1457	/*
1458	 * Writes aren't allowed to return a data payload.  In some
1459	 * guarded write cases (e.g. stat + zero on an empty object)
1460	 * a stat response makes it through, but we don't care.
1461	 */
1462	if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request))
1463		result = 0;
1464	else
1465		result = osd_req->r_result;
1466
1467	rbd_obj_handle_request(obj_req, result);
1468}
1469
1470static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1471{
1472	struct rbd_obj_request *obj_request = osd_req->r_priv;
1473	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1474	struct ceph_options *opt = rbd_dev->rbd_client->client->options;
1475
1476	osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica;
1477	osd_req->r_snapid = obj_request->img_request->snap_id;
1478}
1479
1480static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1481{
1482	struct rbd_obj_request *obj_request = osd_req->r_priv;
1483
1484	osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1485	ktime_get_real_ts64(&osd_req->r_mtime);
1486	osd_req->r_data_offset = obj_request->ex.oe_off;
1487}
1488
1489static struct ceph_osd_request *
1490__rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1491			  struct ceph_snap_context *snapc, int num_ops)
1492{
1493	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1494	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1495	struct ceph_osd_request *req;
1496	const char *name_format = rbd_dev->image_format == 1 ?
1497				      RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1498	int ret;
1499
1500	req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1501	if (!req)
1502		return ERR_PTR(-ENOMEM);
1503
1504	list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
1505	req->r_callback = rbd_osd_req_callback;
1506	req->r_priv = obj_req;
1507
1508	/*
1509	 * Data objects may be stored in a separate pool, but always in
1510	 * the same namespace in that pool as the header in its pool.
1511	 */
1512	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1513	req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1514
1515	ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1516			       rbd_dev->header.object_prefix,
1517			       obj_req->ex.oe_objno);
1518	if (ret)
1519		return ERR_PTR(ret);
1520
1521	return req;
1522}
1523
1524static struct ceph_osd_request *
1525rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1526{
1527	rbd_assert(obj_req->img_request->snapc);
1528	return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc,
1529					 num_ops);
1530}
1531
1532static struct rbd_obj_request *rbd_obj_request_create(void)
1533{
1534	struct rbd_obj_request *obj_request;
1535
1536	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1537	if (!obj_request)
1538		return NULL;
1539
1540	ceph_object_extent_init(&obj_request->ex);
1541	INIT_LIST_HEAD(&obj_request->osd_reqs);
1542	mutex_init(&obj_request->state_mutex);
1543	kref_init(&obj_request->kref);
1544
1545	dout("%s %p\n", __func__, obj_request);
1546	return obj_request;
1547}
1548
1549static void rbd_obj_request_destroy(struct kref *kref)
1550{
1551	struct rbd_obj_request *obj_request;
1552	struct ceph_osd_request *osd_req;
1553	u32 i;
1554
1555	obj_request = container_of(kref, struct rbd_obj_request, kref);
1556
1557	dout("%s: obj %p\n", __func__, obj_request);
1558
1559	while (!list_empty(&obj_request->osd_reqs)) {
1560		osd_req = list_first_entry(&obj_request->osd_reqs,
1561				    struct ceph_osd_request, r_private_item);
1562		list_del_init(&osd_req->r_private_item);
1563		ceph_osdc_put_request(osd_req);
1564	}
1565
1566	switch (obj_request->img_request->data_type) {
1567	case OBJ_REQUEST_NODATA:
1568	case OBJ_REQUEST_BIO:
1569	case OBJ_REQUEST_BVECS:
1570		break;		/* Nothing to do */
1571	case OBJ_REQUEST_OWN_BVECS:
1572		kfree(obj_request->bvec_pos.bvecs);
1573		break;
1574	default:
1575		BUG();
1576	}
1577
1578	kfree(obj_request->img_extents);
1579	if (obj_request->copyup_bvecs) {
1580		for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1581			if (obj_request->copyup_bvecs[i].bv_page)
1582				__free_page(obj_request->copyup_bvecs[i].bv_page);
1583		}
1584		kfree(obj_request->copyup_bvecs);
1585	}
1586
1587	kmem_cache_free(rbd_obj_request_cache, obj_request);
1588}
1589
1590/* It's OK to call this for a device with no parent */
1591
1592static void rbd_spec_put(struct rbd_spec *spec);
1593static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1594{
1595	rbd_dev_remove_parent(rbd_dev);
1596	rbd_spec_put(rbd_dev->parent_spec);
1597	rbd_dev->parent_spec = NULL;
1598	rbd_dev->parent_overlap = 0;
1599}
1600
1601/*
1602 * Parent image reference counting is used to determine when an
1603 * image's parent fields can be safely torn down--after there are no
1604 * more in-flight requests to the parent image.  When the last
1605 * reference is dropped, cleaning them up is safe.
1606 */
1607static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1608{
1609	int counter;
1610
1611	if (!rbd_dev->parent_spec)
1612		return;
1613
1614	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1615	if (counter > 0)
1616		return;
1617
1618	/* Last reference; clean up parent data structures */
1619
1620	if (!counter)
1621		rbd_dev_unparent(rbd_dev);
1622	else
1623		rbd_warn(rbd_dev, "parent reference underflow");
1624}
1625
1626/*
1627 * If an image has a non-zero parent overlap, get a reference to its
1628 * parent.
1629 *
1630 * Returns true if the rbd device has a parent with a non-zero
1631 * overlap and a reference for it was successfully taken, or
1632 * false otherwise.
1633 */
1634static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1635{
1636	int counter = 0;
1637
1638	if (!rbd_dev->parent_spec)
1639		return false;
1640
1641	if (rbd_dev->parent_overlap)
1642		counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1643
1644	if (counter < 0)
1645		rbd_warn(rbd_dev, "parent reference overflow");
1646
1647	return counter > 0;
1648}
1649
1650static void rbd_img_request_init(struct rbd_img_request *img_request,
1651				 struct rbd_device *rbd_dev,
1652				 enum obj_operation_type op_type)
1653{
1654	memset(img_request, 0, sizeof(*img_request));
1655
1656	img_request->rbd_dev = rbd_dev;
1657	img_request->op_type = op_type;
1658
1659	INIT_LIST_HEAD(&img_request->lock_item);
1660	INIT_LIST_HEAD(&img_request->object_extents);
1661	mutex_init(&img_request->state_mutex);
1662}
1663
1664/*
1665 * Only snap_id is captured here, for reads.  For writes, snapshot
1666 * context is captured in rbd_img_object_requests() after exclusive
1667 * lock is ensured to be held.
1668 */
1669static void rbd_img_capture_header(struct rbd_img_request *img_req)
1670{
1671	struct rbd_device *rbd_dev = img_req->rbd_dev;
1672
1673	lockdep_assert_held(&rbd_dev->header_rwsem);
1674
1675	if (!rbd_img_is_write(img_req))
1676		img_req->snap_id = rbd_dev->spec->snap_id;
1677
1678	if (rbd_dev_parent_get(rbd_dev))
1679		img_request_layered_set(img_req);
1680}
1681
1682static void rbd_img_request_destroy(struct rbd_img_request *img_request)
1683{
1684	struct rbd_obj_request *obj_request;
1685	struct rbd_obj_request *next_obj_request;
1686
1687	dout("%s: img %p\n", __func__, img_request);
1688
1689	WARN_ON(!list_empty(&img_request->lock_item));
1690	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1691		rbd_img_obj_request_del(img_request, obj_request);
1692
1693	if (img_request_layered_test(img_request))
1694		rbd_dev_parent_put(img_request->rbd_dev);
1695
1696	if (rbd_img_is_write(img_request))
1697		ceph_put_snap_context(img_request->snapc);
1698
1699	if (test_bit(IMG_REQ_CHILD, &img_request->flags))
1700		kmem_cache_free(rbd_img_request_cache, img_request);
1701}
1702
1703#define BITS_PER_OBJ	2
1704#define OBJS_PER_BYTE	(BITS_PER_BYTE / BITS_PER_OBJ)
1705#define OBJ_MASK	((1 << BITS_PER_OBJ) - 1)
1706
1707static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1708				   u64 *index, u8 *shift)
1709{
1710	u32 off;
1711
1712	rbd_assert(objno < rbd_dev->object_map_size);
1713	*index = div_u64_rem(objno, OBJS_PER_BYTE, &off);
1714	*shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1715}
1716
1717static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1718{
1719	u64 index;
1720	u8 shift;
1721
1722	lockdep_assert_held(&rbd_dev->object_map_lock);
1723	__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1724	return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1725}
1726
1727static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1728{
1729	u64 index;
1730	u8 shift;
1731	u8 *p;
1732
1733	lockdep_assert_held(&rbd_dev->object_map_lock);
1734	rbd_assert(!(val & ~OBJ_MASK));
1735
1736	__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1737	p = &rbd_dev->object_map[index];
1738	*p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1739}
1740
1741static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1742{
1743	u8 state;
1744
1745	spin_lock(&rbd_dev->object_map_lock);
1746	state = __rbd_object_map_get(rbd_dev, objno);
1747	spin_unlock(&rbd_dev->object_map_lock);
1748	return state;
1749}
1750
1751static bool use_object_map(struct rbd_device *rbd_dev)
1752{
1753	/*
1754	 * An image mapped read-only can't use the object map -- it isn't
1755	 * loaded because the header lock isn't acquired.  Someone else can
1756	 * write to the image and update the object map behind our back.
1757	 *
1758	 * A snapshot can't be written to, so using the object map is always
1759	 * safe.
1760	 */
1761	if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev))
1762		return false;
1763
1764	return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1765		!(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1766}
1767
1768static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1769{
1770	u8 state;
1771
1772	/* fall back to default logic if object map is disabled or invalid */
1773	if (!use_object_map(rbd_dev))
1774		return true;
1775
1776	state = rbd_object_map_get(rbd_dev, objno);
1777	return state != OBJECT_NONEXISTENT;
1778}
1779
1780static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1781				struct ceph_object_id *oid)
1782{
1783	if (snap_id == CEPH_NOSNAP)
1784		ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX,
1785				rbd_dev->spec->image_id);
1786	else
1787		ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1788				rbd_dev->spec->image_id, snap_id);
1789}
1790
1791static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1792{
1793	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1794	CEPH_DEFINE_OID_ONSTACK(oid);
1795	u8 lock_type;
1796	char *lock_tag;
1797	struct ceph_locker *lockers;
1798	u32 num_lockers;
1799	bool broke_lock = false;
1800	int ret;
1801
1802	rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1803
1804again:
1805	ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1806			    CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0);
1807	if (ret != -EBUSY || broke_lock) {
1808		if (ret == -EEXIST)
1809			ret = 0; /* already locked by myself */
1810		if (ret)
1811			rbd_warn(rbd_dev, "failed to lock object map: %d", ret);
1812		return ret;
1813	}
1814
1815	ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc,
1816				 RBD_LOCK_NAME, &lock_type, &lock_tag,
1817				 &lockers, &num_lockers);
1818	if (ret) {
1819		if (ret == -ENOENT)
1820			goto again;
1821
1822		rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret);
1823		return ret;
1824	}
1825
1826	kfree(lock_tag);
1827	if (num_lockers == 0)
1828		goto again;
1829
1830	rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu",
1831		 ENTITY_NAME(lockers[0].id.name));
1832
1833	ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc,
1834				  RBD_LOCK_NAME, lockers[0].id.cookie,
1835				  &lockers[0].id.name);
1836	ceph_free_lockers(lockers, num_lockers);
1837	if (ret) {
1838		if (ret == -ENOENT)
1839			goto again;
1840
1841		rbd_warn(rbd_dev, "failed to break object map lock: %d", ret);
1842		return ret;
1843	}
1844
1845	broke_lock = true;
1846	goto again;
1847}
1848
1849static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1850{
1851	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1852	CEPH_DEFINE_OID_ONSTACK(oid);
1853	int ret;
1854
1855	rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1856
1857	ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1858			      "");
1859	if (ret && ret != -ENOENT)
1860		rbd_warn(rbd_dev, "failed to unlock object map: %d", ret);
1861}
1862
1863static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1864{
1865	u8 struct_v;
1866	u32 struct_len;
1867	u32 header_len;
1868	void *header_end;
1869	int ret;
1870
1871	ceph_decode_32_safe(p, end, header_len, e_inval);
1872	header_end = *p + header_len;
1873
1874	ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v,
1875				  &struct_len);
1876	if (ret)
1877		return ret;
1878
1879	ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1880
1881	*p = header_end;
1882	return 0;
1883
1884e_inval:
1885	return -EINVAL;
1886}
1887
1888static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1889{
1890	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1891	CEPH_DEFINE_OID_ONSTACK(oid);
1892	struct page **pages;
1893	void *p, *end;
1894	size_t reply_len;
1895	u64 num_objects;
1896	u64 object_map_bytes;
1897	u64 object_map_size;
1898	int num_pages;
1899	int ret;
1900
1901	rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1902
1903	num_objects = ceph_get_num_objects(&rbd_dev->layout,
1904					   rbd_dev->mapping.size);
1905	object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1906					    BITS_PER_BYTE);
1907	num_pages = calc_pages_for(0, object_map_bytes) + 1;
1908	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1909	if (IS_ERR(pages))
1910		return PTR_ERR(pages);
1911
1912	reply_len = num_pages * PAGE_SIZE;
1913	rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid);
1914	ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc,
1915			     "rbd", "object_map_load", CEPH_OSD_FLAG_READ,
1916			     NULL, 0, pages, &reply_len);
1917	if (ret)
1918		goto out;
1919
1920	p = page_address(pages[0]);
1921	end = p + min(reply_len, (size_t)PAGE_SIZE);
1922	ret = decode_object_map_header(&p, end, &object_map_size);
1923	if (ret)
1924		goto out;
1925
1926	if (object_map_size != num_objects) {
1927		rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu",
1928			 object_map_size, num_objects);
1929		ret = -EINVAL;
1930		goto out;
1931	}
1932
1933	if (offset_in_page(p) + object_map_bytes > reply_len) {
1934		ret = -EINVAL;
1935		goto out;
1936	}
1937
1938	rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL);
1939	if (!rbd_dev->object_map) {
1940		ret = -ENOMEM;
1941		goto out;
1942	}
1943
1944	rbd_dev->object_map_size = object_map_size;
1945	ceph_copy_from_page_vector(pages, rbd_dev->object_map,
1946				   offset_in_page(p), object_map_bytes);
1947
1948out:
1949	ceph_release_page_vector(pages, num_pages);
1950	return ret;
1951}
1952
1953static void rbd_object_map_free(struct rbd_device *rbd_dev)
1954{
1955	kvfree(rbd_dev->object_map);
1956	rbd_dev->object_map = NULL;
1957	rbd_dev->object_map_size = 0;
1958}
1959
1960static int rbd_object_map_load(struct rbd_device *rbd_dev)
1961{
1962	int ret;
1963
1964	ret = __rbd_object_map_load(rbd_dev);
1965	if (ret)
1966		return ret;
1967
1968	ret = rbd_dev_v2_get_flags(rbd_dev);
1969	if (ret) {
1970		rbd_object_map_free(rbd_dev);
1971		return ret;
1972	}
1973
1974	if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
1975		rbd_warn(rbd_dev, "object map is invalid");
1976
1977	return 0;
1978}
1979
1980static int rbd_object_map_open(struct rbd_device *rbd_dev)
1981{
1982	int ret;
1983
1984	ret = rbd_object_map_lock(rbd_dev);
1985	if (ret)
1986		return ret;
1987
1988	ret = rbd_object_map_load(rbd_dev);
1989	if (ret) {
1990		rbd_object_map_unlock(rbd_dev);
1991		return ret;
1992	}
1993
1994	return 0;
1995}
1996
1997static void rbd_object_map_close(struct rbd_device *rbd_dev)
1998{
1999	rbd_object_map_free(rbd_dev);
2000	rbd_object_map_unlock(rbd_dev);
2001}
2002
2003/*
2004 * This function needs snap_id (or more precisely just something to
2005 * distinguish between HEAD and snapshot object maps), new_state and
2006 * current_state that were passed to rbd_object_map_update().
2007 *
2008 * To avoid allocating and stashing a context we piggyback on the OSD
2009 * request.  A HEAD update has two ops (assert_locked).  For new_state
2010 * and current_state we decode our own object_map_update op, encoded in
2011 * rbd_cls_object_map_update().
2012 */
2013static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
2014					struct ceph_osd_request *osd_req)
2015{
2016	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2017	struct ceph_osd_data *osd_data;
2018	u64 objno;
2019	u8 state, new_state, current_state;
2020	bool has_current_state;
2021	void *p;
2022
2023	if (osd_req->r_result)
2024		return osd_req->r_result;
2025
2026	/*
2027	 * Nothing to do for a snapshot object map.
2028	 */
2029	if (osd_req->r_num_ops == 1)
2030		return 0;
2031
2032	/*
2033	 * Update in-memory HEAD object map.
2034	 */
2035	rbd_assert(osd_req->r_num_ops == 2);
2036	osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
2037	rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
2038
2039	p = page_address(osd_data->pages[0]);
2040	objno = ceph_decode_64(&p);
2041	rbd_assert(objno == obj_req->ex.oe_objno);
2042	rbd_assert(ceph_decode_64(&p) == objno + 1);
2043	new_state = ceph_decode_8(&p);
2044	has_current_state = ceph_decode_8(&p);
2045	if (has_current_state)
2046		current_state = ceph_decode_8(&p);
2047
2048	spin_lock(&rbd_dev->object_map_lock);
2049	state = __rbd_object_map_get(rbd_dev, objno);
2050	if (!has_current_state || current_state == state ||
2051	    (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
2052		__rbd_object_map_set(rbd_dev, objno, new_state);
2053	spin_unlock(&rbd_dev->object_map_lock);
2054
2055	return 0;
2056}
2057
2058static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
2059{
2060	struct rbd_obj_request *obj_req = osd_req->r_priv;
2061	int result;
2062
2063	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
2064	     osd_req->r_result, obj_req);
2065
2066	result = rbd_object_map_update_finish(obj_req, osd_req);
2067	rbd_obj_handle_request(obj_req, result);
2068}
2069
2070static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
2071{
2072	u8 state = rbd_object_map_get(rbd_dev, objno);
2073
2074	if (state == new_state ||
2075	    (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
2076	    (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
2077		return false;
2078
2079	return true;
2080}
2081
2082static int rbd_cls_object_map_update(struct ceph_osd_request *req,
2083				     int which, u64 objno, u8 new_state,
2084				     const u8 *current_state)
2085{
2086	struct page **pages;
2087	void *p, *start;
2088	int ret;
2089
2090	ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update");
2091	if (ret)
2092		return ret;
2093
2094	pages = ceph_alloc_page_vector(1, GFP_NOIO);
2095	if (IS_ERR(pages))
2096		return PTR_ERR(pages);
2097
2098	p = start = page_address(pages[0]);
2099	ceph_encode_64(&p, objno);
2100	ceph_encode_64(&p, objno + 1);
2101	ceph_encode_8(&p, new_state);
2102	if (current_state) {
2103		ceph_encode_8(&p, 1);
2104		ceph_encode_8(&p, *current_state);
2105	} else {
2106		ceph_encode_8(&p, 0);
2107	}
2108
2109	osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0,
2110					  false, true);
2111	return 0;
2112}
2113
2114/*
2115 * Return:
2116 *   0 - object map update sent
2117 *   1 - object map update isn't needed
2118 *  <0 - error
2119 */
2120static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2121				 u8 new_state, const u8 *current_state)
2122{
2123	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2124	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2125	struct ceph_osd_request *req;
2126	int num_ops = 1;
2127	int which = 0;
2128	int ret;
2129
2130	if (snap_id == CEPH_NOSNAP) {
2131		if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state))
2132			return 1;
2133
2134		num_ops++; /* assert_locked */
2135	}
2136
2137	req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO);
2138	if (!req)
2139		return -ENOMEM;
2140
2141	list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
2142	req->r_callback = rbd_object_map_callback;
2143	req->r_priv = obj_req;
2144
2145	rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid);
2146	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
2147	req->r_flags = CEPH_OSD_FLAG_WRITE;
2148	ktime_get_real_ts64(&req->r_mtime);
2149
2150	if (snap_id == CEPH_NOSNAP) {
2151		/*
2152		 * Protect against possible race conditions during lock
2153		 * ownership transitions.
2154		 */
2155		ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME,
2156					     CEPH_CLS_LOCK_EXCLUSIVE, "", "");
2157		if (ret)
2158			return ret;
2159	}
2160
2161	ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno,
2162					new_state, current_state);
2163	if (ret)
2164		return ret;
2165
2166	ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2167	if (ret)
2168		return ret;
2169
2170	ceph_osdc_start_request(osdc, req, false);
2171	return 0;
2172}
2173
2174static void prune_extents(struct ceph_file_extent *img_extents,
2175			  u32 *num_img_extents, u64 overlap)
2176{
2177	u32 cnt = *num_img_extents;
2178
2179	/* drop extents completely beyond the overlap */
2180	while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2181		cnt--;
2182
2183	if (cnt) {
2184		struct ceph_file_extent *ex = &img_extents[cnt - 1];
2185
2186		/* trim final overlapping extent */
2187		if (ex->fe_off + ex->fe_len > overlap)
2188			ex->fe_len = overlap - ex->fe_off;
2189	}
2190
2191	*num_img_extents = cnt;
2192}
2193
2194/*
2195 * Determine the byte range(s) covered by either just the object extent
2196 * or the entire object in the parent image.
2197 */
2198static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2199				    bool entire)
2200{
2201	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2202	int ret;
2203
2204	if (!rbd_dev->parent_overlap)
2205		return 0;
2206
2207	ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
2208				  entire ? 0 : obj_req->ex.oe_off,
2209				  entire ? rbd_dev->layout.object_size :
2210							obj_req->ex.oe_len,
2211				  &obj_req->img_extents,
2212				  &obj_req->num_img_extents);
2213	if (ret)
2214		return ret;
2215
2216	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2217		      rbd_dev->parent_overlap);
2218	return 0;
2219}
2220
2221static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2222{
2223	struct rbd_obj_request *obj_req = osd_req->r_priv;
2224
2225	switch (obj_req->img_request->data_type) {
2226	case OBJ_REQUEST_BIO:
2227		osd_req_op_extent_osd_data_bio(osd_req, which,
2228					       &obj_req->bio_pos,
2229					       obj_req->ex.oe_len);
2230		break;
2231	case OBJ_REQUEST_BVECS:
2232	case OBJ_REQUEST_OWN_BVECS:
2233		rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2234							obj_req->ex.oe_len);
2235		rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2236		osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2237						    &obj_req->bvec_pos);
2238		break;
2239	default:
2240		BUG();
2241	}
2242}
2243
2244static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2245{
2246	struct page **pages;
2247
2248	/*
2249	 * The response data for a STAT call consists of:
2250	 *     le64 length;
2251	 *     struct {
2252	 *         le32 tv_sec;
2253	 *         le32 tv_nsec;
2254	 *     } mtime;
2255	 */
2256	pages = ceph_alloc_page_vector(1, GFP_NOIO);
2257	if (IS_ERR(pages))
2258		return PTR_ERR(pages);
2259
2260	osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0);
2261	osd_req_op_raw_data_in_pages(osd_req, which, pages,
2262				     8 + sizeof(struct ceph_timespec),
2263				     0, false, true);
2264	return 0;
2265}
2266
2267static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2268				u32 bytes)
2269{
2270	struct rbd_obj_request *obj_req = osd_req->r_priv;
2271	int ret;
2272
2273	ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup");
2274	if (ret)
2275		return ret;
2276
2277	osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs,
2278					  obj_req->copyup_bvec_count, bytes);
2279	return 0;
2280}
2281
2282static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2283{
2284	obj_req->read_state = RBD_OBJ_READ_START;
2285	return 0;
2286}
2287
2288static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2289				      int which)
2290{
2291	struct rbd_obj_request *obj_req = osd_req->r_priv;
2292	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2293	u16 opcode;
2294
2295	if (!use_object_map(rbd_dev) ||
2296	    !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2297		osd_req_op_alloc_hint_init(osd_req, which++,
2298					   rbd_dev->layout.object_size,
2299					   rbd_dev->layout.object_size,
2300					   rbd_dev->opts->alloc_hint_flags);
2301	}
2302
2303	if (rbd_obj_is_entire(obj_req))
2304		opcode = CEPH_OSD_OP_WRITEFULL;
2305	else
2306		opcode = CEPH_OSD_OP_WRITE;
2307
2308	osd_req_op_extent_init(osd_req, which, opcode,
2309			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2310	rbd_osd_setup_data(osd_req, which);
2311}
2312
2313static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2314{
2315	int ret;
2316
2317	/* reverse map the entire object onto the parent */
2318	ret = rbd_obj_calc_img_extents(obj_req, true);
2319	if (ret)
2320		return ret;
2321
2322	obj_req->write_state = RBD_OBJ_WRITE_START;
2323	return 0;
2324}
2325
2326static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2327{
2328	return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2329					  CEPH_OSD_OP_ZERO;
2330}
2331
2332static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2333					int which)
2334{
2335	struct rbd_obj_request *obj_req = osd_req->r_priv;
2336
2337	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2338		rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2339		osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0);
2340	} else {
2341		osd_req_op_extent_init(osd_req, which,
2342				       truncate_or_zero_opcode(obj_req),
2343				       obj_req->ex.oe_off, obj_req->ex.oe_len,
2344				       0, 0);
2345	}
2346}
2347
2348static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2349{
2350	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2351	u64 off, next_off;
2352	int ret;
2353
2354	/*
2355	 * Align the range to alloc_size boundary and punt on discards
2356	 * that are too small to free up any space.
2357	 *
2358	 * alloc_size == object_size && is_tail() is a special case for
2359	 * filestore with filestore_punch_hole = false, needed to allow
2360	 * truncate (in addition to delete).
2361	 */
2362	if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2363	    !rbd_obj_is_tail(obj_req)) {
2364		off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2365		next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2366				      rbd_dev->opts->alloc_size);
2367		if (off >= next_off)
2368			return 1;
2369
2370		dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2371		     obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2372		     off, next_off - off);
2373		obj_req->ex.oe_off = off;
2374		obj_req->ex.oe_len = next_off - off;
2375	}
2376
2377	/* reverse map the entire object onto the parent */
2378	ret = rbd_obj_calc_img_extents(obj_req, true);
2379	if (ret)
2380		return ret;
2381
2382	obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2383	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2384		obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2385
2386	obj_req->write_state = RBD_OBJ_WRITE_START;
2387	return 0;
2388}
2389
2390static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2391					int which)
2392{
2393	struct rbd_obj_request *obj_req = osd_req->r_priv;
2394	u16 opcode;
2395
2396	if (rbd_obj_is_entire(obj_req)) {
2397		if (obj_req->num_img_extents) {
2398			if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2399				osd_req_op_init(osd_req, which++,
2400						CEPH_OSD_OP_CREATE, 0);
2401			opcode = CEPH_OSD_OP_TRUNCATE;
2402		} else {
2403			rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2404			osd_req_op_init(osd_req, which++,
2405					CEPH_OSD_OP_DELETE, 0);
2406			opcode = 0;
2407		}
2408	} else {
2409		opcode = truncate_or_zero_opcode(obj_req);
2410	}
2411
2412	if (opcode)
2413		osd_req_op_extent_init(osd_req, which, opcode,
2414				       obj_req->ex.oe_off, obj_req->ex.oe_len,
2415				       0, 0);
2416}
2417
2418static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2419{
2420	int ret;
2421
2422	/* reverse map the entire object onto the parent */
2423	ret = rbd_obj_calc_img_extents(obj_req, true);
2424	if (ret)
2425		return ret;
2426
2427	if (!obj_req->num_img_extents) {
2428		obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2429		if (rbd_obj_is_entire(obj_req))
2430			obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2431	}
2432
2433	obj_req->write_state = RBD_OBJ_WRITE_START;
2434	return 0;
2435}
2436
2437static int count_write_ops(struct rbd_obj_request *obj_req)
2438{
2439	struct rbd_img_request *img_req = obj_req->img_request;
2440
2441	switch (img_req->op_type) {
2442	case OBJ_OP_WRITE:
2443		if (!use_object_map(img_req->rbd_dev) ||
2444		    !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2445			return 2; /* setallochint + write/writefull */
2446
2447		return 1; /* write/writefull */
2448	case OBJ_OP_DISCARD:
2449		return 1; /* delete/truncate/zero */
2450	case OBJ_OP_ZEROOUT:
2451		if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2452		    !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2453			return 2; /* create + truncate */
2454
2455		return 1; /* delete/truncate/zero */
2456	default:
2457		BUG();
2458	}
2459}
2460
2461static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2462				    int which)
2463{
2464	struct rbd_obj_request *obj_req = osd_req->r_priv;
2465
2466	switch (obj_req->img_request->op_type) {
2467	case OBJ_OP_WRITE:
2468		__rbd_osd_setup_write_ops(osd_req, which);
2469		break;
2470	case OBJ_OP_DISCARD:
2471		__rbd_osd_setup_discard_ops(osd_req, which);
2472		break;
2473	case OBJ_OP_ZEROOUT:
2474		__rbd_osd_setup_zeroout_ops(osd_req, which);
2475		break;
2476	default:
2477		BUG();
2478	}
2479}
2480
2481/*
2482 * Prune the list of object requests (adjust offset and/or length, drop
2483 * redundant requests).  Prepare object request state machines and image
2484 * request state machine for execution.
2485 */
2486static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2487{
2488	struct rbd_obj_request *obj_req, *next_obj_req;
2489	int ret;
2490
2491	for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2492		switch (img_req->op_type) {
2493		case OBJ_OP_READ:
2494			ret = rbd_obj_init_read(obj_req);
2495			break;
2496		case OBJ_OP_WRITE:
2497			ret = rbd_obj_init_write(obj_req);
2498			break;
2499		case OBJ_OP_DISCARD:
2500			ret = rbd_obj_init_discard(obj_req);
2501			break;
2502		case OBJ_OP_ZEROOUT:
2503			ret = rbd_obj_init_zeroout(obj_req);
2504			break;
2505		default:
2506			BUG();
2507		}
2508		if (ret < 0)
2509			return ret;
2510		if (ret > 0) {
2511			rbd_img_obj_request_del(img_req, obj_req);
2512			continue;
2513		}
2514	}
2515
2516	img_req->state = RBD_IMG_START;
2517	return 0;
2518}
2519
2520union rbd_img_fill_iter {
2521	struct ceph_bio_iter	bio_iter;
2522	struct ceph_bvec_iter	bvec_iter;
2523};
2524
2525struct rbd_img_fill_ctx {
2526	enum obj_request_type	pos_type;
2527	union rbd_img_fill_iter	*pos;
2528	union rbd_img_fill_iter	iter;
2529	ceph_object_extent_fn_t	set_pos_fn;
2530	ceph_object_extent_fn_t	count_fn;
2531	ceph_object_extent_fn_t	copy_fn;
2532};
2533
2534static struct ceph_object_extent *alloc_object_extent(void *arg)
2535{
2536	struct rbd_img_request *img_req = arg;
2537	struct rbd_obj_request *obj_req;
2538
2539	obj_req = rbd_obj_request_create();
2540	if (!obj_req)
2541		return NULL;
2542
2543	rbd_img_obj_request_add(img_req, obj_req);
2544	return &obj_req->ex;
2545}
2546
2547/*
2548 * While su != os && sc == 1 is technically not fancy (it's the same
2549 * layout as su == os && sc == 1), we can't use the nocopy path for it
2550 * because ->set_pos_fn() should be called only once per object.
2551 * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2552 * treat su != os && sc == 1 as fancy.
2553 */
2554static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2555{
2556	return l->stripe_unit != l->object_size;
2557}
2558
2559static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2560				       struct ceph_file_extent *img_extents,
2561				       u32 num_img_extents,
2562				       struct rbd_img_fill_ctx *fctx)
2563{
2564	u32 i;
2565	int ret;
2566
2567	img_req->data_type = fctx->pos_type;
2568
2569	/*
2570	 * Create object requests and set each object request's starting
2571	 * position in the provided bio (list) or bio_vec array.
2572	 */
2573	fctx->iter = *fctx->pos;
2574	for (i = 0; i < num_img_extents; i++) {
2575		ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2576					   img_extents[i].fe_off,
2577					   img_extents[i].fe_len,
2578					   &img_req->object_extents,
2579					   alloc_object_extent, img_req,
2580					   fctx->set_pos_fn, &fctx->iter);
2581		if (ret)
2582			return ret;
2583	}
2584
2585	return __rbd_img_fill_request(img_req);
2586}
2587
2588/*
2589 * Map a list of image extents to a list of object extents, create the
2590 * corresponding object requests (normally each to a different object,
2591 * but not always) and add them to @img_req.  For each object request,
2592 * set up its data descriptor to point to the corresponding chunk(s) of
2593 * @fctx->pos data buffer.
2594 *
2595 * Because ceph_file_to_extents() will merge adjacent object extents
2596 * together, each object request's data descriptor may point to multiple
2597 * different chunks of @fctx->pos data buffer.
2598 *
2599 * @fctx->pos data buffer is assumed to be large enough.
2600 */
2601static int rbd_img_fill_request(struct rbd_img_request *img_req,
2602				struct ceph_file_extent *img_extents,
2603				u32 num_img_extents,
2604				struct rbd_img_fill_ctx *fctx)
2605{
2606	struct rbd_device *rbd_dev = img_req->rbd_dev;
2607	struct rbd_obj_request *obj_req;
2608	u32 i;
2609	int ret;
2610
2611	if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2612	    !rbd_layout_is_fancy(&rbd_dev->layout))
2613		return rbd_img_fill_request_nocopy(img_req, img_extents,
2614						   num_img_extents, fctx);
2615
2616	img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2617
2618	/*
2619	 * Create object requests and determine ->bvec_count for each object
2620	 * request.  Note that ->bvec_count sum over all object requests may
2621	 * be greater than the number of bio_vecs in the provided bio (list)
2622	 * or bio_vec array because when mapped, those bio_vecs can straddle
2623	 * stripe unit boundaries.
2624	 */
2625	fctx->iter = *fctx->pos;
2626	for (i = 0; i < num_img_extents; i++) {
2627		ret = ceph_file_to_extents(&rbd_dev->layout,
2628					   img_extents[i].fe_off,
2629					   img_extents[i].fe_len,
2630					   &img_req->object_extents,
2631					   alloc_object_extent, img_req,
2632					   fctx->count_fn, &fctx->iter);
2633		if (ret)
2634			return ret;
2635	}
2636
2637	for_each_obj_request(img_req, obj_req) {
2638		obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2639					      sizeof(*obj_req->bvec_pos.bvecs),
2640					      GFP_NOIO);
2641		if (!obj_req->bvec_pos.bvecs)
2642			return -ENOMEM;
2643	}
2644
2645	/*
2646	 * Fill in each object request's private bio_vec array, splitting and
2647	 * rearranging the provided bio_vecs in stripe unit chunks as needed.
2648	 */
2649	fctx->iter = *fctx->pos;
2650	for (i = 0; i < num_img_extents; i++) {
2651		ret = ceph_iterate_extents(&rbd_dev->layout,
2652					   img_extents[i].fe_off,
2653					   img_extents[i].fe_len,
2654					   &img_req->object_extents,
2655					   fctx->copy_fn, &fctx->iter);
2656		if (ret)
2657			return ret;
2658	}
2659
2660	return __rbd_img_fill_request(img_req);
2661}
2662
2663static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2664			       u64 off, u64 len)
2665{
2666	struct ceph_file_extent ex = { off, len };
2667	union rbd_img_fill_iter dummy = {};
2668	struct rbd_img_fill_ctx fctx = {
2669		.pos_type = OBJ_REQUEST_NODATA,
2670		.pos = &dummy,
2671	};
2672
2673	return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2674}
2675
2676static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2677{
2678	struct rbd_obj_request *obj_req =
2679	    container_of(ex, struct rbd_obj_request, ex);
2680	struct ceph_bio_iter *it = arg;
2681
2682	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2683	obj_req->bio_pos = *it;
2684	ceph_bio_iter_advance(it, bytes);
2685}
2686
2687static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2688{
2689	struct rbd_obj_request *obj_req =
2690	    container_of(ex, struct rbd_obj_request, ex);
2691	struct ceph_bio_iter *it = arg;
2692
2693	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2694	ceph_bio_iter_advance_step(it, bytes, ({
2695		obj_req->bvec_count++;
2696	}));
2697
2698}
2699
2700static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2701{
2702	struct rbd_obj_request *obj_req =
2703	    container_of(ex, struct rbd_obj_request, ex);
2704	struct ceph_bio_iter *it = arg;
2705
2706	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2707	ceph_bio_iter_advance_step(it, bytes, ({
2708		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2709		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2710	}));
2711}
2712
2713static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2714				   struct ceph_file_extent *img_extents,
2715				   u32 num_img_extents,
2716				   struct ceph_bio_iter *bio_pos)
2717{
2718	struct rbd_img_fill_ctx fctx = {
2719		.pos_type = OBJ_REQUEST_BIO,
2720		.pos = (union rbd_img_fill_iter *)bio_pos,
2721		.set_pos_fn = set_bio_pos,
2722		.count_fn = count_bio_bvecs,
2723		.copy_fn = copy_bio_bvecs,
2724	};
2725
2726	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2727				    &fctx);
2728}
2729
2730static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2731				 u64 off, u64 len, struct bio *bio)
2732{
2733	struct ceph_file_extent ex = { off, len };
2734	struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2735
2736	return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2737}
2738
2739static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2740{
2741	struct rbd_obj_request *obj_req =
2742	    container_of(ex, struct rbd_obj_request, ex);
2743	struct ceph_bvec_iter *it = arg;
2744
2745	obj_req->bvec_pos = *it;
2746	ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2747	ceph_bvec_iter_advance(it, bytes);
2748}
2749
2750static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2751{
2752	struct rbd_obj_request *obj_req =
2753	    container_of(ex, struct rbd_obj_request, ex);
2754	struct ceph_bvec_iter *it = arg;
2755
2756	ceph_bvec_iter_advance_step(it, bytes, ({
2757		obj_req->bvec_count++;
2758	}));
2759}
2760
2761static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2762{
2763	struct rbd_obj_request *obj_req =
2764	    container_of(ex, struct rbd_obj_request, ex);
2765	struct ceph_bvec_iter *it = arg;
2766
2767	ceph_bvec_iter_advance_step(it, bytes, ({
2768		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2769		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2770	}));
2771}
2772
2773static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2774				     struct ceph_file_extent *img_extents,
2775				     u32 num_img_extents,
2776				     struct ceph_bvec_iter *bvec_pos)
2777{
2778	struct rbd_img_fill_ctx fctx = {
2779		.pos_type = OBJ_REQUEST_BVECS,
2780		.pos = (union rbd_img_fill_iter *)bvec_pos,
2781		.set_pos_fn = set_bvec_pos,
2782		.count_fn = count_bvecs,
2783		.copy_fn = copy_bvecs,
2784	};
2785
2786	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2787				    &fctx);
2788}
2789
2790static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2791				   struct ceph_file_extent *img_extents,
2792				   u32 num_img_extents,
2793				   struct bio_vec *bvecs)
2794{
2795	struct ceph_bvec_iter it = {
2796		.bvecs = bvecs,
2797		.iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2798							     num_img_extents) },
2799	};
2800
2801	return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2802					 &it);
2803}
2804
2805static void rbd_img_handle_request_work(struct work_struct *work)
2806{
2807	struct rbd_img_request *img_req =
2808	    container_of(work, struct rbd_img_request, work);
2809
2810	rbd_img_handle_request(img_req, img_req->work_result);
2811}
2812
2813static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2814{
2815	INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2816	img_req->work_result = result;
2817	queue_work(rbd_wq, &img_req->work);
2818}
2819
2820static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2821{
2822	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2823
2824	if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) {
2825		obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2826		return true;
2827	}
2828
2829	dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2830	     obj_req->ex.oe_objno);
2831	return false;
2832}
2833
2834static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2835{
2836	struct ceph_osd_request *osd_req;
2837	int ret;
2838
2839	osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1);
2840	if (IS_ERR(osd_req))
2841		return PTR_ERR(osd_req);
2842
2843	osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ,
2844			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2845	rbd_osd_setup_data(osd_req, 0);
2846	rbd_osd_format_read(osd_req);
2847
2848	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2849	if (ret)
2850		return ret;
2851
2852	rbd_osd_submit(osd_req);
2853	return 0;
2854}
2855
2856static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2857{
2858	struct rbd_img_request *img_req = obj_req->img_request;
2859	struct rbd_device *parent = img_req->rbd_dev->parent;
2860	struct rbd_img_request *child_img_req;
2861	int ret;
2862
2863	child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2864	if (!child_img_req)
2865		return -ENOMEM;
2866
2867	rbd_img_request_init(child_img_req, parent, OBJ_OP_READ);
2868	__set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2869	child_img_req->obj_request = obj_req;
2870
2871	down_read(&parent->header_rwsem);
2872	rbd_img_capture_header(child_img_req);
2873	up_read(&parent->header_rwsem);
2874
2875	dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req,
2876	     obj_req);
2877
2878	if (!rbd_img_is_write(img_req)) {
2879		switch (img_req->data_type) {
2880		case OBJ_REQUEST_BIO:
2881			ret = __rbd_img_fill_from_bio(child_img_req,
2882						      obj_req->img_extents,
2883						      obj_req->num_img_extents,
2884						      &obj_req->bio_pos);
2885			break;
2886		case OBJ_REQUEST_BVECS:
2887		case OBJ_REQUEST_OWN_BVECS:
2888			ret = __rbd_img_fill_from_bvecs(child_img_req,
2889						      obj_req->img_extents,
2890						      obj_req->num_img_extents,
2891						      &obj_req->bvec_pos);
2892			break;
2893		default:
2894			BUG();
2895		}
2896	} else {
2897		ret = rbd_img_fill_from_bvecs(child_img_req,
2898					      obj_req->img_extents,
2899					      obj_req->num_img_extents,
2900					      obj_req->copyup_bvecs);
2901	}
2902	if (ret) {
2903		rbd_img_request_destroy(child_img_req);
2904		return ret;
2905	}
2906
2907	/* avoid parent chain recursion */
2908	rbd_img_schedule(child_img_req, 0);
2909	return 0;
2910}
2911
2912static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2913{
2914	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2915	int ret;
2916
2917again:
2918	switch (obj_req->read_state) {
2919	case RBD_OBJ_READ_START:
2920		rbd_assert(!*result);
2921
2922		if (!rbd_obj_may_exist(obj_req)) {
2923			*result = -ENOENT;
2924			obj_req->read_state = RBD_OBJ_READ_OBJECT;
2925			goto again;
2926		}
2927
2928		ret = rbd_obj_read_object(obj_req);
2929		if (ret) {
2930			*result = ret;
2931			return true;
2932		}
2933		obj_req->read_state = RBD_OBJ_READ_OBJECT;
2934		return false;
2935	case RBD_OBJ_READ_OBJECT:
2936		if (*result == -ENOENT && rbd_dev->parent_overlap) {
2937			/* reverse map this object extent onto the parent */
2938			ret = rbd_obj_calc_img_extents(obj_req, false);
2939			if (ret) {
2940				*result = ret;
2941				return true;
2942			}
2943			if (obj_req->num_img_extents) {
2944				ret = rbd_obj_read_from_parent(obj_req);
2945				if (ret) {
2946					*result = ret;
2947					return true;
2948				}
2949				obj_req->read_state = RBD_OBJ_READ_PARENT;
2950				return false;
2951			}
2952		}
2953
2954		/*
2955		 * -ENOENT means a hole in the image -- zero-fill the entire
2956		 * length of the request.  A short read also implies zero-fill
2957		 * to the end of the request.
2958		 */
2959		if (*result == -ENOENT) {
2960			rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len);
2961			*result = 0;
2962		} else if (*result >= 0) {
2963			if (*result < obj_req->ex.oe_len)
2964				rbd_obj_zero_range(obj_req, *result,
2965						obj_req->ex.oe_len - *result);
2966			else
2967				rbd_assert(*result == obj_req->ex.oe_len);
2968			*result = 0;
2969		}
2970		return true;
2971	case RBD_OBJ_READ_PARENT:
2972		/*
2973		 * The parent image is read only up to the overlap -- zero-fill
2974		 * from the overlap to the end of the request.
2975		 */
2976		if (!*result) {
2977			u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req);
2978
2979			if (obj_overlap < obj_req->ex.oe_len)
2980				rbd_obj_zero_range(obj_req, obj_overlap,
2981					    obj_req->ex.oe_len - obj_overlap);
2982		}
2983		return true;
2984	default:
2985		BUG();
2986	}
2987}
2988
2989static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
2990{
2991	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2992
2993	if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno))
2994		obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2995
2996	if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
2997	    (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
2998		dout("%s %p noop for nonexistent\n", __func__, obj_req);
2999		return true;
3000	}
3001
3002	return false;
3003}
3004
3005/*
3006 * Return:
3007 *   0 - object map update sent
3008 *   1 - object map update isn't needed
3009 *  <0 - error
3010 */
3011static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
3012{
3013	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3014	u8 new_state;
3015
3016	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3017		return 1;
3018
3019	if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3020		new_state = OBJECT_PENDING;
3021	else
3022		new_state = OBJECT_EXISTS;
3023
3024	return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
3025}
3026
3027static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
3028{
3029	struct ceph_osd_request *osd_req;
3030	int num_ops = count_write_ops(obj_req);
3031	int which = 0;
3032	int ret;
3033
3034	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
3035		num_ops++; /* stat */
3036
3037	osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3038	if (IS_ERR(osd_req))
3039		return PTR_ERR(osd_req);
3040
3041	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3042		ret = rbd_osd_setup_stat(osd_req, which++);
3043		if (ret)
3044			return ret;
3045	}
3046
3047	rbd_osd_setup_write_ops(osd_req, which);
3048	rbd_osd_format_write(osd_req);
3049
3050	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3051	if (ret)
3052		return ret;
3053
3054	rbd_osd_submit(osd_req);
3055	return 0;
3056}
3057
3058/*
3059 * copyup_bvecs pages are never highmem pages
3060 */
3061static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
3062{
3063	struct ceph_bvec_iter it = {
3064		.bvecs = bvecs,
3065		.iter = { .bi_size = bytes },
3066	};
3067
3068	ceph_bvec_iter_advance_step(&it, bytes, ({
3069		if (memchr_inv(page_address(bv.bv_page) + bv.bv_offset, 0,
3070			       bv.bv_len))
3071			return false;
3072	}));
3073	return true;
3074}
3075
3076#define MODS_ONLY	U32_MAX
3077
3078static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
3079				      u32 bytes)
3080{
3081	struct ceph_osd_request *osd_req;
3082	int ret;
3083
3084	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3085	rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3086
3087	osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1);
3088	if (IS_ERR(osd_req))
3089		return PTR_ERR(osd_req);
3090
3091	ret = rbd_osd_setup_copyup(osd_req, 0, bytes);
3092	if (ret)
3093		return ret;
3094
3095	rbd_osd_format_write(osd_req);
3096
3097	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3098	if (ret)
3099		return ret;
3100
3101	rbd_osd_submit(osd_req);
3102	return 0;
3103}
3104
3105static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3106					u32 bytes)
3107{
3108	struct ceph_osd_request *osd_req;
3109	int num_ops = count_write_ops(obj_req);
3110	int which = 0;
3111	int ret;
3112
3113	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3114
3115	if (bytes != MODS_ONLY)
3116		num_ops++; /* copyup */
3117
3118	osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3119	if (IS_ERR(osd_req))
3120		return PTR_ERR(osd_req);
3121
3122	if (bytes != MODS_ONLY) {
3123		ret = rbd_osd_setup_copyup(osd_req, which++, bytes);
3124		if (ret)
3125			return ret;
3126	}
3127
3128	rbd_osd_setup_write_ops(osd_req, which);
3129	rbd_osd_format_write(osd_req);
3130
3131	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3132	if (ret)
3133		return ret;
3134
3135	rbd_osd_submit(osd_req);
3136	return 0;
3137}
3138
3139static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3140{
3141	u32 i;
3142
3143	rbd_assert(!obj_req->copyup_bvecs);
3144	obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
3145	obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
3146					sizeof(*obj_req->copyup_bvecs),
3147					GFP_NOIO);
3148	if (!obj_req->copyup_bvecs)
3149		return -ENOMEM;
3150
3151	for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3152		unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3153
3154		obj_req->copyup_bvecs[i].bv_page = alloc_page(GFP_NOIO);
3155		if (!obj_req->copyup_bvecs[i].bv_page)
3156			return -ENOMEM;
3157
3158		obj_req->copyup_bvecs[i].bv_offset = 0;
3159		obj_req->copyup_bvecs[i].bv_len = len;
3160		obj_overlap -= len;
3161	}
3162
3163	rbd_assert(!obj_overlap);
3164	return 0;
3165}
3166
3167/*
3168 * The target object doesn't exist.  Read the data for the entire
3169 * target object up to the overlap point (if any) from the parent,
3170 * so we can use it for a copyup.
3171 */
3172static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3173{
3174	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3175	int ret;
3176
3177	rbd_assert(obj_req->num_img_extents);
3178	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
3179		      rbd_dev->parent_overlap);
3180	if (!obj_req->num_img_extents) {
3181		/*
3182		 * The overlap has become 0 (most likely because the
3183		 * image has been flattened).  Re-submit the original write
3184		 * request -- pass MODS_ONLY since the copyup isn't needed
3185		 * anymore.
3186		 */
3187		return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3188	}
3189
3190	ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
3191	if (ret)
3192		return ret;
3193
3194	return rbd_obj_read_from_parent(obj_req);
3195}
3196
3197static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3198{
3199	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3200	struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3201	u8 new_state;
3202	u32 i;
3203	int ret;
3204
3205	rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3206
3207	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3208		return;
3209
3210	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3211		return;
3212
3213	for (i = 0; i < snapc->num_snaps; i++) {
3214		if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3215		    i + 1 < snapc->num_snaps)
3216			new_state = OBJECT_EXISTS_CLEAN;
3217		else
3218			new_state = OBJECT_EXISTS;
3219
3220		ret = rbd_object_map_update(obj_req, snapc->snaps[i],
3221					    new_state, NULL);
3222		if (ret < 0) {
3223			obj_req->pending.result = ret;
3224			return;
3225		}
3226
3227		rbd_assert(!ret);
3228		obj_req->pending.num_pending++;
3229	}
3230}
3231
3232static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3233{
3234	u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3235	int ret;
3236
3237	rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3238
3239	/*
3240	 * Only send non-zero copyup data to save some I/O and network
3241	 * bandwidth -- zero copyup data is equivalent to the object not
3242	 * existing.
3243	 */
3244	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3245		bytes = 0;
3246
3247	if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3248		/*
3249		 * Send a copyup request with an empty snapshot context to
3250		 * deep-copyup the object through all existing snapshots.
3251		 * A second request with the current snapshot context will be
3252		 * sent for the actual modification.
3253		 */
3254		ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3255		if (ret) {
3256			obj_req->pending.result = ret;
3257			return;
3258		}
3259
3260		obj_req->pending.num_pending++;
3261		bytes = MODS_ONLY;
3262	}
3263
3264	ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3265	if (ret) {
3266		obj_req->pending.result = ret;
3267		return;
3268	}
3269
3270	obj_req->pending.num_pending++;
3271}
3272
3273static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3274{
3275	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3276	int ret;
3277
3278again:
3279	switch (obj_req->copyup_state) {
3280	case RBD_OBJ_COPYUP_START:
3281		rbd_assert(!*result);
3282
3283		ret = rbd_obj_copyup_read_parent(obj_req);
3284		if (ret) {
3285			*result = ret;
3286			return true;
3287		}
3288		if (obj_req->num_img_extents)
3289			obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3290		else
3291			obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3292		return false;
3293	case RBD_OBJ_COPYUP_READ_PARENT:
3294		if (*result)
3295			return true;
3296
3297		if (is_zero_bvecs(obj_req->copyup_bvecs,
3298				  rbd_obj_img_extents_bytes(obj_req))) {
3299			dout("%s %p detected zeros\n", __func__, obj_req);
3300			obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3301		}
3302
3303		rbd_obj_copyup_object_maps(obj_req);
3304		if (!obj_req->pending.num_pending) {
3305			*result = obj_req->pending.result;
3306			obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3307			goto again;
3308		}
3309		obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3310		return false;
3311	case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3312		if (!pending_result_dec(&obj_req->pending, result))
3313			return false;
3314		fallthrough;
3315	case RBD_OBJ_COPYUP_OBJECT_MAPS:
3316		if (*result) {
3317			rbd_warn(rbd_dev, "snap object map update failed: %d",
3318				 *result);
3319			return true;
3320		}
3321
3322		rbd_obj_copyup_write_object(obj_req);
3323		if (!obj_req->pending.num_pending) {
3324			*result = obj_req->pending.result;
3325			obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3326			goto again;
3327		}
3328		obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3329		return false;
3330	case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3331		if (!pending_result_dec(&obj_req->pending, result))
3332			return false;
3333		fallthrough;
3334	case RBD_OBJ_COPYUP_WRITE_OBJECT:
3335		return true;
3336	default:
3337		BUG();
3338	}
3339}
3340
3341/*
3342 * Return:
3343 *   0 - object map update sent
3344 *   1 - object map update isn't needed
3345 *  <0 - error
3346 */
3347static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3348{
3349	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3350	u8 current_state = OBJECT_PENDING;
3351
3352	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3353		return 1;
3354
3355	if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3356		return 1;
3357
3358	return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3359				     &current_state);
3360}
3361
3362static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3363{
3364	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3365	int ret;
3366
3367again:
3368	switch (obj_req->write_state) {
3369	case RBD_OBJ_WRITE_START:
3370		rbd_assert(!*result);
3371
3372		rbd_obj_set_copyup_enabled(obj_req);
3373		if (rbd_obj_write_is_noop(obj_req))
3374			return true;
3375
3376		ret = rbd_obj_write_pre_object_map(obj_req);
3377		if (ret < 0) {
3378			*result = ret;
3379			return true;
3380		}
3381		obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3382		if (ret > 0)
3383			goto again;
3384		return false;
3385	case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3386		if (*result) {
3387			rbd_warn(rbd_dev, "pre object map update failed: %d",
3388				 *result);
3389			return true;
3390		}
3391		ret = rbd_obj_write_object(obj_req);
3392		if (ret) {
3393			*result = ret;
3394			return true;
3395		}
3396		obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3397		return false;
3398	case RBD_OBJ_WRITE_OBJECT:
3399		if (*result == -ENOENT) {
3400			if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3401				*result = 0;
3402				obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3403				obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3404				goto again;
3405			}
3406			/*
3407			 * On a non-existent object:
3408			 *   delete - -ENOENT, truncate/zero - 0
3409			 */
3410			if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3411				*result = 0;
3412		}
3413		if (*result)
3414			return true;
3415
3416		obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3417		goto again;
3418	case __RBD_OBJ_WRITE_COPYUP:
3419		if (!rbd_obj_advance_copyup(obj_req, result))
3420			return false;
3421		fallthrough;
3422	case RBD_OBJ_WRITE_COPYUP:
3423		if (*result) {
3424			rbd_warn(rbd_dev, "copyup failed: %d", *result);
3425			return true;
3426		}
3427		ret = rbd_obj_write_post_object_map(obj_req);
3428		if (ret < 0) {
3429			*result = ret;
3430			return true;
3431		}
3432		obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3433		if (ret > 0)
3434			goto again;
3435		return false;
3436	case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3437		if (*result)
3438			rbd_warn(rbd_dev, "post object map update failed: %d",
3439				 *result);
3440		return true;
3441	default:
3442		BUG();
3443	}
3444}
3445
3446/*
3447 * Return true if @obj_req is completed.
3448 */
3449static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3450				     int *result)
3451{
3452	struct rbd_img_request *img_req = obj_req->img_request;
3453	struct rbd_device *rbd_dev = img_req->rbd_dev;
3454	bool done;
3455
3456	mutex_lock(&obj_req->state_mutex);
3457	if (!rbd_img_is_write(img_req))
3458		done = rbd_obj_advance_read(obj_req, result);
3459	else
3460		done = rbd_obj_advance_write(obj_req, result);
3461	mutex_unlock(&obj_req->state_mutex);
3462
3463	if (done && *result) {
3464		rbd_assert(*result < 0);
3465		rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d",
3466			 obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
3467			 obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3468	}
3469	return done;
3470}
3471
3472/*
3473 * This is open-coded in rbd_img_handle_request() to avoid parent chain
3474 * recursion.
3475 */
3476static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3477{
3478	if (__rbd_obj_handle_request(obj_req, &result))
3479		rbd_img_handle_request(obj_req->img_request, result);
3480}
3481
3482static bool need_exclusive_lock(struct rbd_img_request *img_req)
3483{
3484	struct rbd_device *rbd_dev = img_req->rbd_dev;
3485
3486	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3487		return false;
3488
3489	if (rbd_is_ro(rbd_dev))
3490		return false;
3491
3492	rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3493	if (rbd_dev->opts->lock_on_read ||
3494	    (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3495		return true;
3496
3497	return rbd_img_is_write(img_req);
3498}
3499
3500static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3501{
3502	struct rbd_device *rbd_dev = img_req->rbd_dev;
3503	bool locked;
3504
3505	lockdep_assert_held(&rbd_dev->lock_rwsem);
3506	locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3507	spin_lock(&rbd_dev->lock_lists_lock);
3508	rbd_assert(list_empty(&img_req->lock_item));
3509	if (!locked)
3510		list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list);
3511	else
3512		list_add_tail(&img_req->lock_item, &rbd_dev->running_list);
3513	spin_unlock(&rbd_dev->lock_lists_lock);
3514	return locked;
3515}
3516
3517static void rbd_lock_del_request(struct rbd_img_request *img_req)
3518{
3519	struct rbd_device *rbd_dev = img_req->rbd_dev;
3520	bool need_wakeup = false;
3521
3522	lockdep_assert_held(&rbd_dev->lock_rwsem);
3523	spin_lock(&rbd_dev->lock_lists_lock);
3524	if (!list_empty(&img_req->lock_item)) {
3525		list_del_init(&img_req->lock_item);
3526		need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING &&
3527			       list_empty(&rbd_dev->running_list));
3528	}
3529	spin_unlock(&rbd_dev->lock_lists_lock);
3530	if (need_wakeup)
3531		complete(&rbd_dev->releasing_wait);
3532}
3533
3534static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3535{
3536	struct rbd_device *rbd_dev = img_req->rbd_dev;
3537
3538	if (!need_exclusive_lock(img_req))
3539		return 1;
3540
3541	if (rbd_lock_add_request(img_req))
3542		return 1;
3543
3544	if (rbd_dev->opts->exclusive) {
3545		WARN_ON(1); /* lock got released? */
3546		return -EROFS;
3547	}
3548
3549	/*
3550	 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3551	 * and cancel_delayed_work() in wake_lock_waiters().
3552	 */
3553	dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3554	queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3555	return 0;
3556}
3557
3558static void rbd_img_object_requests(struct rbd_img_request *img_req)
3559{
3560	struct rbd_device *rbd_dev = img_req->rbd_dev;
3561	struct rbd_obj_request *obj_req;
3562
3563	rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3564	rbd_assert(!need_exclusive_lock(img_req) ||
3565		   __rbd_is_lock_owner(rbd_dev));
3566
3567	if (rbd_img_is_write(img_req)) {
3568		rbd_assert(!img_req->snapc);
3569		down_read(&rbd_dev->header_rwsem);
3570		img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc);
3571		up_read(&rbd_dev->header_rwsem);
3572	}
3573
3574	for_each_obj_request(img_req, obj_req) {
3575		int result = 0;
3576
3577		if (__rbd_obj_handle_request(obj_req, &result)) {
3578			if (result) {
3579				img_req->pending.result = result;
3580				return;
3581			}
3582		} else {
3583			img_req->pending.num_pending++;
3584		}
3585	}
3586}
3587
3588static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3589{
3590	int ret;
3591
3592again:
3593	switch (img_req->state) {
3594	case RBD_IMG_START:
3595		rbd_assert(!*result);
3596
3597		ret = rbd_img_exclusive_lock(img_req);
3598		if (ret < 0) {
3599			*result = ret;
3600			return true;
3601		}
3602		img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3603		if (ret > 0)
3604			goto again;
3605		return false;
3606	case RBD_IMG_EXCLUSIVE_LOCK:
3607		if (*result)
3608			return true;
3609
3610		rbd_img_object_requests(img_req);
3611		if (!img_req->pending.num_pending) {
3612			*result = img_req->pending.result;
3613			img_req->state = RBD_IMG_OBJECT_REQUESTS;
3614			goto again;
3615		}
3616		img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3617		return false;
3618	case __RBD_IMG_OBJECT_REQUESTS:
3619		if (!pending_result_dec(&img_req->pending, result))
3620			return false;
3621		fallthrough;
3622	case RBD_IMG_OBJECT_REQUESTS:
3623		return true;
3624	default:
3625		BUG();
3626	}
3627}
3628
3629/*
3630 * Return true if @img_req is completed.
3631 */
3632static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3633				     int *result)
3634{
3635	struct rbd_device *rbd_dev = img_req->rbd_dev;
3636	bool done;
3637
3638	if (need_exclusive_lock(img_req)) {
3639		down_read(&rbd_dev->lock_rwsem);
3640		mutex_lock(&img_req->state_mutex);
3641		done = rbd_img_advance(img_req, result);
3642		if (done)
3643			rbd_lock_del_request(img_req);
3644		mutex_unlock(&img_req->state_mutex);
3645		up_read(&rbd_dev->lock_rwsem);
3646	} else {
3647		mutex_lock(&img_req->state_mutex);
3648		done = rbd_img_advance(img_req, result);
3649		mutex_unlock(&img_req->state_mutex);
3650	}
3651
3652	if (done && *result) {
3653		rbd_assert(*result < 0);
3654		rbd_warn(rbd_dev, "%s%s result %d",
3655		      test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3656		      obj_op_name(img_req->op_type), *result);
3657	}
3658	return done;
3659}
3660
3661static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3662{
3663again:
3664	if (!__rbd_img_handle_request(img_req, &result))
3665		return;
3666
3667	if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3668		struct rbd_obj_request *obj_req = img_req->obj_request;
3669
3670		rbd_img_request_destroy(img_req);
3671		if (__rbd_obj_handle_request(obj_req, &result)) {
3672			img_req = obj_req->img_request;
3673			goto again;
3674		}
3675	} else {
3676		struct request *rq = blk_mq_rq_from_pdu(img_req);
3677
3678		rbd_img_request_destroy(img_req);
3679		blk_mq_end_request(rq, errno_to_blk_status(result));
3680	}
3681}
3682
3683static const struct rbd_client_id rbd_empty_cid;
3684
3685static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3686			  const struct rbd_client_id *rhs)
3687{
3688	return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3689}
3690
3691static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3692{
3693	struct rbd_client_id cid;
3694
3695	mutex_lock(&rbd_dev->watch_mutex);
3696	cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3697	cid.handle = rbd_dev->watch_cookie;
3698	mutex_unlock(&rbd_dev->watch_mutex);
3699	return cid;
3700}
3701
3702/*
3703 * lock_rwsem must be held for write
3704 */
3705static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3706			      const struct rbd_client_id *cid)
3707{
3708	dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3709	     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3710	     cid->gid, cid->handle);
3711	rbd_dev->owner_cid = *cid; /* struct */
3712}
3713
3714static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3715{
3716	mutex_lock(&rbd_dev->watch_mutex);
3717	sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3718	mutex_unlock(&rbd_dev->watch_mutex);
3719}
3720
3721static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3722{
3723	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3724
3725	rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3726	strcpy(rbd_dev->lock_cookie, cookie);
3727	rbd_set_owner_cid(rbd_dev, &cid);
3728	queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3729}
3730
3731/*
3732 * lock_rwsem must be held for write
3733 */
3734static int rbd_lock(struct rbd_device *rbd_dev)
3735{
3736	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3737	char cookie[32];
3738	int ret;
3739
3740	WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3741		rbd_dev->lock_cookie[0] != '\0');
3742
3743	format_lock_cookie(rbd_dev, cookie);
3744	ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3745			    RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3746			    RBD_LOCK_TAG, "", 0);
3747	if (ret && ret != -EEXIST)
3748		return ret;
3749
3750	__rbd_lock(rbd_dev, cookie);
3751	return 0;
3752}
3753
3754/*
3755 * lock_rwsem must be held for write
3756 */
3757static void rbd_unlock(struct rbd_device *rbd_dev)
3758{
3759	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3760	int ret;
3761
3762	WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3763		rbd_dev->lock_cookie[0] == '\0');
3764
3765	ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3766			      RBD_LOCK_NAME, rbd_dev->lock_cookie);
3767	if (ret && ret != -ENOENT)
3768		rbd_warn(rbd_dev, "failed to unlock header: %d", ret);
3769
3770	/* treat errors as the image is unlocked */
3771	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3772	rbd_dev->lock_cookie[0] = '\0';
3773	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3774	queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3775}
3776
3777static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3778				enum rbd_notify_op notify_op,
3779				struct page ***preply_pages,
3780				size_t *preply_len)
3781{
3782	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3783	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3784	char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3785	int buf_size = sizeof(buf);
3786	void *p = buf;
3787
3788	dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3789
3790	/* encode *LockPayload NotifyMessage (op + ClientId) */
3791	ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3792	ceph_encode_32(&p, notify_op);
3793	ceph_encode_64(&p, cid.gid);
3794	ceph_encode_64(&p, cid.handle);
3795
3796	return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3797				&rbd_dev->header_oloc, buf, buf_size,
3798				RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3799}
3800
3801static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3802			       enum rbd_notify_op notify_op)
3803{
3804	__rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL);
3805}
3806
3807static void rbd_notify_acquired_lock(struct work_struct *work)
3808{
3809	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3810						  acquired_lock_work);
3811
3812	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3813}
3814
3815static void rbd_notify_released_lock(struct work_struct *work)
3816{
3817	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3818						  released_lock_work);
3819
3820	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3821}
3822
3823static int rbd_request_lock(struct rbd_device *rbd_dev)
3824{
3825	struct page **reply_pages;
3826	size_t reply_len;
3827	bool lock_owner_responded = false;
3828	int ret;
3829
3830	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3831
3832	ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3833				   &reply_pages, &reply_len);
3834	if (ret && ret != -ETIMEDOUT) {
3835		rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3836		goto out;
3837	}
3838
3839	if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3840		void *p = page_address(reply_pages[0]);
3841		void *const end = p + reply_len;
3842		u32 n;
3843
3844		ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3845		while (n--) {
3846			u8 struct_v;
3847			u32 len;
3848
3849			ceph_decode_need(&p, end, 8 + 8, e_inval);
3850			p += 8 + 8; /* skip gid and cookie */
3851
3852			ceph_decode_32_safe(&p, end, len, e_inval);
3853			if (!len)
3854				continue;
3855
3856			if (lock_owner_responded) {
3857				rbd_warn(rbd_dev,
3858					 "duplicate lock owners detected");
3859				ret = -EIO;
3860				goto out;
3861			}
3862
3863			lock_owner_responded = true;
3864			ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3865						  &struct_v, &len);
3866			if (ret) {
3867				rbd_warn(rbd_dev,
3868					 "failed to decode ResponseMessage: %d",
3869					 ret);
3870				goto e_inval;
3871			}
3872
3873			ret = ceph_decode_32(&p);
3874		}
3875	}
3876
3877	if (!lock_owner_responded) {
3878		rbd_warn(rbd_dev, "no lock owners detected");
3879		ret = -ETIMEDOUT;
3880	}
3881
3882out:
3883	ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3884	return ret;
3885
3886e_inval:
3887	ret = -EINVAL;
3888	goto out;
3889}
3890
3891/*
3892 * Either image request state machine(s) or rbd_add_acquire_lock()
3893 * (i.e. "rbd map").
3894 */
3895static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3896{
3897	struct rbd_img_request *img_req;
3898
3899	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3900	lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3901
3902	cancel_delayed_work(&rbd_dev->lock_dwork);
3903	if (!completion_done(&rbd_dev->acquire_wait)) {
3904		rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3905			   list_empty(&rbd_dev->running_list));
3906		rbd_dev->acquire_err = result;
3907		complete_all(&rbd_dev->acquire_wait);
3908		return;
3909	}
3910
3911	while (!list_empty(&rbd_dev->acquiring_list)) {
3912		img_req = list_first_entry(&rbd_dev->acquiring_list,
3913					   struct rbd_img_request, lock_item);
3914		mutex_lock(&img_req->state_mutex);
3915		rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3916		if (!result)
3917			list_move_tail(&img_req->lock_item,
3918				       &rbd_dev->running_list);
3919		else
3920			list_del_init(&img_req->lock_item);
3921		rbd_img_schedule(img_req, result);
3922		mutex_unlock(&img_req->state_mutex);
3923	}
3924}
3925
3926static bool locker_equal(const struct ceph_locker *lhs,
3927			 const struct ceph_locker *rhs)
3928{
3929	return lhs->id.name.type == rhs->id.name.type &&
3930	       lhs->id.name.num == rhs->id.name.num &&
3931	       !strcmp(lhs->id.cookie, rhs->id.cookie) &&
3932	       ceph_addr_equal_no_type(&lhs->info.addr, &rhs->info.addr);
3933}
3934
3935static void free_locker(struct ceph_locker *locker)
3936{
3937	if (locker)
3938		ceph_free_lockers(locker, 1);
3939}
3940
3941static struct ceph_locker *get_lock_owner_info(struct rbd_device *rbd_dev)
3942{
3943	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3944	struct ceph_locker *lockers;
3945	u32 num_lockers;
3946	u8 lock_type;
3947	char *lock_tag;
3948	int ret;
3949
3950	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3951
3952	ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3953				 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3954				 &lock_type, &lock_tag, &lockers, &num_lockers);
3955	if (ret) {
3956		rbd_warn(rbd_dev, "failed to get header lockers: %d", ret);
3957		return ERR_PTR(ret);
3958	}
3959
3960	if (num_lockers == 0) {
3961		dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3962		lockers = NULL;
3963		goto out;
3964	}
3965
3966	if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3967		rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3968			 lock_tag);
3969		goto err_busy;
3970	}
3971
3972	if (lock_type == CEPH_CLS_LOCK_SHARED) {
3973		rbd_warn(rbd_dev, "shared lock type detected");
3974		goto err_busy;
3975	}
3976
3977	WARN_ON(num_lockers != 1);
3978	if (strncmp(lockers[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
3979		    strlen(RBD_LOCK_COOKIE_PREFIX))) {
3980		rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3981			 lockers[0].id.cookie);
3982		goto err_busy;
3983	}
3984
3985out:
3986	kfree(lock_tag);
3987	return lockers;
3988
3989err_busy:
3990	kfree(lock_tag);
3991	ceph_free_lockers(lockers, num_lockers);
3992	return ERR_PTR(-EBUSY);
3993}
3994
3995static int find_watcher(struct rbd_device *rbd_dev,
3996			const struct ceph_locker *locker)
3997{
3998	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3999	struct ceph_watch_item *watchers;
4000	u32 num_watchers;
4001	u64 cookie;
4002	int i;
4003	int ret;
4004
4005	ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
4006				      &rbd_dev->header_oloc, &watchers,
4007				      &num_watchers);
4008	if (ret) {
4009		rbd_warn(rbd_dev, "failed to get watchers: %d", ret);
4010		return ret;
4011	}
4012
4013	sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
4014	for (i = 0; i < num_watchers; i++) {
4015		/*
4016		 * Ignore addr->type while comparing.  This mimics
4017		 * entity_addr_t::get_legacy_str() + strcmp().
4018		 */
4019		if (ceph_addr_equal_no_type(&watchers[i].addr,
4020					    &locker->info.addr) &&
4021		    watchers[i].cookie == cookie) {
4022			struct rbd_client_id cid = {
4023				.gid = le64_to_cpu(watchers[i].name.num),
4024				.handle = cookie,
4025			};
4026
4027			dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
4028			     rbd_dev, cid.gid, cid.handle);
4029			rbd_set_owner_cid(rbd_dev, &cid);
4030			ret = 1;
4031			goto out;
4032		}
4033	}
4034
4035	dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
4036	ret = 0;
4037out:
4038	kfree(watchers);
4039	return ret;
4040}
4041
4042/*
4043 * lock_rwsem must be held for write
4044 */
4045static int rbd_try_lock(struct rbd_device *rbd_dev)
4046{
4047	struct ceph_client *client = rbd_dev->rbd_client->client;
4048	struct ceph_locker *locker, *refreshed_locker;
4049	int ret;
4050
4051	for (;;) {
4052		locker = refreshed_locker = NULL;
4053
4054		ret = rbd_lock(rbd_dev);
4055		if (!ret)
4056			goto out;
4057		if (ret != -EBUSY) {
4058			rbd_warn(rbd_dev, "failed to lock header: %d", ret);
4059			goto out;
4060		}
4061
4062		/* determine if the current lock holder is still alive */
4063		locker = get_lock_owner_info(rbd_dev);
4064		if (IS_ERR(locker)) {
4065			ret = PTR_ERR(locker);
4066			locker = NULL;
4067			goto out;
4068		}
4069		if (!locker)
4070			goto again;
4071
4072		ret = find_watcher(rbd_dev, locker);
4073		if (ret)
4074			goto out; /* request lock or error */
4075
4076		refreshed_locker = get_lock_owner_info(rbd_dev);
4077		if (IS_ERR(refreshed_locker)) {
4078			ret = PTR_ERR(refreshed_locker);
4079			refreshed_locker = NULL;
4080			goto out;
4081		}
4082		if (!refreshed_locker ||
4083		    !locker_equal(locker, refreshed_locker))
4084			goto again;
4085
4086		rbd_warn(rbd_dev, "breaking header lock owned by %s%llu",
4087			 ENTITY_NAME(locker->id.name));
4088
4089		ret = ceph_monc_blocklist_add(&client->monc,
4090					      &locker->info.addr);
4091		if (ret) {
4092			rbd_warn(rbd_dev, "failed to blocklist %s%llu: %d",
4093				 ENTITY_NAME(locker->id.name), ret);
4094			goto out;
4095		}
4096
4097		ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
4098					  &rbd_dev->header_oloc, RBD_LOCK_NAME,
4099					  locker->id.cookie, &locker->id.name);
4100		if (ret && ret != -ENOENT) {
4101			rbd_warn(rbd_dev, "failed to break header lock: %d",
4102				 ret);
4103			goto out;
4104		}
4105
4106again:
4107		free_locker(refreshed_locker);
4108		free_locker(locker);
4109	}
4110
4111out:
4112	free_locker(refreshed_locker);
4113	free_locker(locker);
4114	return ret;
4115}
4116
4117static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
4118{
4119	int ret;
4120
4121	ret = rbd_dev_refresh(rbd_dev);
4122	if (ret)
4123		return ret;
4124
4125	if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
4126		ret = rbd_object_map_open(rbd_dev);
4127		if (ret)
4128			return ret;
4129	}
4130
4131	return 0;
4132}
4133
4134/*
4135 * Return:
4136 *   0 - lock acquired
4137 *   1 - caller should call rbd_request_lock()
4138 *  <0 - error
4139 */
4140static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
4141{
4142	int ret;
4143
4144	down_read(&rbd_dev->lock_rwsem);
4145	dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4146	     rbd_dev->lock_state);
4147	if (__rbd_is_lock_owner(rbd_dev)) {
4148		up_read(&rbd_dev->lock_rwsem);
4149		return 0;
4150	}
4151
4152	up_read(&rbd_dev->lock_rwsem);
4153	down_write(&rbd_dev->lock_rwsem);
4154	dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4155	     rbd_dev->lock_state);
4156	if (__rbd_is_lock_owner(rbd_dev)) {
4157		up_write(&rbd_dev->lock_rwsem);
4158		return 0;
4159	}
4160
4161	ret = rbd_try_lock(rbd_dev);
4162	if (ret < 0) {
4163		rbd_warn(rbd_dev, "failed to acquire lock: %d", ret);
4164		goto out;
4165	}
4166	if (ret > 0) {
4167		up_write(&rbd_dev->lock_rwsem);
4168		return ret;
4169	}
4170
4171	rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4172	rbd_assert(list_empty(&rbd_dev->running_list));
4173
4174	ret = rbd_post_acquire_action(rbd_dev);
4175	if (ret) {
4176		rbd_warn(rbd_dev, "post-acquire action failed: %d", ret);
4177		/*
4178		 * Can't stay in RBD_LOCK_STATE_LOCKED because
4179		 * rbd_lock_add_request() would let the request through,
4180		 * assuming that e.g. object map is locked and loaded.
4181		 */
4182		rbd_unlock(rbd_dev);
4183	}
4184
4185out:
4186	wake_lock_waiters(rbd_dev, ret);
4187	up_write(&rbd_dev->lock_rwsem);
4188	return ret;
4189}
4190
4191static void rbd_acquire_lock(struct work_struct *work)
4192{
4193	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4194					    struct rbd_device, lock_dwork);
4195	int ret;
4196
4197	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4198again:
4199	ret = rbd_try_acquire_lock(rbd_dev);
4200	if (ret <= 0) {
4201		dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4202		return;
4203	}
4204
4205	ret = rbd_request_lock(rbd_dev);
4206	if (ret == -ETIMEDOUT) {
4207		goto again; /* treat this as a dead client */
4208	} else if (ret == -EROFS) {
4209		rbd_warn(rbd_dev, "peer will not release lock");
4210		down_write(&rbd_dev->lock_rwsem);
4211		wake_lock_waiters(rbd_dev, ret);
4212		up_write(&rbd_dev->lock_rwsem);
4213	} else if (ret < 0) {
4214		rbd_warn(rbd_dev, "error requesting lock: %d", ret);
4215		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4216				 RBD_RETRY_DELAY);
4217	} else {
4218		/*
4219		 * lock owner acked, but resend if we don't see them
4220		 * release the lock
4221		 */
4222		dout("%s rbd_dev %p requeuing lock_dwork\n", __func__,
4223		     rbd_dev);
4224		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4225		    msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4226	}
4227}
4228
4229static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4230{
4231	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4232	lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4233
4234	if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4235		return false;
4236
4237	/*
4238	 * Ensure that all in-flight IO is flushed.
4239	 */
4240	rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
4241	rbd_assert(!completion_done(&rbd_dev->releasing_wait));
4242	if (list_empty(&rbd_dev->running_list))
4243		return true;
4244
4245	up_write(&rbd_dev->lock_rwsem);
4246	wait_for_completion(&rbd_dev->releasing_wait);
4247
4248	down_write(&rbd_dev->lock_rwsem);
4249	if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
4250		return false;
4251
4252	rbd_assert(list_empty(&rbd_dev->running_list));
4253	return true;
4254}
4255
4256static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4257{
4258	if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4259		rbd_object_map_close(rbd_dev);
4260}
4261
4262static void __rbd_release_lock(struct rbd_device *rbd_dev)
4263{
4264	rbd_assert(list_empty(&rbd_dev->running_list));
4265
4266	rbd_pre_release_action(rbd_dev);
4267	rbd_unlock(rbd_dev);
4268}
4269
4270/*
4271 * lock_rwsem must be held for write
4272 */
4273static void rbd_release_lock(struct rbd_device *rbd_dev)
4274{
4275	if (!rbd_quiesce_lock(rbd_dev))
4276		return;
4277
4278	__rbd_release_lock(rbd_dev);
4279
4280	/*
4281	 * Give others a chance to grab the lock - we would re-acquire
4282	 * almost immediately if we got new IO while draining the running
4283	 * list otherwise.  We need to ack our own notifications, so this
4284	 * lock_dwork will be requeued from rbd_handle_released_lock() by
4285	 * way of maybe_kick_acquire().
4286	 */
4287	cancel_delayed_work(&rbd_dev->lock_dwork);
4288}
4289
4290static void rbd_release_lock_work(struct work_struct *work)
4291{
4292	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4293						  unlock_work);
4294
4295	down_write(&rbd_dev->lock_rwsem);
4296	rbd_release_lock(rbd_dev);
4297	up_write(&rbd_dev->lock_rwsem);
4298}
4299
4300static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4301{
4302	bool have_requests;
4303
4304	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4305	if (__rbd_is_lock_owner(rbd_dev))
4306		return;
4307
4308	spin_lock(&rbd_dev->lock_lists_lock);
4309	have_requests = !list_empty(&rbd_dev->acquiring_list);
4310	spin_unlock(&rbd_dev->lock_lists_lock);
4311	if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4312		dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4313		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4314	}
4315}
4316
4317static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4318				     void **p)
4319{
4320	struct rbd_client_id cid = { 0 };
4321
4322	if (struct_v >= 2) {
4323		cid.gid = ceph_decode_64(p);
4324		cid.handle = ceph_decode_64(p);
4325	}
4326
4327	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4328	     cid.handle);
4329	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4330		down_write(&rbd_dev->lock_rwsem);
4331		if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4332			dout("%s rbd_dev %p cid %llu-%llu == owner_cid\n",
4333			     __func__, rbd_dev, cid.gid, cid.handle);
4334		} else {
4335			rbd_set_owner_cid(rbd_dev, &cid);
4336		}
4337		downgrade_write(&rbd_dev->lock_rwsem);
4338	} else {
4339		down_read(&rbd_dev->lock_rwsem);
4340	}
4341
4342	maybe_kick_acquire(rbd_dev);
4343	up_read(&rbd_dev->lock_rwsem);
4344}
4345
4346static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4347				     void **p)
4348{
4349	struct rbd_client_id cid = { 0 };
4350
4351	if (struct_v >= 2) {
4352		cid.gid = ceph_decode_64(p);
4353		cid.handle = ceph_decode_64(p);
4354	}
4355
4356	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4357	     cid.handle);
4358	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4359		down_write(&rbd_dev->lock_rwsem);
4360		if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4361			dout("%s rbd_dev %p cid %llu-%llu != owner_cid %llu-%llu\n",
4362			     __func__, rbd_dev, cid.gid, cid.handle,
4363			     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4364		} else {
4365			rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4366		}
4367		downgrade_write(&rbd_dev->lock_rwsem);
4368	} else {
4369		down_read(&rbd_dev->lock_rwsem);
4370	}
4371
4372	maybe_kick_acquire(rbd_dev);
4373	up_read(&rbd_dev->lock_rwsem);
4374}
4375
4376/*
4377 * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4378 * ResponseMessage is needed.
4379 */
4380static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4381				   void **p)
4382{
4383	struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4384	struct rbd_client_id cid = { 0 };
4385	int result = 1;
4386
4387	if (struct_v >= 2) {
4388		cid.gid = ceph_decode_64(p);
4389		cid.handle = ceph_decode_64(p);
4390	}
4391
4392	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4393	     cid.handle);
4394	if (rbd_cid_equal(&cid, &my_cid))
4395		return result;
4396
4397	down_read(&rbd_dev->lock_rwsem);
4398	if (__rbd_is_lock_owner(rbd_dev)) {
4399		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4400		    rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
4401			goto out_unlock;
4402
4403		/*
4404		 * encode ResponseMessage(0) so the peer can detect
4405		 * a missing owner
4406		 */
4407		result = 0;
4408
4409		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4410			if (!rbd_dev->opts->exclusive) {
4411				dout("%s rbd_dev %p queueing unlock_work\n",
4412				     __func__, rbd_dev);
4413				queue_work(rbd_dev->task_wq,
4414					   &rbd_dev->unlock_work);
4415			} else {
4416				/* refuse to release the lock */
4417				result = -EROFS;
4418			}
4419		}
4420	}
4421
4422out_unlock:
4423	up_read(&rbd_dev->lock_rwsem);
4424	return result;
4425}
4426
4427static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4428				     u64 notify_id, u64 cookie, s32 *result)
4429{
4430	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4431	char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4432	int buf_size = sizeof(buf);
4433	int ret;
4434
4435	if (result) {
4436		void *p = buf;
4437
4438		/* encode ResponseMessage */
4439		ceph_start_encoding(&p, 1, 1,
4440				    buf_size - CEPH_ENCODING_START_BLK_LEN);
4441		ceph_encode_32(&p, *result);
4442	} else {
4443		buf_size = 0;
4444	}
4445
4446	ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
4447				   &rbd_dev->header_oloc, notify_id, cookie,
4448				   buf, buf_size);
4449	if (ret)
4450		rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
4451}
4452
4453static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4454				   u64 cookie)
4455{
4456	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4457	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4458}
4459
4460static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4461					  u64 notify_id, u64 cookie, s32 result)
4462{
4463	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4464	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
4465}
4466
4467static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4468			 u64 notifier_id, void *data, size_t data_len)
4469{
4470	struct rbd_device *rbd_dev = arg;
4471	void *p = data;
4472	void *const end = p + data_len;
4473	u8 struct_v = 0;
4474	u32 len;
4475	u32 notify_op;
4476	int ret;
4477
4478	dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4479	     __func__, rbd_dev, cookie, notify_id, data_len);
4480	if (data_len) {
4481		ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
4482					  &struct_v, &len);
4483		if (ret) {
4484			rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
4485				 ret);
4486			return;
4487		}
4488
4489		notify_op = ceph_decode_32(&p);
4490	} else {
4491		/* legacy notification for header updates */
4492		notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4493		len = 0;
4494	}
4495
4496	dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4497	switch (notify_op) {
4498	case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4499		rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
4500		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4501		break;
4502	case RBD_NOTIFY_OP_RELEASED_LOCK:
4503		rbd_handle_released_lock(rbd_dev, struct_v, &p);
4504		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4505		break;
4506	case RBD_NOTIFY_OP_REQUEST_LOCK:
4507		ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
4508		if (ret <= 0)
4509			rbd_acknowledge_notify_result(rbd_dev, notify_id,
4510						      cookie, ret);
4511		else
4512			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4513		break;
4514	case RBD_NOTIFY_OP_HEADER_UPDATE:
4515		ret = rbd_dev_refresh(rbd_dev);
4516		if (ret)
4517			rbd_warn(rbd_dev, "refresh failed: %d", ret);
4518
4519		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4520		break;
4521	default:
4522		if (rbd_is_lock_owner(rbd_dev))
4523			rbd_acknowledge_notify_result(rbd_dev, notify_id,
4524						      cookie, -EOPNOTSUPP);
4525		else
4526			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4527		break;
4528	}
4529}
4530
4531static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4532
4533static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4534{
4535	struct rbd_device *rbd_dev = arg;
4536
4537	rbd_warn(rbd_dev, "encountered watch error: %d", err);
4538
4539	down_write(&rbd_dev->lock_rwsem);
4540	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4541	up_write(&rbd_dev->lock_rwsem);
4542
4543	mutex_lock(&rbd_dev->watch_mutex);
4544	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4545		__rbd_unregister_watch(rbd_dev);
4546		rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4547
4548		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
4549	}
4550	mutex_unlock(&rbd_dev->watch_mutex);
4551}
4552
4553/*
4554 * watch_mutex must be locked
4555 */
4556static int __rbd_register_watch(struct rbd_device *rbd_dev)
4557{
4558	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4559	struct ceph_osd_linger_request *handle;
4560
4561	rbd_assert(!rbd_dev->watch_handle);
4562	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4563
4564	handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
4565				 &rbd_dev->header_oloc, rbd_watch_cb,
4566				 rbd_watch_errcb, rbd_dev);
4567	if (IS_ERR(handle))
4568		return PTR_ERR(handle);
4569
4570	rbd_dev->watch_handle = handle;
4571	return 0;
4572}
4573
4574/*
4575 * watch_mutex must be locked
4576 */
4577static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4578{
4579	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4580	int ret;
4581
4582	rbd_assert(rbd_dev->watch_handle);
4583	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4584
4585	ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
4586	if (ret)
4587		rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
4588
4589	rbd_dev->watch_handle = NULL;
4590}
4591
4592static int rbd_register_watch(struct rbd_device *rbd_dev)
4593{
4594	int ret;
4595
4596	mutex_lock(&rbd_dev->watch_mutex);
4597	rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4598	ret = __rbd_register_watch(rbd_dev);
4599	if (ret)
4600		goto out;
4601
4602	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4603	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4604
4605out:
4606	mutex_unlock(&rbd_dev->watch_mutex);
4607	return ret;
4608}
4609
4610static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4611{
4612	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4613
4614	cancel_work_sync(&rbd_dev->acquired_lock_work);
4615	cancel_work_sync(&rbd_dev->released_lock_work);
4616	cancel_delayed_work_sync(&rbd_dev->lock_dwork);
4617	cancel_work_sync(&rbd_dev->unlock_work);
4618}
4619
4620/*
4621 * header_rwsem must not be held to avoid a deadlock with
4622 * rbd_dev_refresh() when flushing notifies.
4623 */
4624static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4625{
4626	cancel_tasks_sync(rbd_dev);
4627
4628	mutex_lock(&rbd_dev->watch_mutex);
4629	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4630		__rbd_unregister_watch(rbd_dev);
4631	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4632	mutex_unlock(&rbd_dev->watch_mutex);
4633
4634	cancel_delayed_work_sync(&rbd_dev->watch_dwork);
4635	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
4636}
4637
4638/*
4639 * lock_rwsem must be held for write
4640 */
4641static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4642{
4643	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4644	char cookie[32];
4645	int ret;
4646
4647	if (!rbd_quiesce_lock(rbd_dev))
4648		return;
4649
4650	format_lock_cookie(rbd_dev, cookie);
4651	ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
4652				  &rbd_dev->header_oloc, RBD_LOCK_NAME,
4653				  CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
4654				  RBD_LOCK_TAG, cookie);
4655	if (ret) {
4656		if (ret != -EOPNOTSUPP)
4657			rbd_warn(rbd_dev, "failed to update lock cookie: %d",
4658				 ret);
4659
4660		/*
4661		 * Lock cookie cannot be updated on older OSDs, so do
4662		 * a manual release and queue an acquire.
4663		 */
4664		__rbd_release_lock(rbd_dev);
4665		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4666	} else {
4667		__rbd_lock(rbd_dev, cookie);
4668		wake_lock_waiters(rbd_dev, 0);
4669	}
4670}
4671
4672static void rbd_reregister_watch(struct work_struct *work)
4673{
4674	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4675					    struct rbd_device, watch_dwork);
4676	int ret;
4677
4678	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4679
4680	mutex_lock(&rbd_dev->watch_mutex);
4681	if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4682		mutex_unlock(&rbd_dev->watch_mutex);
4683		return;
4684	}
4685
4686	ret = __rbd_register_watch(rbd_dev);
4687	if (ret) {
4688		rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
4689		if (ret != -EBLOCKLISTED && ret != -ENOENT) {
4690			queue_delayed_work(rbd_dev->task_wq,
4691					   &rbd_dev->watch_dwork,
4692					   RBD_RETRY_DELAY);
4693			mutex_unlock(&rbd_dev->watch_mutex);
4694			return;
4695		}
4696
4697		mutex_unlock(&rbd_dev->watch_mutex);
4698		down_write(&rbd_dev->lock_rwsem);
4699		wake_lock_waiters(rbd_dev, ret);
4700		up_write(&rbd_dev->lock_rwsem);
4701		return;
4702	}
4703
4704	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4705	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4706	mutex_unlock(&rbd_dev->watch_mutex);
4707
4708	down_write(&rbd_dev->lock_rwsem);
4709	if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4710		rbd_reacquire_lock(rbd_dev);
4711	up_write(&rbd_dev->lock_rwsem);
4712
4713	ret = rbd_dev_refresh(rbd_dev);
4714	if (ret)
4715		rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
4716}
4717
4718/*
4719 * Synchronous osd object method call.  Returns the number of bytes
4720 * returned in the outbound buffer, or a negative error code.
4721 */
4722static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4723			     struct ceph_object_id *oid,
4724			     struct ceph_object_locator *oloc,
4725			     const char *method_name,
4726			     const void *outbound,
4727			     size_t outbound_size,
4728			     void *inbound,
4729			     size_t inbound_size)
4730{
4731	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4732	struct page *req_page = NULL;
4733	struct page *reply_page;
4734	int ret;
4735
4736	/*
4737	 * Method calls are ultimately read operations.  The result
4738	 * should placed into the inbound buffer provided.  They
4739	 * also supply outbound data--parameters for the object
4740	 * method.  Currently if this is present it will be a
4741	 * snapshot id.
4742	 */
4743	if (outbound) {
4744		if (outbound_size > PAGE_SIZE)
4745			return -E2BIG;
4746
4747		req_page = alloc_page(GFP_KERNEL);
4748		if (!req_page)
4749			return -ENOMEM;
4750
4751		memcpy(page_address(req_page), outbound, outbound_size);
4752	}
4753
4754	reply_page = alloc_page(GFP_KERNEL);
4755	if (!reply_page) {
4756		if (req_page)
4757			__free_page(req_page);
4758		return -ENOMEM;
4759	}
4760
4761	ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
4762			     CEPH_OSD_FLAG_READ, req_page, outbound_size,
4763			     &reply_page, &inbound_size);
4764	if (!ret) {
4765		memcpy(inbound, page_address(reply_page), inbound_size);
4766		ret = inbound_size;
4767	}
4768
4769	if (req_page)
4770		__free_page(req_page);
4771	__free_page(reply_page);
4772	return ret;
4773}
4774
4775static void rbd_queue_workfn(struct work_struct *work)
4776{
4777	struct rbd_img_request *img_request =
4778	    container_of(work, struct rbd_img_request, work);
4779	struct rbd_device *rbd_dev = img_request->rbd_dev;
4780	enum obj_operation_type op_type = img_request->op_type;
4781	struct request *rq = blk_mq_rq_from_pdu(img_request);
4782	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4783	u64 length = blk_rq_bytes(rq);
4784	u64 mapping_size;
4785	int result;
4786
4787	/* Ignore/skip any zero-length requests */
4788	if (!length) {
4789		dout("%s: zero-length request\n", __func__);
4790		result = 0;
4791		goto err_img_request;
4792	}
4793
4794	blk_mq_start_request(rq);
4795
4796	down_read(&rbd_dev->header_rwsem);
4797	mapping_size = rbd_dev->mapping.size;
4798	rbd_img_capture_header(img_request);
4799	up_read(&rbd_dev->header_rwsem);
4800
4801	if (offset + length > mapping_size) {
4802		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4803			 length, mapping_size);
4804		result = -EIO;
4805		goto err_img_request;
4806	}
4807
4808	dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev,
4809	     img_request, obj_op_name(op_type), offset, length);
4810
4811	if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4812		result = rbd_img_fill_nodata(img_request, offset, length);
4813	else
4814		result = rbd_img_fill_from_bio(img_request, offset, length,
4815					       rq->bio);
4816	if (result)
4817		goto err_img_request;
4818
4819	rbd_img_handle_request(img_request, 0);
4820	return;
4821
4822err_img_request:
4823	rbd_img_request_destroy(img_request);
4824	if (result)
4825		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4826			 obj_op_name(op_type), length, offset, result);
4827	blk_mq_end_request(rq, errno_to_blk_status(result));
4828}
4829
4830static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4831		const struct blk_mq_queue_data *bd)
4832{
4833	struct rbd_device *rbd_dev = hctx->queue->queuedata;
4834	struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq);
4835	enum obj_operation_type op_type;
4836
4837	switch (req_op(bd->rq)) {
4838	case REQ_OP_DISCARD:
4839		op_type = OBJ_OP_DISCARD;
4840		break;
4841	case REQ_OP_WRITE_ZEROES:
4842		op_type = OBJ_OP_ZEROOUT;
4843		break;
4844	case REQ_OP_WRITE:
4845		op_type = OBJ_OP_WRITE;
4846		break;
4847	case REQ_OP_READ:
4848		op_type = OBJ_OP_READ;
4849		break;
4850	default:
4851		rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq));
4852		return BLK_STS_IOERR;
4853	}
4854
4855	rbd_img_request_init(img_req, rbd_dev, op_type);
4856
4857	if (rbd_img_is_write(img_req)) {
4858		if (rbd_is_ro(rbd_dev)) {
4859			rbd_warn(rbd_dev, "%s on read-only mapping",
4860				 obj_op_name(img_req->op_type));
4861			return BLK_STS_IOERR;
4862		}
4863		rbd_assert(!rbd_is_snap(rbd_dev));
4864	}
4865
4866	INIT_WORK(&img_req->work, rbd_queue_workfn);
4867	queue_work(rbd_wq, &img_req->work);
4868	return BLK_STS_OK;
4869}
4870
4871static void rbd_free_disk(struct rbd_device *rbd_dev)
4872{
4873	blk_cleanup_queue(rbd_dev->disk->queue);
4874	blk_mq_free_tag_set(&rbd_dev->tag_set);
4875	put_disk(rbd_dev->disk);
4876	rbd_dev->disk = NULL;
4877}
4878
4879static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4880			     struct ceph_object_id *oid,
4881			     struct ceph_object_locator *oloc,
4882			     void *buf, int buf_len)
4883
4884{
4885	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4886	struct ceph_osd_request *req;
4887	struct page **pages;
4888	int num_pages = calc_pages_for(0, buf_len);
4889	int ret;
4890
4891	req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4892	if (!req)
4893		return -ENOMEM;
4894
4895	ceph_oid_copy(&req->r_base_oid, oid);
4896	ceph_oloc_copy(&req->r_base_oloc, oloc);
4897	req->r_flags = CEPH_OSD_FLAG_READ;
4898
4899	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4900	if (IS_ERR(pages)) {
4901		ret = PTR_ERR(pages);
4902		goto out_req;
4903	}
4904
4905	osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4906	osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4907					 true);
4908
4909	ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4910	if (ret)
4911		goto out_req;
4912
4913	ceph_osdc_start_request(osdc, req, false);
4914	ret = ceph_osdc_wait_request(osdc, req);
4915	if (ret >= 0)
4916		ceph_copy_from_page_vector(pages, buf, 0, ret);
4917
4918out_req:
4919	ceph_osdc_put_request(req);
4920	return ret;
4921}
4922
4923/*
4924 * Read the complete header for the given rbd device.  On successful
4925 * return, the rbd_dev->header field will contain up-to-date
4926 * information about the image.
4927 */
4928static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev,
4929				  struct rbd_image_header *header,
4930				  bool first_time)
4931{
4932	struct rbd_image_header_ondisk *ondisk = NULL;
4933	u32 snap_count = 0;
4934	u64 names_size = 0;
4935	u32 want_count;
4936	int ret;
4937
4938	/*
4939	 * The complete header will include an array of its 64-bit
4940	 * snapshot ids, followed by the names of those snapshots as
4941	 * a contiguous block of NUL-terminated strings.  Note that
4942	 * the number of snapshots could change by the time we read
4943	 * it in, in which case we re-read it.
4944	 */
4945	do {
4946		size_t size;
4947
4948		kfree(ondisk);
4949
4950		size = sizeof (*ondisk);
4951		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4952		size += names_size;
4953		ondisk = kmalloc(size, GFP_KERNEL);
4954		if (!ondisk)
4955			return -ENOMEM;
4956
4957		ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4958					&rbd_dev->header_oloc, ondisk, size);
4959		if (ret < 0)
4960			goto out;
4961		if ((size_t)ret < size) {
4962			ret = -ENXIO;
4963			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4964				size, ret);
4965			goto out;
4966		}
4967		if (!rbd_dev_ondisk_valid(ondisk)) {
4968			ret = -ENXIO;
4969			rbd_warn(rbd_dev, "invalid header");
4970			goto out;
4971		}
4972
4973		names_size = le64_to_cpu(ondisk->snap_names_len);
4974		want_count = snap_count;
4975		snap_count = le32_to_cpu(ondisk->snap_count);
4976	} while (snap_count != want_count);
4977
4978	ret = rbd_header_from_disk(header, ondisk, first_time);
4979out:
4980	kfree(ondisk);
4981
4982	return ret;
4983}
4984
4985static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4986{
4987	sector_t size;
4988
4989	/*
4990	 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4991	 * try to update its size.  If REMOVING is set, updating size
4992	 * is just useless work since the device can't be opened.
4993	 */
4994	if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4995	    !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4996		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4997		dout("setting size to %llu sectors", (unsigned long long)size);
4998		set_capacity(rbd_dev->disk, size);
4999		revalidate_disk_size(rbd_dev->disk, true);
5000	}
5001}
5002
5003static const struct blk_mq_ops rbd_mq_ops = {
5004	.queue_rq	= rbd_queue_rq,
5005};
5006
5007static int rbd_init_disk(struct rbd_device *rbd_dev)
5008{
5009	struct gendisk *disk;
5010	struct request_queue *q;
5011	unsigned int objset_bytes =
5012	    rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
5013	int err;
5014
5015	/* create gendisk info */
5016	disk = alloc_disk(single_major ?
5017			  (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
5018			  RBD_MINORS_PER_MAJOR);
5019	if (!disk)
5020		return -ENOMEM;
5021
5022	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
5023		 rbd_dev->dev_id);
5024	disk->major = rbd_dev->major;
5025	disk->first_minor = rbd_dev->minor;
5026	if (single_major)
5027		disk->flags |= GENHD_FL_EXT_DEVT;
5028	disk->fops = &rbd_bd_ops;
5029	disk->private_data = rbd_dev;
5030
5031	memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
5032	rbd_dev->tag_set.ops = &rbd_mq_ops;
5033	rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
5034	rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
5035	rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
5036	rbd_dev->tag_set.nr_hw_queues = num_present_cpus();
5037	rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request);
5038
5039	err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
5040	if (err)
5041		goto out_disk;
5042
5043	q = blk_mq_init_queue(&rbd_dev->tag_set);
5044	if (IS_ERR(q)) {
5045		err = PTR_ERR(q);
5046		goto out_tag_set;
5047	}
5048
5049	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
5050	/* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
5051
5052	blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
5053	q->limits.max_sectors = queue_max_hw_sectors(q);
5054	blk_queue_max_segments(q, USHRT_MAX);
5055	blk_queue_max_segment_size(q, UINT_MAX);
5056	blk_queue_io_min(q, rbd_dev->opts->alloc_size);
5057	blk_queue_io_opt(q, rbd_dev->opts->alloc_size);
5058
5059	if (rbd_dev->opts->trim) {
5060		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
5061		q->limits.discard_granularity = rbd_dev->opts->alloc_size;
5062		blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
5063		blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
5064	}
5065
5066	if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
5067		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
5068
5069	/*
5070	 * disk_release() expects a queue ref from add_disk() and will
5071	 * put it.  Hold an extra ref until add_disk() is called.
5072	 */
5073	WARN_ON(!blk_get_queue(q));
5074	disk->queue = q;
5075	q->queuedata = rbd_dev;
5076
5077	rbd_dev->disk = disk;
5078
5079	return 0;
5080out_tag_set:
5081	blk_mq_free_tag_set(&rbd_dev->tag_set);
5082out_disk:
5083	put_disk(disk);
5084	return err;
5085}
5086
5087/*
5088  sysfs
5089*/
5090
5091static struct rbd_device *dev_to_rbd_dev(struct device *dev)
5092{
5093	return container_of(dev, struct rbd_device, dev);
5094}
5095
5096static ssize_t rbd_size_show(struct device *dev,
5097			     struct device_attribute *attr, char *buf)
5098{
5099	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5100
5101	return sprintf(buf, "%llu\n",
5102		(unsigned long long)rbd_dev->mapping.size);
5103}
5104
5105static ssize_t rbd_features_show(struct device *dev,
5106			     struct device_attribute *attr, char *buf)
5107{
5108	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5109
5110	return sprintf(buf, "0x%016llx\n", rbd_dev->header.features);
5111}
5112
5113static ssize_t rbd_major_show(struct device *dev,
5114			      struct device_attribute *attr, char *buf)
5115{
5116	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5117
5118	if (rbd_dev->major)
5119		return sprintf(buf, "%d\n", rbd_dev->major);
5120
5121	return sprintf(buf, "(none)\n");
5122}
5123
5124static ssize_t rbd_minor_show(struct device *dev,
5125			      struct device_attribute *attr, char *buf)
5126{
5127	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5128
5129	return sprintf(buf, "%d\n", rbd_dev->minor);
5130}
5131
5132static ssize_t rbd_client_addr_show(struct device *dev,
5133				    struct device_attribute *attr, char *buf)
5134{
5135	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5136	struct ceph_entity_addr *client_addr =
5137	    ceph_client_addr(rbd_dev->rbd_client->client);
5138
5139	return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
5140		       le32_to_cpu(client_addr->nonce));
5141}
5142
5143static ssize_t rbd_client_id_show(struct device *dev,
5144				  struct device_attribute *attr, char *buf)
5145{
5146	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5147
5148	return sprintf(buf, "client%lld\n",
5149		       ceph_client_gid(rbd_dev->rbd_client->client));
5150}
5151
5152static ssize_t rbd_cluster_fsid_show(struct device *dev,
5153				     struct device_attribute *attr, char *buf)
5154{
5155	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5156
5157	return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
5158}
5159
5160static ssize_t rbd_config_info_show(struct device *dev,
5161				    struct device_attribute *attr, char *buf)
5162{
5163	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5164
5165	if (!capable(CAP_SYS_ADMIN))
5166		return -EPERM;
5167
5168	return sprintf(buf, "%s\n", rbd_dev->config_info);
5169}
5170
5171static ssize_t rbd_pool_show(struct device *dev,
5172			     struct device_attribute *attr, char *buf)
5173{
5174	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5175
5176	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
5177}
5178
5179static ssize_t rbd_pool_id_show(struct device *dev,
5180			     struct device_attribute *attr, char *buf)
5181{
5182	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5183
5184	return sprintf(buf, "%llu\n",
5185			(unsigned long long) rbd_dev->spec->pool_id);
5186}
5187
5188static ssize_t rbd_pool_ns_show(struct device *dev,
5189				struct device_attribute *attr, char *buf)
5190{
5191	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5192
5193	return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
5194}
5195
5196static ssize_t rbd_name_show(struct device *dev,
5197			     struct device_attribute *attr, char *buf)
5198{
5199	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5200
5201	if (rbd_dev->spec->image_name)
5202		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
5203
5204	return sprintf(buf, "(unknown)\n");
5205}
5206
5207static ssize_t rbd_image_id_show(struct device *dev,
5208			     struct device_attribute *attr, char *buf)
5209{
5210	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5211
5212	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
5213}
5214
5215/*
5216 * Shows the name of the currently-mapped snapshot (or
5217 * RBD_SNAP_HEAD_NAME for the base image).
5218 */
5219static ssize_t rbd_snap_show(struct device *dev,
5220			     struct device_attribute *attr,
5221			     char *buf)
5222{
5223	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5224
5225	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
5226}
5227
5228static ssize_t rbd_snap_id_show(struct device *dev,
5229				struct device_attribute *attr, char *buf)
5230{
5231	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5232
5233	return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
5234}
5235
5236/*
5237 * For a v2 image, shows the chain of parent images, separated by empty
5238 * lines.  For v1 images or if there is no parent, shows "(no parent
5239 * image)".
5240 */
5241static ssize_t rbd_parent_show(struct device *dev,
5242			       struct device_attribute *attr,
5243			       char *buf)
5244{
5245	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5246	ssize_t count = 0;
5247
5248	if (!rbd_dev->parent)
5249		return sprintf(buf, "(no parent image)\n");
5250
5251	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5252		struct rbd_spec *spec = rbd_dev->parent_spec;
5253
5254		count += sprintf(&buf[count], "%s"
5255			    "pool_id %llu\npool_name %s\n"
5256			    "pool_ns %s\n"
5257			    "image_id %s\nimage_name %s\n"
5258			    "snap_id %llu\nsnap_name %s\n"
5259			    "overlap %llu\n",
5260			    !count ? "" : "\n", /* first? */
5261			    spec->pool_id, spec->pool_name,
5262			    spec->pool_ns ?: "",
5263			    spec->image_id, spec->image_name ?: "(unknown)",
5264			    spec->snap_id, spec->snap_name,
5265			    rbd_dev->parent_overlap);
5266	}
5267
5268	return count;
5269}
5270
5271static ssize_t rbd_image_refresh(struct device *dev,
5272				 struct device_attribute *attr,
5273				 const char *buf,
5274				 size_t size)
5275{
5276	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5277	int ret;
5278
5279	if (!capable(CAP_SYS_ADMIN))
5280		return -EPERM;
5281
5282	ret = rbd_dev_refresh(rbd_dev);
5283	if (ret)
5284		return ret;
5285
5286	return size;
5287}
5288
5289static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5290static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5291static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5292static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5293static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5294static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5295static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5296static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5297static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5298static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5299static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5300static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5301static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5302static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5303static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5304static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5305static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5306
5307static struct attribute *rbd_attrs[] = {
5308	&dev_attr_size.attr,
5309	&dev_attr_features.attr,
5310	&dev_attr_major.attr,
5311	&dev_attr_minor.attr,
5312	&dev_attr_client_addr.attr,
5313	&dev_attr_client_id.attr,
5314	&dev_attr_cluster_fsid.attr,
5315	&dev_attr_config_info.attr,
5316	&dev_attr_pool.attr,
5317	&dev_attr_pool_id.attr,
5318	&dev_attr_pool_ns.attr,
5319	&dev_attr_name.attr,
5320	&dev_attr_image_id.attr,
5321	&dev_attr_current_snap.attr,
5322	&dev_attr_snap_id.attr,
5323	&dev_attr_parent.attr,
5324	&dev_attr_refresh.attr,
5325	NULL
5326};
5327
5328static struct attribute_group rbd_attr_group = {
5329	.attrs = rbd_attrs,
5330};
5331
5332static const struct attribute_group *rbd_attr_groups[] = {
5333	&rbd_attr_group,
5334	NULL
5335};
5336
5337static void rbd_dev_release(struct device *dev);
5338
5339static const struct device_type rbd_device_type = {
5340	.name		= "rbd",
5341	.groups		= rbd_attr_groups,
5342	.release	= rbd_dev_release,
5343};
5344
5345static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5346{
5347	kref_get(&spec->kref);
5348
5349	return spec;
5350}
5351
5352static void rbd_spec_free(struct kref *kref);
5353static void rbd_spec_put(struct rbd_spec *spec)
5354{
5355	if (spec)
5356		kref_put(&spec->kref, rbd_spec_free);
5357}
5358
5359static struct rbd_spec *rbd_spec_alloc(void)
5360{
5361	struct rbd_spec *spec;
5362
5363	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
5364	if (!spec)
5365		return NULL;
5366
5367	spec->pool_id = CEPH_NOPOOL;
5368	spec->snap_id = CEPH_NOSNAP;
5369	kref_init(&spec->kref);
5370
5371	return spec;
5372}
5373
5374static void rbd_spec_free(struct kref *kref)
5375{
5376	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5377
5378	kfree(spec->pool_name);
5379	kfree(spec->pool_ns);
5380	kfree(spec->image_id);
5381	kfree(spec->image_name);
5382	kfree(spec->snap_name);
5383	kfree(spec);
5384}
5385
5386static void rbd_dev_free(struct rbd_device *rbd_dev)
5387{
5388	WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5389	WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5390
5391	ceph_oid_destroy(&rbd_dev->header_oid);
5392	ceph_oloc_destroy(&rbd_dev->header_oloc);
5393	kfree(rbd_dev->config_info);
5394
5395	rbd_put_client(rbd_dev->rbd_client);
5396	rbd_spec_put(rbd_dev->spec);
5397	kfree(rbd_dev->opts);
5398	kfree(rbd_dev);
5399}
5400
5401static void rbd_dev_release(struct device *dev)
5402{
5403	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5404	bool need_put = !!rbd_dev->opts;
5405
5406	if (need_put) {
5407		destroy_workqueue(rbd_dev->task_wq);
5408		ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5409	}
5410
5411	rbd_dev_free(rbd_dev);
5412
5413	/*
5414	 * This is racy, but way better than putting module outside of
5415	 * the release callback.  The race window is pretty small, so
5416	 * doing something similar to dm (dm-builtin.c) is overkill.
5417	 */
5418	if (need_put)
5419		module_put(THIS_MODULE);
5420}
5421
5422static struct rbd_device *__rbd_dev_create(struct rbd_spec *spec)
5423{
5424	struct rbd_device *rbd_dev;
5425
5426	rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
5427	if (!rbd_dev)
5428		return NULL;
5429
5430	spin_lock_init(&rbd_dev->lock);
5431	INIT_LIST_HEAD(&rbd_dev->node);
5432	init_rwsem(&rbd_dev->header_rwsem);
5433
5434	rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5435	ceph_oid_init(&rbd_dev->header_oid);
5436	rbd_dev->header_oloc.pool = spec->pool_id;
5437	if (spec->pool_ns) {
5438		WARN_ON(!*spec->pool_ns);
5439		rbd_dev->header_oloc.pool_ns =
5440		    ceph_find_or_create_string(spec->pool_ns,
5441					       strlen(spec->pool_ns));
5442	}
5443
5444	mutex_init(&rbd_dev->watch_mutex);
5445	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5446	INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5447
5448	init_rwsem(&rbd_dev->lock_rwsem);
5449	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5450	INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5451	INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5452	INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5453	INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5454	spin_lock_init(&rbd_dev->lock_lists_lock);
5455	INIT_LIST_HEAD(&rbd_dev->acquiring_list);
5456	INIT_LIST_HEAD(&rbd_dev->running_list);
5457	init_completion(&rbd_dev->acquire_wait);
5458	init_completion(&rbd_dev->releasing_wait);
5459
5460	spin_lock_init(&rbd_dev->object_map_lock);
5461
5462	rbd_dev->dev.bus = &rbd_bus_type;
5463	rbd_dev->dev.type = &rbd_device_type;
5464	rbd_dev->dev.parent = &rbd_root_dev;
5465	device_initialize(&rbd_dev->dev);
5466
5467	return rbd_dev;
5468}
5469
5470/*
5471 * Create a mapping rbd_dev.
5472 */
5473static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5474					 struct rbd_spec *spec,
5475					 struct rbd_options *opts)
5476{
5477	struct rbd_device *rbd_dev;
5478
5479	rbd_dev = __rbd_dev_create(spec);
5480	if (!rbd_dev)
5481		return NULL;
5482
5483	/* get an id and fill in device name */
5484	rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
5485					 minor_to_rbd_dev_id(1 << MINORBITS),
5486					 GFP_KERNEL);
5487	if (rbd_dev->dev_id < 0)
5488		goto fail_rbd_dev;
5489
5490	sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5491	rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5492						   rbd_dev->name);
5493	if (!rbd_dev->task_wq)
5494		goto fail_dev_id;
5495
5496	/* we have a ref from do_rbd_add() */
5497	__module_get(THIS_MODULE);
5498
5499	rbd_dev->rbd_client = rbdc;
5500	rbd_dev->spec = spec;
5501	rbd_dev->opts = opts;
5502
5503	dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5504	return rbd_dev;
5505
5506fail_dev_id:
5507	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5508fail_rbd_dev:
5509	rbd_dev_free(rbd_dev);
5510	return NULL;
5511}
5512
5513static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5514{
5515	if (rbd_dev)
5516		put_device(&rbd_dev->dev);
5517}
5518
5519/*
5520 * Get the size and object order for an image snapshot, or if
5521 * snap_id is CEPH_NOSNAP, gets this information for the base
5522 * image.
5523 */
5524static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5525				u8 *order, u64 *snap_size)
5526{
5527	__le64 snapid = cpu_to_le64(snap_id);
5528	int ret;
5529	struct {
5530		u8 order;
5531		__le64 size;
5532	} __attribute__ ((packed)) size_buf = { 0 };
5533
5534	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5535				  &rbd_dev->header_oloc, "get_size",
5536				  &snapid, sizeof(snapid),
5537				  &size_buf, sizeof(size_buf));
5538	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5539	if (ret < 0)
5540		return ret;
5541	if (ret < sizeof (size_buf))
5542		return -ERANGE;
5543
5544	if (order) {
5545		*order = size_buf.order;
5546		dout("  order %u", (unsigned int)*order);
5547	}
5548	*snap_size = le64_to_cpu(size_buf.size);
5549
5550	dout("  snap_id 0x%016llx snap_size = %llu\n",
5551		(unsigned long long)snap_id,
5552		(unsigned long long)*snap_size);
5553
5554	return 0;
5555}
5556
5557static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev,
5558				    char **pobject_prefix)
5559{
5560	size_t size;
5561	void *reply_buf;
5562	char *object_prefix;
5563	int ret;
5564	void *p;
5565
5566	/* Response will be an encoded string, which includes a length */
5567	size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX;
5568	reply_buf = kzalloc(size, GFP_KERNEL);
5569	if (!reply_buf)
5570		return -ENOMEM;
5571
5572	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5573				  &rbd_dev->header_oloc, "get_object_prefix",
5574				  NULL, 0, reply_buf, size);
5575	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5576	if (ret < 0)
5577		goto out;
5578
5579	p = reply_buf;
5580	object_prefix = ceph_extract_encoded_string(&p, p + ret, NULL,
5581						    GFP_NOIO);
5582	if (IS_ERR(object_prefix)) {
5583		ret = PTR_ERR(object_prefix);
5584		goto out;
5585	}
5586	ret = 0;
5587
5588	*pobject_prefix = object_prefix;
5589	dout("  object_prefix = %s\n", object_prefix);
5590out:
5591	kfree(reply_buf);
5592
5593	return ret;
5594}
5595
5596static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5597				     bool read_only, u64 *snap_features)
5598{
5599	struct {
5600		__le64 snap_id;
5601		u8 read_only;
5602	} features_in;
5603	struct {
5604		__le64 features;
5605		__le64 incompat;
5606	} __attribute__ ((packed)) features_buf = { 0 };
5607	u64 unsup;
5608	int ret;
5609
5610	features_in.snap_id = cpu_to_le64(snap_id);
5611	features_in.read_only = read_only;
5612
5613	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5614				  &rbd_dev->header_oloc, "get_features",
5615				  &features_in, sizeof(features_in),
5616				  &features_buf, sizeof(features_buf));
5617	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5618	if (ret < 0)
5619		return ret;
5620	if (ret < sizeof (features_buf))
5621		return -ERANGE;
5622
5623	unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5624	if (unsup) {
5625		rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5626			 unsup);
5627		return -ENXIO;
5628	}
5629
5630	*snap_features = le64_to_cpu(features_buf.features);
5631
5632	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5633		(unsigned long long)snap_id,
5634		(unsigned long long)*snap_features,
5635		(unsigned long long)le64_to_cpu(features_buf.incompat));
5636
5637	return 0;
5638}
5639
5640/*
5641 * These are generic image flags, but since they are used only for
5642 * object map, store them in rbd_dev->object_map_flags.
5643 *
5644 * For the same reason, this function is called only on object map
5645 * (re)load and not on header refresh.
5646 */
5647static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5648{
5649	__le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5650	__le64 flags;
5651	int ret;
5652
5653	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5654				  &rbd_dev->header_oloc, "get_flags",
5655				  &snapid, sizeof(snapid),
5656				  &flags, sizeof(flags));
5657	if (ret < 0)
5658		return ret;
5659	if (ret < sizeof(flags))
5660		return -EBADMSG;
5661
5662	rbd_dev->object_map_flags = le64_to_cpu(flags);
5663	return 0;
5664}
5665
5666struct parent_image_info {
5667	u64		pool_id;
5668	const char	*pool_ns;
5669	const char	*image_id;
5670	u64		snap_id;
5671
5672	bool		has_overlap;
5673	u64		overlap;
5674};
5675
5676static void rbd_parent_info_cleanup(struct parent_image_info *pii)
5677{
5678	kfree(pii->pool_ns);
5679	kfree(pii->image_id);
5680
5681	memset(pii, 0, sizeof(*pii));
5682}
5683
5684/*
5685 * The caller is responsible for @pii.
5686 */
5687static int decode_parent_image_spec(void **p, void *end,
5688				    struct parent_image_info *pii)
5689{
5690	u8 struct_v;
5691	u32 struct_len;
5692	int ret;
5693
5694	ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
5695				  &struct_v, &struct_len);
5696	if (ret)
5697		return ret;
5698
5699	ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5700	pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5701	if (IS_ERR(pii->pool_ns)) {
5702		ret = PTR_ERR(pii->pool_ns);
5703		pii->pool_ns = NULL;
5704		return ret;
5705	}
5706	pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5707	if (IS_ERR(pii->image_id)) {
5708		ret = PTR_ERR(pii->image_id);
5709		pii->image_id = NULL;
5710		return ret;
5711	}
5712	ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5713	return 0;
5714
5715e_inval:
5716	return -EINVAL;
5717}
5718
5719static int __get_parent_info(struct rbd_device *rbd_dev,
5720			     struct page *req_page,
5721			     struct page *reply_page,
5722			     struct parent_image_info *pii)
5723{
5724	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5725	size_t reply_len = PAGE_SIZE;
5726	void *p, *end;
5727	int ret;
5728
5729	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5730			     "rbd", "parent_get", CEPH_OSD_FLAG_READ,
5731			     req_page, sizeof(u64), &reply_page, &reply_len);
5732	if (ret)
5733		return ret == -EOPNOTSUPP ? 1 : ret;
5734
5735	p = page_address(reply_page);
5736	end = p + reply_len;
5737	ret = decode_parent_image_spec(&p, end, pii);
5738	if (ret)
5739		return ret;
5740
5741	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5742			     "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
5743			     req_page, sizeof(u64), &reply_page, &reply_len);
5744	if (ret)
5745		return ret;
5746
5747	p = page_address(reply_page);
5748	end = p + reply_len;
5749	ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5750	if (pii->has_overlap)
5751		ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5752
5753	dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5754	     __func__, pii->pool_id, pii->pool_ns, pii->image_id, pii->snap_id,
5755	     pii->has_overlap, pii->overlap);
5756	return 0;
5757
5758e_inval:
5759	return -EINVAL;
5760}
5761
5762/*
5763 * The caller is responsible for @pii.
5764 */
5765static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5766				    struct page *req_page,
5767				    struct page *reply_page,
5768				    struct parent_image_info *pii)
5769{
5770	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5771	size_t reply_len = PAGE_SIZE;
5772	void *p, *end;
5773	int ret;
5774
5775	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5776			     "rbd", "get_parent", CEPH_OSD_FLAG_READ,
5777			     req_page, sizeof(u64), &reply_page, &reply_len);
5778	if (ret)
5779		return ret;
5780
5781	p = page_address(reply_page);
5782	end = p + reply_len;
5783	ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5784	pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5785	if (IS_ERR(pii->image_id)) {
5786		ret = PTR_ERR(pii->image_id);
5787		pii->image_id = NULL;
5788		return ret;
5789	}
5790	ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5791	pii->has_overlap = true;
5792	ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5793
5794	dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5795	     __func__, pii->pool_id, pii->pool_ns, pii->image_id, pii->snap_id,
5796	     pii->has_overlap, pii->overlap);
5797	return 0;
5798
5799e_inval:
5800	return -EINVAL;
5801}
5802
5803static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev,
5804				  struct parent_image_info *pii)
5805{
5806	struct page *req_page, *reply_page;
5807	void *p;
5808	int ret;
5809
5810	req_page = alloc_page(GFP_KERNEL);
5811	if (!req_page)
5812		return -ENOMEM;
5813
5814	reply_page = alloc_page(GFP_KERNEL);
5815	if (!reply_page) {
5816		__free_page(req_page);
5817		return -ENOMEM;
5818	}
5819
5820	p = page_address(req_page);
5821	ceph_encode_64(&p, rbd_dev->spec->snap_id);
5822	ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5823	if (ret > 0)
5824		ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5825					       pii);
5826
5827	__free_page(req_page);
5828	__free_page(reply_page);
5829	return ret;
5830}
5831
5832static int rbd_dev_setup_parent(struct rbd_device *rbd_dev)
5833{
5834	struct rbd_spec *parent_spec;
5835	struct parent_image_info pii = { 0 };
5836	int ret;
5837
5838	parent_spec = rbd_spec_alloc();
5839	if (!parent_spec)
5840		return -ENOMEM;
5841
5842	ret = rbd_dev_v2_parent_info(rbd_dev, &pii);
5843	if (ret)
5844		goto out_err;
5845
5846	if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap)
5847		goto out;	/* No parent?  No problem. */
5848
5849	/* The ceph file layout needs to fit pool id in 32 bits */
5850
5851	ret = -EIO;
5852	if (pii.pool_id > (u64)U32_MAX) {
5853		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5854			(unsigned long long)pii.pool_id, U32_MAX);
5855		goto out_err;
5856	}
5857
5858	/*
5859	 * The parent won't change except when the clone is flattened,
5860	 * so we only need to record the parent image spec once.
5861	 */
5862	parent_spec->pool_id = pii.pool_id;
5863	if (pii.pool_ns && *pii.pool_ns) {
5864		parent_spec->pool_ns = pii.pool_ns;
5865		pii.pool_ns = NULL;
5866	}
5867	parent_spec->image_id = pii.image_id;
5868	pii.image_id = NULL;
5869	parent_spec->snap_id = pii.snap_id;
5870
5871	rbd_assert(!rbd_dev->parent_spec);
5872	rbd_dev->parent_spec = parent_spec;
5873	parent_spec = NULL;	/* rbd_dev now owns this */
5874
5875	/*
5876	 * Record the parent overlap.  If it's zero, issue a warning as
5877	 * we will proceed as if there is no parent.
5878	 */
5879	if (!pii.overlap)
5880		rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5881	rbd_dev->parent_overlap = pii.overlap;
5882
5883out:
5884	ret = 0;
5885out_err:
5886	rbd_parent_info_cleanup(&pii);
5887	rbd_spec_put(parent_spec);
5888	return ret;
5889}
5890
5891static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev,
5892				    u64 *stripe_unit, u64 *stripe_count)
5893{
5894	struct {
5895		__le64 stripe_unit;
5896		__le64 stripe_count;
5897	} __attribute__ ((packed)) striping_info_buf = { 0 };
5898	size_t size = sizeof (striping_info_buf);
5899	int ret;
5900
5901	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5902				&rbd_dev->header_oloc, "get_stripe_unit_count",
5903				NULL, 0, &striping_info_buf, size);
5904	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5905	if (ret < 0)
5906		return ret;
5907	if (ret < size)
5908		return -ERANGE;
5909
5910	*stripe_unit = le64_to_cpu(striping_info_buf.stripe_unit);
5911	*stripe_count = le64_to_cpu(striping_info_buf.stripe_count);
5912	dout("  stripe_unit = %llu stripe_count = %llu\n", *stripe_unit,
5913	     *stripe_count);
5914
5915	return 0;
5916}
5917
5918static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev, s64 *data_pool_id)
5919{
5920	__le64 data_pool_buf;
5921	int ret;
5922
5923	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5924				  &rbd_dev->header_oloc, "get_data_pool",
5925				  NULL, 0, &data_pool_buf,
5926				  sizeof(data_pool_buf));
5927	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5928	if (ret < 0)
5929		return ret;
5930	if (ret < sizeof(data_pool_buf))
5931		return -EBADMSG;
5932
5933	*data_pool_id = le64_to_cpu(data_pool_buf);
5934	dout("  data_pool_id = %lld\n", *data_pool_id);
5935	WARN_ON(*data_pool_id == CEPH_NOPOOL);
5936
5937	return 0;
5938}
5939
5940static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5941{
5942	CEPH_DEFINE_OID_ONSTACK(oid);
5943	size_t image_id_size;
5944	char *image_id;
5945	void *p;
5946	void *end;
5947	size_t size;
5948	void *reply_buf = NULL;
5949	size_t len = 0;
5950	char *image_name = NULL;
5951	int ret;
5952
5953	rbd_assert(!rbd_dev->spec->image_name);
5954
5955	len = strlen(rbd_dev->spec->image_id);
5956	image_id_size = sizeof (__le32) + len;
5957	image_id = kmalloc(image_id_size, GFP_KERNEL);
5958	if (!image_id)
5959		return NULL;
5960
5961	p = image_id;
5962	end = image_id + image_id_size;
5963	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5964
5965	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5966	reply_buf = kmalloc(size, GFP_KERNEL);
5967	if (!reply_buf)
5968		goto out;
5969
5970	ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5971	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5972				  "dir_get_name", image_id, image_id_size,
5973				  reply_buf, size);
5974	if (ret < 0)
5975		goto out;
5976	p = reply_buf;
5977	end = reply_buf + ret;
5978
5979	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5980	if (IS_ERR(image_name))
5981		image_name = NULL;
5982	else
5983		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5984out:
5985	kfree(reply_buf);
5986	kfree(image_id);
5987
5988	return image_name;
5989}
5990
5991static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5992{
5993	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5994	const char *snap_name;
5995	u32 which = 0;
5996
5997	/* Skip over names until we find the one we are looking for */
5998
5999	snap_name = rbd_dev->header.snap_names;
6000	while (which < snapc->num_snaps) {
6001		if (!strcmp(name, snap_name))
6002			return snapc->snaps[which];
6003		snap_name += strlen(snap_name) + 1;
6004		which++;
6005	}
6006	return CEPH_NOSNAP;
6007}
6008
6009static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
6010{
6011	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
6012	u32 which;
6013	bool found = false;
6014	u64 snap_id;
6015
6016	for (which = 0; !found && which < snapc->num_snaps; which++) {
6017		const char *snap_name;
6018
6019		snap_id = snapc->snaps[which];
6020		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
6021		if (IS_ERR(snap_name)) {
6022			/* ignore no-longer existing snapshots */
6023			if (PTR_ERR(snap_name) == -ENOENT)
6024				continue;
6025			else
6026				break;
6027		}
6028		found = !strcmp(name, snap_name);
6029		kfree(snap_name);
6030	}
6031	return found ? snap_id : CEPH_NOSNAP;
6032}
6033
6034/*
6035 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
6036 * no snapshot by that name is found, or if an error occurs.
6037 */
6038static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
6039{
6040	if (rbd_dev->image_format == 1)
6041		return rbd_v1_snap_id_by_name(rbd_dev, name);
6042
6043	return rbd_v2_snap_id_by_name(rbd_dev, name);
6044}
6045
6046/*
6047 * An image being mapped will have everything but the snap id.
6048 */
6049static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
6050{
6051	struct rbd_spec *spec = rbd_dev->spec;
6052
6053	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
6054	rbd_assert(spec->image_id && spec->image_name);
6055	rbd_assert(spec->snap_name);
6056
6057	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
6058		u64 snap_id;
6059
6060		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
6061		if (snap_id == CEPH_NOSNAP)
6062			return -ENOENT;
6063
6064		spec->snap_id = snap_id;
6065	} else {
6066		spec->snap_id = CEPH_NOSNAP;
6067	}
6068
6069	return 0;
6070}
6071
6072/*
6073 * A parent image will have all ids but none of the names.
6074 *
6075 * All names in an rbd spec are dynamically allocated.  It's OK if we
6076 * can't figure out the name for an image id.
6077 */
6078static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
6079{
6080	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
6081	struct rbd_spec *spec = rbd_dev->spec;
6082	const char *pool_name;
6083	const char *image_name;
6084	const char *snap_name;
6085	int ret;
6086
6087	rbd_assert(spec->pool_id != CEPH_NOPOOL);
6088	rbd_assert(spec->image_id);
6089	rbd_assert(spec->snap_id != CEPH_NOSNAP);
6090
6091	/* Get the pool name; we have to make our own copy of this */
6092
6093	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
6094	if (!pool_name) {
6095		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
6096		return -EIO;
6097	}
6098	pool_name = kstrdup(pool_name, GFP_KERNEL);
6099	if (!pool_name)
6100		return -ENOMEM;
6101
6102	/* Fetch the image name; tolerate failure here */
6103
6104	image_name = rbd_dev_image_name(rbd_dev);
6105	if (!image_name)
6106		rbd_warn(rbd_dev, "unable to get image name");
6107
6108	/* Fetch the snapshot name */
6109
6110	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
6111	if (IS_ERR(snap_name)) {
6112		ret = PTR_ERR(snap_name);
6113		goto out_err;
6114	}
6115
6116	spec->pool_name = pool_name;
6117	spec->image_name = image_name;
6118	spec->snap_name = snap_name;
6119
6120	return 0;
6121
6122out_err:
6123	kfree(image_name);
6124	kfree(pool_name);
6125	return ret;
6126}
6127
6128static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev,
6129				   struct ceph_snap_context **psnapc)
6130{
6131	size_t size;
6132	int ret;
6133	void *reply_buf;
6134	void *p;
6135	void *end;
6136	u64 seq;
6137	u32 snap_count;
6138	struct ceph_snap_context *snapc;
6139	u32 i;
6140
6141	/*
6142	 * We'll need room for the seq value (maximum snapshot id),
6143	 * snapshot count, and array of that many snapshot ids.
6144	 * For now we have a fixed upper limit on the number we're
6145	 * prepared to receive.
6146	 */
6147	size = sizeof (__le64) + sizeof (__le32) +
6148			RBD_MAX_SNAP_COUNT * sizeof (__le64);
6149	reply_buf = kzalloc(size, GFP_KERNEL);
6150	if (!reply_buf)
6151		return -ENOMEM;
6152
6153	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6154				  &rbd_dev->header_oloc, "get_snapcontext",
6155				  NULL, 0, reply_buf, size);
6156	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6157	if (ret < 0)
6158		goto out;
6159
6160	p = reply_buf;
6161	end = reply_buf + ret;
6162	ret = -ERANGE;
6163	ceph_decode_64_safe(&p, end, seq, out);
6164	ceph_decode_32_safe(&p, end, snap_count, out);
6165
6166	/*
6167	 * Make sure the reported number of snapshot ids wouldn't go
6168	 * beyond the end of our buffer.  But before checking that,
6169	 * make sure the computed size of the snapshot context we
6170	 * allocate is representable in a size_t.
6171	 */
6172	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6173				 / sizeof (u64)) {
6174		ret = -EINVAL;
6175		goto out;
6176	}
6177	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
6178		goto out;
6179	ret = 0;
6180
6181	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6182	if (!snapc) {
6183		ret = -ENOMEM;
6184		goto out;
6185	}
6186	snapc->seq = seq;
6187	for (i = 0; i < snap_count; i++)
6188		snapc->snaps[i] = ceph_decode_64(&p);
6189
6190	*psnapc = snapc;
6191	dout("  snap context seq = %llu, snap_count = %u\n",
6192		(unsigned long long)seq, (unsigned int)snap_count);
6193out:
6194	kfree(reply_buf);
6195
6196	return ret;
6197}
6198
6199static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6200					u64 snap_id)
6201{
6202	size_t size;
6203	void *reply_buf;
6204	__le64 snapid;
6205	int ret;
6206	void *p;
6207	void *end;
6208	char *snap_name;
6209
6210	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6211	reply_buf = kmalloc(size, GFP_KERNEL);
6212	if (!reply_buf)
6213		return ERR_PTR(-ENOMEM);
6214
6215	snapid = cpu_to_le64(snap_id);
6216	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6217				  &rbd_dev->header_oloc, "get_snapshot_name",
6218				  &snapid, sizeof(snapid), reply_buf, size);
6219	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6220	if (ret < 0) {
6221		snap_name = ERR_PTR(ret);
6222		goto out;
6223	}
6224
6225	p = reply_buf;
6226	end = reply_buf + ret;
6227	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
6228	if (IS_ERR(snap_name))
6229		goto out;
6230
6231	dout("  snap_id 0x%016llx snap_name = %s\n",
6232		(unsigned long long)snap_id, snap_name);
6233out:
6234	kfree(reply_buf);
6235
6236	return snap_name;
6237}
6238
6239static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev,
6240				  struct rbd_image_header *header,
6241				  bool first_time)
6242{
6243	int ret;
6244
6245	ret = _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
6246				    first_time ? &header->obj_order : NULL,
6247				    &header->image_size);
6248	if (ret)
6249		return ret;
6250
6251	if (first_time) {
6252		ret = rbd_dev_v2_header_onetime(rbd_dev, header);
6253		if (ret)
6254			return ret;
6255	}
6256
6257	ret = rbd_dev_v2_snap_context(rbd_dev, &header->snapc);
6258	if (ret)
6259		return ret;
6260
6261	return 0;
6262}
6263
6264static int rbd_dev_header_info(struct rbd_device *rbd_dev,
6265			       struct rbd_image_header *header,
6266			       bool first_time)
6267{
6268	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6269	rbd_assert(!header->object_prefix && !header->snapc);
6270
6271	if (rbd_dev->image_format == 1)
6272		return rbd_dev_v1_header_info(rbd_dev, header, first_time);
6273
6274	return rbd_dev_v2_header_info(rbd_dev, header, first_time);
6275}
6276
6277/*
6278 * Skips over white space at *buf, and updates *buf to point to the
6279 * first found non-space character (if any). Returns the length of
6280 * the token (string of non-white space characters) found.  Note
6281 * that *buf must be terminated with '\0'.
6282 */
6283static inline size_t next_token(const char **buf)
6284{
6285        /*
6286        * These are the characters that produce nonzero for
6287        * isspace() in the "C" and "POSIX" locales.
6288        */
6289        const char *spaces = " \f\n\r\t\v";
6290
6291        *buf += strspn(*buf, spaces);	/* Find start of token */
6292
6293	return strcspn(*buf, spaces);   /* Return token length */
6294}
6295
6296/*
6297 * Finds the next token in *buf, dynamically allocates a buffer big
6298 * enough to hold a copy of it, and copies the token into the new
6299 * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
6300 * that a duplicate buffer is created even for a zero-length token.
6301 *
6302 * Returns a pointer to the newly-allocated duplicate, or a null
6303 * pointer if memory for the duplicate was not available.  If
6304 * the lenp argument is a non-null pointer, the length of the token
6305 * (not including the '\0') is returned in *lenp.
6306 *
6307 * If successful, the *buf pointer will be updated to point beyond
6308 * the end of the found token.
6309 *
6310 * Note: uses GFP_KERNEL for allocation.
6311 */
6312static inline char *dup_token(const char **buf, size_t *lenp)
6313{
6314	char *dup;
6315	size_t len;
6316
6317	len = next_token(buf);
6318	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
6319	if (!dup)
6320		return NULL;
6321	*(dup + len) = '\0';
6322	*buf += len;
6323
6324	if (lenp)
6325		*lenp = len;
6326
6327	return dup;
6328}
6329
6330static int rbd_parse_param(struct fs_parameter *param,
6331			    struct rbd_parse_opts_ctx *pctx)
6332{
6333	struct rbd_options *opt = pctx->opts;
6334	struct fs_parse_result result;
6335	struct p_log log = {.prefix = "rbd"};
6336	int token, ret;
6337
6338	ret = ceph_parse_param(param, pctx->copts, NULL);
6339	if (ret != -ENOPARAM)
6340		return ret;
6341
6342	token = __fs_parse(&log, rbd_parameters, param, &result);
6343	dout("%s fs_parse '%s' token %d\n", __func__, param->key, token);
6344	if (token < 0) {
6345		if (token == -ENOPARAM)
6346			return inval_plog(&log, "Unknown parameter '%s'",
6347					  param->key);
6348		return token;
6349	}
6350
6351	switch (token) {
6352	case Opt_queue_depth:
6353		if (result.uint_32 < 1)
6354			goto out_of_range;
6355		opt->queue_depth = result.uint_32;
6356		break;
6357	case Opt_alloc_size:
6358		if (result.uint_32 < SECTOR_SIZE)
6359			goto out_of_range;
6360		if (!is_power_of_2(result.uint_32))
6361			return inval_plog(&log, "alloc_size must be a power of 2");
6362		opt->alloc_size = result.uint_32;
6363		break;
6364	case Opt_lock_timeout:
6365		/* 0 is "wait forever" (i.e. infinite timeout) */
6366		if (result.uint_32 > INT_MAX / 1000)
6367			goto out_of_range;
6368		opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000);
6369		break;
6370	case Opt_pool_ns:
6371		kfree(pctx->spec->pool_ns);
6372		pctx->spec->pool_ns = param->string;
6373		param->string = NULL;
6374		break;
6375	case Opt_compression_hint:
6376		switch (result.uint_32) {
6377		case Opt_compression_hint_none:
6378			opt->alloc_hint_flags &=
6379			    ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE |
6380			      CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE);
6381			break;
6382		case Opt_compression_hint_compressible:
6383			opt->alloc_hint_flags |=
6384			    CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6385			opt->alloc_hint_flags &=
6386			    ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6387			break;
6388		case Opt_compression_hint_incompressible:
6389			opt->alloc_hint_flags |=
6390			    CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6391			opt->alloc_hint_flags &=
6392			    ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6393			break;
6394		default:
6395			BUG();
6396		}
6397		break;
6398	case Opt_read_only:
6399		opt->read_only = true;
6400		break;
6401	case Opt_read_write:
6402		opt->read_only = false;
6403		break;
6404	case Opt_lock_on_read:
6405		opt->lock_on_read = true;
6406		break;
6407	case Opt_exclusive:
6408		opt->exclusive = true;
6409		break;
6410	case Opt_notrim:
6411		opt->trim = false;
6412		break;
6413	default:
6414		BUG();
6415	}
6416
6417	return 0;
6418
6419out_of_range:
6420	return inval_plog(&log, "%s out of range", param->key);
6421}
6422
6423/*
6424 * This duplicates most of generic_parse_monolithic(), untying it from
6425 * fs_context and skipping standard superblock and security options.
6426 */
6427static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx)
6428{
6429	char *key;
6430	int ret = 0;
6431
6432	dout("%s '%s'\n", __func__, options);
6433	while ((key = strsep(&options, ",")) != NULL) {
6434		if (*key) {
6435			struct fs_parameter param = {
6436				.key	= key,
6437				.type	= fs_value_is_flag,
6438			};
6439			char *value = strchr(key, '=');
6440			size_t v_len = 0;
6441
6442			if (value) {
6443				if (value == key)
6444					continue;
6445				*value++ = 0;
6446				v_len = strlen(value);
6447				param.string = kmemdup_nul(value, v_len,
6448							   GFP_KERNEL);
6449				if (!param.string)
6450					return -ENOMEM;
6451				param.type = fs_value_is_string;
6452			}
6453			param.size = v_len;
6454
6455			ret = rbd_parse_param(&param, pctx);
6456			kfree(param.string);
6457			if (ret)
6458				break;
6459		}
6460	}
6461
6462	return ret;
6463}
6464
6465/*
6466 * Parse the options provided for an "rbd add" (i.e., rbd image
6467 * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
6468 * and the data written is passed here via a NUL-terminated buffer.
6469 * Returns 0 if successful or an error code otherwise.
6470 *
6471 * The information extracted from these options is recorded in
6472 * the other parameters which return dynamically-allocated
6473 * structures:
6474 *  ceph_opts
6475 *      The address of a pointer that will refer to a ceph options
6476 *      structure.  Caller must release the returned pointer using
6477 *      ceph_destroy_options() when it is no longer needed.
6478 *  rbd_opts
6479 *	Address of an rbd options pointer.  Fully initialized by
6480 *	this function; caller must release with kfree().
6481 *  spec
6482 *	Address of an rbd image specification pointer.  Fully
6483 *	initialized by this function based on parsed options.
6484 *	Caller must release with rbd_spec_put().
6485 *
6486 * The options passed take this form:
6487 *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6488 * where:
6489 *  <mon_addrs>
6490 *      A comma-separated list of one or more monitor addresses.
6491 *      A monitor address is an ip address, optionally followed
6492 *      by a port number (separated by a colon).
6493 *        I.e.:  ip1[:port1][,ip2[:port2]...]
6494 *  <options>
6495 *      A comma-separated list of ceph and/or rbd options.
6496 *  <pool_name>
6497 *      The name of the rados pool containing the rbd image.
6498 *  <image_name>
6499 *      The name of the image in that pool to map.
6500 *  <snap_id>
6501 *      An optional snapshot id.  If provided, the mapping will
6502 *      present data from the image at the time that snapshot was
6503 *      created.  The image head is used if no snapshot id is
6504 *      provided.  Snapshot mappings are always read-only.
6505 */
6506static int rbd_add_parse_args(const char *buf,
6507				struct ceph_options **ceph_opts,
6508				struct rbd_options **opts,
6509				struct rbd_spec **rbd_spec)
6510{
6511	size_t len;
6512	char *options;
6513	const char *mon_addrs;
6514	char *snap_name;
6515	size_t mon_addrs_size;
6516	struct rbd_parse_opts_ctx pctx = { 0 };
6517	int ret;
6518
6519	/* The first four tokens are required */
6520
6521	len = next_token(&buf);
6522	if (!len) {
6523		rbd_warn(NULL, "no monitor address(es) provided");
6524		return -EINVAL;
6525	}
6526	mon_addrs = buf;
6527	mon_addrs_size = len;
6528	buf += len;
6529
6530	ret = -EINVAL;
6531	options = dup_token(&buf, NULL);
6532	if (!options)
6533		return -ENOMEM;
6534	if (!*options) {
6535		rbd_warn(NULL, "no options provided");
6536		goto out_err;
6537	}
6538
6539	pctx.spec = rbd_spec_alloc();
6540	if (!pctx.spec)
6541		goto out_mem;
6542
6543	pctx.spec->pool_name = dup_token(&buf, NULL);
6544	if (!pctx.spec->pool_name)
6545		goto out_mem;
6546	if (!*pctx.spec->pool_name) {
6547		rbd_warn(NULL, "no pool name provided");
6548		goto out_err;
6549	}
6550
6551	pctx.spec->image_name = dup_token(&buf, NULL);
6552	if (!pctx.spec->image_name)
6553		goto out_mem;
6554	if (!*pctx.spec->image_name) {
6555		rbd_warn(NULL, "no image name provided");
6556		goto out_err;
6557	}
6558
6559	/*
6560	 * Snapshot name is optional; default is to use "-"
6561	 * (indicating the head/no snapshot).
6562	 */
6563	len = next_token(&buf);
6564	if (!len) {
6565		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6566		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6567	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
6568		ret = -ENAMETOOLONG;
6569		goto out_err;
6570	}
6571	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
6572	if (!snap_name)
6573		goto out_mem;
6574	*(snap_name + len) = '\0';
6575	pctx.spec->snap_name = snap_name;
6576
6577	pctx.copts = ceph_alloc_options();
6578	if (!pctx.copts)
6579		goto out_mem;
6580
6581	/* Initialize all rbd options to the defaults */
6582
6583	pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
6584	if (!pctx.opts)
6585		goto out_mem;
6586
6587	pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6588	pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6589	pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6590	pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6591	pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6592	pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6593	pctx.opts->trim = RBD_TRIM_DEFAULT;
6594
6595	ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL);
6596	if (ret)
6597		goto out_err;
6598
6599	ret = rbd_parse_options(options, &pctx);
6600	if (ret)
6601		goto out_err;
6602
6603	*ceph_opts = pctx.copts;
6604	*opts = pctx.opts;
6605	*rbd_spec = pctx.spec;
6606	kfree(options);
6607	return 0;
6608
6609out_mem:
6610	ret = -ENOMEM;
6611out_err:
6612	kfree(pctx.opts);
6613	ceph_destroy_options(pctx.copts);
6614	rbd_spec_put(pctx.spec);
6615	kfree(options);
6616	return ret;
6617}
6618
6619static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6620{
6621	down_write(&rbd_dev->lock_rwsem);
6622	if (__rbd_is_lock_owner(rbd_dev))
6623		__rbd_release_lock(rbd_dev);
6624	up_write(&rbd_dev->lock_rwsem);
6625}
6626
6627/*
6628 * If the wait is interrupted, an error is returned even if the lock
6629 * was successfully acquired.  rbd_dev_image_unlock() will release it
6630 * if needed.
6631 */
6632static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6633{
6634	long ret;
6635
6636	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6637		if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6638			return 0;
6639
6640		rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
6641		return -EINVAL;
6642	}
6643
6644	if (rbd_is_ro(rbd_dev))
6645		return 0;
6646
6647	rbd_assert(!rbd_is_lock_owner(rbd_dev));
6648	queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
6649	ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait,
6650			    ceph_timeout_jiffies(rbd_dev->opts->lock_timeout));
6651	if (ret > 0) {
6652		ret = rbd_dev->acquire_err;
6653	} else {
6654		cancel_delayed_work_sync(&rbd_dev->lock_dwork);
6655		if (!ret)
6656			ret = -ETIMEDOUT;
6657
6658		rbd_warn(rbd_dev, "failed to acquire lock: %ld", ret);
6659	}
6660	if (ret)
6661		return ret;
6662
6663	/*
6664	 * The lock may have been released by now, unless automatic lock
6665	 * transitions are disabled.
6666	 */
6667	rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev));
6668	return 0;
6669}
6670
6671/*
6672 * An rbd format 2 image has a unique identifier, distinct from the
6673 * name given to it by the user.  Internally, that identifier is
6674 * what's used to specify the names of objects related to the image.
6675 *
6676 * A special "rbd id" object is used to map an rbd image name to its
6677 * id.  If that object doesn't exist, then there is no v2 rbd image
6678 * with the supplied name.
6679 *
6680 * This function will record the given rbd_dev's image_id field if
6681 * it can be determined, and in that case will return 0.  If any
6682 * errors occur a negative errno will be returned and the rbd_dev's
6683 * image_id field will be unchanged (and should be NULL).
6684 */
6685static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6686{
6687	int ret;
6688	size_t size;
6689	CEPH_DEFINE_OID_ONSTACK(oid);
6690	void *response;
6691	char *image_id;
6692
6693	/*
6694	 * When probing a parent image, the image id is already
6695	 * known (and the image name likely is not).  There's no
6696	 * need to fetch the image id again in this case.  We
6697	 * do still need to set the image format though.
6698	 */
6699	if (rbd_dev->spec->image_id) {
6700		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6701
6702		return 0;
6703	}
6704
6705	/*
6706	 * First, see if the format 2 image id file exists, and if
6707	 * so, get the image's persistent id from it.
6708	 */
6709	ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
6710			       rbd_dev->spec->image_name);
6711	if (ret)
6712		return ret;
6713
6714	dout("rbd id object name is %s\n", oid.name);
6715
6716	/* Response will be an encoded string, which includes a length */
6717	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6718	response = kzalloc(size, GFP_NOIO);
6719	if (!response) {
6720		ret = -ENOMEM;
6721		goto out;
6722	}
6723
6724	/* If it doesn't exist we'll assume it's a format 1 image */
6725
6726	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6727				  "get_id", NULL, 0,
6728				  response, size);
6729	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6730	if (ret == -ENOENT) {
6731		image_id = kstrdup("", GFP_KERNEL);
6732		ret = image_id ? 0 : -ENOMEM;
6733		if (!ret)
6734			rbd_dev->image_format = 1;
6735	} else if (ret >= 0) {
6736		void *p = response;
6737
6738		image_id = ceph_extract_encoded_string(&p, p + ret,
6739						NULL, GFP_NOIO);
6740		ret = PTR_ERR_OR_ZERO(image_id);
6741		if (!ret)
6742			rbd_dev->image_format = 2;
6743	}
6744
6745	if (!ret) {
6746		rbd_dev->spec->image_id = image_id;
6747		dout("image_id is %s\n", image_id);
6748	}
6749out:
6750	kfree(response);
6751	ceph_oid_destroy(&oid);
6752	return ret;
6753}
6754
6755/*
6756 * Undo whatever state changes are made by v1 or v2 header info
6757 * call.
6758 */
6759static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6760{
6761	rbd_dev_parent_put(rbd_dev);
6762	rbd_object_map_free(rbd_dev);
6763	rbd_dev_mapping_clear(rbd_dev);
6764
6765	/* Free dynamic fields from the header, then zero it out */
6766
6767	rbd_image_header_cleanup(&rbd_dev->header);
6768}
6769
6770static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev,
6771				     struct rbd_image_header *header)
6772{
6773	int ret;
6774
6775	ret = rbd_dev_v2_object_prefix(rbd_dev, &header->object_prefix);
6776	if (ret)
6777		return ret;
6778
6779	/*
6780	 * Get the and check features for the image.  Currently the
6781	 * features are assumed to never change.
6782	 */
6783	ret = _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
6784					rbd_is_ro(rbd_dev), &header->features);
6785	if (ret)
6786		return ret;
6787
6788	/* If the image supports fancy striping, get its parameters */
6789
6790	if (header->features & RBD_FEATURE_STRIPINGV2) {
6791		ret = rbd_dev_v2_striping_info(rbd_dev, &header->stripe_unit,
6792					       &header->stripe_count);
6793		if (ret)
6794			return ret;
6795	}
6796
6797	if (header->features & RBD_FEATURE_DATA_POOL) {
6798		ret = rbd_dev_v2_data_pool(rbd_dev, &header->data_pool_id);
6799		if (ret)
6800			return ret;
6801	}
6802
6803	return 0;
6804}
6805
6806/*
6807 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6808 * rbd_dev_image_probe() recursion depth, which means it's also the
6809 * length of the already discovered part of the parent chain.
6810 */
6811static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6812{
6813	struct rbd_device *parent = NULL;
6814	int ret;
6815
6816	if (!rbd_dev->parent_spec)
6817		return 0;
6818
6819	if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6820		pr_info("parent chain is too long (%d)\n", depth);
6821		ret = -EINVAL;
6822		goto out_err;
6823	}
6824
6825	parent = __rbd_dev_create(rbd_dev->parent_spec);
6826	if (!parent) {
6827		ret = -ENOMEM;
6828		goto out_err;
6829	}
6830
6831	/*
6832	 * Images related by parent/child relationships always share
6833	 * rbd_client and spec/parent_spec, so bump their refcounts.
6834	 */
6835	parent->rbd_client = __rbd_get_client(rbd_dev->rbd_client);
6836	parent->spec = rbd_spec_get(rbd_dev->parent_spec);
6837
6838	__set_bit(RBD_DEV_FLAG_READONLY, &parent->flags);
6839
6840	ret = rbd_dev_image_probe(parent, depth);
6841	if (ret < 0)
6842		goto out_err;
6843
6844	rbd_dev->parent = parent;
6845	atomic_set(&rbd_dev->parent_ref, 1);
6846	return 0;
6847
6848out_err:
6849	rbd_dev_unparent(rbd_dev);
6850	rbd_dev_destroy(parent);
6851	return ret;
6852}
6853
6854static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6855{
6856	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6857	rbd_free_disk(rbd_dev);
6858	if (!single_major)
6859		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6860}
6861
6862/*
6863 * rbd_dev->header_rwsem must be locked for write and will be unlocked
6864 * upon return.
6865 */
6866static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6867{
6868	int ret;
6869
6870	/* Record our major and minor device numbers. */
6871
6872	if (!single_major) {
6873		ret = register_blkdev(0, rbd_dev->name);
6874		if (ret < 0)
6875			goto err_out_unlock;
6876
6877		rbd_dev->major = ret;
6878		rbd_dev->minor = 0;
6879	} else {
6880		rbd_dev->major = rbd_major;
6881		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6882	}
6883
6884	/* Set up the blkdev mapping. */
6885
6886	ret = rbd_init_disk(rbd_dev);
6887	if (ret)
6888		goto err_out_blkdev;
6889
6890	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6891	set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev));
6892
6893	ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6894	if (ret)
6895		goto err_out_disk;
6896
6897	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6898	up_write(&rbd_dev->header_rwsem);
6899	return 0;
6900
6901err_out_disk:
6902	rbd_free_disk(rbd_dev);
6903err_out_blkdev:
6904	if (!single_major)
6905		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6906err_out_unlock:
6907	up_write(&rbd_dev->header_rwsem);
6908	return ret;
6909}
6910
6911static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6912{
6913	struct rbd_spec *spec = rbd_dev->spec;
6914	int ret;
6915
6916	/* Record the header object name for this rbd image. */
6917
6918	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6919	if (rbd_dev->image_format == 1)
6920		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6921				       spec->image_name, RBD_SUFFIX);
6922	else
6923		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6924				       RBD_HEADER_PREFIX, spec->image_id);
6925
6926	return ret;
6927}
6928
6929static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap)
6930{
6931	if (!is_snap) {
6932		pr_info("image %s/%s%s%s does not exist\n",
6933			rbd_dev->spec->pool_name,
6934			rbd_dev->spec->pool_ns ?: "",
6935			rbd_dev->spec->pool_ns ? "/" : "",
6936			rbd_dev->spec->image_name);
6937	} else {
6938		pr_info("snap %s/%s%s%s@%s does not exist\n",
6939			rbd_dev->spec->pool_name,
6940			rbd_dev->spec->pool_ns ?: "",
6941			rbd_dev->spec->pool_ns ? "/" : "",
6942			rbd_dev->spec->image_name,
6943			rbd_dev->spec->snap_name);
6944	}
6945}
6946
6947static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6948{
6949	if (!rbd_is_ro(rbd_dev))
6950		rbd_unregister_watch(rbd_dev);
6951
6952	rbd_dev_unprobe(rbd_dev);
6953	rbd_dev->image_format = 0;
6954	kfree(rbd_dev->spec->image_id);
6955	rbd_dev->spec->image_id = NULL;
6956}
6957
6958/*
6959 * Probe for the existence of the header object for the given rbd
6960 * device.  If this image is the one being mapped (i.e., not a
6961 * parent), initiate a watch on its header object before using that
6962 * object to get detailed information about the rbd image.
6963 *
6964 * On success, returns with header_rwsem held for write if called
6965 * with @depth == 0.
6966 */
6967static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6968{
6969	bool need_watch = !rbd_is_ro(rbd_dev);
6970	int ret;
6971
6972	/*
6973	 * Get the id from the image id object.  Unless there's an
6974	 * error, rbd_dev->spec->image_id will be filled in with
6975	 * a dynamically-allocated string, and rbd_dev->image_format
6976	 * will be set to either 1 or 2.
6977	 */
6978	ret = rbd_dev_image_id(rbd_dev);
6979	if (ret)
6980		return ret;
6981
6982	ret = rbd_dev_header_name(rbd_dev);
6983	if (ret)
6984		goto err_out_format;
6985
6986	if (need_watch) {
6987		ret = rbd_register_watch(rbd_dev);
6988		if (ret) {
6989			if (ret == -ENOENT)
6990				rbd_print_dne(rbd_dev, false);
6991			goto err_out_format;
6992		}
6993	}
6994
6995	if (!depth)
6996		down_write(&rbd_dev->header_rwsem);
6997
6998	ret = rbd_dev_header_info(rbd_dev, &rbd_dev->header, true);
6999	if (ret) {
7000		if (ret == -ENOENT && !need_watch)
7001			rbd_print_dne(rbd_dev, false);
7002		goto err_out_probe;
7003	}
7004
7005	rbd_init_layout(rbd_dev);
7006
7007	/*
7008	 * If this image is the one being mapped, we have pool name and
7009	 * id, image name and id, and snap name - need to fill snap id.
7010	 * Otherwise this is a parent image, identified by pool, image
7011	 * and snap ids - need to fill in names for those ids.
7012	 */
7013	if (!depth)
7014		ret = rbd_spec_fill_snap_id(rbd_dev);
7015	else
7016		ret = rbd_spec_fill_names(rbd_dev);
7017	if (ret) {
7018		if (ret == -ENOENT)
7019			rbd_print_dne(rbd_dev, true);
7020		goto err_out_probe;
7021	}
7022
7023	ret = rbd_dev_mapping_set(rbd_dev);
7024	if (ret)
7025		goto err_out_probe;
7026
7027	if (rbd_is_snap(rbd_dev) &&
7028	    (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
7029		ret = rbd_object_map_load(rbd_dev);
7030		if (ret)
7031			goto err_out_probe;
7032	}
7033
7034	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
7035		ret = rbd_dev_setup_parent(rbd_dev);
7036		if (ret)
7037			goto err_out_probe;
7038	}
7039
7040	ret = rbd_dev_probe_parent(rbd_dev, depth);
7041	if (ret)
7042		goto err_out_probe;
7043
7044	dout("discovered format %u image, header name is %s\n",
7045		rbd_dev->image_format, rbd_dev->header_oid.name);
7046	return 0;
7047
7048err_out_probe:
7049	if (!depth)
7050		up_write(&rbd_dev->header_rwsem);
7051	if (need_watch)
7052		rbd_unregister_watch(rbd_dev);
7053	rbd_dev_unprobe(rbd_dev);
7054err_out_format:
7055	rbd_dev->image_format = 0;
7056	kfree(rbd_dev->spec->image_id);
7057	rbd_dev->spec->image_id = NULL;
7058	return ret;
7059}
7060
7061static void rbd_dev_update_header(struct rbd_device *rbd_dev,
7062				  struct rbd_image_header *header)
7063{
7064	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
7065	rbd_assert(rbd_dev->header.object_prefix); /* !first_time */
7066
7067	if (rbd_dev->header.image_size != header->image_size) {
7068		rbd_dev->header.image_size = header->image_size;
7069
7070		if (!rbd_is_snap(rbd_dev)) {
7071			rbd_dev->mapping.size = header->image_size;
7072			rbd_dev_update_size(rbd_dev);
7073		}
7074	}
7075
7076	ceph_put_snap_context(rbd_dev->header.snapc);
7077	rbd_dev->header.snapc = header->snapc;
7078	header->snapc = NULL;
7079
7080	if (rbd_dev->image_format == 1) {
7081		kfree(rbd_dev->header.snap_names);
7082		rbd_dev->header.snap_names = header->snap_names;
7083		header->snap_names = NULL;
7084
7085		kfree(rbd_dev->header.snap_sizes);
7086		rbd_dev->header.snap_sizes = header->snap_sizes;
7087		header->snap_sizes = NULL;
7088	}
7089}
7090
7091static void rbd_dev_update_parent(struct rbd_device *rbd_dev,
7092				  struct parent_image_info *pii)
7093{
7094	if (pii->pool_id == CEPH_NOPOOL || !pii->has_overlap) {
7095		/*
7096		 * Either the parent never existed, or we have
7097		 * record of it but the image got flattened so it no
7098		 * longer has a parent.  When the parent of a
7099		 * layered image disappears we immediately set the
7100		 * overlap to 0.  The effect of this is that all new
7101		 * requests will be treated as if the image had no
7102		 * parent.
7103		 *
7104		 * If !pii.has_overlap, the parent image spec is not
7105		 * applicable.  It's there to avoid duplication in each
7106		 * snapshot record.
7107		 */
7108		if (rbd_dev->parent_overlap) {
7109			rbd_dev->parent_overlap = 0;
7110			rbd_dev_parent_put(rbd_dev);
7111			pr_info("%s: clone has been flattened\n",
7112				rbd_dev->disk->disk_name);
7113		}
7114	} else {
7115		rbd_assert(rbd_dev->parent_spec);
7116
7117		/*
7118		 * Update the parent overlap.  If it became zero, issue
7119		 * a warning as we will proceed as if there is no parent.
7120		 */
7121		if (!pii->overlap && rbd_dev->parent_overlap)
7122			rbd_warn(rbd_dev,
7123				 "clone has become standalone (overlap 0)");
7124		rbd_dev->parent_overlap = pii->overlap;
7125	}
7126}
7127
7128static int rbd_dev_refresh(struct rbd_device *rbd_dev)
7129{
7130	struct rbd_image_header	header = { 0 };
7131	struct parent_image_info pii = { 0 };
7132	int ret;
7133
7134	dout("%s rbd_dev %p\n", __func__, rbd_dev);
7135
7136	ret = rbd_dev_header_info(rbd_dev, &header, false);
7137	if (ret)
7138		goto out;
7139
7140	/*
7141	 * If there is a parent, see if it has disappeared due to the
7142	 * mapped image getting flattened.
7143	 */
7144	if (rbd_dev->parent) {
7145		ret = rbd_dev_v2_parent_info(rbd_dev, &pii);
7146		if (ret)
7147			goto out;
7148	}
7149
7150	down_write(&rbd_dev->header_rwsem);
7151	rbd_dev_update_header(rbd_dev, &header);
7152	if (rbd_dev->parent)
7153		rbd_dev_update_parent(rbd_dev, &pii);
7154	up_write(&rbd_dev->header_rwsem);
7155
7156out:
7157	rbd_parent_info_cleanup(&pii);
7158	rbd_image_header_cleanup(&header);
7159	return ret;
7160}
7161
7162static ssize_t do_rbd_add(struct bus_type *bus,
7163			  const char *buf,
7164			  size_t count)
7165{
7166	struct rbd_device *rbd_dev = NULL;
7167	struct ceph_options *ceph_opts = NULL;
7168	struct rbd_options *rbd_opts = NULL;
7169	struct rbd_spec *spec = NULL;
7170	struct rbd_client *rbdc;
7171	int rc;
7172
7173	if (!capable(CAP_SYS_ADMIN))
7174		return -EPERM;
7175
7176	if (!try_module_get(THIS_MODULE))
7177		return -ENODEV;
7178
7179	/* parse add command */
7180	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
7181	if (rc < 0)
7182		goto out;
7183
7184	rbdc = rbd_get_client(ceph_opts);
7185	if (IS_ERR(rbdc)) {
7186		rc = PTR_ERR(rbdc);
7187		goto err_out_args;
7188	}
7189
7190	/* pick the pool */
7191	rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
7192	if (rc < 0) {
7193		if (rc == -ENOENT)
7194			pr_info("pool %s does not exist\n", spec->pool_name);
7195		goto err_out_client;
7196	}
7197	spec->pool_id = (u64)rc;
7198
7199	rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
7200	if (!rbd_dev) {
7201		rc = -ENOMEM;
7202		goto err_out_client;
7203	}
7204	rbdc = NULL;		/* rbd_dev now owns this */
7205	spec = NULL;		/* rbd_dev now owns this */
7206	rbd_opts = NULL;	/* rbd_dev now owns this */
7207
7208	/* if we are mapping a snapshot it will be a read-only mapping */
7209	if (rbd_dev->opts->read_only ||
7210	    strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME))
7211		__set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
7212
7213	rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
7214	if (!rbd_dev->config_info) {
7215		rc = -ENOMEM;
7216		goto err_out_rbd_dev;
7217	}
7218
7219	rc = rbd_dev_image_probe(rbd_dev, 0);
7220	if (rc < 0)
7221		goto err_out_rbd_dev;
7222
7223	if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7224		rbd_warn(rbd_dev, "alloc_size adjusted to %u",
7225			 rbd_dev->layout.object_size);
7226		rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7227	}
7228
7229	rc = rbd_dev_device_setup(rbd_dev);
7230	if (rc)
7231		goto err_out_image_probe;
7232
7233	rc = rbd_add_acquire_lock(rbd_dev);
7234	if (rc)
7235		goto err_out_image_lock;
7236
7237	/* Everything's ready.  Announce the disk to the world. */
7238
7239	rc = device_add(&rbd_dev->dev);
7240	if (rc)
7241		goto err_out_image_lock;
7242
7243	device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL);
7244	/* see rbd_init_disk() */
7245	blk_put_queue(rbd_dev->disk->queue);
7246
7247	spin_lock(&rbd_dev_list_lock);
7248	list_add_tail(&rbd_dev->node, &rbd_dev_list);
7249	spin_unlock(&rbd_dev_list_lock);
7250
7251	pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7252		(unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7253		rbd_dev->header.features);
7254	rc = count;
7255out:
7256	module_put(THIS_MODULE);
7257	return rc;
7258
7259err_out_image_lock:
7260	rbd_dev_image_unlock(rbd_dev);
7261	rbd_dev_device_release(rbd_dev);
7262err_out_image_probe:
7263	rbd_dev_image_release(rbd_dev);
7264err_out_rbd_dev:
7265	rbd_dev_destroy(rbd_dev);
7266err_out_client:
7267	rbd_put_client(rbdc);
7268err_out_args:
7269	rbd_spec_put(spec);
7270	kfree(rbd_opts);
7271	goto out;
7272}
7273
7274static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count)
7275{
7276	if (single_major)
7277		return -EINVAL;
7278
7279	return do_rbd_add(bus, buf, count);
7280}
7281
7282static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
7283				      size_t count)
7284{
7285	return do_rbd_add(bus, buf, count);
7286}
7287
7288static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7289{
7290	while (rbd_dev->parent) {
7291		struct rbd_device *first = rbd_dev;
7292		struct rbd_device *second = first->parent;
7293		struct rbd_device *third;
7294
7295		/*
7296		 * Follow to the parent with no grandparent and
7297		 * remove it.
7298		 */
7299		while (second && (third = second->parent)) {
7300			first = second;
7301			second = third;
7302		}
7303		rbd_assert(second);
7304		rbd_dev_image_release(second);
7305		rbd_dev_destroy(second);
7306		first->parent = NULL;
7307		first->parent_overlap = 0;
7308
7309		rbd_assert(first->parent_spec);
7310		rbd_spec_put(first->parent_spec);
7311		first->parent_spec = NULL;
7312	}
7313}
7314
7315static ssize_t do_rbd_remove(struct bus_type *bus,
7316			     const char *buf,
7317			     size_t count)
7318{
7319	struct rbd_device *rbd_dev = NULL;
7320	struct list_head *tmp;
7321	int dev_id;
7322	char opt_buf[6];
7323	bool force = false;
7324	int ret;
7325
7326	if (!capable(CAP_SYS_ADMIN))
7327		return -EPERM;
7328
7329	dev_id = -1;
7330	opt_buf[0] = '\0';
7331	sscanf(buf, "%d %5s", &dev_id, opt_buf);
7332	if (dev_id < 0) {
7333		pr_err("dev_id out of range\n");
7334		return -EINVAL;
7335	}
7336	if (opt_buf[0] != '\0') {
7337		if (!strcmp(opt_buf, "force")) {
7338			force = true;
7339		} else {
7340			pr_err("bad remove option at '%s'\n", opt_buf);
7341			return -EINVAL;
7342		}
7343	}
7344
7345	ret = -ENOENT;
7346	spin_lock(&rbd_dev_list_lock);
7347	list_for_each(tmp, &rbd_dev_list) {
7348		rbd_dev = list_entry(tmp, struct rbd_device, node);
7349		if (rbd_dev->dev_id == dev_id) {
7350			ret = 0;
7351			break;
7352		}
7353	}
7354	if (!ret) {
7355		spin_lock_irq(&rbd_dev->lock);
7356		if (rbd_dev->open_count && !force)
7357			ret = -EBUSY;
7358		else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
7359					  &rbd_dev->flags))
7360			ret = -EINPROGRESS;
7361		spin_unlock_irq(&rbd_dev->lock);
7362	}
7363	spin_unlock(&rbd_dev_list_lock);
7364	if (ret)
7365		return ret;
7366
7367	if (force) {
7368		/*
7369		 * Prevent new IO from being queued and wait for existing
7370		 * IO to complete/fail.
7371		 */
7372		blk_mq_freeze_queue(rbd_dev->disk->queue);
7373		blk_set_queue_dying(rbd_dev->disk->queue);
7374	}
7375
7376	del_gendisk(rbd_dev->disk);
7377	spin_lock(&rbd_dev_list_lock);
7378	list_del_init(&rbd_dev->node);
7379	spin_unlock(&rbd_dev_list_lock);
7380	device_del(&rbd_dev->dev);
7381
7382	rbd_dev_image_unlock(rbd_dev);
7383	rbd_dev_device_release(rbd_dev);
7384	rbd_dev_image_release(rbd_dev);
7385	rbd_dev_destroy(rbd_dev);
7386	return count;
7387}
7388
7389static ssize_t remove_store(struct bus_type *bus, const char *buf, size_t count)
7390{
7391	if (single_major)
7392		return -EINVAL;
7393
7394	return do_rbd_remove(bus, buf, count);
7395}
7396
7397static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
7398					 size_t count)
7399{
7400	return do_rbd_remove(bus, buf, count);
7401}
7402
7403/*
7404 * create control files in sysfs
7405 * /sys/bus/rbd/...
7406 */
7407static int __init rbd_sysfs_init(void)
7408{
7409	int ret;
7410
7411	ret = device_register(&rbd_root_dev);
7412	if (ret < 0)
7413		return ret;
7414
7415	ret = bus_register(&rbd_bus_type);
7416	if (ret < 0)
7417		device_unregister(&rbd_root_dev);
7418
7419	return ret;
7420}
7421
7422static void __exit rbd_sysfs_cleanup(void)
7423{
7424	bus_unregister(&rbd_bus_type);
7425	device_unregister(&rbd_root_dev);
7426}
7427
7428static int __init rbd_slab_init(void)
7429{
7430	rbd_assert(!rbd_img_request_cache);
7431	rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7432	if (!rbd_img_request_cache)
7433		return -ENOMEM;
7434
7435	rbd_assert(!rbd_obj_request_cache);
7436	rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7437	if (!rbd_obj_request_cache)
7438		goto out_err;
7439
7440	return 0;
7441
7442out_err:
7443	kmem_cache_destroy(rbd_img_request_cache);
7444	rbd_img_request_cache = NULL;
7445	return -ENOMEM;
7446}
7447
7448static void rbd_slab_exit(void)
7449{
7450	rbd_assert(rbd_obj_request_cache);
7451	kmem_cache_destroy(rbd_obj_request_cache);
7452	rbd_obj_request_cache = NULL;
7453
7454	rbd_assert(rbd_img_request_cache);
7455	kmem_cache_destroy(rbd_img_request_cache);
7456	rbd_img_request_cache = NULL;
7457}
7458
7459static int __init rbd_init(void)
7460{
7461	int rc;
7462
7463	if (!libceph_compatible(NULL)) {
7464		rbd_warn(NULL, "libceph incompatibility (quitting)");
7465		return -EINVAL;
7466	}
7467
7468	rc = rbd_slab_init();
7469	if (rc)
7470		return rc;
7471
7472	/*
7473	 * The number of active work items is limited by the number of
7474	 * rbd devices * queue depth, so leave @max_active at default.
7475	 */
7476	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
7477	if (!rbd_wq) {
7478		rc = -ENOMEM;
7479		goto err_out_slab;
7480	}
7481
7482	if (single_major) {
7483		rbd_major = register_blkdev(0, RBD_DRV_NAME);
7484		if (rbd_major < 0) {
7485			rc = rbd_major;
7486			goto err_out_wq;
7487		}
7488	}
7489
7490	rc = rbd_sysfs_init();
7491	if (rc)
7492		goto err_out_blkdev;
7493
7494	if (single_major)
7495		pr_info("loaded (major %d)\n", rbd_major);
7496	else
7497		pr_info("loaded\n");
7498
7499	return 0;
7500
7501err_out_blkdev:
7502	if (single_major)
7503		unregister_blkdev(rbd_major, RBD_DRV_NAME);
7504err_out_wq:
7505	destroy_workqueue(rbd_wq);
7506err_out_slab:
7507	rbd_slab_exit();
7508	return rc;
7509}
7510
7511static void __exit rbd_exit(void)
7512{
7513	ida_destroy(&rbd_dev_id_ida);
7514	rbd_sysfs_cleanup();
7515	if (single_major)
7516		unregister_blkdev(rbd_major, RBD_DRV_NAME);
7517	destroy_workqueue(rbd_wq);
7518	rbd_slab_exit();
7519}
7520
7521module_init(rbd_init);
7522module_exit(rbd_exit);
7523
7524MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
7525MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
7526MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
7527/* following authorship retained from original osdblk.c */
7528MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
7529
7530MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7531MODULE_LICENSE("GPL");
7532