1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and
4 * Shaohua Li <shli@fb.com>
5 */
6#include <linux/module.h>
7
8#include <linux/moduleparam.h>
9#include <linux/sched.h>
10#include <linux/fs.h>
11#include <linux/init.h>
12#include "null_blk.h"
13
14#define PAGE_SECTORS_SHIFT	(PAGE_SHIFT - SECTOR_SHIFT)
15#define PAGE_SECTORS		(1 << PAGE_SECTORS_SHIFT)
16#define SECTOR_MASK		(PAGE_SECTORS - 1)
17
18#define FREE_BATCH		16
19
20#define TICKS_PER_SEC		50ULL
21#define TIMER_INTERVAL		(NSEC_PER_SEC / TICKS_PER_SEC)
22
23#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
24static DECLARE_FAULT_ATTR(null_timeout_attr);
25static DECLARE_FAULT_ATTR(null_requeue_attr);
26static DECLARE_FAULT_ATTR(null_init_hctx_attr);
27#endif
28
29static inline u64 mb_per_tick(int mbps)
30{
31	return (1 << 20) / TICKS_PER_SEC * ((u64) mbps);
32}
33
34/*
35 * Status flags for nullb_device.
36 *
37 * CONFIGURED:	Device has been configured and turned on. Cannot reconfigure.
38 * UP:		Device is currently on and visible in userspace.
39 * THROTTLED:	Device is being throttled.
40 * CACHE:	Device is using a write-back cache.
41 */
42enum nullb_device_flags {
43	NULLB_DEV_FL_CONFIGURED	= 0,
44	NULLB_DEV_FL_UP		= 1,
45	NULLB_DEV_FL_THROTTLED	= 2,
46	NULLB_DEV_FL_CACHE	= 3,
47};
48
49#define MAP_SZ		((PAGE_SIZE >> SECTOR_SHIFT) + 2)
50/*
51 * nullb_page is a page in memory for nullb devices.
52 *
53 * @page:	The page holding the data.
54 * @bitmap:	The bitmap represents which sector in the page has data.
55 *		Each bit represents one block size. For example, sector 8
56 *		will use the 7th bit
57 * The highest 2 bits of bitmap are for special purpose. LOCK means the cache
58 * page is being flushing to storage. FREE means the cache page is freed and
59 * should be skipped from flushing to storage. Please see
60 * null_make_cache_space
61 */
62struct nullb_page {
63	struct page *page;
64	DECLARE_BITMAP(bitmap, MAP_SZ);
65};
66#define NULLB_PAGE_LOCK (MAP_SZ - 1)
67#define NULLB_PAGE_FREE (MAP_SZ - 2)
68
69static LIST_HEAD(nullb_list);
70static struct mutex lock;
71static int null_major;
72static DEFINE_IDA(nullb_indexes);
73static struct blk_mq_tag_set tag_set;
74
75enum {
76	NULL_IRQ_NONE		= 0,
77	NULL_IRQ_SOFTIRQ	= 1,
78	NULL_IRQ_TIMER		= 2,
79};
80
81enum {
82	NULL_Q_BIO		= 0,
83	NULL_Q_RQ		= 1,
84	NULL_Q_MQ		= 2,
85};
86
87static int g_no_sched;
88module_param_named(no_sched, g_no_sched, int, 0444);
89MODULE_PARM_DESC(no_sched, "No io scheduler");
90
91static int g_submit_queues = 1;
92module_param_named(submit_queues, g_submit_queues, int, 0444);
93MODULE_PARM_DESC(submit_queues, "Number of submission queues");
94
95static int g_home_node = NUMA_NO_NODE;
96module_param_named(home_node, g_home_node, int, 0444);
97MODULE_PARM_DESC(home_node, "Home node for the device");
98
99#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
100/*
101 * For more details about fault injection, please refer to
102 * Documentation/fault-injection/fault-injection.rst.
103 */
104static char g_timeout_str[80];
105module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), 0444);
106MODULE_PARM_DESC(timeout, "Fault injection. timeout=<interval>,<probability>,<space>,<times>");
107
108static char g_requeue_str[80];
109module_param_string(requeue, g_requeue_str, sizeof(g_requeue_str), 0444);
110MODULE_PARM_DESC(requeue, "Fault injection. requeue=<interval>,<probability>,<space>,<times>");
111
112static char g_init_hctx_str[80];
113module_param_string(init_hctx, g_init_hctx_str, sizeof(g_init_hctx_str), 0444);
114MODULE_PARM_DESC(init_hctx, "Fault injection to fail hctx init. init_hctx=<interval>,<probability>,<space>,<times>");
115#endif
116
117static int g_queue_mode = NULL_Q_MQ;
118
119static int null_param_store_val(const char *str, int *val, int min, int max)
120{
121	int ret, new_val;
122
123	ret = kstrtoint(str, 10, &new_val);
124	if (ret)
125		return -EINVAL;
126
127	if (new_val < min || new_val > max)
128		return -EINVAL;
129
130	*val = new_val;
131	return 0;
132}
133
134static int null_set_queue_mode(const char *str, const struct kernel_param *kp)
135{
136	return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ);
137}
138
139static const struct kernel_param_ops null_queue_mode_param_ops = {
140	.set	= null_set_queue_mode,
141	.get	= param_get_int,
142};
143
144device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, 0444);
145MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)");
146
147static int g_gb = 250;
148module_param_named(gb, g_gb, int, 0444);
149MODULE_PARM_DESC(gb, "Size in GB");
150
151static int g_bs = 512;
152module_param_named(bs, g_bs, int, 0444);
153MODULE_PARM_DESC(bs, "Block size (in bytes)");
154
155static unsigned int nr_devices = 1;
156module_param(nr_devices, uint, 0444);
157MODULE_PARM_DESC(nr_devices, "Number of devices to register");
158
159static bool g_blocking;
160module_param_named(blocking, g_blocking, bool, 0444);
161MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device");
162
163static bool shared_tags;
164module_param(shared_tags, bool, 0444);
165MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq");
166
167static bool g_shared_tag_bitmap;
168module_param_named(shared_tag_bitmap, g_shared_tag_bitmap, bool, 0444);
169MODULE_PARM_DESC(shared_tag_bitmap, "Use shared tag bitmap for all submission queues for blk-mq");
170
171static int g_irqmode = NULL_IRQ_SOFTIRQ;
172
173static int null_set_irqmode(const char *str, const struct kernel_param *kp)
174{
175	return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE,
176					NULL_IRQ_TIMER);
177}
178
179static const struct kernel_param_ops null_irqmode_param_ops = {
180	.set	= null_set_irqmode,
181	.get	= param_get_int,
182};
183
184device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, 0444);
185MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer");
186
187static unsigned long g_completion_nsec = 10000;
188module_param_named(completion_nsec, g_completion_nsec, ulong, 0444);
189MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns");
190
191static int g_hw_queue_depth = 64;
192module_param_named(hw_queue_depth, g_hw_queue_depth, int, 0444);
193MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64");
194
195static bool g_use_per_node_hctx;
196module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, 0444);
197MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false");
198
199static bool g_zoned;
200module_param_named(zoned, g_zoned, bool, S_IRUGO);
201MODULE_PARM_DESC(zoned, "Make device as a host-managed zoned block device. Default: false");
202
203static unsigned long g_zone_size = 256;
204module_param_named(zone_size, g_zone_size, ulong, S_IRUGO);
205MODULE_PARM_DESC(zone_size, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256");
206
207static unsigned long g_zone_capacity;
208module_param_named(zone_capacity, g_zone_capacity, ulong, 0444);
209MODULE_PARM_DESC(zone_capacity, "Zone capacity in MB when block device is zoned. Can be less than or equal to zone size. Default: Zone size");
210
211static unsigned int g_zone_nr_conv;
212module_param_named(zone_nr_conv, g_zone_nr_conv, uint, 0444);
213MODULE_PARM_DESC(zone_nr_conv, "Number of conventional zones when block device is zoned. Default: 0");
214
215static unsigned int g_zone_max_open;
216module_param_named(zone_max_open, g_zone_max_open, uint, 0444);
217MODULE_PARM_DESC(zone_max_open, "Maximum number of open zones when block device is zoned. Default: 0 (no limit)");
218
219static unsigned int g_zone_max_active;
220module_param_named(zone_max_active, g_zone_max_active, uint, 0444);
221MODULE_PARM_DESC(zone_max_active, "Maximum number of active zones when block device is zoned. Default: 0 (no limit)");
222
223static struct nullb_device *null_alloc_dev(void);
224static void null_free_dev(struct nullb_device *dev);
225static void null_del_dev(struct nullb *nullb);
226static int null_add_dev(struct nullb_device *dev);
227static void null_free_device_storage(struct nullb_device *dev, bool is_cache);
228
229static inline struct nullb_device *to_nullb_device(struct config_item *item)
230{
231	return item ? container_of(item, struct nullb_device, item) : NULL;
232}
233
234static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page)
235{
236	return snprintf(page, PAGE_SIZE, "%u\n", val);
237}
238
239static inline ssize_t nullb_device_ulong_attr_show(unsigned long val,
240	char *page)
241{
242	return snprintf(page, PAGE_SIZE, "%lu\n", val);
243}
244
245static inline ssize_t nullb_device_bool_attr_show(bool val, char *page)
246{
247	return snprintf(page, PAGE_SIZE, "%u\n", val);
248}
249
250static ssize_t nullb_device_uint_attr_store(unsigned int *val,
251	const char *page, size_t count)
252{
253	unsigned int tmp;
254	int result;
255
256	result = kstrtouint(page, 0, &tmp);
257	if (result < 0)
258		return result;
259
260	*val = tmp;
261	return count;
262}
263
264static ssize_t nullb_device_ulong_attr_store(unsigned long *val,
265	const char *page, size_t count)
266{
267	int result;
268	unsigned long tmp;
269
270	result = kstrtoul(page, 0, &tmp);
271	if (result < 0)
272		return result;
273
274	*val = tmp;
275	return count;
276}
277
278static ssize_t nullb_device_bool_attr_store(bool *val, const char *page,
279	size_t count)
280{
281	bool tmp;
282	int result;
283
284	result = kstrtobool(page,  &tmp);
285	if (result < 0)
286		return result;
287
288	*val = tmp;
289	return count;
290}
291
292/* The following macro should only be used with TYPE = {uint, ulong, bool}. */
293#define NULLB_DEVICE_ATTR(NAME, TYPE, APPLY)				\
294static ssize_t								\
295nullb_device_##NAME##_show(struct config_item *item, char *page)	\
296{									\
297	return nullb_device_##TYPE##_attr_show(				\
298				to_nullb_device(item)->NAME, page);	\
299}									\
300static ssize_t								\
301nullb_device_##NAME##_store(struct config_item *item, const char *page,	\
302			    size_t count)				\
303{									\
304	int (*apply_fn)(struct nullb_device *dev, TYPE new_value) = APPLY;\
305	struct nullb_device *dev = to_nullb_device(item);		\
306	TYPE new_value = 0;						\
307	int ret;							\
308									\
309	ret = nullb_device_##TYPE##_attr_store(&new_value, page, count);\
310	if (ret < 0)							\
311		return ret;						\
312	if (apply_fn)							\
313		ret = apply_fn(dev, new_value);				\
314	else if (test_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags)) 	\
315		ret = -EBUSY;						\
316	if (ret < 0)							\
317		return ret;						\
318	dev->NAME = new_value;						\
319	return count;							\
320}									\
321CONFIGFS_ATTR(nullb_device_, NAME);
322
323static int nullb_apply_submit_queues(struct nullb_device *dev,
324				     unsigned int submit_queues)
325{
326	struct nullb *nullb = dev->nullb;
327	struct blk_mq_tag_set *set;
328
329	if (!nullb)
330		return 0;
331
332	/*
333	 * Make sure that null_init_hctx() does not access nullb->queues[] past
334	 * the end of that array.
335	 */
336	if (submit_queues > nr_cpu_ids)
337		return -EINVAL;
338	set = nullb->tag_set;
339	blk_mq_update_nr_hw_queues(set, submit_queues);
340	return set->nr_hw_queues == submit_queues ? 0 : -ENOMEM;
341}
342
343NULLB_DEVICE_ATTR(size, ulong, NULL);
344NULLB_DEVICE_ATTR(completion_nsec, ulong, NULL);
345NULLB_DEVICE_ATTR(submit_queues, uint, nullb_apply_submit_queues);
346NULLB_DEVICE_ATTR(home_node, uint, NULL);
347NULLB_DEVICE_ATTR(queue_mode, uint, NULL);
348NULLB_DEVICE_ATTR(blocksize, uint, NULL);
349NULLB_DEVICE_ATTR(irqmode, uint, NULL);
350NULLB_DEVICE_ATTR(hw_queue_depth, uint, NULL);
351NULLB_DEVICE_ATTR(index, uint, NULL);
352NULLB_DEVICE_ATTR(blocking, bool, NULL);
353NULLB_DEVICE_ATTR(use_per_node_hctx, bool, NULL);
354NULLB_DEVICE_ATTR(memory_backed, bool, NULL);
355NULLB_DEVICE_ATTR(discard, bool, NULL);
356NULLB_DEVICE_ATTR(mbps, uint, NULL);
357NULLB_DEVICE_ATTR(cache_size, ulong, NULL);
358NULLB_DEVICE_ATTR(zoned, bool, NULL);
359NULLB_DEVICE_ATTR(zone_size, ulong, NULL);
360NULLB_DEVICE_ATTR(zone_capacity, ulong, NULL);
361NULLB_DEVICE_ATTR(zone_nr_conv, uint, NULL);
362NULLB_DEVICE_ATTR(zone_max_open, uint, NULL);
363NULLB_DEVICE_ATTR(zone_max_active, uint, NULL);
364
365static ssize_t nullb_device_power_show(struct config_item *item, char *page)
366{
367	return nullb_device_bool_attr_show(to_nullb_device(item)->power, page);
368}
369
370static ssize_t nullb_device_power_store(struct config_item *item,
371				     const char *page, size_t count)
372{
373	struct nullb_device *dev = to_nullb_device(item);
374	bool newp = false;
375	ssize_t ret;
376
377	ret = nullb_device_bool_attr_store(&newp, page, count);
378	if (ret < 0)
379		return ret;
380
381	if (!dev->power && newp) {
382		if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags))
383			return count;
384		if (null_add_dev(dev)) {
385			clear_bit(NULLB_DEV_FL_UP, &dev->flags);
386			return -ENOMEM;
387		}
388
389		set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
390		dev->power = newp;
391	} else if (dev->power && !newp) {
392		if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
393			mutex_lock(&lock);
394			dev->power = newp;
395			null_del_dev(dev->nullb);
396			mutex_unlock(&lock);
397		}
398		clear_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
399	}
400
401	return count;
402}
403
404CONFIGFS_ATTR(nullb_device_, power);
405
406static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page)
407{
408	struct nullb_device *t_dev = to_nullb_device(item);
409
410	return badblocks_show(&t_dev->badblocks, page, 0);
411}
412
413static ssize_t nullb_device_badblocks_store(struct config_item *item,
414				     const char *page, size_t count)
415{
416	struct nullb_device *t_dev = to_nullb_device(item);
417	char *orig, *buf, *tmp;
418	u64 start, end;
419	int ret;
420
421	orig = kstrndup(page, count, GFP_KERNEL);
422	if (!orig)
423		return -ENOMEM;
424
425	buf = strstrip(orig);
426
427	ret = -EINVAL;
428	if (buf[0] != '+' && buf[0] != '-')
429		goto out;
430	tmp = strchr(&buf[1], '-');
431	if (!tmp)
432		goto out;
433	*tmp = '\0';
434	ret = kstrtoull(buf + 1, 0, &start);
435	if (ret)
436		goto out;
437	ret = kstrtoull(tmp + 1, 0, &end);
438	if (ret)
439		goto out;
440	ret = -EINVAL;
441	if (start > end)
442		goto out;
443	/* enable badblocks */
444	cmpxchg(&t_dev->badblocks.shift, -1, 0);
445	if (buf[0] == '+')
446		ret = badblocks_set(&t_dev->badblocks, start,
447			end - start + 1, 1);
448	else
449		ret = badblocks_clear(&t_dev->badblocks, start,
450			end - start + 1);
451	if (ret == 0)
452		ret = count;
453out:
454	kfree(orig);
455	return ret;
456}
457CONFIGFS_ATTR(nullb_device_, badblocks);
458
459static struct configfs_attribute *nullb_device_attrs[] = {
460	&nullb_device_attr_size,
461	&nullb_device_attr_completion_nsec,
462	&nullb_device_attr_submit_queues,
463	&nullb_device_attr_home_node,
464	&nullb_device_attr_queue_mode,
465	&nullb_device_attr_blocksize,
466	&nullb_device_attr_irqmode,
467	&nullb_device_attr_hw_queue_depth,
468	&nullb_device_attr_index,
469	&nullb_device_attr_blocking,
470	&nullb_device_attr_use_per_node_hctx,
471	&nullb_device_attr_power,
472	&nullb_device_attr_memory_backed,
473	&nullb_device_attr_discard,
474	&nullb_device_attr_mbps,
475	&nullb_device_attr_cache_size,
476	&nullb_device_attr_badblocks,
477	&nullb_device_attr_zoned,
478	&nullb_device_attr_zone_size,
479	&nullb_device_attr_zone_capacity,
480	&nullb_device_attr_zone_nr_conv,
481	&nullb_device_attr_zone_max_open,
482	&nullb_device_attr_zone_max_active,
483	NULL,
484};
485
486static void nullb_device_release(struct config_item *item)
487{
488	struct nullb_device *dev = to_nullb_device(item);
489
490	null_free_device_storage(dev, false);
491	null_free_dev(dev);
492}
493
494static struct configfs_item_operations nullb_device_ops = {
495	.release	= nullb_device_release,
496};
497
498static const struct config_item_type nullb_device_type = {
499	.ct_item_ops	= &nullb_device_ops,
500	.ct_attrs	= nullb_device_attrs,
501	.ct_owner	= THIS_MODULE,
502};
503
504static struct
505config_item *nullb_group_make_item(struct config_group *group, const char *name)
506{
507	struct nullb_device *dev;
508
509	dev = null_alloc_dev();
510	if (!dev)
511		return ERR_PTR(-ENOMEM);
512
513	config_item_init_type_name(&dev->item, name, &nullb_device_type);
514
515	return &dev->item;
516}
517
518static void
519nullb_group_drop_item(struct config_group *group, struct config_item *item)
520{
521	struct nullb_device *dev = to_nullb_device(item);
522
523	if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
524		mutex_lock(&lock);
525		dev->power = false;
526		null_del_dev(dev->nullb);
527		mutex_unlock(&lock);
528	}
529
530	config_item_put(item);
531}
532
533static ssize_t memb_group_features_show(struct config_item *item, char *page)
534{
535	return snprintf(page, PAGE_SIZE,
536			"memory_backed,discard,bandwidth,cache,badblocks,zoned,zone_size,zone_capacity,zone_nr_conv,zone_max_open,zone_max_active\n");
537}
538
539CONFIGFS_ATTR_RO(memb_group_, features);
540
541static struct configfs_attribute *nullb_group_attrs[] = {
542	&memb_group_attr_features,
543	NULL,
544};
545
546static struct configfs_group_operations nullb_group_ops = {
547	.make_item	= nullb_group_make_item,
548	.drop_item	= nullb_group_drop_item,
549};
550
551static const struct config_item_type nullb_group_type = {
552	.ct_group_ops	= &nullb_group_ops,
553	.ct_attrs	= nullb_group_attrs,
554	.ct_owner	= THIS_MODULE,
555};
556
557static struct configfs_subsystem nullb_subsys = {
558	.su_group = {
559		.cg_item = {
560			.ci_namebuf = "nullb",
561			.ci_type = &nullb_group_type,
562		},
563	},
564};
565
566static inline int null_cache_active(struct nullb *nullb)
567{
568	return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
569}
570
571static struct nullb_device *null_alloc_dev(void)
572{
573	struct nullb_device *dev;
574
575	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
576	if (!dev)
577		return NULL;
578	INIT_RADIX_TREE(&dev->data, GFP_ATOMIC);
579	INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC);
580	if (badblocks_init(&dev->badblocks, 0)) {
581		kfree(dev);
582		return NULL;
583	}
584
585	dev->size = g_gb * 1024;
586	dev->completion_nsec = g_completion_nsec;
587	dev->submit_queues = g_submit_queues;
588	dev->home_node = g_home_node;
589	dev->queue_mode = g_queue_mode;
590	dev->blocksize = g_bs;
591	dev->irqmode = g_irqmode;
592	dev->hw_queue_depth = g_hw_queue_depth;
593	dev->blocking = g_blocking;
594	dev->use_per_node_hctx = g_use_per_node_hctx;
595	dev->zoned = g_zoned;
596	dev->zone_size = g_zone_size;
597	dev->zone_capacity = g_zone_capacity;
598	dev->zone_nr_conv = g_zone_nr_conv;
599	dev->zone_max_open = g_zone_max_open;
600	dev->zone_max_active = g_zone_max_active;
601	return dev;
602}
603
604static void null_free_dev(struct nullb_device *dev)
605{
606	if (!dev)
607		return;
608
609	null_free_zoned_dev(dev);
610	badblocks_exit(&dev->badblocks);
611	kfree(dev);
612}
613
614static void put_tag(struct nullb_queue *nq, unsigned int tag)
615{
616	clear_bit_unlock(tag, nq->tag_map);
617
618	if (waitqueue_active(&nq->wait))
619		wake_up(&nq->wait);
620}
621
622static unsigned int get_tag(struct nullb_queue *nq)
623{
624	unsigned int tag;
625
626	do {
627		tag = find_first_zero_bit(nq->tag_map, nq->queue_depth);
628		if (tag >= nq->queue_depth)
629			return -1U;
630	} while (test_and_set_bit_lock(tag, nq->tag_map));
631
632	return tag;
633}
634
635static void free_cmd(struct nullb_cmd *cmd)
636{
637	put_tag(cmd->nq, cmd->tag);
638}
639
640static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer);
641
642static struct nullb_cmd *__alloc_cmd(struct nullb_queue *nq)
643{
644	struct nullb_cmd *cmd;
645	unsigned int tag;
646
647	tag = get_tag(nq);
648	if (tag != -1U) {
649		cmd = &nq->cmds[tag];
650		cmd->tag = tag;
651		cmd->error = BLK_STS_OK;
652		cmd->nq = nq;
653		if (nq->dev->irqmode == NULL_IRQ_TIMER) {
654			hrtimer_init(&cmd->timer, CLOCK_MONOTONIC,
655				     HRTIMER_MODE_REL);
656			cmd->timer.function = null_cmd_timer_expired;
657		}
658		return cmd;
659	}
660
661	return NULL;
662}
663
664static struct nullb_cmd *alloc_cmd(struct nullb_queue *nq, int can_wait)
665{
666	struct nullb_cmd *cmd;
667	DEFINE_WAIT(wait);
668
669	cmd = __alloc_cmd(nq);
670	if (cmd || !can_wait)
671		return cmd;
672
673	do {
674		prepare_to_wait(&nq->wait, &wait, TASK_UNINTERRUPTIBLE);
675		cmd = __alloc_cmd(nq);
676		if (cmd)
677			break;
678
679		io_schedule();
680	} while (1);
681
682	finish_wait(&nq->wait, &wait);
683	return cmd;
684}
685
686static void end_cmd(struct nullb_cmd *cmd)
687{
688	int queue_mode = cmd->nq->dev->queue_mode;
689
690	switch (queue_mode)  {
691	case NULL_Q_MQ:
692		blk_mq_end_request(cmd->rq, cmd->error);
693		return;
694	case NULL_Q_BIO:
695		cmd->bio->bi_status = cmd->error;
696		bio_endio(cmd->bio);
697		break;
698	}
699
700	free_cmd(cmd);
701}
702
703static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer)
704{
705	end_cmd(container_of(timer, struct nullb_cmd, timer));
706
707	return HRTIMER_NORESTART;
708}
709
710static void null_cmd_end_timer(struct nullb_cmd *cmd)
711{
712	ktime_t kt = cmd->nq->dev->completion_nsec;
713
714	hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL);
715}
716
717static void null_complete_rq(struct request *rq)
718{
719	end_cmd(blk_mq_rq_to_pdu(rq));
720}
721
722static struct nullb_page *null_alloc_page(gfp_t gfp_flags)
723{
724	struct nullb_page *t_page;
725
726	t_page = kmalloc(sizeof(struct nullb_page), gfp_flags);
727	if (!t_page)
728		goto out;
729
730	t_page->page = alloc_pages(gfp_flags, 0);
731	if (!t_page->page)
732		goto out_freepage;
733
734	memset(t_page->bitmap, 0, sizeof(t_page->bitmap));
735	return t_page;
736out_freepage:
737	kfree(t_page);
738out:
739	return NULL;
740}
741
742static void null_free_page(struct nullb_page *t_page)
743{
744	__set_bit(NULLB_PAGE_FREE, t_page->bitmap);
745	if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap))
746		return;
747	__free_page(t_page->page);
748	kfree(t_page);
749}
750
751static bool null_page_empty(struct nullb_page *page)
752{
753	int size = MAP_SZ - 2;
754
755	return find_first_bit(page->bitmap, size) == size;
756}
757
758static void null_free_sector(struct nullb *nullb, sector_t sector,
759	bool is_cache)
760{
761	unsigned int sector_bit;
762	u64 idx;
763	struct nullb_page *t_page, *ret;
764	struct radix_tree_root *root;
765
766	root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
767	idx = sector >> PAGE_SECTORS_SHIFT;
768	sector_bit = (sector & SECTOR_MASK);
769
770	t_page = radix_tree_lookup(root, idx);
771	if (t_page) {
772		__clear_bit(sector_bit, t_page->bitmap);
773
774		if (null_page_empty(t_page)) {
775			ret = radix_tree_delete_item(root, idx, t_page);
776			WARN_ON(ret != t_page);
777			null_free_page(ret);
778			if (is_cache)
779				nullb->dev->curr_cache -= PAGE_SIZE;
780		}
781	}
782}
783
784static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx,
785	struct nullb_page *t_page, bool is_cache)
786{
787	struct radix_tree_root *root;
788
789	root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
790
791	if (radix_tree_insert(root, idx, t_page)) {
792		null_free_page(t_page);
793		t_page = radix_tree_lookup(root, idx);
794		WARN_ON(!t_page || t_page->page->index != idx);
795	} else if (is_cache)
796		nullb->dev->curr_cache += PAGE_SIZE;
797
798	return t_page;
799}
800
801static void null_free_device_storage(struct nullb_device *dev, bool is_cache)
802{
803	unsigned long pos = 0;
804	int nr_pages;
805	struct nullb_page *ret, *t_pages[FREE_BATCH];
806	struct radix_tree_root *root;
807
808	root = is_cache ? &dev->cache : &dev->data;
809
810	do {
811		int i;
812
813		nr_pages = radix_tree_gang_lookup(root,
814				(void **)t_pages, pos, FREE_BATCH);
815
816		for (i = 0; i < nr_pages; i++) {
817			pos = t_pages[i]->page->index;
818			ret = radix_tree_delete_item(root, pos, t_pages[i]);
819			WARN_ON(ret != t_pages[i]);
820			null_free_page(ret);
821		}
822
823		pos++;
824	} while (nr_pages == FREE_BATCH);
825
826	if (is_cache)
827		dev->curr_cache = 0;
828}
829
830static struct nullb_page *__null_lookup_page(struct nullb *nullb,
831	sector_t sector, bool for_write, bool is_cache)
832{
833	unsigned int sector_bit;
834	u64 idx;
835	struct nullb_page *t_page;
836	struct radix_tree_root *root;
837
838	idx = sector >> PAGE_SECTORS_SHIFT;
839	sector_bit = (sector & SECTOR_MASK);
840
841	root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
842	t_page = radix_tree_lookup(root, idx);
843	WARN_ON(t_page && t_page->page->index != idx);
844
845	if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap)))
846		return t_page;
847
848	return NULL;
849}
850
851static struct nullb_page *null_lookup_page(struct nullb *nullb,
852	sector_t sector, bool for_write, bool ignore_cache)
853{
854	struct nullb_page *page = NULL;
855
856	if (!ignore_cache)
857		page = __null_lookup_page(nullb, sector, for_write, true);
858	if (page)
859		return page;
860	return __null_lookup_page(nullb, sector, for_write, false);
861}
862
863static struct nullb_page *null_insert_page(struct nullb *nullb,
864					   sector_t sector, bool ignore_cache)
865	__releases(&nullb->lock)
866	__acquires(&nullb->lock)
867{
868	u64 idx;
869	struct nullb_page *t_page;
870
871	t_page = null_lookup_page(nullb, sector, true, ignore_cache);
872	if (t_page)
873		return t_page;
874
875	spin_unlock_irq(&nullb->lock);
876
877	t_page = null_alloc_page(GFP_NOIO);
878	if (!t_page)
879		goto out_lock;
880
881	if (radix_tree_preload(GFP_NOIO))
882		goto out_freepage;
883
884	spin_lock_irq(&nullb->lock);
885	idx = sector >> PAGE_SECTORS_SHIFT;
886	t_page->page->index = idx;
887	t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache);
888	radix_tree_preload_end();
889
890	return t_page;
891out_freepage:
892	null_free_page(t_page);
893out_lock:
894	spin_lock_irq(&nullb->lock);
895	return null_lookup_page(nullb, sector, true, ignore_cache);
896}
897
898static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page)
899{
900	int i;
901	unsigned int offset;
902	u64 idx;
903	struct nullb_page *t_page, *ret;
904	void *dst, *src;
905
906	idx = c_page->page->index;
907
908	t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true);
909
910	__clear_bit(NULLB_PAGE_LOCK, c_page->bitmap);
911	if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) {
912		null_free_page(c_page);
913		if (t_page && null_page_empty(t_page)) {
914			ret = radix_tree_delete_item(&nullb->dev->data,
915				idx, t_page);
916			null_free_page(t_page);
917		}
918		return 0;
919	}
920
921	if (!t_page)
922		return -ENOMEM;
923
924	src = kmap_atomic(c_page->page);
925	dst = kmap_atomic(t_page->page);
926
927	for (i = 0; i < PAGE_SECTORS;
928			i += (nullb->dev->blocksize >> SECTOR_SHIFT)) {
929		if (test_bit(i, c_page->bitmap)) {
930			offset = (i << SECTOR_SHIFT);
931			memcpy(dst + offset, src + offset,
932				nullb->dev->blocksize);
933			__set_bit(i, t_page->bitmap);
934		}
935	}
936
937	kunmap_atomic(dst);
938	kunmap_atomic(src);
939
940	ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page);
941	null_free_page(ret);
942	nullb->dev->curr_cache -= PAGE_SIZE;
943
944	return 0;
945}
946
947static int null_make_cache_space(struct nullb *nullb, unsigned long n)
948{
949	int i, err, nr_pages;
950	struct nullb_page *c_pages[FREE_BATCH];
951	unsigned long flushed = 0, one_round;
952
953again:
954	if ((nullb->dev->cache_size * 1024 * 1024) >
955	     nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0)
956		return 0;
957
958	nr_pages = radix_tree_gang_lookup(&nullb->dev->cache,
959			(void **)c_pages, nullb->cache_flush_pos, FREE_BATCH);
960	/*
961	 * nullb_flush_cache_page could unlock before using the c_pages. To
962	 * avoid race, we don't allow page free
963	 */
964	for (i = 0; i < nr_pages; i++) {
965		nullb->cache_flush_pos = c_pages[i]->page->index;
966		/*
967		 * We found the page which is being flushed to disk by other
968		 * threads
969		 */
970		if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap))
971			c_pages[i] = NULL;
972		else
973			__set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap);
974	}
975
976	one_round = 0;
977	for (i = 0; i < nr_pages; i++) {
978		if (c_pages[i] == NULL)
979			continue;
980		err = null_flush_cache_page(nullb, c_pages[i]);
981		if (err)
982			return err;
983		one_round++;
984	}
985	flushed += one_round << PAGE_SHIFT;
986
987	if (n > flushed) {
988		if (nr_pages == 0)
989			nullb->cache_flush_pos = 0;
990		if (one_round == 0) {
991			/* give other threads a chance */
992			spin_unlock_irq(&nullb->lock);
993			spin_lock_irq(&nullb->lock);
994		}
995		goto again;
996	}
997	return 0;
998}
999
1000static int copy_to_nullb(struct nullb *nullb, struct page *source,
1001	unsigned int off, sector_t sector, size_t n, bool is_fua)
1002{
1003	size_t temp, count = 0;
1004	unsigned int offset;
1005	struct nullb_page *t_page;
1006	void *dst, *src;
1007
1008	while (count < n) {
1009		temp = min_t(size_t, nullb->dev->blocksize, n - count);
1010
1011		if (null_cache_active(nullb) && !is_fua)
1012			null_make_cache_space(nullb, PAGE_SIZE);
1013
1014		offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1015		t_page = null_insert_page(nullb, sector,
1016			!null_cache_active(nullb) || is_fua);
1017		if (!t_page)
1018			return -ENOSPC;
1019
1020		src = kmap_atomic(source);
1021		dst = kmap_atomic(t_page->page);
1022		memcpy(dst + offset, src + off + count, temp);
1023		kunmap_atomic(dst);
1024		kunmap_atomic(src);
1025
1026		__set_bit(sector & SECTOR_MASK, t_page->bitmap);
1027
1028		if (is_fua)
1029			null_free_sector(nullb, sector, true);
1030
1031		count += temp;
1032		sector += temp >> SECTOR_SHIFT;
1033	}
1034	return 0;
1035}
1036
1037static int copy_from_nullb(struct nullb *nullb, struct page *dest,
1038	unsigned int off, sector_t sector, size_t n)
1039{
1040	size_t temp, count = 0;
1041	unsigned int offset;
1042	struct nullb_page *t_page;
1043	void *dst, *src;
1044
1045	while (count < n) {
1046		temp = min_t(size_t, nullb->dev->blocksize, n - count);
1047
1048		offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1049		t_page = null_lookup_page(nullb, sector, false,
1050			!null_cache_active(nullb));
1051
1052		dst = kmap_atomic(dest);
1053		if (!t_page) {
1054			memset(dst + off + count, 0, temp);
1055			goto next;
1056		}
1057		src = kmap_atomic(t_page->page);
1058		memcpy(dst + off + count, src + offset, temp);
1059		kunmap_atomic(src);
1060next:
1061		kunmap_atomic(dst);
1062
1063		count += temp;
1064		sector += temp >> SECTOR_SHIFT;
1065	}
1066	return 0;
1067}
1068
1069static void nullb_fill_pattern(struct nullb *nullb, struct page *page,
1070			       unsigned int len, unsigned int off)
1071{
1072	void *dst;
1073
1074	dst = kmap_atomic(page);
1075	memset(dst + off, 0xFF, len);
1076	kunmap_atomic(dst);
1077}
1078
1079static void null_handle_discard(struct nullb *nullb, sector_t sector, size_t n)
1080{
1081	size_t temp;
1082
1083	spin_lock_irq(&nullb->lock);
1084	while (n > 0) {
1085		temp = min_t(size_t, n, nullb->dev->blocksize);
1086		null_free_sector(nullb, sector, false);
1087		if (null_cache_active(nullb))
1088			null_free_sector(nullb, sector, true);
1089		sector += temp >> SECTOR_SHIFT;
1090		n -= temp;
1091	}
1092	spin_unlock_irq(&nullb->lock);
1093}
1094
1095static int null_handle_flush(struct nullb *nullb)
1096{
1097	int err;
1098
1099	if (!null_cache_active(nullb))
1100		return 0;
1101
1102	spin_lock_irq(&nullb->lock);
1103	while (true) {
1104		err = null_make_cache_space(nullb,
1105			nullb->dev->cache_size * 1024 * 1024);
1106		if (err || nullb->dev->curr_cache == 0)
1107			break;
1108	}
1109
1110	WARN_ON(!radix_tree_empty(&nullb->dev->cache));
1111	spin_unlock_irq(&nullb->lock);
1112	return err;
1113}
1114
1115static int null_transfer(struct nullb *nullb, struct page *page,
1116	unsigned int len, unsigned int off, bool is_write, sector_t sector,
1117	bool is_fua)
1118{
1119	struct nullb_device *dev = nullb->dev;
1120	unsigned int valid_len = len;
1121	int err = 0;
1122
1123	if (!is_write) {
1124		if (dev->zoned)
1125			valid_len = null_zone_valid_read_len(nullb,
1126				sector, len);
1127
1128		if (valid_len) {
1129			err = copy_from_nullb(nullb, page, off,
1130				sector, valid_len);
1131			off += valid_len;
1132			len -= valid_len;
1133		}
1134
1135		if (len)
1136			nullb_fill_pattern(nullb, page, len, off);
1137		flush_dcache_page(page);
1138	} else {
1139		flush_dcache_page(page);
1140		err = copy_to_nullb(nullb, page, off, sector, len, is_fua);
1141	}
1142
1143	return err;
1144}
1145
1146static int null_handle_rq(struct nullb_cmd *cmd)
1147{
1148	struct request *rq = cmd->rq;
1149	struct nullb *nullb = cmd->nq->dev->nullb;
1150	int err;
1151	unsigned int len;
1152	sector_t sector;
1153	struct req_iterator iter;
1154	struct bio_vec bvec;
1155
1156	sector = blk_rq_pos(rq);
1157
1158	if (req_op(rq) == REQ_OP_DISCARD) {
1159		null_handle_discard(nullb, sector, blk_rq_bytes(rq));
1160		return 0;
1161	}
1162
1163	spin_lock_irq(&nullb->lock);
1164	rq_for_each_segment(bvec, rq, iter) {
1165		len = bvec.bv_len;
1166		err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1167				     op_is_write(req_op(rq)), sector,
1168				     rq->cmd_flags & REQ_FUA);
1169		if (err) {
1170			spin_unlock_irq(&nullb->lock);
1171			return err;
1172		}
1173		sector += len >> SECTOR_SHIFT;
1174	}
1175	spin_unlock_irq(&nullb->lock);
1176
1177	return 0;
1178}
1179
1180static int null_handle_bio(struct nullb_cmd *cmd)
1181{
1182	struct bio *bio = cmd->bio;
1183	struct nullb *nullb = cmd->nq->dev->nullb;
1184	int err;
1185	unsigned int len;
1186	sector_t sector;
1187	struct bio_vec bvec;
1188	struct bvec_iter iter;
1189
1190	sector = bio->bi_iter.bi_sector;
1191
1192	if (bio_op(bio) == REQ_OP_DISCARD) {
1193		null_handle_discard(nullb, sector,
1194			bio_sectors(bio) << SECTOR_SHIFT);
1195		return 0;
1196	}
1197
1198	spin_lock_irq(&nullb->lock);
1199	bio_for_each_segment(bvec, bio, iter) {
1200		len = bvec.bv_len;
1201		err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1202				     op_is_write(bio_op(bio)), sector,
1203				     bio->bi_opf & REQ_FUA);
1204		if (err) {
1205			spin_unlock_irq(&nullb->lock);
1206			return err;
1207		}
1208		sector += len >> SECTOR_SHIFT;
1209	}
1210	spin_unlock_irq(&nullb->lock);
1211	return 0;
1212}
1213
1214static void null_stop_queue(struct nullb *nullb)
1215{
1216	struct request_queue *q = nullb->q;
1217
1218	if (nullb->dev->queue_mode == NULL_Q_MQ)
1219		blk_mq_stop_hw_queues(q);
1220}
1221
1222static void null_restart_queue_async(struct nullb *nullb)
1223{
1224	struct request_queue *q = nullb->q;
1225
1226	if (nullb->dev->queue_mode == NULL_Q_MQ)
1227		blk_mq_start_stopped_hw_queues(q, true);
1228}
1229
1230static inline blk_status_t null_handle_throttled(struct nullb_cmd *cmd)
1231{
1232	struct nullb_device *dev = cmd->nq->dev;
1233	struct nullb *nullb = dev->nullb;
1234	blk_status_t sts = BLK_STS_OK;
1235	struct request *rq = cmd->rq;
1236
1237	if (!hrtimer_active(&nullb->bw_timer))
1238		hrtimer_restart(&nullb->bw_timer);
1239
1240	if (atomic_long_sub_return(blk_rq_bytes(rq), &nullb->cur_bytes) < 0) {
1241		null_stop_queue(nullb);
1242		/* race with timer */
1243		if (atomic_long_read(&nullb->cur_bytes) > 0)
1244			null_restart_queue_async(nullb);
1245		/* requeue request */
1246		sts = BLK_STS_DEV_RESOURCE;
1247	}
1248	return sts;
1249}
1250
1251static inline blk_status_t null_handle_badblocks(struct nullb_cmd *cmd,
1252						 sector_t sector,
1253						 sector_t nr_sectors)
1254{
1255	struct badblocks *bb = &cmd->nq->dev->badblocks;
1256	sector_t first_bad;
1257	int bad_sectors;
1258
1259	if (badblocks_check(bb, sector, nr_sectors, &first_bad, &bad_sectors))
1260		return BLK_STS_IOERR;
1261
1262	return BLK_STS_OK;
1263}
1264
1265static inline blk_status_t null_handle_memory_backed(struct nullb_cmd *cmd,
1266						     enum req_opf op)
1267{
1268	struct nullb_device *dev = cmd->nq->dev;
1269	int err;
1270
1271	if (dev->queue_mode == NULL_Q_BIO)
1272		err = null_handle_bio(cmd);
1273	else
1274		err = null_handle_rq(cmd);
1275
1276	return errno_to_blk_status(err);
1277}
1278
1279static void nullb_zero_read_cmd_buffer(struct nullb_cmd *cmd)
1280{
1281	struct nullb_device *dev = cmd->nq->dev;
1282	struct bio *bio;
1283
1284	if (dev->memory_backed)
1285		return;
1286
1287	if (dev->queue_mode == NULL_Q_BIO && bio_op(cmd->bio) == REQ_OP_READ) {
1288		zero_fill_bio(cmd->bio);
1289	} else if (req_op(cmd->rq) == REQ_OP_READ) {
1290		__rq_for_each_bio(bio, cmd->rq)
1291			zero_fill_bio(bio);
1292	}
1293}
1294
1295static inline void nullb_complete_cmd(struct nullb_cmd *cmd)
1296{
1297	/*
1298	 * Since root privileges are required to configure the null_blk
1299	 * driver, it is fine that this driver does not initialize the
1300	 * data buffers of read commands. Zero-initialize these buffers
1301	 * anyway if KMSAN is enabled to prevent that KMSAN complains
1302	 * about null_blk not initializing read data buffers.
1303	 */
1304	if (IS_ENABLED(CONFIG_KMSAN))
1305		nullb_zero_read_cmd_buffer(cmd);
1306
1307	/* Complete IO by inline, softirq or timer */
1308	switch (cmd->nq->dev->irqmode) {
1309	case NULL_IRQ_SOFTIRQ:
1310		switch (cmd->nq->dev->queue_mode) {
1311		case NULL_Q_MQ:
1312			blk_mq_complete_request(cmd->rq);
1313			break;
1314		case NULL_Q_BIO:
1315			/*
1316			 * XXX: no proper submitting cpu information available.
1317			 */
1318			end_cmd(cmd);
1319			break;
1320		}
1321		break;
1322	case NULL_IRQ_NONE:
1323		end_cmd(cmd);
1324		break;
1325	case NULL_IRQ_TIMER:
1326		null_cmd_end_timer(cmd);
1327		break;
1328	}
1329}
1330
1331blk_status_t null_process_cmd(struct nullb_cmd *cmd,
1332			      enum req_opf op, sector_t sector,
1333			      unsigned int nr_sectors)
1334{
1335	struct nullb_device *dev = cmd->nq->dev;
1336	blk_status_t ret;
1337
1338	if (dev->badblocks.shift != -1) {
1339		ret = null_handle_badblocks(cmd, sector, nr_sectors);
1340		if (ret != BLK_STS_OK)
1341			return ret;
1342	}
1343
1344	if (dev->memory_backed)
1345		return null_handle_memory_backed(cmd, op);
1346
1347	return BLK_STS_OK;
1348}
1349
1350static blk_status_t null_handle_cmd(struct nullb_cmd *cmd, sector_t sector,
1351				    sector_t nr_sectors, enum req_opf op)
1352{
1353	struct nullb_device *dev = cmd->nq->dev;
1354	struct nullb *nullb = dev->nullb;
1355	blk_status_t sts;
1356
1357	if (test_bit(NULLB_DEV_FL_THROTTLED, &dev->flags)) {
1358		sts = null_handle_throttled(cmd);
1359		if (sts != BLK_STS_OK)
1360			return sts;
1361	}
1362
1363	if (op == REQ_OP_FLUSH) {
1364		cmd->error = errno_to_blk_status(null_handle_flush(nullb));
1365		goto out;
1366	}
1367
1368	if (dev->zoned)
1369		sts = null_process_zoned_cmd(cmd, op, sector, nr_sectors);
1370	else
1371		sts = null_process_cmd(cmd, op, sector, nr_sectors);
1372
1373	/* Do not overwrite errors (e.g. timeout errors) */
1374	if (cmd->error == BLK_STS_OK)
1375		cmd->error = sts;
1376
1377out:
1378	nullb_complete_cmd(cmd);
1379	return BLK_STS_OK;
1380}
1381
1382static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer)
1383{
1384	struct nullb *nullb = container_of(timer, struct nullb, bw_timer);
1385	ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1386	unsigned int mbps = nullb->dev->mbps;
1387
1388	if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps))
1389		return HRTIMER_NORESTART;
1390
1391	atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps));
1392	null_restart_queue_async(nullb);
1393
1394	hrtimer_forward_now(&nullb->bw_timer, timer_interval);
1395
1396	return HRTIMER_RESTART;
1397}
1398
1399static void nullb_setup_bwtimer(struct nullb *nullb)
1400{
1401	ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1402
1403	hrtimer_init(&nullb->bw_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1404	nullb->bw_timer.function = nullb_bwtimer_fn;
1405	atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps));
1406	hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL);
1407}
1408
1409static struct nullb_queue *nullb_to_queue(struct nullb *nullb)
1410{
1411	int index = 0;
1412
1413	if (nullb->nr_queues != 1)
1414		index = raw_smp_processor_id() / ((nr_cpu_ids + nullb->nr_queues - 1) / nullb->nr_queues);
1415
1416	return &nullb->queues[index];
1417}
1418
1419static blk_qc_t null_submit_bio(struct bio *bio)
1420{
1421	sector_t sector = bio->bi_iter.bi_sector;
1422	sector_t nr_sectors = bio_sectors(bio);
1423	struct nullb *nullb = bio->bi_disk->private_data;
1424	struct nullb_queue *nq = nullb_to_queue(nullb);
1425	struct nullb_cmd *cmd;
1426
1427	cmd = alloc_cmd(nq, 1);
1428	cmd->bio = bio;
1429
1430	null_handle_cmd(cmd, sector, nr_sectors, bio_op(bio));
1431	return BLK_QC_T_NONE;
1432}
1433
1434static bool should_timeout_request(struct request *rq)
1435{
1436#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1437	if (g_timeout_str[0])
1438		return should_fail(&null_timeout_attr, 1);
1439#endif
1440	return false;
1441}
1442
1443static bool should_requeue_request(struct request *rq)
1444{
1445#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1446	if (g_requeue_str[0])
1447		return should_fail(&null_requeue_attr, 1);
1448#endif
1449	return false;
1450}
1451
1452static enum blk_eh_timer_return null_timeout_rq(struct request *rq, bool res)
1453{
1454	struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1455
1456	pr_info("rq %p timed out\n", rq);
1457
1458	/*
1459	 * If the device is marked as blocking (i.e. memory backed or zoned
1460	 * device), the submission path may be blocked waiting for resources
1461	 * and cause real timeouts. For these real timeouts, the submission
1462	 * path will complete the request using blk_mq_complete_request().
1463	 * Only fake timeouts need to execute blk_mq_complete_request() here.
1464	 */
1465	cmd->error = BLK_STS_TIMEOUT;
1466	if (cmd->fake_timeout)
1467		blk_mq_complete_request(rq);
1468	return BLK_EH_DONE;
1469}
1470
1471static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx,
1472			 const struct blk_mq_queue_data *bd)
1473{
1474	struct nullb_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1475	struct nullb_queue *nq = hctx->driver_data;
1476	sector_t nr_sectors = blk_rq_sectors(bd->rq);
1477	sector_t sector = blk_rq_pos(bd->rq);
1478
1479	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1480
1481	if (nq->dev->irqmode == NULL_IRQ_TIMER) {
1482		hrtimer_init(&cmd->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1483		cmd->timer.function = null_cmd_timer_expired;
1484	}
1485	cmd->rq = bd->rq;
1486	cmd->error = BLK_STS_OK;
1487	cmd->nq = nq;
1488	cmd->fake_timeout = should_timeout_request(bd->rq) ||
1489		blk_should_fake_timeout(bd->rq->q);
1490
1491	blk_mq_start_request(bd->rq);
1492
1493	if (should_requeue_request(bd->rq)) {
1494		/*
1495		 * Alternate between hitting the core BUSY path, and the
1496		 * driver driven requeue path
1497		 */
1498		nq->requeue_selection++;
1499		if (nq->requeue_selection & 1)
1500			return BLK_STS_RESOURCE;
1501		else {
1502			blk_mq_requeue_request(bd->rq, true);
1503			return BLK_STS_OK;
1504		}
1505	}
1506	if (cmd->fake_timeout)
1507		return BLK_STS_OK;
1508
1509	return null_handle_cmd(cmd, sector, nr_sectors, req_op(bd->rq));
1510}
1511
1512static void cleanup_queue(struct nullb_queue *nq)
1513{
1514	kfree(nq->tag_map);
1515	kfree(nq->cmds);
1516}
1517
1518static void cleanup_queues(struct nullb *nullb)
1519{
1520	int i;
1521
1522	for (i = 0; i < nullb->nr_queues; i++)
1523		cleanup_queue(&nullb->queues[i]);
1524
1525	kfree(nullb->queues);
1526}
1527
1528static void null_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1529{
1530	struct nullb_queue *nq = hctx->driver_data;
1531	struct nullb *nullb = nq->dev->nullb;
1532
1533	nullb->nr_queues--;
1534}
1535
1536static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq)
1537{
1538	init_waitqueue_head(&nq->wait);
1539	nq->queue_depth = nullb->queue_depth;
1540	nq->dev = nullb->dev;
1541}
1542
1543static int null_init_hctx(struct blk_mq_hw_ctx *hctx, void *driver_data,
1544			  unsigned int hctx_idx)
1545{
1546	struct nullb *nullb = hctx->queue->queuedata;
1547	struct nullb_queue *nq;
1548
1549#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1550	if (g_init_hctx_str[0] && should_fail(&null_init_hctx_attr, 1))
1551		return -EFAULT;
1552#endif
1553
1554	nq = &nullb->queues[hctx_idx];
1555	hctx->driver_data = nq;
1556	null_init_queue(nullb, nq);
1557	nullb->nr_queues++;
1558
1559	return 0;
1560}
1561
1562static const struct blk_mq_ops null_mq_ops = {
1563	.queue_rq       = null_queue_rq,
1564	.complete	= null_complete_rq,
1565	.timeout	= null_timeout_rq,
1566	.init_hctx	= null_init_hctx,
1567	.exit_hctx	= null_exit_hctx,
1568};
1569
1570static void null_del_dev(struct nullb *nullb)
1571{
1572	struct nullb_device *dev;
1573
1574	if (!nullb)
1575		return;
1576
1577	dev = nullb->dev;
1578
1579	ida_simple_remove(&nullb_indexes, nullb->index);
1580
1581	list_del_init(&nullb->list);
1582
1583	del_gendisk(nullb->disk);
1584
1585	if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) {
1586		hrtimer_cancel(&nullb->bw_timer);
1587		atomic_long_set(&nullb->cur_bytes, LONG_MAX);
1588		null_restart_queue_async(nullb);
1589	}
1590
1591	blk_cleanup_queue(nullb->q);
1592	if (dev->queue_mode == NULL_Q_MQ &&
1593	    nullb->tag_set == &nullb->__tag_set)
1594		blk_mq_free_tag_set(nullb->tag_set);
1595	put_disk(nullb->disk);
1596	cleanup_queues(nullb);
1597	if (null_cache_active(nullb))
1598		null_free_device_storage(nullb->dev, true);
1599	kfree(nullb);
1600	dev->nullb = NULL;
1601}
1602
1603static void null_config_discard(struct nullb *nullb)
1604{
1605	if (nullb->dev->discard == false)
1606		return;
1607
1608	if (nullb->dev->zoned) {
1609		nullb->dev->discard = false;
1610		pr_info("discard option is ignored in zoned mode\n");
1611		return;
1612	}
1613
1614	nullb->q->limits.discard_granularity = nullb->dev->blocksize;
1615	nullb->q->limits.discard_alignment = nullb->dev->blocksize;
1616	blk_queue_max_discard_sectors(nullb->q, UINT_MAX >> 9);
1617	blk_queue_flag_set(QUEUE_FLAG_DISCARD, nullb->q);
1618}
1619
1620static const struct block_device_operations null_bio_ops = {
1621	.owner		= THIS_MODULE,
1622	.submit_bio	= null_submit_bio,
1623	.report_zones	= null_report_zones,
1624};
1625
1626static const struct block_device_operations null_rq_ops = {
1627	.owner		= THIS_MODULE,
1628	.report_zones	= null_report_zones,
1629};
1630
1631static int setup_commands(struct nullb_queue *nq)
1632{
1633	struct nullb_cmd *cmd;
1634	int i, tag_size;
1635
1636	nq->cmds = kcalloc(nq->queue_depth, sizeof(*cmd), GFP_KERNEL);
1637	if (!nq->cmds)
1638		return -ENOMEM;
1639
1640	tag_size = ALIGN(nq->queue_depth, BITS_PER_LONG) / BITS_PER_LONG;
1641	nq->tag_map = kcalloc(tag_size, sizeof(unsigned long), GFP_KERNEL);
1642	if (!nq->tag_map) {
1643		kfree(nq->cmds);
1644		return -ENOMEM;
1645	}
1646
1647	for (i = 0; i < nq->queue_depth; i++) {
1648		cmd = &nq->cmds[i];
1649		cmd->tag = -1U;
1650	}
1651
1652	return 0;
1653}
1654
1655static int setup_queues(struct nullb *nullb)
1656{
1657	nullb->queues = kcalloc(nr_cpu_ids, sizeof(struct nullb_queue),
1658				GFP_KERNEL);
1659	if (!nullb->queues)
1660		return -ENOMEM;
1661
1662	nullb->queue_depth = nullb->dev->hw_queue_depth;
1663
1664	return 0;
1665}
1666
1667static int init_driver_queues(struct nullb *nullb)
1668{
1669	struct nullb_queue *nq;
1670	int i, ret = 0;
1671
1672	for (i = 0; i < nullb->dev->submit_queues; i++) {
1673		nq = &nullb->queues[i];
1674
1675		null_init_queue(nullb, nq);
1676
1677		ret = setup_commands(nq);
1678		if (ret)
1679			return ret;
1680		nullb->nr_queues++;
1681	}
1682	return 0;
1683}
1684
1685static int null_gendisk_register(struct nullb *nullb)
1686{
1687	sector_t size = ((sector_t)nullb->dev->size * SZ_1M) >> SECTOR_SHIFT;
1688	struct gendisk *disk;
1689
1690	disk = nullb->disk = alloc_disk_node(1, nullb->dev->home_node);
1691	if (!disk)
1692		return -ENOMEM;
1693	set_capacity(disk, size);
1694
1695	disk->flags |= GENHD_FL_EXT_DEVT | GENHD_FL_SUPPRESS_PARTITION_INFO;
1696	disk->major		= null_major;
1697	disk->first_minor	= nullb->index;
1698	if (queue_is_mq(nullb->q))
1699		disk->fops		= &null_rq_ops;
1700	else
1701		disk->fops		= &null_bio_ops;
1702	disk->private_data	= nullb;
1703	disk->queue		= nullb->q;
1704	strncpy(disk->disk_name, nullb->disk_name, DISK_NAME_LEN);
1705
1706	if (nullb->dev->zoned) {
1707		int ret = null_register_zoned_dev(nullb);
1708
1709		if (ret)
1710			return ret;
1711	}
1712
1713	add_disk(disk);
1714	return 0;
1715}
1716
1717static int null_init_tag_set(struct nullb *nullb, struct blk_mq_tag_set *set)
1718{
1719	set->ops = &null_mq_ops;
1720	set->nr_hw_queues = nullb ? nullb->dev->submit_queues :
1721						g_submit_queues;
1722	set->queue_depth = nullb ? nullb->dev->hw_queue_depth :
1723						g_hw_queue_depth;
1724	set->numa_node = nullb ? nullb->dev->home_node : g_home_node;
1725	set->cmd_size	= sizeof(struct nullb_cmd);
1726	set->flags = BLK_MQ_F_SHOULD_MERGE;
1727	if (g_no_sched)
1728		set->flags |= BLK_MQ_F_NO_SCHED;
1729	if (g_shared_tag_bitmap)
1730		set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1731	set->driver_data = NULL;
1732
1733	if ((nullb && nullb->dev->blocking) || g_blocking)
1734		set->flags |= BLK_MQ_F_BLOCKING;
1735
1736	return blk_mq_alloc_tag_set(set);
1737}
1738
1739static int null_validate_conf(struct nullb_device *dev)
1740{
1741	if (dev->queue_mode == NULL_Q_RQ) {
1742		pr_err("legacy IO path is no longer available\n");
1743		return -EINVAL;
1744	}
1745
1746	if (blk_validate_block_size(dev->blocksize))
1747		return -EINVAL;
1748
1749	if (dev->queue_mode == NULL_Q_MQ && dev->use_per_node_hctx) {
1750		if (dev->submit_queues != nr_online_nodes)
1751			dev->submit_queues = nr_online_nodes;
1752	} else if (dev->submit_queues > nr_cpu_ids)
1753		dev->submit_queues = nr_cpu_ids;
1754	else if (dev->submit_queues == 0)
1755		dev->submit_queues = 1;
1756
1757	dev->queue_mode = min_t(unsigned int, dev->queue_mode, NULL_Q_MQ);
1758	dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER);
1759
1760	/* Do memory allocation, so set blocking */
1761	if (dev->memory_backed)
1762		dev->blocking = true;
1763	else /* cache is meaningless */
1764		dev->cache_size = 0;
1765	dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024,
1766						dev->cache_size);
1767	dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps);
1768	/* can not stop a queue */
1769	if (dev->queue_mode == NULL_Q_BIO)
1770		dev->mbps = 0;
1771
1772	if (dev->zoned &&
1773	    (!dev->zone_size || !is_power_of_2(dev->zone_size))) {
1774		pr_err("zone_size must be power-of-two\n");
1775		return -EINVAL;
1776	}
1777
1778	return 0;
1779}
1780
1781#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1782static bool __null_setup_fault(struct fault_attr *attr, char *str)
1783{
1784	if (!str[0])
1785		return true;
1786
1787	if (!setup_fault_attr(attr, str))
1788		return false;
1789
1790	attr->verbose = 0;
1791	return true;
1792}
1793#endif
1794
1795static bool null_setup_fault(void)
1796{
1797#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1798	if (!__null_setup_fault(&null_timeout_attr, g_timeout_str))
1799		return false;
1800	if (!__null_setup_fault(&null_requeue_attr, g_requeue_str))
1801		return false;
1802	if (!__null_setup_fault(&null_init_hctx_attr, g_init_hctx_str))
1803		return false;
1804#endif
1805	return true;
1806}
1807
1808static int null_add_dev(struct nullb_device *dev)
1809{
1810	struct nullb *nullb;
1811	int rv;
1812
1813	rv = null_validate_conf(dev);
1814	if (rv)
1815		return rv;
1816
1817	nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node);
1818	if (!nullb) {
1819		rv = -ENOMEM;
1820		goto out;
1821	}
1822	nullb->dev = dev;
1823	dev->nullb = nullb;
1824
1825	spin_lock_init(&nullb->lock);
1826
1827	rv = setup_queues(nullb);
1828	if (rv)
1829		goto out_free_nullb;
1830
1831	if (dev->queue_mode == NULL_Q_MQ) {
1832		if (shared_tags) {
1833			nullb->tag_set = &tag_set;
1834			rv = 0;
1835		} else {
1836			nullb->tag_set = &nullb->__tag_set;
1837			rv = null_init_tag_set(nullb, nullb->tag_set);
1838		}
1839
1840		if (rv)
1841			goto out_cleanup_queues;
1842
1843		if (!null_setup_fault())
1844			goto out_cleanup_queues;
1845
1846		nullb->tag_set->timeout = 5 * HZ;
1847		nullb->q = blk_mq_init_queue_data(nullb->tag_set, nullb);
1848		if (IS_ERR(nullb->q)) {
1849			rv = -ENOMEM;
1850			goto out_cleanup_tags;
1851		}
1852	} else if (dev->queue_mode == NULL_Q_BIO) {
1853		nullb->q = blk_alloc_queue(dev->home_node);
1854		if (!nullb->q) {
1855			rv = -ENOMEM;
1856			goto out_cleanup_queues;
1857		}
1858		rv = init_driver_queues(nullb);
1859		if (rv)
1860			goto out_cleanup_blk_queue;
1861	}
1862
1863	if (dev->mbps) {
1864		set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags);
1865		nullb_setup_bwtimer(nullb);
1866	}
1867
1868	if (dev->cache_size > 0) {
1869		set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
1870		blk_queue_write_cache(nullb->q, true, true);
1871	}
1872
1873	if (dev->zoned) {
1874		rv = null_init_zoned_dev(dev, nullb->q);
1875		if (rv)
1876			goto out_cleanup_blk_queue;
1877	}
1878
1879	nullb->q->queuedata = nullb;
1880	blk_queue_flag_set(QUEUE_FLAG_NONROT, nullb->q);
1881	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, nullb->q);
1882
1883	mutex_lock(&lock);
1884	rv = ida_simple_get(&nullb_indexes, 0, 0, GFP_KERNEL);
1885	if (rv < 0) {
1886		mutex_unlock(&lock);
1887		goto out_cleanup_zone;
1888	}
1889	nullb->index = rv;
1890	dev->index = rv;
1891	mutex_unlock(&lock);
1892
1893	blk_queue_logical_block_size(nullb->q, dev->blocksize);
1894	blk_queue_physical_block_size(nullb->q, dev->blocksize);
1895
1896	null_config_discard(nullb);
1897
1898	sprintf(nullb->disk_name, "nullb%d", nullb->index);
1899
1900	rv = null_gendisk_register(nullb);
1901	if (rv)
1902		goto out_ida_free;
1903
1904	mutex_lock(&lock);
1905	list_add_tail(&nullb->list, &nullb_list);
1906	mutex_unlock(&lock);
1907
1908	return 0;
1909
1910out_ida_free:
1911	ida_free(&nullb_indexes, nullb->index);
1912out_cleanup_zone:
1913	null_free_zoned_dev(dev);
1914out_cleanup_blk_queue:
1915	blk_cleanup_queue(nullb->q);
1916out_cleanup_tags:
1917	if (dev->queue_mode == NULL_Q_MQ && nullb->tag_set == &nullb->__tag_set)
1918		blk_mq_free_tag_set(nullb->tag_set);
1919out_cleanup_queues:
1920	cleanup_queues(nullb);
1921out_free_nullb:
1922	kfree(nullb);
1923	dev->nullb = NULL;
1924out:
1925	return rv;
1926}
1927
1928static int __init null_init(void)
1929{
1930	int ret = 0;
1931	unsigned int i;
1932	struct nullb *nullb;
1933	struct nullb_device *dev;
1934
1935	if (g_bs > PAGE_SIZE) {
1936		pr_warn("invalid block size\n");
1937		pr_warn("defaults block size to %lu\n", PAGE_SIZE);
1938		g_bs = PAGE_SIZE;
1939	}
1940
1941	if (g_home_node != NUMA_NO_NODE && g_home_node >= nr_online_nodes) {
1942		pr_err("invalid home_node value\n");
1943		g_home_node = NUMA_NO_NODE;
1944	}
1945
1946	if (g_queue_mode == NULL_Q_RQ) {
1947		pr_err("legacy IO path no longer available\n");
1948		return -EINVAL;
1949	}
1950	if (g_queue_mode == NULL_Q_MQ && g_use_per_node_hctx) {
1951		if (g_submit_queues != nr_online_nodes) {
1952			pr_warn("submit_queues param is set to %u.\n",
1953							nr_online_nodes);
1954			g_submit_queues = nr_online_nodes;
1955		}
1956	} else if (g_submit_queues > nr_cpu_ids)
1957		g_submit_queues = nr_cpu_ids;
1958	else if (g_submit_queues <= 0)
1959		g_submit_queues = 1;
1960
1961	if (g_queue_mode == NULL_Q_MQ && shared_tags) {
1962		ret = null_init_tag_set(NULL, &tag_set);
1963		if (ret)
1964			return ret;
1965	}
1966
1967	config_group_init(&nullb_subsys.su_group);
1968	mutex_init(&nullb_subsys.su_mutex);
1969
1970	ret = configfs_register_subsystem(&nullb_subsys);
1971	if (ret)
1972		goto err_tagset;
1973
1974	mutex_init(&lock);
1975
1976	null_major = register_blkdev(0, "nullb");
1977	if (null_major < 0) {
1978		ret = null_major;
1979		goto err_conf;
1980	}
1981
1982	for (i = 0; i < nr_devices; i++) {
1983		dev = null_alloc_dev();
1984		if (!dev) {
1985			ret = -ENOMEM;
1986			goto err_dev;
1987		}
1988		ret = null_add_dev(dev);
1989		if (ret) {
1990			null_free_dev(dev);
1991			goto err_dev;
1992		}
1993	}
1994
1995	pr_info("module loaded\n");
1996	return 0;
1997
1998err_dev:
1999	while (!list_empty(&nullb_list)) {
2000		nullb = list_entry(nullb_list.next, struct nullb, list);
2001		dev = nullb->dev;
2002		null_del_dev(nullb);
2003		null_free_dev(dev);
2004	}
2005	unregister_blkdev(null_major, "nullb");
2006err_conf:
2007	configfs_unregister_subsystem(&nullb_subsys);
2008err_tagset:
2009	if (g_queue_mode == NULL_Q_MQ && shared_tags)
2010		blk_mq_free_tag_set(&tag_set);
2011	return ret;
2012}
2013
2014static void __exit null_exit(void)
2015{
2016	struct nullb *nullb;
2017
2018	configfs_unregister_subsystem(&nullb_subsys);
2019
2020	unregister_blkdev(null_major, "nullb");
2021
2022	mutex_lock(&lock);
2023	while (!list_empty(&nullb_list)) {
2024		struct nullb_device *dev;
2025
2026		nullb = list_entry(nullb_list.next, struct nullb, list);
2027		dev = nullb->dev;
2028		null_del_dev(nullb);
2029		null_free_dev(dev);
2030	}
2031	mutex_unlock(&lock);
2032
2033	if (g_queue_mode == NULL_Q_MQ && shared_tags)
2034		blk_mq_free_tag_set(&tag_set);
2035}
2036
2037module_init(null_init);
2038module_exit(null_exit);
2039
2040MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>");
2041MODULE_LICENSE("GPL");
2042