1// SPDX-License-Identifier: GPL-2.0
2//
3// Register map access API
4//
5// Copyright 2011 Wolfson Microelectronics plc
6//
7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9#include <linux/device.h>
10#include <linux/slab.h>
11#include <linux/export.h>
12#include <linux/mutex.h>
13#include <linux/err.h>
14#include <linux/property.h>
15#include <linux/rbtree.h>
16#include <linux/sched.h>
17#include <linux/delay.h>
18#include <linux/log2.h>
19#include <linux/hwspinlock.h>
20#include <asm/unaligned.h>
21
22#define CREATE_TRACE_POINTS
23#include "trace.h"
24
25#include "internal.h"
26
27/*
28 * Sometimes for failures during very early init the trace
29 * infrastructure isn't available early enough to be used.  For this
30 * sort of problem defining LOG_DEVICE will add printks for basic
31 * register I/O on a specific device.
32 */
33#undef LOG_DEVICE
34
35#ifdef LOG_DEVICE
36static inline bool regmap_should_log(struct regmap *map)
37{
38	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39}
40#else
41static inline bool regmap_should_log(struct regmap *map) { return false; }
42#endif
43
44
45static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46			       unsigned int mask, unsigned int val,
47			       bool *change, bool force_write);
48
49static int _regmap_bus_reg_read(void *context, unsigned int reg,
50				unsigned int *val);
51static int _regmap_bus_read(void *context, unsigned int reg,
52			    unsigned int *val);
53static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54				       unsigned int val);
55static int _regmap_bus_reg_write(void *context, unsigned int reg,
56				 unsigned int val);
57static int _regmap_bus_raw_write(void *context, unsigned int reg,
58				 unsigned int val);
59
60bool regmap_reg_in_ranges(unsigned int reg,
61			  const struct regmap_range *ranges,
62			  unsigned int nranges)
63{
64	const struct regmap_range *r;
65	int i;
66
67	for (i = 0, r = ranges; i < nranges; i++, r++)
68		if (regmap_reg_in_range(reg, r))
69			return true;
70	return false;
71}
72EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73
74bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75			      const struct regmap_access_table *table)
76{
77	/* Check "no ranges" first */
78	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79		return false;
80
81	/* In case zero "yes ranges" are supplied, any reg is OK */
82	if (!table->n_yes_ranges)
83		return true;
84
85	return regmap_reg_in_ranges(reg, table->yes_ranges,
86				    table->n_yes_ranges);
87}
88EXPORT_SYMBOL_GPL(regmap_check_range_table);
89
90bool regmap_writeable(struct regmap *map, unsigned int reg)
91{
92	if (map->max_register && reg > map->max_register)
93		return false;
94
95	if (map->writeable_reg)
96		return map->writeable_reg(map->dev, reg);
97
98	if (map->wr_table)
99		return regmap_check_range_table(map, reg, map->wr_table);
100
101	return true;
102}
103
104bool regmap_cached(struct regmap *map, unsigned int reg)
105{
106	int ret;
107	unsigned int val;
108
109	if (map->cache_type == REGCACHE_NONE)
110		return false;
111
112	if (!map->cache_ops)
113		return false;
114
115	if (map->max_register && reg > map->max_register)
116		return false;
117
118	map->lock(map->lock_arg);
119	ret = regcache_read(map, reg, &val);
120	map->unlock(map->lock_arg);
121	if (ret)
122		return false;
123
124	return true;
125}
126
127bool regmap_readable(struct regmap *map, unsigned int reg)
128{
129	if (!map->reg_read)
130		return false;
131
132	if (map->max_register && reg > map->max_register)
133		return false;
134
135	if (map->format.format_write)
136		return false;
137
138	if (map->readable_reg)
139		return map->readable_reg(map->dev, reg);
140
141	if (map->rd_table)
142		return regmap_check_range_table(map, reg, map->rd_table);
143
144	return true;
145}
146
147bool regmap_volatile(struct regmap *map, unsigned int reg)
148{
149	if (!map->format.format_write && !regmap_readable(map, reg))
150		return false;
151
152	if (map->volatile_reg)
153		return map->volatile_reg(map->dev, reg);
154
155	if (map->volatile_table)
156		return regmap_check_range_table(map, reg, map->volatile_table);
157
158	if (map->cache_ops)
159		return false;
160	else
161		return true;
162}
163
164bool regmap_precious(struct regmap *map, unsigned int reg)
165{
166	if (!regmap_readable(map, reg))
167		return false;
168
169	if (map->precious_reg)
170		return map->precious_reg(map->dev, reg);
171
172	if (map->precious_table)
173		return regmap_check_range_table(map, reg, map->precious_table);
174
175	return false;
176}
177
178bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179{
180	if (map->writeable_noinc_reg)
181		return map->writeable_noinc_reg(map->dev, reg);
182
183	if (map->wr_noinc_table)
184		return regmap_check_range_table(map, reg, map->wr_noinc_table);
185
186	return true;
187}
188
189bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190{
191	if (map->readable_noinc_reg)
192		return map->readable_noinc_reg(map->dev, reg);
193
194	if (map->rd_noinc_table)
195		return regmap_check_range_table(map, reg, map->rd_noinc_table);
196
197	return true;
198}
199
200static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201	size_t num)
202{
203	unsigned int i;
204
205	for (i = 0; i < num; i++)
206		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207			return false;
208
209	return true;
210}
211
212static void regmap_format_12_20_write(struct regmap *map,
213				     unsigned int reg, unsigned int val)
214{
215	u8 *out = map->work_buf;
216
217	out[0] = reg >> 4;
218	out[1] = (reg << 4) | (val >> 16);
219	out[2] = val >> 8;
220	out[3] = val;
221}
222
223
224static void regmap_format_2_6_write(struct regmap *map,
225				     unsigned int reg, unsigned int val)
226{
227	u8 *out = map->work_buf;
228
229	*out = (reg << 6) | val;
230}
231
232static void regmap_format_4_12_write(struct regmap *map,
233				     unsigned int reg, unsigned int val)
234{
235	__be16 *out = map->work_buf;
236	*out = cpu_to_be16((reg << 12) | val);
237}
238
239static void regmap_format_7_9_write(struct regmap *map,
240				    unsigned int reg, unsigned int val)
241{
242	__be16 *out = map->work_buf;
243	*out = cpu_to_be16((reg << 9) | val);
244}
245
246static void regmap_format_10_14_write(struct regmap *map,
247				    unsigned int reg, unsigned int val)
248{
249	u8 *out = map->work_buf;
250
251	out[2] = val;
252	out[1] = (val >> 8) | (reg << 6);
253	out[0] = reg >> 2;
254}
255
256static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
257{
258	u8 *b = buf;
259
260	b[0] = val << shift;
261}
262
263static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
264{
265	put_unaligned_be16(val << shift, buf);
266}
267
268static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
269{
270	put_unaligned_le16(val << shift, buf);
271}
272
273static void regmap_format_16_native(void *buf, unsigned int val,
274				    unsigned int shift)
275{
276	u16 v = val << shift;
277
278	memcpy(buf, &v, sizeof(v));
279}
280
281static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
282{
283	u8 *b = buf;
284
285	val <<= shift;
286
287	b[0] = val >> 16;
288	b[1] = val >> 8;
289	b[2] = val;
290}
291
292static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
293{
294	put_unaligned_be32(val << shift, buf);
295}
296
297static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
298{
299	put_unaligned_le32(val << shift, buf);
300}
301
302static void regmap_format_32_native(void *buf, unsigned int val,
303				    unsigned int shift)
304{
305	u32 v = val << shift;
306
307	memcpy(buf, &v, sizeof(v));
308}
309
310#ifdef CONFIG_64BIT
311static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
312{
313	put_unaligned_be64((u64) val << shift, buf);
314}
315
316static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
317{
318	put_unaligned_le64((u64) val << shift, buf);
319}
320
321static void regmap_format_64_native(void *buf, unsigned int val,
322				    unsigned int shift)
323{
324	u64 v = (u64) val << shift;
325
326	memcpy(buf, &v, sizeof(v));
327}
328#endif
329
330static void regmap_parse_inplace_noop(void *buf)
331{
332}
333
334static unsigned int regmap_parse_8(const void *buf)
335{
336	const u8 *b = buf;
337
338	return b[0];
339}
340
341static unsigned int regmap_parse_16_be(const void *buf)
342{
343	return get_unaligned_be16(buf);
344}
345
346static unsigned int regmap_parse_16_le(const void *buf)
347{
348	return get_unaligned_le16(buf);
349}
350
351static void regmap_parse_16_be_inplace(void *buf)
352{
353	u16 v = get_unaligned_be16(buf);
354
355	memcpy(buf, &v, sizeof(v));
356}
357
358static void regmap_parse_16_le_inplace(void *buf)
359{
360	u16 v = get_unaligned_le16(buf);
361
362	memcpy(buf, &v, sizeof(v));
363}
364
365static unsigned int regmap_parse_16_native(const void *buf)
366{
367	u16 v;
368
369	memcpy(&v, buf, sizeof(v));
370	return v;
371}
372
373static unsigned int regmap_parse_24(const void *buf)
374{
375	const u8 *b = buf;
376	unsigned int ret = b[2];
377	ret |= ((unsigned int)b[1]) << 8;
378	ret |= ((unsigned int)b[0]) << 16;
379
380	return ret;
381}
382
383static unsigned int regmap_parse_32_be(const void *buf)
384{
385	return get_unaligned_be32(buf);
386}
387
388static unsigned int regmap_parse_32_le(const void *buf)
389{
390	return get_unaligned_le32(buf);
391}
392
393static void regmap_parse_32_be_inplace(void *buf)
394{
395	u32 v = get_unaligned_be32(buf);
396
397	memcpy(buf, &v, sizeof(v));
398}
399
400static void regmap_parse_32_le_inplace(void *buf)
401{
402	u32 v = get_unaligned_le32(buf);
403
404	memcpy(buf, &v, sizeof(v));
405}
406
407static unsigned int regmap_parse_32_native(const void *buf)
408{
409	u32 v;
410
411	memcpy(&v, buf, sizeof(v));
412	return v;
413}
414
415#ifdef CONFIG_64BIT
416static unsigned int regmap_parse_64_be(const void *buf)
417{
418	return get_unaligned_be64(buf);
419}
420
421static unsigned int regmap_parse_64_le(const void *buf)
422{
423	return get_unaligned_le64(buf);
424}
425
426static void regmap_parse_64_be_inplace(void *buf)
427{
428	u64 v =  get_unaligned_be64(buf);
429
430	memcpy(buf, &v, sizeof(v));
431}
432
433static void regmap_parse_64_le_inplace(void *buf)
434{
435	u64 v = get_unaligned_le64(buf);
436
437	memcpy(buf, &v, sizeof(v));
438}
439
440static unsigned int regmap_parse_64_native(const void *buf)
441{
442	u64 v;
443
444	memcpy(&v, buf, sizeof(v));
445	return v;
446}
447#endif
448
449static void regmap_lock_hwlock(void *__map)
450{
451	struct regmap *map = __map;
452
453	hwspin_lock_timeout(map->hwlock, UINT_MAX);
454}
455
456static void regmap_lock_hwlock_irq(void *__map)
457{
458	struct regmap *map = __map;
459
460	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
461}
462
463static void regmap_lock_hwlock_irqsave(void *__map)
464{
465	struct regmap *map = __map;
466
467	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
468				    &map->spinlock_flags);
469}
470
471static void regmap_unlock_hwlock(void *__map)
472{
473	struct regmap *map = __map;
474
475	hwspin_unlock(map->hwlock);
476}
477
478static void regmap_unlock_hwlock_irq(void *__map)
479{
480	struct regmap *map = __map;
481
482	hwspin_unlock_irq(map->hwlock);
483}
484
485static void regmap_unlock_hwlock_irqrestore(void *__map)
486{
487	struct regmap *map = __map;
488
489	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
490}
491
492static void regmap_lock_unlock_none(void *__map)
493{
494
495}
496
497static void regmap_lock_mutex(void *__map)
498{
499	struct regmap *map = __map;
500	mutex_lock(&map->mutex);
501}
502
503static void regmap_unlock_mutex(void *__map)
504{
505	struct regmap *map = __map;
506	mutex_unlock(&map->mutex);
507}
508
509static void regmap_lock_spinlock(void *__map)
510__acquires(&map->spinlock)
511{
512	struct regmap *map = __map;
513	unsigned long flags;
514
515	spin_lock_irqsave(&map->spinlock, flags);
516	map->spinlock_flags = flags;
517}
518
519static void regmap_unlock_spinlock(void *__map)
520__releases(&map->spinlock)
521{
522	struct regmap *map = __map;
523	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
524}
525
526static void dev_get_regmap_release(struct device *dev, void *res)
527{
528	/*
529	 * We don't actually have anything to do here; the goal here
530	 * is not to manage the regmap but to provide a simple way to
531	 * get the regmap back given a struct device.
532	 */
533}
534
535static bool _regmap_range_add(struct regmap *map,
536			      struct regmap_range_node *data)
537{
538	struct rb_root *root = &map->range_tree;
539	struct rb_node **new = &(root->rb_node), *parent = NULL;
540
541	while (*new) {
542		struct regmap_range_node *this =
543			rb_entry(*new, struct regmap_range_node, node);
544
545		parent = *new;
546		if (data->range_max < this->range_min)
547			new = &((*new)->rb_left);
548		else if (data->range_min > this->range_max)
549			new = &((*new)->rb_right);
550		else
551			return false;
552	}
553
554	rb_link_node(&data->node, parent, new);
555	rb_insert_color(&data->node, root);
556
557	return true;
558}
559
560static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
561						      unsigned int reg)
562{
563	struct rb_node *node = map->range_tree.rb_node;
564
565	while (node) {
566		struct regmap_range_node *this =
567			rb_entry(node, struct regmap_range_node, node);
568
569		if (reg < this->range_min)
570			node = node->rb_left;
571		else if (reg > this->range_max)
572			node = node->rb_right;
573		else
574			return this;
575	}
576
577	return NULL;
578}
579
580static void regmap_range_exit(struct regmap *map)
581{
582	struct rb_node *next;
583	struct regmap_range_node *range_node;
584
585	next = rb_first(&map->range_tree);
586	while (next) {
587		range_node = rb_entry(next, struct regmap_range_node, node);
588		next = rb_next(&range_node->node);
589		rb_erase(&range_node->node, &map->range_tree);
590		kfree(range_node);
591	}
592
593	kfree(map->selector_work_buf);
594}
595
596static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
597{
598	if (config->name) {
599		const char *name = kstrdup_const(config->name, GFP_KERNEL);
600
601		if (!name)
602			return -ENOMEM;
603
604		kfree_const(map->name);
605		map->name = name;
606	}
607
608	return 0;
609}
610
611int regmap_attach_dev(struct device *dev, struct regmap *map,
612		      const struct regmap_config *config)
613{
614	struct regmap **m;
615	int ret;
616
617	map->dev = dev;
618
619	ret = regmap_set_name(map, config);
620	if (ret)
621		return ret;
622
623	regmap_debugfs_exit(map);
624	regmap_debugfs_init(map);
625
626	/* Add a devres resource for dev_get_regmap() */
627	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
628	if (!m) {
629		regmap_debugfs_exit(map);
630		return -ENOMEM;
631	}
632	*m = map;
633	devres_add(dev, m);
634
635	return 0;
636}
637EXPORT_SYMBOL_GPL(regmap_attach_dev);
638
639static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
640					const struct regmap_config *config)
641{
642	enum regmap_endian endian;
643
644	/* Retrieve the endianness specification from the regmap config */
645	endian = config->reg_format_endian;
646
647	/* If the regmap config specified a non-default value, use that */
648	if (endian != REGMAP_ENDIAN_DEFAULT)
649		return endian;
650
651	/* Retrieve the endianness specification from the bus config */
652	if (bus && bus->reg_format_endian_default)
653		endian = bus->reg_format_endian_default;
654
655	/* If the bus specified a non-default value, use that */
656	if (endian != REGMAP_ENDIAN_DEFAULT)
657		return endian;
658
659	/* Use this if no other value was found */
660	return REGMAP_ENDIAN_BIG;
661}
662
663enum regmap_endian regmap_get_val_endian(struct device *dev,
664					 const struct regmap_bus *bus,
665					 const struct regmap_config *config)
666{
667	struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
668	enum regmap_endian endian;
669
670	/* Retrieve the endianness specification from the regmap config */
671	endian = config->val_format_endian;
672
673	/* If the regmap config specified a non-default value, use that */
674	if (endian != REGMAP_ENDIAN_DEFAULT)
675		return endian;
676
677	/* If the firmware node exist try to get endianness from it */
678	if (fwnode_property_read_bool(fwnode, "big-endian"))
679		endian = REGMAP_ENDIAN_BIG;
680	else if (fwnode_property_read_bool(fwnode, "little-endian"))
681		endian = REGMAP_ENDIAN_LITTLE;
682	else if (fwnode_property_read_bool(fwnode, "native-endian"))
683		endian = REGMAP_ENDIAN_NATIVE;
684
685	/* If the endianness was specified in fwnode, use that */
686	if (endian != REGMAP_ENDIAN_DEFAULT)
687		return endian;
688
689	/* Retrieve the endianness specification from the bus config */
690	if (bus && bus->val_format_endian_default)
691		endian = bus->val_format_endian_default;
692
693	/* If the bus specified a non-default value, use that */
694	if (endian != REGMAP_ENDIAN_DEFAULT)
695		return endian;
696
697	/* Use this if no other value was found */
698	return REGMAP_ENDIAN_BIG;
699}
700EXPORT_SYMBOL_GPL(regmap_get_val_endian);
701
702struct regmap *__regmap_init(struct device *dev,
703			     const struct regmap_bus *bus,
704			     void *bus_context,
705			     const struct regmap_config *config,
706			     struct lock_class_key *lock_key,
707			     const char *lock_name)
708{
709	struct regmap *map;
710	int ret = -EINVAL;
711	enum regmap_endian reg_endian, val_endian;
712	int i, j;
713
714	if (!config)
715		goto err;
716
717	map = kzalloc(sizeof(*map), GFP_KERNEL);
718	if (map == NULL) {
719		ret = -ENOMEM;
720		goto err;
721	}
722
723	ret = regmap_set_name(map, config);
724	if (ret)
725		goto err_map;
726
727	ret = -EINVAL; /* Later error paths rely on this */
728
729	if (config->disable_locking) {
730		map->lock = map->unlock = regmap_lock_unlock_none;
731		map->can_sleep = config->can_sleep;
732		regmap_debugfs_disable(map);
733	} else if (config->lock && config->unlock) {
734		map->lock = config->lock;
735		map->unlock = config->unlock;
736		map->lock_arg = config->lock_arg;
737		map->can_sleep = config->can_sleep;
738	} else if (config->use_hwlock) {
739		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
740		if (!map->hwlock) {
741			ret = -ENXIO;
742			goto err_name;
743		}
744
745		switch (config->hwlock_mode) {
746		case HWLOCK_IRQSTATE:
747			map->lock = regmap_lock_hwlock_irqsave;
748			map->unlock = regmap_unlock_hwlock_irqrestore;
749			break;
750		case HWLOCK_IRQ:
751			map->lock = regmap_lock_hwlock_irq;
752			map->unlock = regmap_unlock_hwlock_irq;
753			break;
754		default:
755			map->lock = regmap_lock_hwlock;
756			map->unlock = regmap_unlock_hwlock;
757			break;
758		}
759
760		map->lock_arg = map;
761	} else {
762		if ((bus && bus->fast_io) ||
763		    config->fast_io) {
764			spin_lock_init(&map->spinlock);
765			map->lock = regmap_lock_spinlock;
766			map->unlock = regmap_unlock_spinlock;
767			lockdep_set_class_and_name(&map->spinlock,
768						   lock_key, lock_name);
769		} else {
770			mutex_init(&map->mutex);
771			map->lock = regmap_lock_mutex;
772			map->unlock = regmap_unlock_mutex;
773			map->can_sleep = true;
774			lockdep_set_class_and_name(&map->mutex,
775						   lock_key, lock_name);
776		}
777		map->lock_arg = map;
778	}
779
780	/*
781	 * When we write in fast-paths with regmap_bulk_write() don't allocate
782	 * scratch buffers with sleeping allocations.
783	 */
784	if ((bus && bus->fast_io) || config->fast_io)
785		map->alloc_flags = GFP_ATOMIC;
786	else
787		map->alloc_flags = GFP_KERNEL;
788
789	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
790	map->format.pad_bytes = config->pad_bits / 8;
791	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
792	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
793			config->val_bits + config->pad_bits, 8);
794	map->reg_shift = config->pad_bits % 8;
795	if (config->reg_stride)
796		map->reg_stride = config->reg_stride;
797	else
798		map->reg_stride = 1;
799	if (is_power_of_2(map->reg_stride))
800		map->reg_stride_order = ilog2(map->reg_stride);
801	else
802		map->reg_stride_order = -1;
803	map->use_single_read = config->use_single_read || !bus || !bus->read;
804	map->use_single_write = config->use_single_write || !bus || !bus->write;
805	map->can_multi_write = config->can_multi_write && bus && bus->write;
806	if (bus) {
807		map->max_raw_read = bus->max_raw_read;
808		map->max_raw_write = bus->max_raw_write;
809	}
810	map->dev = dev;
811	map->bus = bus;
812	map->bus_context = bus_context;
813	map->max_register = config->max_register;
814	map->wr_table = config->wr_table;
815	map->rd_table = config->rd_table;
816	map->volatile_table = config->volatile_table;
817	map->precious_table = config->precious_table;
818	map->wr_noinc_table = config->wr_noinc_table;
819	map->rd_noinc_table = config->rd_noinc_table;
820	map->writeable_reg = config->writeable_reg;
821	map->readable_reg = config->readable_reg;
822	map->volatile_reg = config->volatile_reg;
823	map->precious_reg = config->precious_reg;
824	map->writeable_noinc_reg = config->writeable_noinc_reg;
825	map->readable_noinc_reg = config->readable_noinc_reg;
826	map->cache_type = config->cache_type;
827
828	spin_lock_init(&map->async_lock);
829	INIT_LIST_HEAD(&map->async_list);
830	INIT_LIST_HEAD(&map->async_free);
831	init_waitqueue_head(&map->async_waitq);
832
833	if (config->read_flag_mask ||
834	    config->write_flag_mask ||
835	    config->zero_flag_mask) {
836		map->read_flag_mask = config->read_flag_mask;
837		map->write_flag_mask = config->write_flag_mask;
838	} else if (bus) {
839		map->read_flag_mask = bus->read_flag_mask;
840	}
841
842	if (!bus) {
843		map->reg_read  = config->reg_read;
844		map->reg_write = config->reg_write;
845
846		map->defer_caching = false;
847		goto skip_format_initialization;
848	} else if (!bus->read || !bus->write) {
849		map->reg_read = _regmap_bus_reg_read;
850		map->reg_write = _regmap_bus_reg_write;
851		map->reg_update_bits = bus->reg_update_bits;
852
853		map->defer_caching = false;
854		goto skip_format_initialization;
855	} else {
856		map->reg_read  = _regmap_bus_read;
857		map->reg_update_bits = bus->reg_update_bits;
858	}
859
860	reg_endian = regmap_get_reg_endian(bus, config);
861	val_endian = regmap_get_val_endian(dev, bus, config);
862
863	switch (config->reg_bits + map->reg_shift) {
864	case 2:
865		switch (config->val_bits) {
866		case 6:
867			map->format.format_write = regmap_format_2_6_write;
868			break;
869		default:
870			goto err_hwlock;
871		}
872		break;
873
874	case 4:
875		switch (config->val_bits) {
876		case 12:
877			map->format.format_write = regmap_format_4_12_write;
878			break;
879		default:
880			goto err_hwlock;
881		}
882		break;
883
884	case 7:
885		switch (config->val_bits) {
886		case 9:
887			map->format.format_write = regmap_format_7_9_write;
888			break;
889		default:
890			goto err_hwlock;
891		}
892		break;
893
894	case 10:
895		switch (config->val_bits) {
896		case 14:
897			map->format.format_write = regmap_format_10_14_write;
898			break;
899		default:
900			goto err_hwlock;
901		}
902		break;
903
904	case 12:
905		switch (config->val_bits) {
906		case 20:
907			map->format.format_write = regmap_format_12_20_write;
908			break;
909		default:
910			goto err_hwlock;
911		}
912		break;
913
914	case 8:
915		map->format.format_reg = regmap_format_8;
916		break;
917
918	case 16:
919		switch (reg_endian) {
920		case REGMAP_ENDIAN_BIG:
921			map->format.format_reg = regmap_format_16_be;
922			break;
923		case REGMAP_ENDIAN_LITTLE:
924			map->format.format_reg = regmap_format_16_le;
925			break;
926		case REGMAP_ENDIAN_NATIVE:
927			map->format.format_reg = regmap_format_16_native;
928			break;
929		default:
930			goto err_hwlock;
931		}
932		break;
933
934	case 24:
935		if (reg_endian != REGMAP_ENDIAN_BIG)
936			goto err_hwlock;
937		map->format.format_reg = regmap_format_24;
938		break;
939
940	case 32:
941		switch (reg_endian) {
942		case REGMAP_ENDIAN_BIG:
943			map->format.format_reg = regmap_format_32_be;
944			break;
945		case REGMAP_ENDIAN_LITTLE:
946			map->format.format_reg = regmap_format_32_le;
947			break;
948		case REGMAP_ENDIAN_NATIVE:
949			map->format.format_reg = regmap_format_32_native;
950			break;
951		default:
952			goto err_hwlock;
953		}
954		break;
955
956#ifdef CONFIG_64BIT
957	case 64:
958		switch (reg_endian) {
959		case REGMAP_ENDIAN_BIG:
960			map->format.format_reg = regmap_format_64_be;
961			break;
962		case REGMAP_ENDIAN_LITTLE:
963			map->format.format_reg = regmap_format_64_le;
964			break;
965		case REGMAP_ENDIAN_NATIVE:
966			map->format.format_reg = regmap_format_64_native;
967			break;
968		default:
969			goto err_hwlock;
970		}
971		break;
972#endif
973
974	default:
975		goto err_hwlock;
976	}
977
978	if (val_endian == REGMAP_ENDIAN_NATIVE)
979		map->format.parse_inplace = regmap_parse_inplace_noop;
980
981	switch (config->val_bits) {
982	case 8:
983		map->format.format_val = regmap_format_8;
984		map->format.parse_val = regmap_parse_8;
985		map->format.parse_inplace = regmap_parse_inplace_noop;
986		break;
987	case 16:
988		switch (val_endian) {
989		case REGMAP_ENDIAN_BIG:
990			map->format.format_val = regmap_format_16_be;
991			map->format.parse_val = regmap_parse_16_be;
992			map->format.parse_inplace = regmap_parse_16_be_inplace;
993			break;
994		case REGMAP_ENDIAN_LITTLE:
995			map->format.format_val = regmap_format_16_le;
996			map->format.parse_val = regmap_parse_16_le;
997			map->format.parse_inplace = regmap_parse_16_le_inplace;
998			break;
999		case REGMAP_ENDIAN_NATIVE:
1000			map->format.format_val = regmap_format_16_native;
1001			map->format.parse_val = regmap_parse_16_native;
1002			break;
1003		default:
1004			goto err_hwlock;
1005		}
1006		break;
1007	case 24:
1008		if (val_endian != REGMAP_ENDIAN_BIG)
1009			goto err_hwlock;
1010		map->format.format_val = regmap_format_24;
1011		map->format.parse_val = regmap_parse_24;
1012		break;
1013	case 32:
1014		switch (val_endian) {
1015		case REGMAP_ENDIAN_BIG:
1016			map->format.format_val = regmap_format_32_be;
1017			map->format.parse_val = regmap_parse_32_be;
1018			map->format.parse_inplace = regmap_parse_32_be_inplace;
1019			break;
1020		case REGMAP_ENDIAN_LITTLE:
1021			map->format.format_val = regmap_format_32_le;
1022			map->format.parse_val = regmap_parse_32_le;
1023			map->format.parse_inplace = regmap_parse_32_le_inplace;
1024			break;
1025		case REGMAP_ENDIAN_NATIVE:
1026			map->format.format_val = regmap_format_32_native;
1027			map->format.parse_val = regmap_parse_32_native;
1028			break;
1029		default:
1030			goto err_hwlock;
1031		}
1032		break;
1033#ifdef CONFIG_64BIT
1034	case 64:
1035		switch (val_endian) {
1036		case REGMAP_ENDIAN_BIG:
1037			map->format.format_val = regmap_format_64_be;
1038			map->format.parse_val = regmap_parse_64_be;
1039			map->format.parse_inplace = regmap_parse_64_be_inplace;
1040			break;
1041		case REGMAP_ENDIAN_LITTLE:
1042			map->format.format_val = regmap_format_64_le;
1043			map->format.parse_val = regmap_parse_64_le;
1044			map->format.parse_inplace = regmap_parse_64_le_inplace;
1045			break;
1046		case REGMAP_ENDIAN_NATIVE:
1047			map->format.format_val = regmap_format_64_native;
1048			map->format.parse_val = regmap_parse_64_native;
1049			break;
1050		default:
1051			goto err_hwlock;
1052		}
1053		break;
1054#endif
1055	}
1056
1057	if (map->format.format_write) {
1058		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1059		    (val_endian != REGMAP_ENDIAN_BIG))
1060			goto err_hwlock;
1061		map->use_single_write = true;
1062	}
1063
1064	if (!map->format.format_write &&
1065	    !(map->format.format_reg && map->format.format_val))
1066		goto err_hwlock;
1067
1068	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1069	if (map->work_buf == NULL) {
1070		ret = -ENOMEM;
1071		goto err_hwlock;
1072	}
1073
1074	if (map->format.format_write) {
1075		map->defer_caching = false;
1076		map->reg_write = _regmap_bus_formatted_write;
1077	} else if (map->format.format_val) {
1078		map->defer_caching = true;
1079		map->reg_write = _regmap_bus_raw_write;
1080	}
1081
1082skip_format_initialization:
1083
1084	map->range_tree = RB_ROOT;
1085	for (i = 0; i < config->num_ranges; i++) {
1086		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1087		struct regmap_range_node *new;
1088
1089		/* Sanity check */
1090		if (range_cfg->range_max < range_cfg->range_min) {
1091			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1092				range_cfg->range_max, range_cfg->range_min);
1093			goto err_range;
1094		}
1095
1096		if (range_cfg->range_max > map->max_register) {
1097			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1098				range_cfg->range_max, map->max_register);
1099			goto err_range;
1100		}
1101
1102		if (range_cfg->selector_reg > map->max_register) {
1103			dev_err(map->dev,
1104				"Invalid range %d: selector out of map\n", i);
1105			goto err_range;
1106		}
1107
1108		if (range_cfg->window_len == 0) {
1109			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1110				i);
1111			goto err_range;
1112		}
1113
1114		/* Make sure, that this register range has no selector
1115		   or data window within its boundary */
1116		for (j = 0; j < config->num_ranges; j++) {
1117			unsigned sel_reg = config->ranges[j].selector_reg;
1118			unsigned win_min = config->ranges[j].window_start;
1119			unsigned win_max = win_min +
1120					   config->ranges[j].window_len - 1;
1121
1122			/* Allow data window inside its own virtual range */
1123			if (j == i)
1124				continue;
1125
1126			if (range_cfg->range_min <= sel_reg &&
1127			    sel_reg <= range_cfg->range_max) {
1128				dev_err(map->dev,
1129					"Range %d: selector for %d in window\n",
1130					i, j);
1131				goto err_range;
1132			}
1133
1134			if (!(win_max < range_cfg->range_min ||
1135			      win_min > range_cfg->range_max)) {
1136				dev_err(map->dev,
1137					"Range %d: window for %d in window\n",
1138					i, j);
1139				goto err_range;
1140			}
1141		}
1142
1143		new = kzalloc(sizeof(*new), GFP_KERNEL);
1144		if (new == NULL) {
1145			ret = -ENOMEM;
1146			goto err_range;
1147		}
1148
1149		new->map = map;
1150		new->name = range_cfg->name;
1151		new->range_min = range_cfg->range_min;
1152		new->range_max = range_cfg->range_max;
1153		new->selector_reg = range_cfg->selector_reg;
1154		new->selector_mask = range_cfg->selector_mask;
1155		new->selector_shift = range_cfg->selector_shift;
1156		new->window_start = range_cfg->window_start;
1157		new->window_len = range_cfg->window_len;
1158
1159		if (!_regmap_range_add(map, new)) {
1160			dev_err(map->dev, "Failed to add range %d\n", i);
1161			kfree(new);
1162			goto err_range;
1163		}
1164
1165		if (map->selector_work_buf == NULL) {
1166			map->selector_work_buf =
1167				kzalloc(map->format.buf_size, GFP_KERNEL);
1168			if (map->selector_work_buf == NULL) {
1169				ret = -ENOMEM;
1170				goto err_range;
1171			}
1172		}
1173	}
1174
1175	ret = regcache_init(map, config);
1176	if (ret != 0)
1177		goto err_range;
1178
1179	if (dev) {
1180		ret = regmap_attach_dev(dev, map, config);
1181		if (ret != 0)
1182			goto err_regcache;
1183	} else {
1184		regmap_debugfs_init(map);
1185	}
1186
1187	return map;
1188
1189err_regcache:
1190	regcache_exit(map);
1191err_range:
1192	regmap_range_exit(map);
1193	kfree(map->work_buf);
1194err_hwlock:
1195	if (map->hwlock)
1196		hwspin_lock_free(map->hwlock);
1197err_name:
1198	kfree_const(map->name);
1199err_map:
1200	kfree(map);
1201err:
1202	return ERR_PTR(ret);
1203}
1204EXPORT_SYMBOL_GPL(__regmap_init);
1205
1206static void devm_regmap_release(struct device *dev, void *res)
1207{
1208	regmap_exit(*(struct regmap **)res);
1209}
1210
1211struct regmap *__devm_regmap_init(struct device *dev,
1212				  const struct regmap_bus *bus,
1213				  void *bus_context,
1214				  const struct regmap_config *config,
1215				  struct lock_class_key *lock_key,
1216				  const char *lock_name)
1217{
1218	struct regmap **ptr, *regmap;
1219
1220	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1221	if (!ptr)
1222		return ERR_PTR(-ENOMEM);
1223
1224	regmap = __regmap_init(dev, bus, bus_context, config,
1225			       lock_key, lock_name);
1226	if (!IS_ERR(regmap)) {
1227		*ptr = regmap;
1228		devres_add(dev, ptr);
1229	} else {
1230		devres_free(ptr);
1231	}
1232
1233	return regmap;
1234}
1235EXPORT_SYMBOL_GPL(__devm_regmap_init);
1236
1237static void regmap_field_init(struct regmap_field *rm_field,
1238	struct regmap *regmap, struct reg_field reg_field)
1239{
1240	rm_field->regmap = regmap;
1241	rm_field->reg = reg_field.reg;
1242	rm_field->shift = reg_field.lsb;
1243	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1244	rm_field->id_size = reg_field.id_size;
1245	rm_field->id_offset = reg_field.id_offset;
1246}
1247
1248/**
1249 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1250 *
1251 * @dev: Device that will be interacted with
1252 * @regmap: regmap bank in which this register field is located.
1253 * @reg_field: Register field with in the bank.
1254 *
1255 * The return value will be an ERR_PTR() on error or a valid pointer
1256 * to a struct regmap_field. The regmap_field will be automatically freed
1257 * by the device management code.
1258 */
1259struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1260		struct regmap *regmap, struct reg_field reg_field)
1261{
1262	struct regmap_field *rm_field = devm_kzalloc(dev,
1263					sizeof(*rm_field), GFP_KERNEL);
1264	if (!rm_field)
1265		return ERR_PTR(-ENOMEM);
1266
1267	regmap_field_init(rm_field, regmap, reg_field);
1268
1269	return rm_field;
1270
1271}
1272EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1273
1274
1275/**
1276 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1277 *
1278 * @regmap: regmap bank in which this register field is located.
1279 * @rm_field: regmap register fields within the bank.
1280 * @reg_field: Register fields within the bank.
1281 * @num_fields: Number of register fields.
1282 *
1283 * The return value will be an -ENOMEM on error or zero for success.
1284 * Newly allocated regmap_fields should be freed by calling
1285 * regmap_field_bulk_free()
1286 */
1287int regmap_field_bulk_alloc(struct regmap *regmap,
1288			    struct regmap_field **rm_field,
1289			    struct reg_field *reg_field,
1290			    int num_fields)
1291{
1292	struct regmap_field *rf;
1293	int i;
1294
1295	rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1296	if (!rf)
1297		return -ENOMEM;
1298
1299	for (i = 0; i < num_fields; i++) {
1300		regmap_field_init(&rf[i], regmap, reg_field[i]);
1301		rm_field[i] = &rf[i];
1302	}
1303
1304	return 0;
1305}
1306EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1307
1308/**
1309 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1310 * fields.
1311 *
1312 * @dev: Device that will be interacted with
1313 * @regmap: regmap bank in which this register field is located.
1314 * @rm_field: regmap register fields within the bank.
1315 * @reg_field: Register fields within the bank.
1316 * @num_fields: Number of register fields.
1317 *
1318 * The return value will be an -ENOMEM on error or zero for success.
1319 * Newly allocated regmap_fields will be automatically freed by the
1320 * device management code.
1321 */
1322int devm_regmap_field_bulk_alloc(struct device *dev,
1323				 struct regmap *regmap,
1324				 struct regmap_field **rm_field,
1325				 struct reg_field *reg_field,
1326				 int num_fields)
1327{
1328	struct regmap_field *rf;
1329	int i;
1330
1331	rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1332	if (!rf)
1333		return -ENOMEM;
1334
1335	for (i = 0; i < num_fields; i++) {
1336		regmap_field_init(&rf[i], regmap, reg_field[i]);
1337		rm_field[i] = &rf[i];
1338	}
1339
1340	return 0;
1341}
1342EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1343
1344/**
1345 * regmap_field_bulk_free() - Free register field allocated using
1346 *                       regmap_field_bulk_alloc.
1347 *
1348 * @field: regmap fields which should be freed.
1349 */
1350void regmap_field_bulk_free(struct regmap_field *field)
1351{
1352	kfree(field);
1353}
1354EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1355
1356/**
1357 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1358 *                            devm_regmap_field_bulk_alloc.
1359 *
1360 * @dev: Device that will be interacted with
1361 * @field: regmap field which should be freed.
1362 *
1363 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1364 * drivers need not call this function, as the memory allocated via devm
1365 * will be freed as per device-driver life-cycle.
1366 */
1367void devm_regmap_field_bulk_free(struct device *dev,
1368				 struct regmap_field *field)
1369{
1370	devm_kfree(dev, field);
1371}
1372EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1373
1374/**
1375 * devm_regmap_field_free() - Free a register field allocated using
1376 *                            devm_regmap_field_alloc.
1377 *
1378 * @dev: Device that will be interacted with
1379 * @field: regmap field which should be freed.
1380 *
1381 * Free register field allocated using devm_regmap_field_alloc(). Usually
1382 * drivers need not call this function, as the memory allocated via devm
1383 * will be freed as per device-driver life-cyle.
1384 */
1385void devm_regmap_field_free(struct device *dev,
1386	struct regmap_field *field)
1387{
1388	devm_kfree(dev, field);
1389}
1390EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1391
1392/**
1393 * regmap_field_alloc() - Allocate and initialise a register field.
1394 *
1395 * @regmap: regmap bank in which this register field is located.
1396 * @reg_field: Register field with in the bank.
1397 *
1398 * The return value will be an ERR_PTR() on error or a valid pointer
1399 * to a struct regmap_field. The regmap_field should be freed by the
1400 * user once its finished working with it using regmap_field_free().
1401 */
1402struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1403		struct reg_field reg_field)
1404{
1405	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1406
1407	if (!rm_field)
1408		return ERR_PTR(-ENOMEM);
1409
1410	regmap_field_init(rm_field, regmap, reg_field);
1411
1412	return rm_field;
1413}
1414EXPORT_SYMBOL_GPL(regmap_field_alloc);
1415
1416/**
1417 * regmap_field_free() - Free register field allocated using
1418 *                       regmap_field_alloc.
1419 *
1420 * @field: regmap field which should be freed.
1421 */
1422void regmap_field_free(struct regmap_field *field)
1423{
1424	kfree(field);
1425}
1426EXPORT_SYMBOL_GPL(regmap_field_free);
1427
1428/**
1429 * regmap_reinit_cache() - Reinitialise the current register cache
1430 *
1431 * @map: Register map to operate on.
1432 * @config: New configuration.  Only the cache data will be used.
1433 *
1434 * Discard any existing register cache for the map and initialize a
1435 * new cache.  This can be used to restore the cache to defaults or to
1436 * update the cache configuration to reflect runtime discovery of the
1437 * hardware.
1438 *
1439 * No explicit locking is done here, the user needs to ensure that
1440 * this function will not race with other calls to regmap.
1441 */
1442int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1443{
1444	int ret;
1445
1446	regcache_exit(map);
1447	regmap_debugfs_exit(map);
1448
1449	map->max_register = config->max_register;
1450	map->writeable_reg = config->writeable_reg;
1451	map->readable_reg = config->readable_reg;
1452	map->volatile_reg = config->volatile_reg;
1453	map->precious_reg = config->precious_reg;
1454	map->writeable_noinc_reg = config->writeable_noinc_reg;
1455	map->readable_noinc_reg = config->readable_noinc_reg;
1456	map->cache_type = config->cache_type;
1457
1458	ret = regmap_set_name(map, config);
1459	if (ret)
1460		return ret;
1461
1462	regmap_debugfs_init(map);
1463
1464	map->cache_bypass = false;
1465	map->cache_only = false;
1466
1467	return regcache_init(map, config);
1468}
1469EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1470
1471/**
1472 * regmap_exit() - Free a previously allocated register map
1473 *
1474 * @map: Register map to operate on.
1475 */
1476void regmap_exit(struct regmap *map)
1477{
1478	struct regmap_async *async;
1479
1480	regcache_exit(map);
1481	regmap_debugfs_exit(map);
1482	regmap_range_exit(map);
1483	if (map->bus && map->bus->free_context)
1484		map->bus->free_context(map->bus_context);
1485	kfree(map->work_buf);
1486	while (!list_empty(&map->async_free)) {
1487		async = list_first_entry_or_null(&map->async_free,
1488						 struct regmap_async,
1489						 list);
1490		list_del(&async->list);
1491		kfree(async->work_buf);
1492		kfree(async);
1493	}
1494	if (map->hwlock)
1495		hwspin_lock_free(map->hwlock);
1496	if (map->lock == regmap_lock_mutex)
1497		mutex_destroy(&map->mutex);
1498	kfree_const(map->name);
1499	kfree(map->patch);
1500	kfree(map);
1501}
1502EXPORT_SYMBOL_GPL(regmap_exit);
1503
1504static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1505{
1506	struct regmap **r = res;
1507	if (!r || !*r) {
1508		WARN_ON(!r || !*r);
1509		return 0;
1510	}
1511
1512	/* If the user didn't specify a name match any */
1513	if (data)
1514		return (*r)->name && !strcmp((*r)->name, data);
1515	else
1516		return 1;
1517}
1518
1519/**
1520 * dev_get_regmap() - Obtain the regmap (if any) for a device
1521 *
1522 * @dev: Device to retrieve the map for
1523 * @name: Optional name for the register map, usually NULL.
1524 *
1525 * Returns the regmap for the device if one is present, or NULL.  If
1526 * name is specified then it must match the name specified when
1527 * registering the device, if it is NULL then the first regmap found
1528 * will be used.  Devices with multiple register maps are very rare,
1529 * generic code should normally not need to specify a name.
1530 */
1531struct regmap *dev_get_regmap(struct device *dev, const char *name)
1532{
1533	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1534					dev_get_regmap_match, (void *)name);
1535
1536	if (!r)
1537		return NULL;
1538	return *r;
1539}
1540EXPORT_SYMBOL_GPL(dev_get_regmap);
1541
1542/**
1543 * regmap_get_device() - Obtain the device from a regmap
1544 *
1545 * @map: Register map to operate on.
1546 *
1547 * Returns the underlying device that the regmap has been created for.
1548 */
1549struct device *regmap_get_device(struct regmap *map)
1550{
1551	return map->dev;
1552}
1553EXPORT_SYMBOL_GPL(regmap_get_device);
1554
1555static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1556			       struct regmap_range_node *range,
1557			       unsigned int val_num)
1558{
1559	void *orig_work_buf;
1560	unsigned int win_offset;
1561	unsigned int win_page;
1562	bool page_chg;
1563	int ret;
1564
1565	win_offset = (*reg - range->range_min) % range->window_len;
1566	win_page = (*reg - range->range_min) / range->window_len;
1567
1568	if (val_num > 1) {
1569		/* Bulk write shouldn't cross range boundary */
1570		if (*reg + val_num - 1 > range->range_max)
1571			return -EINVAL;
1572
1573		/* ... or single page boundary */
1574		if (val_num > range->window_len - win_offset)
1575			return -EINVAL;
1576	}
1577
1578	/* It is possible to have selector register inside data window.
1579	   In that case, selector register is located on every page and
1580	   it needs no page switching, when accessed alone. */
1581	if (val_num > 1 ||
1582	    range->window_start + win_offset != range->selector_reg) {
1583		/* Use separate work_buf during page switching */
1584		orig_work_buf = map->work_buf;
1585		map->work_buf = map->selector_work_buf;
1586
1587		ret = _regmap_update_bits(map, range->selector_reg,
1588					  range->selector_mask,
1589					  win_page << range->selector_shift,
1590					  &page_chg, false);
1591
1592		map->work_buf = orig_work_buf;
1593
1594		if (ret != 0)
1595			return ret;
1596	}
1597
1598	*reg = range->window_start + win_offset;
1599
1600	return 0;
1601}
1602
1603static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1604					  unsigned long mask)
1605{
1606	u8 *buf;
1607	int i;
1608
1609	if (!mask || !map->work_buf)
1610		return;
1611
1612	buf = map->work_buf;
1613
1614	for (i = 0; i < max_bytes; i++)
1615		buf[i] |= (mask >> (8 * i)) & 0xff;
1616}
1617
1618static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1619				  const void *val, size_t val_len, bool noinc)
1620{
1621	struct regmap_range_node *range;
1622	unsigned long flags;
1623	void *work_val = map->work_buf + map->format.reg_bytes +
1624		map->format.pad_bytes;
1625	void *buf;
1626	int ret = -ENOTSUPP;
1627	size_t len;
1628	int i;
1629
1630	WARN_ON(!map->bus);
1631
1632	/* Check for unwritable or noinc registers in range
1633	 * before we start
1634	 */
1635	if (!regmap_writeable_noinc(map, reg)) {
1636		for (i = 0; i < val_len / map->format.val_bytes; i++) {
1637			unsigned int element =
1638				reg + regmap_get_offset(map, i);
1639			if (!regmap_writeable(map, element) ||
1640				regmap_writeable_noinc(map, element))
1641				return -EINVAL;
1642		}
1643	}
1644
1645	if (!map->cache_bypass && map->format.parse_val) {
1646		unsigned int ival, offset;
1647		int val_bytes = map->format.val_bytes;
1648
1649		/* Cache the last written value for noinc writes */
1650		i = noinc ? val_len - val_bytes : 0;
1651		for (; i < val_len; i += val_bytes) {
1652			ival = map->format.parse_val(val + i);
1653			offset = noinc ? 0 : regmap_get_offset(map, i / val_bytes);
1654			ret = regcache_write(map, reg + offset, ival);
1655			if (ret) {
1656				dev_err(map->dev,
1657					"Error in caching of register: %x ret: %d\n",
1658					reg + offset, ret);
1659				return ret;
1660			}
1661		}
1662		if (map->cache_only) {
1663			map->cache_dirty = true;
1664			return 0;
1665		}
1666	}
1667
1668	range = _regmap_range_lookup(map, reg);
1669	if (range) {
1670		int val_num = val_len / map->format.val_bytes;
1671		int win_offset = (reg - range->range_min) % range->window_len;
1672		int win_residue = range->window_len - win_offset;
1673
1674		/* If the write goes beyond the end of the window split it */
1675		while (val_num > win_residue) {
1676			dev_dbg(map->dev, "Writing window %d/%zu\n",
1677				win_residue, val_len / map->format.val_bytes);
1678			ret = _regmap_raw_write_impl(map, reg, val,
1679						     win_residue *
1680						     map->format.val_bytes, noinc);
1681			if (ret != 0)
1682				return ret;
1683
1684			reg += win_residue;
1685			val_num -= win_residue;
1686			val += win_residue * map->format.val_bytes;
1687			val_len -= win_residue * map->format.val_bytes;
1688
1689			win_offset = (reg - range->range_min) %
1690				range->window_len;
1691			win_residue = range->window_len - win_offset;
1692		}
1693
1694		ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1695		if (ret != 0)
1696			return ret;
1697	}
1698
1699	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1700	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1701				      map->write_flag_mask);
1702
1703	/*
1704	 * Essentially all I/O mechanisms will be faster with a single
1705	 * buffer to write.  Since register syncs often generate raw
1706	 * writes of single registers optimise that case.
1707	 */
1708	if (val != work_val && val_len == map->format.val_bytes) {
1709		memcpy(work_val, val, map->format.val_bytes);
1710		val = work_val;
1711	}
1712
1713	if (map->async && map->bus->async_write) {
1714		struct regmap_async *async;
1715
1716		trace_regmap_async_write_start(map, reg, val_len);
1717
1718		spin_lock_irqsave(&map->async_lock, flags);
1719		async = list_first_entry_or_null(&map->async_free,
1720						 struct regmap_async,
1721						 list);
1722		if (async)
1723			list_del(&async->list);
1724		spin_unlock_irqrestore(&map->async_lock, flags);
1725
1726		if (!async) {
1727			async = map->bus->async_alloc();
1728			if (!async)
1729				return -ENOMEM;
1730
1731			async->work_buf = kzalloc(map->format.buf_size,
1732						  GFP_KERNEL | GFP_DMA);
1733			if (!async->work_buf) {
1734				kfree(async);
1735				return -ENOMEM;
1736			}
1737		}
1738
1739		async->map = map;
1740
1741		/* If the caller supplied the value we can use it safely. */
1742		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1743		       map->format.reg_bytes + map->format.val_bytes);
1744
1745		spin_lock_irqsave(&map->async_lock, flags);
1746		list_add_tail(&async->list, &map->async_list);
1747		spin_unlock_irqrestore(&map->async_lock, flags);
1748
1749		if (val != work_val)
1750			ret = map->bus->async_write(map->bus_context,
1751						    async->work_buf,
1752						    map->format.reg_bytes +
1753						    map->format.pad_bytes,
1754						    val, val_len, async);
1755		else
1756			ret = map->bus->async_write(map->bus_context,
1757						    async->work_buf,
1758						    map->format.reg_bytes +
1759						    map->format.pad_bytes +
1760						    val_len, NULL, 0, async);
1761
1762		if (ret != 0) {
1763			dev_err(map->dev, "Failed to schedule write: %d\n",
1764				ret);
1765
1766			spin_lock_irqsave(&map->async_lock, flags);
1767			list_move(&async->list, &map->async_free);
1768			spin_unlock_irqrestore(&map->async_lock, flags);
1769		}
1770
1771		return ret;
1772	}
1773
1774	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1775
1776	/* If we're doing a single register write we can probably just
1777	 * send the work_buf directly, otherwise try to do a gather
1778	 * write.
1779	 */
1780	if (val == work_val)
1781		ret = map->bus->write(map->bus_context, map->work_buf,
1782				      map->format.reg_bytes +
1783				      map->format.pad_bytes +
1784				      val_len);
1785	else if (map->bus->gather_write)
1786		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1787					     map->format.reg_bytes +
1788					     map->format.pad_bytes,
1789					     val, val_len);
1790	else
1791		ret = -ENOTSUPP;
1792
1793	/* If that didn't work fall back on linearising by hand. */
1794	if (ret == -ENOTSUPP) {
1795		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1796		buf = kzalloc(len, GFP_KERNEL);
1797		if (!buf)
1798			return -ENOMEM;
1799
1800		memcpy(buf, map->work_buf, map->format.reg_bytes);
1801		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1802		       val, val_len);
1803		ret = map->bus->write(map->bus_context, buf, len);
1804
1805		kfree(buf);
1806	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1807		/* regcache_drop_region() takes lock that we already have,
1808		 * thus call map->cache_ops->drop() directly
1809		 */
1810		if (map->cache_ops && map->cache_ops->drop)
1811			map->cache_ops->drop(map, reg, reg + 1);
1812	}
1813
1814	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1815
1816	return ret;
1817}
1818
1819/**
1820 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1821 *
1822 * @map: Map to check.
1823 */
1824bool regmap_can_raw_write(struct regmap *map)
1825{
1826	return map->bus && map->bus->write && map->format.format_val &&
1827		map->format.format_reg;
1828}
1829EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1830
1831/**
1832 * regmap_get_raw_read_max - Get the maximum size we can read
1833 *
1834 * @map: Map to check.
1835 */
1836size_t regmap_get_raw_read_max(struct regmap *map)
1837{
1838	return map->max_raw_read;
1839}
1840EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1841
1842/**
1843 * regmap_get_raw_write_max - Get the maximum size we can read
1844 *
1845 * @map: Map to check.
1846 */
1847size_t regmap_get_raw_write_max(struct regmap *map)
1848{
1849	return map->max_raw_write;
1850}
1851EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1852
1853static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1854				       unsigned int val)
1855{
1856	int ret;
1857	struct regmap_range_node *range;
1858	struct regmap *map = context;
1859
1860	WARN_ON(!map->bus || !map->format.format_write);
1861
1862	range = _regmap_range_lookup(map, reg);
1863	if (range) {
1864		ret = _regmap_select_page(map, &reg, range, 1);
1865		if (ret != 0)
1866			return ret;
1867	}
1868
1869	map->format.format_write(map, reg, val);
1870
1871	trace_regmap_hw_write_start(map, reg, 1);
1872
1873	ret = map->bus->write(map->bus_context, map->work_buf,
1874			      map->format.buf_size);
1875
1876	trace_regmap_hw_write_done(map, reg, 1);
1877
1878	return ret;
1879}
1880
1881static int _regmap_bus_reg_write(void *context, unsigned int reg,
1882				 unsigned int val)
1883{
1884	struct regmap *map = context;
1885
1886	return map->bus->reg_write(map->bus_context, reg, val);
1887}
1888
1889static int _regmap_bus_raw_write(void *context, unsigned int reg,
1890				 unsigned int val)
1891{
1892	struct regmap *map = context;
1893
1894	WARN_ON(!map->bus || !map->format.format_val);
1895
1896	map->format.format_val(map->work_buf + map->format.reg_bytes
1897			       + map->format.pad_bytes, val, 0);
1898	return _regmap_raw_write_impl(map, reg,
1899				      map->work_buf +
1900				      map->format.reg_bytes +
1901				      map->format.pad_bytes,
1902				      map->format.val_bytes,
1903				      false);
1904}
1905
1906static inline void *_regmap_map_get_context(struct regmap *map)
1907{
1908	return (map->bus) ? map : map->bus_context;
1909}
1910
1911int _regmap_write(struct regmap *map, unsigned int reg,
1912		  unsigned int val)
1913{
1914	int ret;
1915	void *context = _regmap_map_get_context(map);
1916
1917	if (!regmap_writeable(map, reg))
1918		return -EIO;
1919
1920	if (!map->cache_bypass && !map->defer_caching) {
1921		ret = regcache_write(map, reg, val);
1922		if (ret != 0)
1923			return ret;
1924		if (map->cache_only) {
1925			map->cache_dirty = true;
1926			return 0;
1927		}
1928	}
1929
1930	if (regmap_should_log(map))
1931		dev_info(map->dev, "%x <= %x\n", reg, val);
1932
1933	trace_regmap_reg_write(map, reg, val);
1934
1935	return map->reg_write(context, reg, val);
1936}
1937
1938/**
1939 * regmap_write() - Write a value to a single register
1940 *
1941 * @map: Register map to write to
1942 * @reg: Register to write to
1943 * @val: Value to be written
1944 *
1945 * A value of zero will be returned on success, a negative errno will
1946 * be returned in error cases.
1947 */
1948int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1949{
1950	int ret;
1951
1952	if (!IS_ALIGNED(reg, map->reg_stride))
1953		return -EINVAL;
1954
1955	map->lock(map->lock_arg);
1956
1957	ret = _regmap_write(map, reg, val);
1958
1959	map->unlock(map->lock_arg);
1960
1961	return ret;
1962}
1963EXPORT_SYMBOL_GPL(regmap_write);
1964
1965/**
1966 * regmap_write_async() - Write a value to a single register asynchronously
1967 *
1968 * @map: Register map to write to
1969 * @reg: Register to write to
1970 * @val: Value to be written
1971 *
1972 * A value of zero will be returned on success, a negative errno will
1973 * be returned in error cases.
1974 */
1975int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1976{
1977	int ret;
1978
1979	if (!IS_ALIGNED(reg, map->reg_stride))
1980		return -EINVAL;
1981
1982	map->lock(map->lock_arg);
1983
1984	map->async = true;
1985
1986	ret = _regmap_write(map, reg, val);
1987
1988	map->async = false;
1989
1990	map->unlock(map->lock_arg);
1991
1992	return ret;
1993}
1994EXPORT_SYMBOL_GPL(regmap_write_async);
1995
1996int _regmap_raw_write(struct regmap *map, unsigned int reg,
1997		      const void *val, size_t val_len, bool noinc)
1998{
1999	size_t val_bytes = map->format.val_bytes;
2000	size_t val_count = val_len / val_bytes;
2001	size_t chunk_count, chunk_bytes;
2002	size_t chunk_regs = val_count;
2003	int ret, i;
2004
2005	if (!val_count)
2006		return -EINVAL;
2007
2008	if (map->use_single_write)
2009		chunk_regs = 1;
2010	else if (map->max_raw_write && val_len > map->max_raw_write)
2011		chunk_regs = map->max_raw_write / val_bytes;
2012
2013	chunk_count = val_count / chunk_regs;
2014	chunk_bytes = chunk_regs * val_bytes;
2015
2016	/* Write as many bytes as possible with chunk_size */
2017	for (i = 0; i < chunk_count; i++) {
2018		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2019		if (ret)
2020			return ret;
2021
2022		reg += regmap_get_offset(map, chunk_regs);
2023		val += chunk_bytes;
2024		val_len -= chunk_bytes;
2025	}
2026
2027	/* Write remaining bytes */
2028	if (val_len)
2029		ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2030
2031	return ret;
2032}
2033
2034/**
2035 * regmap_raw_write() - Write raw values to one or more registers
2036 *
2037 * @map: Register map to write to
2038 * @reg: Initial register to write to
2039 * @val: Block of data to be written, laid out for direct transmission to the
2040 *       device
2041 * @val_len: Length of data pointed to by val.
2042 *
2043 * This function is intended to be used for things like firmware
2044 * download where a large block of data needs to be transferred to the
2045 * device.  No formatting will be done on the data provided.
2046 *
2047 * A value of zero will be returned on success, a negative errno will
2048 * be returned in error cases.
2049 */
2050int regmap_raw_write(struct regmap *map, unsigned int reg,
2051		     const void *val, size_t val_len)
2052{
2053	int ret;
2054
2055	if (!regmap_can_raw_write(map))
2056		return -EINVAL;
2057	if (val_len % map->format.val_bytes)
2058		return -EINVAL;
2059
2060	map->lock(map->lock_arg);
2061
2062	ret = _regmap_raw_write(map, reg, val, val_len, false);
2063
2064	map->unlock(map->lock_arg);
2065
2066	return ret;
2067}
2068EXPORT_SYMBOL_GPL(regmap_raw_write);
2069
2070/**
2071 * regmap_noinc_write(): Write data from a register without incrementing the
2072 *			register number
2073 *
2074 * @map: Register map to write to
2075 * @reg: Register to write to
2076 * @val: Pointer to data buffer
2077 * @val_len: Length of output buffer in bytes.
2078 *
2079 * The regmap API usually assumes that bulk bus write operations will write a
2080 * range of registers. Some devices have certain registers for which a write
2081 * operation can write to an internal FIFO.
2082 *
2083 * The target register must be volatile but registers after it can be
2084 * completely unrelated cacheable registers.
2085 *
2086 * This will attempt multiple writes as required to write val_len bytes.
2087 *
2088 * A value of zero will be returned on success, a negative errno will be
2089 * returned in error cases.
2090 */
2091int regmap_noinc_write(struct regmap *map, unsigned int reg,
2092		      const void *val, size_t val_len)
2093{
2094	size_t write_len;
2095	int ret;
2096
2097	if (!map->bus)
2098		return -EINVAL;
2099	if (!map->bus->write)
2100		return -ENOTSUPP;
2101	if (val_len % map->format.val_bytes)
2102		return -EINVAL;
2103	if (!IS_ALIGNED(reg, map->reg_stride))
2104		return -EINVAL;
2105	if (val_len == 0)
2106		return -EINVAL;
2107
2108	map->lock(map->lock_arg);
2109
2110	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2111		ret = -EINVAL;
2112		goto out_unlock;
2113	}
2114
2115	while (val_len) {
2116		if (map->max_raw_write && map->max_raw_write < val_len)
2117			write_len = map->max_raw_write;
2118		else
2119			write_len = val_len;
2120		ret = _regmap_raw_write(map, reg, val, write_len, true);
2121		if (ret)
2122			goto out_unlock;
2123		val = ((u8 *)val) + write_len;
2124		val_len -= write_len;
2125	}
2126
2127out_unlock:
2128	map->unlock(map->lock_arg);
2129	return ret;
2130}
2131EXPORT_SYMBOL_GPL(regmap_noinc_write);
2132
2133/**
2134 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2135 *                                   register field.
2136 *
2137 * @field: Register field to write to
2138 * @mask: Bitmask to change
2139 * @val: Value to be written
2140 * @change: Boolean indicating if a write was done
2141 * @async: Boolean indicating asynchronously
2142 * @force: Boolean indicating use force update
2143 *
2144 * Perform a read/modify/write cycle on the register field with change,
2145 * async, force option.
2146 *
2147 * A value of zero will be returned on success, a negative errno will
2148 * be returned in error cases.
2149 */
2150int regmap_field_update_bits_base(struct regmap_field *field,
2151				  unsigned int mask, unsigned int val,
2152				  bool *change, bool async, bool force)
2153{
2154	mask = (mask << field->shift) & field->mask;
2155
2156	return regmap_update_bits_base(field->regmap, field->reg,
2157				       mask, val << field->shift,
2158				       change, async, force);
2159}
2160EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2161
2162/**
2163 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2164 *                                    register field with port ID
2165 *
2166 * @field: Register field to write to
2167 * @id: port ID
2168 * @mask: Bitmask to change
2169 * @val: Value to be written
2170 * @change: Boolean indicating if a write was done
2171 * @async: Boolean indicating asynchronously
2172 * @force: Boolean indicating use force update
2173 *
2174 * A value of zero will be returned on success, a negative errno will
2175 * be returned in error cases.
2176 */
2177int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2178				   unsigned int mask, unsigned int val,
2179				   bool *change, bool async, bool force)
2180{
2181	if (id >= field->id_size)
2182		return -EINVAL;
2183
2184	mask = (mask << field->shift) & field->mask;
2185
2186	return regmap_update_bits_base(field->regmap,
2187				       field->reg + (field->id_offset * id),
2188				       mask, val << field->shift,
2189				       change, async, force);
2190}
2191EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2192
2193/**
2194 * regmap_bulk_write() - Write multiple registers to the device
2195 *
2196 * @map: Register map to write to
2197 * @reg: First register to be write from
2198 * @val: Block of data to be written, in native register size for device
2199 * @val_count: Number of registers to write
2200 *
2201 * This function is intended to be used for writing a large block of
2202 * data to the device either in single transfer or multiple transfer.
2203 *
2204 * A value of zero will be returned on success, a negative errno will
2205 * be returned in error cases.
2206 */
2207int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2208		     size_t val_count)
2209{
2210	int ret = 0, i;
2211	size_t val_bytes = map->format.val_bytes;
2212
2213	if (!IS_ALIGNED(reg, map->reg_stride))
2214		return -EINVAL;
2215
2216	/*
2217	 * Some devices don't support bulk write, for them we have a series of
2218	 * single write operations.
2219	 */
2220	if (!map->bus || !map->format.parse_inplace) {
2221		map->lock(map->lock_arg);
2222		for (i = 0; i < val_count; i++) {
2223			unsigned int ival;
2224
2225			switch (val_bytes) {
2226			case 1:
2227				ival = *(u8 *)(val + (i * val_bytes));
2228				break;
2229			case 2:
2230				ival = *(u16 *)(val + (i * val_bytes));
2231				break;
2232			case 4:
2233				ival = *(u32 *)(val + (i * val_bytes));
2234				break;
2235#ifdef CONFIG_64BIT
2236			case 8:
2237				ival = *(u64 *)(val + (i * val_bytes));
2238				break;
2239#endif
2240			default:
2241				ret = -EINVAL;
2242				goto out;
2243			}
2244
2245			ret = _regmap_write(map,
2246					    reg + regmap_get_offset(map, i),
2247					    ival);
2248			if (ret != 0)
2249				goto out;
2250		}
2251out:
2252		map->unlock(map->lock_arg);
2253	} else {
2254		void *wval;
2255
2256		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2257		if (!wval)
2258			return -ENOMEM;
2259
2260		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2261			map->format.parse_inplace(wval + i);
2262
2263		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2264
2265		kfree(wval);
2266	}
2267	return ret;
2268}
2269EXPORT_SYMBOL_GPL(regmap_bulk_write);
2270
2271/*
2272 * _regmap_raw_multi_reg_write()
2273 *
2274 * the (register,newvalue) pairs in regs have not been formatted, but
2275 * they are all in the same page and have been changed to being page
2276 * relative. The page register has been written if that was necessary.
2277 */
2278static int _regmap_raw_multi_reg_write(struct regmap *map,
2279				       const struct reg_sequence *regs,
2280				       size_t num_regs)
2281{
2282	int ret;
2283	void *buf;
2284	int i;
2285	u8 *u8;
2286	size_t val_bytes = map->format.val_bytes;
2287	size_t reg_bytes = map->format.reg_bytes;
2288	size_t pad_bytes = map->format.pad_bytes;
2289	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2290	size_t len = pair_size * num_regs;
2291
2292	if (!len)
2293		return -EINVAL;
2294
2295	buf = kzalloc(len, GFP_KERNEL);
2296	if (!buf)
2297		return -ENOMEM;
2298
2299	/* We have to linearise by hand. */
2300
2301	u8 = buf;
2302
2303	for (i = 0; i < num_regs; i++) {
2304		unsigned int reg = regs[i].reg;
2305		unsigned int val = regs[i].def;
2306		trace_regmap_hw_write_start(map, reg, 1);
2307		map->format.format_reg(u8, reg, map->reg_shift);
2308		u8 += reg_bytes + pad_bytes;
2309		map->format.format_val(u8, val, 0);
2310		u8 += val_bytes;
2311	}
2312	u8 = buf;
2313	*u8 |= map->write_flag_mask;
2314
2315	ret = map->bus->write(map->bus_context, buf, len);
2316
2317	kfree(buf);
2318
2319	for (i = 0; i < num_regs; i++) {
2320		int reg = regs[i].reg;
2321		trace_regmap_hw_write_done(map, reg, 1);
2322	}
2323	return ret;
2324}
2325
2326static unsigned int _regmap_register_page(struct regmap *map,
2327					  unsigned int reg,
2328					  struct regmap_range_node *range)
2329{
2330	unsigned int win_page = (reg - range->range_min) / range->window_len;
2331
2332	return win_page;
2333}
2334
2335static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2336					       struct reg_sequence *regs,
2337					       size_t num_regs)
2338{
2339	int ret;
2340	int i, n;
2341	struct reg_sequence *base;
2342	unsigned int this_page = 0;
2343	unsigned int page_change = 0;
2344	/*
2345	 * the set of registers are not neccessarily in order, but
2346	 * since the order of write must be preserved this algorithm
2347	 * chops the set each time the page changes. This also applies
2348	 * if there is a delay required at any point in the sequence.
2349	 */
2350	base = regs;
2351	for (i = 0, n = 0; i < num_regs; i++, n++) {
2352		unsigned int reg = regs[i].reg;
2353		struct regmap_range_node *range;
2354
2355		range = _regmap_range_lookup(map, reg);
2356		if (range) {
2357			unsigned int win_page = _regmap_register_page(map, reg,
2358								      range);
2359
2360			if (i == 0)
2361				this_page = win_page;
2362			if (win_page != this_page) {
2363				this_page = win_page;
2364				page_change = 1;
2365			}
2366		}
2367
2368		/* If we have both a page change and a delay make sure to
2369		 * write the regs and apply the delay before we change the
2370		 * page.
2371		 */
2372
2373		if (page_change || regs[i].delay_us) {
2374
2375				/* For situations where the first write requires
2376				 * a delay we need to make sure we don't call
2377				 * raw_multi_reg_write with n=0
2378				 * This can't occur with page breaks as we
2379				 * never write on the first iteration
2380				 */
2381				if (regs[i].delay_us && i == 0)
2382					n = 1;
2383
2384				ret = _regmap_raw_multi_reg_write(map, base, n);
2385				if (ret != 0)
2386					return ret;
2387
2388				if (regs[i].delay_us) {
2389					if (map->can_sleep)
2390						fsleep(regs[i].delay_us);
2391					else
2392						udelay(regs[i].delay_us);
2393				}
2394
2395				base += n;
2396				n = 0;
2397
2398				if (page_change) {
2399					ret = _regmap_select_page(map,
2400								  &base[n].reg,
2401								  range, 1);
2402					if (ret != 0)
2403						return ret;
2404
2405					page_change = 0;
2406				}
2407
2408		}
2409
2410	}
2411	if (n > 0)
2412		return _regmap_raw_multi_reg_write(map, base, n);
2413	return 0;
2414}
2415
2416static int _regmap_multi_reg_write(struct regmap *map,
2417				   const struct reg_sequence *regs,
2418				   size_t num_regs)
2419{
2420	int i;
2421	int ret;
2422
2423	if (!map->can_multi_write) {
2424		for (i = 0; i < num_regs; i++) {
2425			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2426			if (ret != 0)
2427				return ret;
2428
2429			if (regs[i].delay_us) {
2430				if (map->can_sleep)
2431					fsleep(regs[i].delay_us);
2432				else
2433					udelay(regs[i].delay_us);
2434			}
2435		}
2436		return 0;
2437	}
2438
2439	if (!map->format.parse_inplace)
2440		return -EINVAL;
2441
2442	if (map->writeable_reg)
2443		for (i = 0; i < num_regs; i++) {
2444			int reg = regs[i].reg;
2445			if (!map->writeable_reg(map->dev, reg))
2446				return -EINVAL;
2447			if (!IS_ALIGNED(reg, map->reg_stride))
2448				return -EINVAL;
2449		}
2450
2451	if (!map->cache_bypass) {
2452		for (i = 0; i < num_regs; i++) {
2453			unsigned int val = regs[i].def;
2454			unsigned int reg = regs[i].reg;
2455			ret = regcache_write(map, reg, val);
2456			if (ret) {
2457				dev_err(map->dev,
2458				"Error in caching of register: %x ret: %d\n",
2459								reg, ret);
2460				return ret;
2461			}
2462		}
2463		if (map->cache_only) {
2464			map->cache_dirty = true;
2465			return 0;
2466		}
2467	}
2468
2469	WARN_ON(!map->bus);
2470
2471	for (i = 0; i < num_regs; i++) {
2472		unsigned int reg = regs[i].reg;
2473		struct regmap_range_node *range;
2474
2475		/* Coalesce all the writes between a page break or a delay
2476		 * in a sequence
2477		 */
2478		range = _regmap_range_lookup(map, reg);
2479		if (range || regs[i].delay_us) {
2480			size_t len = sizeof(struct reg_sequence)*num_regs;
2481			struct reg_sequence *base = kmemdup(regs, len,
2482							   GFP_KERNEL);
2483			if (!base)
2484				return -ENOMEM;
2485			ret = _regmap_range_multi_paged_reg_write(map, base,
2486								  num_regs);
2487			kfree(base);
2488
2489			return ret;
2490		}
2491	}
2492	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2493}
2494
2495/**
2496 * regmap_multi_reg_write() - Write multiple registers to the device
2497 *
2498 * @map: Register map to write to
2499 * @regs: Array of structures containing register,value to be written
2500 * @num_regs: Number of registers to write
2501 *
2502 * Write multiple registers to the device where the set of register, value
2503 * pairs are supplied in any order, possibly not all in a single range.
2504 *
2505 * The 'normal' block write mode will send ultimately send data on the
2506 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2507 * addressed. However, this alternative block multi write mode will send
2508 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2509 * must of course support the mode.
2510 *
2511 * A value of zero will be returned on success, a negative errno will be
2512 * returned in error cases.
2513 */
2514int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2515			   int num_regs)
2516{
2517	int ret;
2518
2519	map->lock(map->lock_arg);
2520
2521	ret = _regmap_multi_reg_write(map, regs, num_regs);
2522
2523	map->unlock(map->lock_arg);
2524
2525	return ret;
2526}
2527EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2528
2529/**
2530 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2531 *                                     device but not the cache
2532 *
2533 * @map: Register map to write to
2534 * @regs: Array of structures containing register,value to be written
2535 * @num_regs: Number of registers to write
2536 *
2537 * Write multiple registers to the device but not the cache where the set
2538 * of register are supplied in any order.
2539 *
2540 * This function is intended to be used for writing a large block of data
2541 * atomically to the device in single transfer for those I2C client devices
2542 * that implement this alternative block write mode.
2543 *
2544 * A value of zero will be returned on success, a negative errno will
2545 * be returned in error cases.
2546 */
2547int regmap_multi_reg_write_bypassed(struct regmap *map,
2548				    const struct reg_sequence *regs,
2549				    int num_regs)
2550{
2551	int ret;
2552	bool bypass;
2553
2554	map->lock(map->lock_arg);
2555
2556	bypass = map->cache_bypass;
2557	map->cache_bypass = true;
2558
2559	ret = _regmap_multi_reg_write(map, regs, num_regs);
2560
2561	map->cache_bypass = bypass;
2562
2563	map->unlock(map->lock_arg);
2564
2565	return ret;
2566}
2567EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2568
2569/**
2570 * regmap_raw_write_async() - Write raw values to one or more registers
2571 *                            asynchronously
2572 *
2573 * @map: Register map to write to
2574 * @reg: Initial register to write to
2575 * @val: Block of data to be written, laid out for direct transmission to the
2576 *       device.  Must be valid until regmap_async_complete() is called.
2577 * @val_len: Length of data pointed to by val.
2578 *
2579 * This function is intended to be used for things like firmware
2580 * download where a large block of data needs to be transferred to the
2581 * device.  No formatting will be done on the data provided.
2582 *
2583 * If supported by the underlying bus the write will be scheduled
2584 * asynchronously, helping maximise I/O speed on higher speed buses
2585 * like SPI.  regmap_async_complete() can be called to ensure that all
2586 * asynchrnous writes have been completed.
2587 *
2588 * A value of zero will be returned on success, a negative errno will
2589 * be returned in error cases.
2590 */
2591int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2592			   const void *val, size_t val_len)
2593{
2594	int ret;
2595
2596	if (val_len % map->format.val_bytes)
2597		return -EINVAL;
2598	if (!IS_ALIGNED(reg, map->reg_stride))
2599		return -EINVAL;
2600
2601	map->lock(map->lock_arg);
2602
2603	map->async = true;
2604
2605	ret = _regmap_raw_write(map, reg, val, val_len, false);
2606
2607	map->async = false;
2608
2609	map->unlock(map->lock_arg);
2610
2611	return ret;
2612}
2613EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2614
2615static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2616			    unsigned int val_len, bool noinc)
2617{
2618	struct regmap_range_node *range;
2619	int ret;
2620
2621	WARN_ON(!map->bus);
2622
2623	if (!map->bus || !map->bus->read)
2624		return -EINVAL;
2625
2626	range = _regmap_range_lookup(map, reg);
2627	if (range) {
2628		ret = _regmap_select_page(map, &reg, range,
2629					  noinc ? 1 : val_len / map->format.val_bytes);
2630		if (ret != 0)
2631			return ret;
2632	}
2633
2634	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2635	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2636				      map->read_flag_mask);
2637	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2638
2639	ret = map->bus->read(map->bus_context, map->work_buf,
2640			     map->format.reg_bytes + map->format.pad_bytes,
2641			     val, val_len);
2642
2643	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2644
2645	return ret;
2646}
2647
2648static int _regmap_bus_reg_read(void *context, unsigned int reg,
2649				unsigned int *val)
2650{
2651	struct regmap *map = context;
2652
2653	return map->bus->reg_read(map->bus_context, reg, val);
2654}
2655
2656static int _regmap_bus_read(void *context, unsigned int reg,
2657			    unsigned int *val)
2658{
2659	int ret;
2660	struct regmap *map = context;
2661	void *work_val = map->work_buf + map->format.reg_bytes +
2662		map->format.pad_bytes;
2663
2664	if (!map->format.parse_val)
2665		return -EINVAL;
2666
2667	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2668	if (ret == 0)
2669		*val = map->format.parse_val(work_val);
2670
2671	return ret;
2672}
2673
2674static int _regmap_read(struct regmap *map, unsigned int reg,
2675			unsigned int *val)
2676{
2677	int ret;
2678	void *context = _regmap_map_get_context(map);
2679
2680	if (!map->cache_bypass) {
2681		ret = regcache_read(map, reg, val);
2682		if (ret == 0)
2683			return 0;
2684	}
2685
2686	if (map->cache_only)
2687		return -EBUSY;
2688
2689	if (!regmap_readable(map, reg))
2690		return -EIO;
2691
2692	ret = map->reg_read(context, reg, val);
2693	if (ret == 0) {
2694		if (regmap_should_log(map))
2695			dev_info(map->dev, "%x => %x\n", reg, *val);
2696
2697		trace_regmap_reg_read(map, reg, *val);
2698
2699		if (!map->cache_bypass)
2700			regcache_write(map, reg, *val);
2701	}
2702
2703	return ret;
2704}
2705
2706/**
2707 * regmap_read() - Read a value from a single register
2708 *
2709 * @map: Register map to read from
2710 * @reg: Register to be read from
2711 * @val: Pointer to store read value
2712 *
2713 * A value of zero will be returned on success, a negative errno will
2714 * be returned in error cases.
2715 */
2716int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2717{
2718	int ret;
2719
2720	if (!IS_ALIGNED(reg, map->reg_stride))
2721		return -EINVAL;
2722
2723	map->lock(map->lock_arg);
2724
2725	ret = _regmap_read(map, reg, val);
2726
2727	map->unlock(map->lock_arg);
2728
2729	return ret;
2730}
2731EXPORT_SYMBOL_GPL(regmap_read);
2732
2733/**
2734 * regmap_raw_read() - Read raw data from the device
2735 *
2736 * @map: Register map to read from
2737 * @reg: First register to be read from
2738 * @val: Pointer to store read value
2739 * @val_len: Size of data to read
2740 *
2741 * A value of zero will be returned on success, a negative errno will
2742 * be returned in error cases.
2743 */
2744int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2745		    size_t val_len)
2746{
2747	size_t val_bytes = map->format.val_bytes;
2748	size_t val_count = val_len / val_bytes;
2749	unsigned int v;
2750	int ret, i;
2751
2752	if (!map->bus)
2753		return -EINVAL;
2754	if (val_len % map->format.val_bytes)
2755		return -EINVAL;
2756	if (!IS_ALIGNED(reg, map->reg_stride))
2757		return -EINVAL;
2758	if (val_count == 0)
2759		return -EINVAL;
2760
2761	map->lock(map->lock_arg);
2762
2763	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2764	    map->cache_type == REGCACHE_NONE) {
2765		size_t chunk_count, chunk_bytes;
2766		size_t chunk_regs = val_count;
2767
2768		if (!map->bus->read) {
2769			ret = -ENOTSUPP;
2770			goto out;
2771		}
2772
2773		if (map->use_single_read)
2774			chunk_regs = 1;
2775		else if (map->max_raw_read && val_len > map->max_raw_read)
2776			chunk_regs = map->max_raw_read / val_bytes;
2777
2778		chunk_count = val_count / chunk_regs;
2779		chunk_bytes = chunk_regs * val_bytes;
2780
2781		/* Read bytes that fit into whole chunks */
2782		for (i = 0; i < chunk_count; i++) {
2783			ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2784			if (ret != 0)
2785				goto out;
2786
2787			reg += regmap_get_offset(map, chunk_regs);
2788			val += chunk_bytes;
2789			val_len -= chunk_bytes;
2790		}
2791
2792		/* Read remaining bytes */
2793		if (val_len) {
2794			ret = _regmap_raw_read(map, reg, val, val_len, false);
2795			if (ret != 0)
2796				goto out;
2797		}
2798	} else {
2799		/* Otherwise go word by word for the cache; should be low
2800		 * cost as we expect to hit the cache.
2801		 */
2802		for (i = 0; i < val_count; i++) {
2803			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2804					   &v);
2805			if (ret != 0)
2806				goto out;
2807
2808			map->format.format_val(val + (i * val_bytes), v, 0);
2809		}
2810	}
2811
2812 out:
2813	map->unlock(map->lock_arg);
2814
2815	return ret;
2816}
2817EXPORT_SYMBOL_GPL(regmap_raw_read);
2818
2819/**
2820 * regmap_noinc_read(): Read data from a register without incrementing the
2821 *			register number
2822 *
2823 * @map: Register map to read from
2824 * @reg: Register to read from
2825 * @val: Pointer to data buffer
2826 * @val_len: Length of output buffer in bytes.
2827 *
2828 * The regmap API usually assumes that bulk bus read operations will read a
2829 * range of registers. Some devices have certain registers for which a read
2830 * operation read will read from an internal FIFO.
2831 *
2832 * The target register must be volatile but registers after it can be
2833 * completely unrelated cacheable registers.
2834 *
2835 * This will attempt multiple reads as required to read val_len bytes.
2836 *
2837 * A value of zero will be returned on success, a negative errno will be
2838 * returned in error cases.
2839 */
2840int regmap_noinc_read(struct regmap *map, unsigned int reg,
2841		      void *val, size_t val_len)
2842{
2843	size_t read_len;
2844	int ret;
2845
2846	if (!map->bus)
2847		return -EINVAL;
2848	if (!map->bus->read)
2849		return -ENOTSUPP;
2850	if (val_len % map->format.val_bytes)
2851		return -EINVAL;
2852	if (!IS_ALIGNED(reg, map->reg_stride))
2853		return -EINVAL;
2854	if (val_len == 0)
2855		return -EINVAL;
2856
2857	map->lock(map->lock_arg);
2858
2859	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2860		ret = -EINVAL;
2861		goto out_unlock;
2862	}
2863
2864	while (val_len) {
2865		if (map->max_raw_read && map->max_raw_read < val_len)
2866			read_len = map->max_raw_read;
2867		else
2868			read_len = val_len;
2869		ret = _regmap_raw_read(map, reg, val, read_len, true);
2870		if (ret)
2871			goto out_unlock;
2872		val = ((u8 *)val) + read_len;
2873		val_len -= read_len;
2874	}
2875
2876out_unlock:
2877	map->unlock(map->lock_arg);
2878	return ret;
2879}
2880EXPORT_SYMBOL_GPL(regmap_noinc_read);
2881
2882/**
2883 * regmap_field_read(): Read a value to a single register field
2884 *
2885 * @field: Register field to read from
2886 * @val: Pointer to store read value
2887 *
2888 * A value of zero will be returned on success, a negative errno will
2889 * be returned in error cases.
2890 */
2891int regmap_field_read(struct regmap_field *field, unsigned int *val)
2892{
2893	int ret;
2894	unsigned int reg_val;
2895	ret = regmap_read(field->regmap, field->reg, &reg_val);
2896	if (ret != 0)
2897		return ret;
2898
2899	reg_val &= field->mask;
2900	reg_val >>= field->shift;
2901	*val = reg_val;
2902
2903	return ret;
2904}
2905EXPORT_SYMBOL_GPL(regmap_field_read);
2906
2907/**
2908 * regmap_fields_read() - Read a value to a single register field with port ID
2909 *
2910 * @field: Register field to read from
2911 * @id: port ID
2912 * @val: Pointer to store read value
2913 *
2914 * A value of zero will be returned on success, a negative errno will
2915 * be returned in error cases.
2916 */
2917int regmap_fields_read(struct regmap_field *field, unsigned int id,
2918		       unsigned int *val)
2919{
2920	int ret;
2921	unsigned int reg_val;
2922
2923	if (id >= field->id_size)
2924		return -EINVAL;
2925
2926	ret = regmap_read(field->regmap,
2927			  field->reg + (field->id_offset * id),
2928			  &reg_val);
2929	if (ret != 0)
2930		return ret;
2931
2932	reg_val &= field->mask;
2933	reg_val >>= field->shift;
2934	*val = reg_val;
2935
2936	return ret;
2937}
2938EXPORT_SYMBOL_GPL(regmap_fields_read);
2939
2940/**
2941 * regmap_bulk_read() - Read multiple registers from the device
2942 *
2943 * @map: Register map to read from
2944 * @reg: First register to be read from
2945 * @val: Pointer to store read value, in native register size for device
2946 * @val_count: Number of registers to read
2947 *
2948 * A value of zero will be returned on success, a negative errno will
2949 * be returned in error cases.
2950 */
2951int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2952		     size_t val_count)
2953{
2954	int ret, i;
2955	size_t val_bytes = map->format.val_bytes;
2956	bool vol = regmap_volatile_range(map, reg, val_count);
2957
2958	if (!IS_ALIGNED(reg, map->reg_stride))
2959		return -EINVAL;
2960	if (val_count == 0)
2961		return -EINVAL;
2962
2963	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2964		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2965		if (ret != 0)
2966			return ret;
2967
2968		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2969			map->format.parse_inplace(val + i);
2970	} else {
2971#ifdef CONFIG_64BIT
2972		u64 *u64 = val;
2973#endif
2974		u32 *u32 = val;
2975		u16 *u16 = val;
2976		u8 *u8 = val;
2977
2978		map->lock(map->lock_arg);
2979
2980		for (i = 0; i < val_count; i++) {
2981			unsigned int ival;
2982
2983			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2984					   &ival);
2985			if (ret != 0)
2986				goto out;
2987
2988			switch (map->format.val_bytes) {
2989#ifdef CONFIG_64BIT
2990			case 8:
2991				u64[i] = ival;
2992				break;
2993#endif
2994			case 4:
2995				u32[i] = ival;
2996				break;
2997			case 2:
2998				u16[i] = ival;
2999				break;
3000			case 1:
3001				u8[i] = ival;
3002				break;
3003			default:
3004				ret = -EINVAL;
3005				goto out;
3006			}
3007		}
3008
3009out:
3010		map->unlock(map->lock_arg);
3011	}
3012
3013	return ret;
3014}
3015EXPORT_SYMBOL_GPL(regmap_bulk_read);
3016
3017static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3018			       unsigned int mask, unsigned int val,
3019			       bool *change, bool force_write)
3020{
3021	int ret;
3022	unsigned int tmp, orig;
3023
3024	if (change)
3025		*change = false;
3026
3027	if (regmap_volatile(map, reg) && map->reg_update_bits) {
3028		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3029		if (ret == 0 && change)
3030			*change = true;
3031	} else {
3032		ret = _regmap_read(map, reg, &orig);
3033		if (ret != 0)
3034			return ret;
3035
3036		tmp = orig & ~mask;
3037		tmp |= val & mask;
3038
3039		if (force_write || (tmp != orig)) {
3040			ret = _regmap_write(map, reg, tmp);
3041			if (ret == 0 && change)
3042				*change = true;
3043		}
3044	}
3045
3046	return ret;
3047}
3048
3049/**
3050 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3051 *
3052 * @map: Register map to update
3053 * @reg: Register to update
3054 * @mask: Bitmask to change
3055 * @val: New value for bitmask
3056 * @change: Boolean indicating if a write was done
3057 * @async: Boolean indicating asynchronously
3058 * @force: Boolean indicating use force update
3059 *
3060 * Perform a read/modify/write cycle on a register map with change, async, force
3061 * options.
3062 *
3063 * If async is true:
3064 *
3065 * With most buses the read must be done synchronously so this is most useful
3066 * for devices with a cache which do not need to interact with the hardware to
3067 * determine the current register value.
3068 *
3069 * Returns zero for success, a negative number on error.
3070 */
3071int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3072			    unsigned int mask, unsigned int val,
3073			    bool *change, bool async, bool force)
3074{
3075	int ret;
3076
3077	map->lock(map->lock_arg);
3078
3079	map->async = async;
3080
3081	ret = _regmap_update_bits(map, reg, mask, val, change, force);
3082
3083	map->async = false;
3084
3085	map->unlock(map->lock_arg);
3086
3087	return ret;
3088}
3089EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3090
3091/**
3092 * regmap_test_bits() - Check if all specified bits are set in a register.
3093 *
3094 * @map: Register map to operate on
3095 * @reg: Register to read from
3096 * @bits: Bits to test
3097 *
3098 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3099 * bits are set and a negative error number if the underlying regmap_read()
3100 * fails.
3101 */
3102int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3103{
3104	unsigned int val, ret;
3105
3106	ret = regmap_read(map, reg, &val);
3107	if (ret)
3108		return ret;
3109
3110	return (val & bits) == bits;
3111}
3112EXPORT_SYMBOL_GPL(regmap_test_bits);
3113
3114void regmap_async_complete_cb(struct regmap_async *async, int ret)
3115{
3116	struct regmap *map = async->map;
3117	bool wake;
3118
3119	trace_regmap_async_io_complete(map);
3120
3121	spin_lock(&map->async_lock);
3122	list_move(&async->list, &map->async_free);
3123	wake = list_empty(&map->async_list);
3124
3125	if (ret != 0)
3126		map->async_ret = ret;
3127
3128	spin_unlock(&map->async_lock);
3129
3130	if (wake)
3131		wake_up(&map->async_waitq);
3132}
3133EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3134
3135static int regmap_async_is_done(struct regmap *map)
3136{
3137	unsigned long flags;
3138	int ret;
3139
3140	spin_lock_irqsave(&map->async_lock, flags);
3141	ret = list_empty(&map->async_list);
3142	spin_unlock_irqrestore(&map->async_lock, flags);
3143
3144	return ret;
3145}
3146
3147/**
3148 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3149 *
3150 * @map: Map to operate on.
3151 *
3152 * Blocks until any pending asynchronous I/O has completed.  Returns
3153 * an error code for any failed I/O operations.
3154 */
3155int regmap_async_complete(struct regmap *map)
3156{
3157	unsigned long flags;
3158	int ret;
3159
3160	/* Nothing to do with no async support */
3161	if (!map->bus || !map->bus->async_write)
3162		return 0;
3163
3164	trace_regmap_async_complete_start(map);
3165
3166	wait_event(map->async_waitq, regmap_async_is_done(map));
3167
3168	spin_lock_irqsave(&map->async_lock, flags);
3169	ret = map->async_ret;
3170	map->async_ret = 0;
3171	spin_unlock_irqrestore(&map->async_lock, flags);
3172
3173	trace_regmap_async_complete_done(map);
3174
3175	return ret;
3176}
3177EXPORT_SYMBOL_GPL(regmap_async_complete);
3178
3179/**
3180 * regmap_register_patch - Register and apply register updates to be applied
3181 *                         on device initialistion
3182 *
3183 * @map: Register map to apply updates to.
3184 * @regs: Values to update.
3185 * @num_regs: Number of entries in regs.
3186 *
3187 * Register a set of register updates to be applied to the device
3188 * whenever the device registers are synchronised with the cache and
3189 * apply them immediately.  Typically this is used to apply
3190 * corrections to be applied to the device defaults on startup, such
3191 * as the updates some vendors provide to undocumented registers.
3192 *
3193 * The caller must ensure that this function cannot be called
3194 * concurrently with either itself or regcache_sync().
3195 */
3196int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3197			  int num_regs)
3198{
3199	struct reg_sequence *p;
3200	int ret;
3201	bool bypass;
3202
3203	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3204	    num_regs))
3205		return 0;
3206
3207	p = krealloc(map->patch,
3208		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3209		     GFP_KERNEL);
3210	if (p) {
3211		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3212		map->patch = p;
3213		map->patch_regs += num_regs;
3214	} else {
3215		return -ENOMEM;
3216	}
3217
3218	map->lock(map->lock_arg);
3219
3220	bypass = map->cache_bypass;
3221
3222	map->cache_bypass = true;
3223	map->async = true;
3224
3225	ret = _regmap_multi_reg_write(map, regs, num_regs);
3226
3227	map->async = false;
3228	map->cache_bypass = bypass;
3229
3230	map->unlock(map->lock_arg);
3231
3232	regmap_async_complete(map);
3233
3234	return ret;
3235}
3236EXPORT_SYMBOL_GPL(regmap_register_patch);
3237
3238/**
3239 * regmap_get_val_bytes() - Report the size of a register value
3240 *
3241 * @map: Register map to operate on.
3242 *
3243 * Report the size of a register value, mainly intended to for use by
3244 * generic infrastructure built on top of regmap.
3245 */
3246int regmap_get_val_bytes(struct regmap *map)
3247{
3248	if (map->format.format_write)
3249		return -EINVAL;
3250
3251	return map->format.val_bytes;
3252}
3253EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3254
3255/**
3256 * regmap_get_max_register() - Report the max register value
3257 *
3258 * @map: Register map to operate on.
3259 *
3260 * Report the max register value, mainly intended to for use by
3261 * generic infrastructure built on top of regmap.
3262 */
3263int regmap_get_max_register(struct regmap *map)
3264{
3265	return map->max_register ? map->max_register : -EINVAL;
3266}
3267EXPORT_SYMBOL_GPL(regmap_get_max_register);
3268
3269/**
3270 * regmap_get_reg_stride() - Report the register address stride
3271 *
3272 * @map: Register map to operate on.
3273 *
3274 * Report the register address stride, mainly intended to for use by
3275 * generic infrastructure built on top of regmap.
3276 */
3277int regmap_get_reg_stride(struct regmap *map)
3278{
3279	return map->reg_stride;
3280}
3281EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3282
3283int regmap_parse_val(struct regmap *map, const void *buf,
3284			unsigned int *val)
3285{
3286	if (!map->format.parse_val)
3287		return -EINVAL;
3288
3289	*val = map->format.parse_val(buf);
3290
3291	return 0;
3292}
3293EXPORT_SYMBOL_GPL(regmap_parse_val);
3294
3295static int __init regmap_initcall(void)
3296{
3297	regmap_debugfs_initcall();
3298
3299	return 0;
3300}
3301postcore_initcall(regmap_initcall);
3302