1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Ram backed block device driver. 4 * 5 * Copyright (C) 2007 Nick Piggin 6 * Copyright (C) 2007 Novell Inc. 7 * 8 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright 9 * of their respective owners. 10 */ 11 12#include <linux/init.h> 13#include <linux/initrd.h> 14#include <linux/module.h> 15#include <linux/moduleparam.h> 16#include <linux/major.h> 17#include <linux/blkdev.h> 18#include <linux/bio.h> 19#include <linux/highmem.h> 20#include <linux/mutex.h> 21#include <linux/radix-tree.h> 22#include <linux/fs.h> 23#include <linux/slab.h> 24#include <linux/backing-dev.h> 25 26#include <linux/uaccess.h> 27 28#define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT) 29#define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT) 30 31/* 32 * Each block ramdisk device has a radix_tree brd_pages of pages that stores 33 * the pages containing the block device's contents. A brd page's ->index is 34 * its offset in PAGE_SIZE units. This is similar to, but in no way connected 35 * with, the kernel's pagecache or buffer cache (which sit above our block 36 * device). 37 */ 38struct brd_device { 39 int brd_number; 40 41 struct request_queue *brd_queue; 42 struct gendisk *brd_disk; 43 struct list_head brd_list; 44 45 /* 46 * Backing store of pages and lock to protect it. This is the contents 47 * of the block device. 48 */ 49 spinlock_t brd_lock; 50 struct radix_tree_root brd_pages; 51}; 52 53/* 54 * Look up and return a brd's page for a given sector. 55 */ 56static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector) 57{ 58 pgoff_t idx; 59 struct page *page; 60 61 /* 62 * The page lifetime is protected by the fact that we have opened the 63 * device node -- brd pages will never be deleted under us, so we 64 * don't need any further locking or refcounting. 65 * 66 * This is strictly true for the radix-tree nodes as well (ie. we 67 * don't actually need the rcu_read_lock()), however that is not a 68 * documented feature of the radix-tree API so it is better to be 69 * safe here (we don't have total exclusion from radix tree updates 70 * here, only deletes). 71 */ 72 rcu_read_lock(); 73 idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */ 74 page = radix_tree_lookup(&brd->brd_pages, idx); 75 rcu_read_unlock(); 76 77 BUG_ON(page && page->index != idx); 78 79 return page; 80} 81 82/* 83 * Insert a new page for a given sector, if one does not already exist. 84 */ 85static int brd_insert_page(struct brd_device *brd, sector_t sector) 86{ 87 pgoff_t idx; 88 struct page *page; 89 gfp_t gfp_flags; 90 91 page = brd_lookup_page(brd, sector); 92 if (page) 93 return 0; 94 95 /* 96 * Must use NOIO because we don't want to recurse back into the 97 * block or filesystem layers from page reclaim. 98 */ 99 gfp_flags = GFP_NOIO | __GFP_ZERO | __GFP_HIGHMEM; 100 page = alloc_page(gfp_flags); 101 if (!page) 102 return -ENOMEM; 103 104 if (radix_tree_preload(GFP_NOIO)) { 105 __free_page(page); 106 return -ENOMEM; 107 } 108 109 spin_lock(&brd->brd_lock); 110 idx = sector >> PAGE_SECTORS_SHIFT; 111 page->index = idx; 112 if (radix_tree_insert(&brd->brd_pages, idx, page)) { 113 __free_page(page); 114 page = radix_tree_lookup(&brd->brd_pages, idx); 115 BUG_ON(!page); 116 BUG_ON(page->index != idx); 117 } 118 spin_unlock(&brd->brd_lock); 119 120 radix_tree_preload_end(); 121 return 0; 122} 123 124/* 125 * Free all backing store pages and radix tree. This must only be called when 126 * there are no other users of the device. 127 */ 128#define FREE_BATCH 16 129static void brd_free_pages(struct brd_device *brd) 130{ 131 unsigned long pos = 0; 132 struct page *pages[FREE_BATCH]; 133 int nr_pages; 134 135 do { 136 int i; 137 138 nr_pages = radix_tree_gang_lookup(&brd->brd_pages, 139 (void **)pages, pos, FREE_BATCH); 140 141 for (i = 0; i < nr_pages; i++) { 142 void *ret; 143 144 BUG_ON(pages[i]->index < pos); 145 pos = pages[i]->index; 146 ret = radix_tree_delete(&brd->brd_pages, pos); 147 BUG_ON(!ret || ret != pages[i]); 148 __free_page(pages[i]); 149 } 150 151 pos++; 152 153 /* 154 * It takes 3.4 seconds to remove 80GiB ramdisk. 155 * So, we need cond_resched to avoid stalling the CPU. 156 */ 157 cond_resched(); 158 159 /* 160 * This assumes radix_tree_gang_lookup always returns as 161 * many pages as possible. If the radix-tree code changes, 162 * so will this have to. 163 */ 164 } while (nr_pages == FREE_BATCH); 165} 166 167/* 168 * copy_to_brd_setup must be called before copy_to_brd. It may sleep. 169 */ 170static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n) 171{ 172 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 173 size_t copy; 174 int ret; 175 176 copy = min_t(size_t, n, PAGE_SIZE - offset); 177 ret = brd_insert_page(brd, sector); 178 if (ret) 179 return ret; 180 if (copy < n) { 181 sector += copy >> SECTOR_SHIFT; 182 ret = brd_insert_page(brd, sector); 183 } 184 return ret; 185} 186 187/* 188 * Copy n bytes from src to the brd starting at sector. Does not sleep. 189 */ 190static void copy_to_brd(struct brd_device *brd, const void *src, 191 sector_t sector, size_t n) 192{ 193 struct page *page; 194 void *dst; 195 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 196 size_t copy; 197 198 copy = min_t(size_t, n, PAGE_SIZE - offset); 199 page = brd_lookup_page(brd, sector); 200 BUG_ON(!page); 201 202 dst = kmap_atomic(page); 203 memcpy(dst + offset, src, copy); 204 kunmap_atomic(dst); 205 206 if (copy < n) { 207 src += copy; 208 sector += copy >> SECTOR_SHIFT; 209 copy = n - copy; 210 page = brd_lookup_page(brd, sector); 211 BUG_ON(!page); 212 213 dst = kmap_atomic(page); 214 memcpy(dst, src, copy); 215 kunmap_atomic(dst); 216 } 217} 218 219/* 220 * Copy n bytes to dst from the brd starting at sector. Does not sleep. 221 */ 222static void copy_from_brd(void *dst, struct brd_device *brd, 223 sector_t sector, size_t n) 224{ 225 struct page *page; 226 void *src; 227 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; 228 size_t copy; 229 230 copy = min_t(size_t, n, PAGE_SIZE - offset); 231 page = brd_lookup_page(brd, sector); 232 if (page) { 233 src = kmap_atomic(page); 234 memcpy(dst, src + offset, copy); 235 kunmap_atomic(src); 236 } else 237 memset(dst, 0, copy); 238 239 if (copy < n) { 240 dst += copy; 241 sector += copy >> SECTOR_SHIFT; 242 copy = n - copy; 243 page = brd_lookup_page(brd, sector); 244 if (page) { 245 src = kmap_atomic(page); 246 memcpy(dst, src, copy); 247 kunmap_atomic(src); 248 } else 249 memset(dst, 0, copy); 250 } 251} 252 253/* 254 * Process a single bvec of a bio. 255 */ 256static int brd_do_bvec(struct brd_device *brd, struct page *page, 257 unsigned int len, unsigned int off, unsigned int op, 258 sector_t sector) 259{ 260 void *mem; 261 int err = 0; 262 263 if (op_is_write(op)) { 264 err = copy_to_brd_setup(brd, sector, len); 265 if (err) 266 goto out; 267 } 268 269 mem = kmap_atomic(page); 270 if (!op_is_write(op)) { 271 copy_from_brd(mem + off, brd, sector, len); 272 flush_dcache_page(page); 273 } else { 274 flush_dcache_page(page); 275 copy_to_brd(brd, mem + off, sector, len); 276 } 277 kunmap_atomic(mem); 278 279out: 280 return err; 281} 282 283static blk_qc_t brd_submit_bio(struct bio *bio) 284{ 285 struct brd_device *brd = bio->bi_disk->private_data; 286 struct bio_vec bvec; 287 sector_t sector; 288 struct bvec_iter iter; 289 290 sector = bio->bi_iter.bi_sector; 291 if (bio_end_sector(bio) > get_capacity(bio->bi_disk)) 292 goto io_error; 293 294 bio_for_each_segment(bvec, bio, iter) { 295 unsigned int len = bvec.bv_len; 296 int err; 297 298 /* Don't support un-aligned buffer */ 299 WARN_ON_ONCE((bvec.bv_offset & (SECTOR_SIZE - 1)) || 300 (len & (SECTOR_SIZE - 1))); 301 302 err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset, 303 bio_op(bio), sector); 304 if (err) 305 goto io_error; 306 sector += len >> SECTOR_SHIFT; 307 } 308 309 bio_endio(bio); 310 return BLK_QC_T_NONE; 311io_error: 312 bio_io_error(bio); 313 return BLK_QC_T_NONE; 314} 315 316static int brd_rw_page(struct block_device *bdev, sector_t sector, 317 struct page *page, unsigned int op) 318{ 319 struct brd_device *brd = bdev->bd_disk->private_data; 320 int err; 321 322 if (PageTransHuge(page)) 323 return -ENOTSUPP; 324 err = brd_do_bvec(brd, page, PAGE_SIZE, 0, op, sector); 325 page_endio(page, op_is_write(op), err); 326 return err; 327} 328 329static const struct block_device_operations brd_fops = { 330 .owner = THIS_MODULE, 331 .submit_bio = brd_submit_bio, 332 .rw_page = brd_rw_page, 333}; 334 335/* 336 * And now the modules code and kernel interface. 337 */ 338static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT; 339module_param(rd_nr, int, 0444); 340MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices"); 341 342unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE; 343module_param(rd_size, ulong, 0444); 344MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes."); 345 346static int max_part = 1; 347module_param(max_part, int, 0444); 348MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices"); 349 350MODULE_LICENSE("GPL"); 351MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR); 352MODULE_ALIAS("rd"); 353 354#ifndef MODULE 355/* Legacy boot options - nonmodular */ 356static int __init ramdisk_size(char *str) 357{ 358 rd_size = simple_strtol(str, NULL, 0); 359 return 1; 360} 361__setup("ramdisk_size=", ramdisk_size); 362#endif 363 364/* 365 * The device scheme is derived from loop.c. Keep them in synch where possible 366 * (should share code eventually). 367 */ 368static LIST_HEAD(brd_devices); 369static DEFINE_MUTEX(brd_devices_mutex); 370 371static struct brd_device *brd_alloc(int i) 372{ 373 struct brd_device *brd; 374 struct gendisk *disk; 375 376 brd = kzalloc(sizeof(*brd), GFP_KERNEL); 377 if (!brd) 378 goto out; 379 brd->brd_number = i; 380 spin_lock_init(&brd->brd_lock); 381 INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC); 382 383 brd->brd_queue = blk_alloc_queue(NUMA_NO_NODE); 384 if (!brd->brd_queue) 385 goto out_free_dev; 386 387 /* This is so fdisk will align partitions on 4k, because of 388 * direct_access API needing 4k alignment, returning a PFN 389 * (This is only a problem on very small devices <= 4M, 390 * otherwise fdisk will align on 1M. Regardless this call 391 * is harmless) 392 */ 393 blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE); 394 disk = brd->brd_disk = alloc_disk(max_part); 395 if (!disk) 396 goto out_free_queue; 397 disk->major = RAMDISK_MAJOR; 398 disk->first_minor = i * max_part; 399 disk->fops = &brd_fops; 400 disk->private_data = brd; 401 disk->flags = GENHD_FL_EXT_DEVT; 402 sprintf(disk->disk_name, "ram%d", i); 403 set_capacity(disk, rd_size * 2); 404 405 /* Tell the block layer that this is not a rotational device */ 406 blk_queue_flag_set(QUEUE_FLAG_NONROT, brd->brd_queue); 407 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, brd->brd_queue); 408 409 return brd; 410 411out_free_queue: 412 blk_cleanup_queue(brd->brd_queue); 413out_free_dev: 414 kfree(brd); 415out: 416 return NULL; 417} 418 419static void brd_free(struct brd_device *brd) 420{ 421 put_disk(brd->brd_disk); 422 blk_cleanup_queue(brd->brd_queue); 423 brd_free_pages(brd); 424 kfree(brd); 425} 426 427static struct brd_device *brd_init_one(int i, bool *new) 428{ 429 struct brd_device *brd; 430 431 *new = false; 432 list_for_each_entry(brd, &brd_devices, brd_list) { 433 if (brd->brd_number == i) 434 goto out; 435 } 436 437 brd = brd_alloc(i); 438 if (brd) { 439 brd->brd_disk->queue = brd->brd_queue; 440 add_disk(brd->brd_disk); 441 list_add_tail(&brd->brd_list, &brd_devices); 442 } 443 *new = true; 444out: 445 return brd; 446} 447 448static void brd_del_one(struct brd_device *brd) 449{ 450 list_del(&brd->brd_list); 451 del_gendisk(brd->brd_disk); 452 brd_free(brd); 453} 454 455static struct kobject *brd_probe(dev_t dev, int *part, void *data) 456{ 457 struct brd_device *brd; 458 struct kobject *kobj; 459 bool new; 460 461 mutex_lock(&brd_devices_mutex); 462 brd = brd_init_one(MINOR(dev) / max_part, &new); 463 kobj = brd ? get_disk_and_module(brd->brd_disk) : NULL; 464 mutex_unlock(&brd_devices_mutex); 465 466 if (new) 467 *part = 0; 468 469 return kobj; 470} 471 472static inline void brd_check_and_reset_par(void) 473{ 474 if (unlikely(!max_part)) 475 max_part = 1; 476 477 /* 478 * make sure 'max_part' can be divided exactly by (1U << MINORBITS), 479 * otherwise, it is possiable to get same dev_t when adding partitions. 480 */ 481 if ((1U << MINORBITS) % max_part != 0) 482 max_part = 1UL << fls(max_part); 483 484 if (max_part > DISK_MAX_PARTS) { 485 pr_info("brd: max_part can't be larger than %d, reset max_part = %d.\n", 486 DISK_MAX_PARTS, DISK_MAX_PARTS); 487 max_part = DISK_MAX_PARTS; 488 } 489} 490 491static int __init brd_init(void) 492{ 493 struct brd_device *brd, *next; 494 int i; 495 496 /* 497 * brd module now has a feature to instantiate underlying device 498 * structure on-demand, provided that there is an access dev node. 499 * 500 * (1) if rd_nr is specified, create that many upfront. else 501 * it defaults to CONFIG_BLK_DEV_RAM_COUNT 502 * (2) User can further extend brd devices by create dev node themselves 503 * and have kernel automatically instantiate actual device 504 * on-demand. Example: 505 * mknod /path/devnod_name b 1 X # 1 is the rd major 506 * fdisk -l /path/devnod_name 507 * If (X / max_part) was not already created it will be created 508 * dynamically. 509 */ 510 511 if (register_blkdev(RAMDISK_MAJOR, "ramdisk")) 512 return -EIO; 513 514 brd_check_and_reset_par(); 515 516 for (i = 0; i < rd_nr; i++) { 517 brd = brd_alloc(i); 518 if (!brd) 519 goto out_free; 520 list_add_tail(&brd->brd_list, &brd_devices); 521 } 522 523 /* point of no return */ 524 525 list_for_each_entry(brd, &brd_devices, brd_list) { 526 /* 527 * associate with queue just before adding disk for 528 * avoiding to mess up failure path 529 */ 530 brd->brd_disk->queue = brd->brd_queue; 531 add_disk(brd->brd_disk); 532 } 533 534 blk_register_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS, 535 THIS_MODULE, brd_probe, NULL, NULL); 536 537 pr_info("brd: module loaded\n"); 538 return 0; 539 540out_free: 541 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) { 542 list_del(&brd->brd_list); 543 brd_free(brd); 544 } 545 unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); 546 547 pr_info("brd: module NOT loaded !!!\n"); 548 return -ENOMEM; 549} 550 551static void __exit brd_exit(void) 552{ 553 struct brd_device *brd, *next; 554 555 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) 556 brd_del_one(brd); 557 558 blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS); 559 unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); 560 561 pr_info("brd: module unloaded\n"); 562} 563 564module_init(brd_init); 565module_exit(brd_exit); 566 567