1// SPDX-License-Identifier: GPL-2.0 2// 3// regmap based irq_chip 4// 5// Copyright 2011 Wolfson Microelectronics plc 6// 7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com> 8 9#include <linux/device.h> 10#include <linux/export.h> 11#include <linux/interrupt.h> 12#include <linux/irq.h> 13#include <linux/irqdomain.h> 14#include <linux/pm_runtime.h> 15#include <linux/regmap.h> 16#include <linux/slab.h> 17 18#include "internal.h" 19 20struct regmap_irq_chip_data { 21 struct mutex lock; 22 struct irq_chip irq_chip; 23 24 struct regmap *map; 25 const struct regmap_irq_chip *chip; 26 27 int irq_base; 28 struct irq_domain *domain; 29 30 int irq; 31 int wake_count; 32 33 void *status_reg_buf; 34 unsigned int *main_status_buf; 35 unsigned int *status_buf; 36 unsigned int *mask_buf; 37 unsigned int *mask_buf_def; 38 unsigned int *wake_buf; 39 unsigned int *type_buf; 40 unsigned int *type_buf_def; 41 42 unsigned int irq_reg_stride; 43 unsigned int type_reg_stride; 44 45 bool clear_status:1; 46}; 47 48static inline const 49struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data, 50 int irq) 51{ 52 return &data->chip->irqs[irq]; 53} 54 55static void regmap_irq_lock(struct irq_data *data) 56{ 57 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 58 59 mutex_lock(&d->lock); 60} 61 62static int regmap_irq_update_bits(struct regmap_irq_chip_data *d, 63 unsigned int reg, unsigned int mask, 64 unsigned int val) 65{ 66 if (d->chip->mask_writeonly) 67 return regmap_write_bits(d->map, reg, mask, val); 68 else 69 return regmap_update_bits(d->map, reg, mask, val); 70} 71 72static void regmap_irq_sync_unlock(struct irq_data *data) 73{ 74 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 75 struct regmap *map = d->map; 76 int i, ret; 77 u32 reg; 78 u32 unmask_offset; 79 u32 val; 80 81 if (d->chip->runtime_pm) { 82 ret = pm_runtime_get_sync(map->dev); 83 if (ret < 0) 84 dev_err(map->dev, "IRQ sync failed to resume: %d\n", 85 ret); 86 } 87 88 if (d->clear_status) { 89 for (i = 0; i < d->chip->num_regs; i++) { 90 reg = d->chip->status_base + 91 (i * map->reg_stride * d->irq_reg_stride); 92 93 ret = regmap_read(map, reg, &val); 94 if (ret) 95 dev_err(d->map->dev, 96 "Failed to clear the interrupt status bits\n"); 97 } 98 99 d->clear_status = false; 100 } 101 102 /* 103 * If there's been a change in the mask write it back to the 104 * hardware. We rely on the use of the regmap core cache to 105 * suppress pointless writes. 106 */ 107 for (i = 0; i < d->chip->num_regs; i++) { 108 if (!d->chip->mask_base) 109 continue; 110 111 reg = d->chip->mask_base + 112 (i * map->reg_stride * d->irq_reg_stride); 113 if (d->chip->mask_invert) { 114 ret = regmap_irq_update_bits(d, reg, 115 d->mask_buf_def[i], ~d->mask_buf[i]); 116 } else if (d->chip->unmask_base) { 117 /* set mask with mask_base register */ 118 ret = regmap_irq_update_bits(d, reg, 119 d->mask_buf_def[i], ~d->mask_buf[i]); 120 if (ret < 0) 121 dev_err(d->map->dev, 122 "Failed to sync unmasks in %x\n", 123 reg); 124 unmask_offset = d->chip->unmask_base - 125 d->chip->mask_base; 126 /* clear mask with unmask_base register */ 127 ret = regmap_irq_update_bits(d, 128 reg + unmask_offset, 129 d->mask_buf_def[i], 130 d->mask_buf[i]); 131 } else { 132 ret = regmap_irq_update_bits(d, reg, 133 d->mask_buf_def[i], d->mask_buf[i]); 134 } 135 if (ret != 0) 136 dev_err(d->map->dev, "Failed to sync masks in %x\n", 137 reg); 138 139 reg = d->chip->wake_base + 140 (i * map->reg_stride * d->irq_reg_stride); 141 if (d->wake_buf) { 142 if (d->chip->wake_invert) 143 ret = regmap_irq_update_bits(d, reg, 144 d->mask_buf_def[i], 145 ~d->wake_buf[i]); 146 else 147 ret = regmap_irq_update_bits(d, reg, 148 d->mask_buf_def[i], 149 d->wake_buf[i]); 150 if (ret != 0) 151 dev_err(d->map->dev, 152 "Failed to sync wakes in %x: %d\n", 153 reg, ret); 154 } 155 156 if (!d->chip->init_ack_masked) 157 continue; 158 /* 159 * Ack all the masked interrupts unconditionally, 160 * OR if there is masked interrupt which hasn't been Acked, 161 * it'll be ignored in irq handler, then may introduce irq storm 162 */ 163 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) { 164 reg = d->chip->ack_base + 165 (i * map->reg_stride * d->irq_reg_stride); 166 /* some chips ack by write 0 */ 167 if (d->chip->ack_invert) 168 ret = regmap_write(map, reg, ~d->mask_buf[i]); 169 else 170 ret = regmap_write(map, reg, d->mask_buf[i]); 171 if (d->chip->clear_ack) { 172 if (d->chip->ack_invert && !ret) 173 ret = regmap_write(map, reg, UINT_MAX); 174 else if (!ret) 175 ret = regmap_write(map, reg, 0); 176 } 177 if (ret != 0) 178 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n", 179 reg, ret); 180 } 181 } 182 183 /* Don't update the type bits if we're using mask bits for irq type. */ 184 if (!d->chip->type_in_mask) { 185 for (i = 0; i < d->chip->num_type_reg; i++) { 186 if (!d->type_buf_def[i]) 187 continue; 188 reg = d->chip->type_base + 189 (i * map->reg_stride * d->type_reg_stride); 190 if (d->chip->type_invert) 191 ret = regmap_irq_update_bits(d, reg, 192 d->type_buf_def[i], ~d->type_buf[i]); 193 else 194 ret = regmap_irq_update_bits(d, reg, 195 d->type_buf_def[i], d->type_buf[i]); 196 if (ret != 0) 197 dev_err(d->map->dev, "Failed to sync type in %x\n", 198 reg); 199 } 200 } 201 202 if (d->chip->runtime_pm) 203 pm_runtime_put(map->dev); 204 205 /* If we've changed our wakeup count propagate it to the parent */ 206 if (d->wake_count < 0) 207 for (i = d->wake_count; i < 0; i++) 208 irq_set_irq_wake(d->irq, 0); 209 else if (d->wake_count > 0) 210 for (i = 0; i < d->wake_count; i++) 211 irq_set_irq_wake(d->irq, 1); 212 213 d->wake_count = 0; 214 215 mutex_unlock(&d->lock); 216} 217 218static void regmap_irq_enable(struct irq_data *data) 219{ 220 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 221 struct regmap *map = d->map; 222 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 223 unsigned int reg = irq_data->reg_offset / map->reg_stride; 224 unsigned int mask, type; 225 226 type = irq_data->type.type_falling_val | irq_data->type.type_rising_val; 227 228 /* 229 * The type_in_mask flag means that the underlying hardware uses 230 * separate mask bits for rising and falling edge interrupts, but 231 * we want to make them into a single virtual interrupt with 232 * configurable edge. 233 * 234 * If the interrupt we're enabling defines the falling or rising 235 * masks then instead of using the regular mask bits for this 236 * interrupt, use the value previously written to the type buffer 237 * at the corresponding offset in regmap_irq_set_type(). 238 */ 239 if (d->chip->type_in_mask && type) 240 mask = d->type_buf[reg] & irq_data->mask; 241 else 242 mask = irq_data->mask; 243 244 if (d->chip->clear_on_unmask) 245 d->clear_status = true; 246 247 d->mask_buf[reg] &= ~mask; 248} 249 250static void regmap_irq_disable(struct irq_data *data) 251{ 252 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 253 struct regmap *map = d->map; 254 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 255 256 d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask; 257} 258 259static int regmap_irq_set_type(struct irq_data *data, unsigned int type) 260{ 261 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 262 struct regmap *map = d->map; 263 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 264 int reg; 265 const struct regmap_irq_type *t = &irq_data->type; 266 267 if ((t->types_supported & type) != type) 268 return 0; 269 270 reg = t->type_reg_offset / map->reg_stride; 271 272 if (t->type_reg_mask) 273 d->type_buf[reg] &= ~t->type_reg_mask; 274 else 275 d->type_buf[reg] &= ~(t->type_falling_val | 276 t->type_rising_val | 277 t->type_level_low_val | 278 t->type_level_high_val); 279 switch (type) { 280 case IRQ_TYPE_EDGE_FALLING: 281 d->type_buf[reg] |= t->type_falling_val; 282 break; 283 284 case IRQ_TYPE_EDGE_RISING: 285 d->type_buf[reg] |= t->type_rising_val; 286 break; 287 288 case IRQ_TYPE_EDGE_BOTH: 289 d->type_buf[reg] |= (t->type_falling_val | 290 t->type_rising_val); 291 break; 292 293 case IRQ_TYPE_LEVEL_HIGH: 294 d->type_buf[reg] |= t->type_level_high_val; 295 break; 296 297 case IRQ_TYPE_LEVEL_LOW: 298 d->type_buf[reg] |= t->type_level_low_val; 299 break; 300 default: 301 return -EINVAL; 302 } 303 return 0; 304} 305 306static int regmap_irq_set_wake(struct irq_data *data, unsigned int on) 307{ 308 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 309 struct regmap *map = d->map; 310 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 311 312 if (on) { 313 if (d->wake_buf) 314 d->wake_buf[irq_data->reg_offset / map->reg_stride] 315 &= ~irq_data->mask; 316 d->wake_count++; 317 } else { 318 if (d->wake_buf) 319 d->wake_buf[irq_data->reg_offset / map->reg_stride] 320 |= irq_data->mask; 321 d->wake_count--; 322 } 323 324 return 0; 325} 326 327static const struct irq_chip regmap_irq_chip = { 328 .irq_bus_lock = regmap_irq_lock, 329 .irq_bus_sync_unlock = regmap_irq_sync_unlock, 330 .irq_disable = regmap_irq_disable, 331 .irq_enable = regmap_irq_enable, 332 .irq_set_type = regmap_irq_set_type, 333 .irq_set_wake = regmap_irq_set_wake, 334}; 335 336static inline int read_sub_irq_data(struct regmap_irq_chip_data *data, 337 unsigned int b) 338{ 339 const struct regmap_irq_chip *chip = data->chip; 340 struct regmap *map = data->map; 341 struct regmap_irq_sub_irq_map *subreg; 342 int i, ret = 0; 343 344 if (!chip->sub_reg_offsets) { 345 /* Assume linear mapping */ 346 ret = regmap_read(map, chip->status_base + 347 (b * map->reg_stride * data->irq_reg_stride), 348 &data->status_buf[b]); 349 } else { 350 subreg = &chip->sub_reg_offsets[b]; 351 for (i = 0; i < subreg->num_regs; i++) { 352 unsigned int offset = subreg->offset[i]; 353 354 ret = regmap_read(map, chip->status_base + offset, 355 &data->status_buf[offset]); 356 if (ret) 357 break; 358 } 359 } 360 return ret; 361} 362 363static irqreturn_t regmap_irq_thread(int irq, void *d) 364{ 365 struct regmap_irq_chip_data *data = d; 366 const struct regmap_irq_chip *chip = data->chip; 367 struct regmap *map = data->map; 368 int ret, i; 369 bool handled = false; 370 u32 reg; 371 372 if (chip->handle_pre_irq) 373 chip->handle_pre_irq(chip->irq_drv_data); 374 375 if (chip->runtime_pm) { 376 ret = pm_runtime_get_sync(map->dev); 377 if (ret < 0) { 378 dev_err(map->dev, "IRQ thread failed to resume: %d\n", 379 ret); 380 goto exit; 381 } 382 } 383 384 /* 385 * Read only registers with active IRQs if the chip has 'main status 386 * register'. Else read in the statuses, using a single bulk read if 387 * possible in order to reduce the I/O overheads. 388 */ 389 390 if (chip->num_main_regs) { 391 unsigned int max_main_bits; 392 unsigned long size; 393 394 size = chip->num_regs * sizeof(unsigned int); 395 396 max_main_bits = (chip->num_main_status_bits) ? 397 chip->num_main_status_bits : chip->num_regs; 398 /* Clear the status buf as we don't read all status regs */ 399 memset(data->status_buf, 0, size); 400 401 /* We could support bulk read for main status registers 402 * but I don't expect to see devices with really many main 403 * status registers so let's only support single reads for the 404 * sake of simplicity. and add bulk reads only if needed 405 */ 406 for (i = 0; i < chip->num_main_regs; i++) { 407 ret = regmap_read(map, chip->main_status + 408 (i * map->reg_stride 409 * data->irq_reg_stride), 410 &data->main_status_buf[i]); 411 if (ret) { 412 dev_err(map->dev, 413 "Failed to read IRQ status %d\n", 414 ret); 415 goto exit; 416 } 417 } 418 419 /* Read sub registers with active IRQs */ 420 for (i = 0; i < chip->num_main_regs; i++) { 421 unsigned int b; 422 const unsigned long mreg = data->main_status_buf[i]; 423 424 for_each_set_bit(b, &mreg, map->format.val_bytes * 8) { 425 if (i * map->format.val_bytes * 8 + b > 426 max_main_bits) 427 break; 428 ret = read_sub_irq_data(data, b); 429 430 if (ret != 0) { 431 dev_err(map->dev, 432 "Failed to read IRQ status %d\n", 433 ret); 434 goto exit; 435 } 436 } 437 438 } 439 } else if (!map->use_single_read && map->reg_stride == 1 && 440 data->irq_reg_stride == 1) { 441 442 u8 *buf8 = data->status_reg_buf; 443 u16 *buf16 = data->status_reg_buf; 444 u32 *buf32 = data->status_reg_buf; 445 446 BUG_ON(!data->status_reg_buf); 447 448 ret = regmap_bulk_read(map, chip->status_base, 449 data->status_reg_buf, 450 chip->num_regs); 451 if (ret != 0) { 452 dev_err(map->dev, "Failed to read IRQ status: %d\n", 453 ret); 454 goto exit; 455 } 456 457 for (i = 0; i < data->chip->num_regs; i++) { 458 switch (map->format.val_bytes) { 459 case 1: 460 data->status_buf[i] = buf8[i]; 461 break; 462 case 2: 463 data->status_buf[i] = buf16[i]; 464 break; 465 case 4: 466 data->status_buf[i] = buf32[i]; 467 break; 468 default: 469 BUG(); 470 goto exit; 471 } 472 } 473 474 } else { 475 for (i = 0; i < data->chip->num_regs; i++) { 476 ret = regmap_read(map, chip->status_base + 477 (i * map->reg_stride 478 * data->irq_reg_stride), 479 &data->status_buf[i]); 480 481 if (ret != 0) { 482 dev_err(map->dev, 483 "Failed to read IRQ status: %d\n", 484 ret); 485 goto exit; 486 } 487 } 488 } 489 490 /* 491 * Ignore masked IRQs and ack if we need to; we ack early so 492 * there is no race between handling and acknowleding the 493 * interrupt. We assume that typically few of the interrupts 494 * will fire simultaneously so don't worry about overhead from 495 * doing a write per register. 496 */ 497 for (i = 0; i < data->chip->num_regs; i++) { 498 data->status_buf[i] &= ~data->mask_buf[i]; 499 500 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) { 501 reg = chip->ack_base + 502 (i * map->reg_stride * data->irq_reg_stride); 503 if (chip->ack_invert) 504 ret = regmap_write(map, reg, 505 ~data->status_buf[i]); 506 else 507 ret = regmap_write(map, reg, 508 data->status_buf[i]); 509 if (chip->clear_ack) { 510 if (chip->ack_invert && !ret) 511 ret = regmap_write(map, reg, UINT_MAX); 512 else if (!ret) 513 ret = regmap_write(map, reg, 0); 514 } 515 if (ret != 0) 516 dev_err(map->dev, "Failed to ack 0x%x: %d\n", 517 reg, ret); 518 } 519 } 520 521 for (i = 0; i < chip->num_irqs; i++) { 522 if (data->status_buf[chip->irqs[i].reg_offset / 523 map->reg_stride] & chip->irqs[i].mask) { 524 handle_nested_irq(irq_find_mapping(data->domain, i)); 525 handled = true; 526 } 527 } 528 529exit: 530 if (chip->runtime_pm) 531 pm_runtime_put(map->dev); 532 533 if (chip->handle_post_irq) 534 chip->handle_post_irq(chip->irq_drv_data); 535 536 if (handled) 537 return IRQ_HANDLED; 538 else 539 return IRQ_NONE; 540} 541 542static int regmap_irq_map(struct irq_domain *h, unsigned int virq, 543 irq_hw_number_t hw) 544{ 545 struct regmap_irq_chip_data *data = h->host_data; 546 547 irq_set_chip_data(virq, data); 548 irq_set_chip(virq, &data->irq_chip); 549 irq_set_nested_thread(virq, 1); 550 irq_set_parent(virq, data->irq); 551 irq_set_noprobe(virq); 552 553 return 0; 554} 555 556static const struct irq_domain_ops regmap_domain_ops = { 557 .map = regmap_irq_map, 558 .xlate = irq_domain_xlate_onetwocell, 559}; 560 561/** 562 * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling 563 * 564 * @fwnode: The firmware node where the IRQ domain should be added to. 565 * @map: The regmap for the device. 566 * @irq: The IRQ the device uses to signal interrupts. 567 * @irq_flags: The IRQF_ flags to use for the primary interrupt. 568 * @irq_base: Allocate at specific IRQ number if irq_base > 0. 569 * @chip: Configuration for the interrupt controller. 570 * @data: Runtime data structure for the controller, allocated on success. 571 * 572 * Returns 0 on success or an errno on failure. 573 * 574 * In order for this to be efficient the chip really should use a 575 * register cache. The chip driver is responsible for restoring the 576 * register values used by the IRQ controller over suspend and resume. 577 */ 578int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode, 579 struct regmap *map, int irq, 580 int irq_flags, int irq_base, 581 const struct regmap_irq_chip *chip, 582 struct regmap_irq_chip_data **data) 583{ 584 struct regmap_irq_chip_data *d; 585 int i; 586 int ret = -ENOMEM; 587 int num_type_reg; 588 u32 reg; 589 u32 unmask_offset; 590 591 if (chip->num_regs <= 0) 592 return -EINVAL; 593 594 if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack)) 595 return -EINVAL; 596 597 for (i = 0; i < chip->num_irqs; i++) { 598 if (chip->irqs[i].reg_offset % map->reg_stride) 599 return -EINVAL; 600 if (chip->irqs[i].reg_offset / map->reg_stride >= 601 chip->num_regs) 602 return -EINVAL; 603 } 604 605 if (irq_base) { 606 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0); 607 if (irq_base < 0) { 608 dev_warn(map->dev, "Failed to allocate IRQs: %d\n", 609 irq_base); 610 return irq_base; 611 } 612 } 613 614 d = kzalloc(sizeof(*d), GFP_KERNEL); 615 if (!d) 616 return -ENOMEM; 617 618 if (chip->num_main_regs) { 619 d->main_status_buf = kcalloc(chip->num_main_regs, 620 sizeof(unsigned int), 621 GFP_KERNEL); 622 623 if (!d->main_status_buf) 624 goto err_alloc; 625 } 626 627 d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int), 628 GFP_KERNEL); 629 if (!d->status_buf) 630 goto err_alloc; 631 632 d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int), 633 GFP_KERNEL); 634 if (!d->mask_buf) 635 goto err_alloc; 636 637 d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int), 638 GFP_KERNEL); 639 if (!d->mask_buf_def) 640 goto err_alloc; 641 642 if (chip->wake_base) { 643 d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int), 644 GFP_KERNEL); 645 if (!d->wake_buf) 646 goto err_alloc; 647 } 648 649 num_type_reg = chip->type_in_mask ? chip->num_regs : chip->num_type_reg; 650 if (num_type_reg) { 651 d->type_buf_def = kcalloc(num_type_reg, 652 sizeof(unsigned int), GFP_KERNEL); 653 if (!d->type_buf_def) 654 goto err_alloc; 655 656 d->type_buf = kcalloc(num_type_reg, sizeof(unsigned int), 657 GFP_KERNEL); 658 if (!d->type_buf) 659 goto err_alloc; 660 } 661 662 d->irq_chip = regmap_irq_chip; 663 d->irq_chip.name = chip->name; 664 d->irq = irq; 665 d->map = map; 666 d->chip = chip; 667 d->irq_base = irq_base; 668 669 if (chip->irq_reg_stride) 670 d->irq_reg_stride = chip->irq_reg_stride; 671 else 672 d->irq_reg_stride = 1; 673 674 if (chip->type_reg_stride) 675 d->type_reg_stride = chip->type_reg_stride; 676 else 677 d->type_reg_stride = 1; 678 679 if (!map->use_single_read && map->reg_stride == 1 && 680 d->irq_reg_stride == 1) { 681 d->status_reg_buf = kmalloc_array(chip->num_regs, 682 map->format.val_bytes, 683 GFP_KERNEL); 684 if (!d->status_reg_buf) 685 goto err_alloc; 686 } 687 688 mutex_init(&d->lock); 689 690 for (i = 0; i < chip->num_irqs; i++) 691 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride] 692 |= chip->irqs[i].mask; 693 694 /* Mask all the interrupts by default */ 695 for (i = 0; i < chip->num_regs; i++) { 696 d->mask_buf[i] = d->mask_buf_def[i]; 697 if (!chip->mask_base) 698 continue; 699 700 reg = chip->mask_base + 701 (i * map->reg_stride * d->irq_reg_stride); 702 if (chip->mask_invert) 703 ret = regmap_irq_update_bits(d, reg, 704 d->mask_buf[i], ~d->mask_buf[i]); 705 else if (d->chip->unmask_base) { 706 unmask_offset = d->chip->unmask_base - 707 d->chip->mask_base; 708 ret = regmap_irq_update_bits(d, 709 reg + unmask_offset, 710 d->mask_buf[i], 711 d->mask_buf[i]); 712 } else 713 ret = regmap_irq_update_bits(d, reg, 714 d->mask_buf[i], d->mask_buf[i]); 715 if (ret != 0) { 716 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n", 717 reg, ret); 718 goto err_alloc; 719 } 720 721 if (!chip->init_ack_masked) 722 continue; 723 724 /* Ack masked but set interrupts */ 725 reg = chip->status_base + 726 (i * map->reg_stride * d->irq_reg_stride); 727 ret = regmap_read(map, reg, &d->status_buf[i]); 728 if (ret != 0) { 729 dev_err(map->dev, "Failed to read IRQ status: %d\n", 730 ret); 731 goto err_alloc; 732 } 733 734 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) { 735 reg = chip->ack_base + 736 (i * map->reg_stride * d->irq_reg_stride); 737 if (chip->ack_invert) 738 ret = regmap_write(map, reg, 739 ~(d->status_buf[i] & d->mask_buf[i])); 740 else 741 ret = regmap_write(map, reg, 742 d->status_buf[i] & d->mask_buf[i]); 743 if (chip->clear_ack) { 744 if (chip->ack_invert && !ret) 745 ret = regmap_write(map, reg, UINT_MAX); 746 else if (!ret) 747 ret = regmap_write(map, reg, 0); 748 } 749 if (ret != 0) { 750 dev_err(map->dev, "Failed to ack 0x%x: %d\n", 751 reg, ret); 752 goto err_alloc; 753 } 754 } 755 } 756 757 /* Wake is disabled by default */ 758 if (d->wake_buf) { 759 for (i = 0; i < chip->num_regs; i++) { 760 d->wake_buf[i] = d->mask_buf_def[i]; 761 reg = chip->wake_base + 762 (i * map->reg_stride * d->irq_reg_stride); 763 764 if (chip->wake_invert) 765 ret = regmap_irq_update_bits(d, reg, 766 d->mask_buf_def[i], 767 0); 768 else 769 ret = regmap_irq_update_bits(d, reg, 770 d->mask_buf_def[i], 771 d->wake_buf[i]); 772 if (ret != 0) { 773 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n", 774 reg, ret); 775 goto err_alloc; 776 } 777 } 778 } 779 780 if (chip->num_type_reg && !chip->type_in_mask) { 781 for (i = 0; i < chip->num_type_reg; ++i) { 782 reg = chip->type_base + 783 (i * map->reg_stride * d->type_reg_stride); 784 785 ret = regmap_read(map, reg, &d->type_buf_def[i]); 786 787 if (d->chip->type_invert) 788 d->type_buf_def[i] = ~d->type_buf_def[i]; 789 790 if (ret) { 791 dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n", 792 reg, ret); 793 goto err_alloc; 794 } 795 } 796 } 797 798 if (irq_base) 799 d->domain = irq_domain_add_legacy(to_of_node(fwnode), 800 chip->num_irqs, irq_base, 801 0, ®map_domain_ops, d); 802 else 803 d->domain = irq_domain_add_linear(to_of_node(fwnode), 804 chip->num_irqs, 805 ®map_domain_ops, d); 806 if (!d->domain) { 807 dev_err(map->dev, "Failed to create IRQ domain\n"); 808 ret = -ENOMEM; 809 goto err_alloc; 810 } 811 812 ret = request_threaded_irq(irq, NULL, regmap_irq_thread, 813 irq_flags | IRQF_ONESHOT, 814 chip->name, d); 815 if (ret != 0) { 816 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n", 817 irq, chip->name, ret); 818 goto err_domain; 819 } 820 821 *data = d; 822 823 return 0; 824 825err_domain: 826 /* Should really dispose of the domain but... */ 827err_alloc: 828 kfree(d->type_buf); 829 kfree(d->type_buf_def); 830 kfree(d->wake_buf); 831 kfree(d->mask_buf_def); 832 kfree(d->mask_buf); 833 kfree(d->status_buf); 834 kfree(d->status_reg_buf); 835 kfree(d); 836 return ret; 837} 838EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode); 839 840/** 841 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling 842 * 843 * @map: The regmap for the device. 844 * @irq: The IRQ the device uses to signal interrupts. 845 * @irq_flags: The IRQF_ flags to use for the primary interrupt. 846 * @irq_base: Allocate at specific IRQ number if irq_base > 0. 847 * @chip: Configuration for the interrupt controller. 848 * @data: Runtime data structure for the controller, allocated on success. 849 * 850 * Returns 0 on success or an errno on failure. 851 * 852 * This is the same as regmap_add_irq_chip_fwnode, except that the firmware 853 * node of the regmap is used. 854 */ 855int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags, 856 int irq_base, const struct regmap_irq_chip *chip, 857 struct regmap_irq_chip_data **data) 858{ 859 return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq, 860 irq_flags, irq_base, chip, data); 861} 862EXPORT_SYMBOL_GPL(regmap_add_irq_chip); 863 864/** 865 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip 866 * 867 * @irq: Primary IRQ for the device 868 * @d: ®map_irq_chip_data allocated by regmap_add_irq_chip() 869 * 870 * This function also disposes of all mapped IRQs on the chip. 871 */ 872void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d) 873{ 874 unsigned int virq; 875 int hwirq; 876 877 if (!d) 878 return; 879 880 free_irq(irq, d); 881 882 /* Dispose all virtual irq from irq domain before removing it */ 883 for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) { 884 /* Ignore hwirq if holes in the IRQ list */ 885 if (!d->chip->irqs[hwirq].mask) 886 continue; 887 888 /* 889 * Find the virtual irq of hwirq on chip and if it is 890 * there then dispose it 891 */ 892 virq = irq_find_mapping(d->domain, hwirq); 893 if (virq) 894 irq_dispose_mapping(virq); 895 } 896 897 irq_domain_remove(d->domain); 898 kfree(d->type_buf); 899 kfree(d->type_buf_def); 900 kfree(d->wake_buf); 901 kfree(d->mask_buf_def); 902 kfree(d->mask_buf); 903 kfree(d->status_reg_buf); 904 kfree(d->status_buf); 905 kfree(d); 906} 907EXPORT_SYMBOL_GPL(regmap_del_irq_chip); 908 909static void devm_regmap_irq_chip_release(struct device *dev, void *res) 910{ 911 struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res; 912 913 regmap_del_irq_chip(d->irq, d); 914} 915 916static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data) 917 918{ 919 struct regmap_irq_chip_data **r = res; 920 921 if (!r || !*r) { 922 WARN_ON(!r || !*r); 923 return 0; 924 } 925 return *r == data; 926} 927 928/** 929 * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode() 930 * 931 * @dev: The device pointer on which irq_chip belongs to. 932 * @fwnode: The firmware node where the IRQ domain should be added to. 933 * @map: The regmap for the device. 934 * @irq: The IRQ the device uses to signal interrupts 935 * @irq_flags: The IRQF_ flags to use for the primary interrupt. 936 * @irq_base: Allocate at specific IRQ number if irq_base > 0. 937 * @chip: Configuration for the interrupt controller. 938 * @data: Runtime data structure for the controller, allocated on success 939 * 940 * Returns 0 on success or an errno on failure. 941 * 942 * The ®map_irq_chip_data will be automatically released when the device is 943 * unbound. 944 */ 945int devm_regmap_add_irq_chip_fwnode(struct device *dev, 946 struct fwnode_handle *fwnode, 947 struct regmap *map, int irq, 948 int irq_flags, int irq_base, 949 const struct regmap_irq_chip *chip, 950 struct regmap_irq_chip_data **data) 951{ 952 struct regmap_irq_chip_data **ptr, *d; 953 int ret; 954 955 ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr), 956 GFP_KERNEL); 957 if (!ptr) 958 return -ENOMEM; 959 960 ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base, 961 chip, &d); 962 if (ret < 0) { 963 devres_free(ptr); 964 return ret; 965 } 966 967 *ptr = d; 968 devres_add(dev, ptr); 969 *data = d; 970 return 0; 971} 972EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode); 973 974/** 975 * devm_regmap_add_irq_chip() - Resource manager regmap_add_irq_chip() 976 * 977 * @dev: The device pointer on which irq_chip belongs to. 978 * @map: The regmap for the device. 979 * @irq: The IRQ the device uses to signal interrupts 980 * @irq_flags: The IRQF_ flags to use for the primary interrupt. 981 * @irq_base: Allocate at specific IRQ number if irq_base > 0. 982 * @chip: Configuration for the interrupt controller. 983 * @data: Runtime data structure for the controller, allocated on success 984 * 985 * Returns 0 on success or an errno on failure. 986 * 987 * The ®map_irq_chip_data will be automatically released when the device is 988 * unbound. 989 */ 990int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq, 991 int irq_flags, int irq_base, 992 const struct regmap_irq_chip *chip, 993 struct regmap_irq_chip_data **data) 994{ 995 return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map, 996 irq, irq_flags, irq_base, chip, 997 data); 998} 999EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip); 1000 1001/** 1002 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip() 1003 * 1004 * @dev: Device for which which resource was allocated. 1005 * @irq: Primary IRQ for the device. 1006 * @data: ®map_irq_chip_data allocated by regmap_add_irq_chip(). 1007 * 1008 * A resource managed version of regmap_del_irq_chip(). 1009 */ 1010void devm_regmap_del_irq_chip(struct device *dev, int irq, 1011 struct regmap_irq_chip_data *data) 1012{ 1013 int rc; 1014 1015 WARN_ON(irq != data->irq); 1016 rc = devres_release(dev, devm_regmap_irq_chip_release, 1017 devm_regmap_irq_chip_match, data); 1018 1019 if (rc != 0) 1020 WARN_ON(rc); 1021} 1022EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip); 1023 1024/** 1025 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip 1026 * 1027 * @data: regmap irq controller to operate on. 1028 * 1029 * Useful for drivers to request their own IRQs. 1030 */ 1031int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data) 1032{ 1033 WARN_ON(!data->irq_base); 1034 return data->irq_base; 1035} 1036EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base); 1037 1038/** 1039 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ 1040 * 1041 * @data: regmap irq controller to operate on. 1042 * @irq: index of the interrupt requested in the chip IRQs. 1043 * 1044 * Useful for drivers to request their own IRQs. 1045 */ 1046int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq) 1047{ 1048 /* Handle holes in the IRQ list */ 1049 if (!data->chip->irqs[irq].mask) 1050 return -EINVAL; 1051 1052 return irq_create_mapping(data->domain, irq); 1053} 1054EXPORT_SYMBOL_GPL(regmap_irq_get_virq); 1055 1056/** 1057 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip 1058 * 1059 * @data: regmap_irq controller to operate on. 1060 * 1061 * Useful for drivers to request their own IRQs and for integration 1062 * with subsystems. For ease of integration NULL is accepted as a 1063 * domain, allowing devices to just call this even if no domain is 1064 * allocated. 1065 */ 1066struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data) 1067{ 1068 if (data) 1069 return data->domain; 1070 else 1071 return NULL; 1072} 1073EXPORT_SYMBOL_GPL(regmap_irq_get_domain); 1074