1// SPDX-License-Identifier: GPL-2.0
2/*
3 * property.c - Unified device property interface.
4 *
5 * Copyright (C) 2014, Intel Corporation
6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 *          Mika Westerberg <mika.westerberg@linux.intel.com>
8 */
9
10#include <linux/acpi.h>
11#include <linux/export.h>
12#include <linux/kernel.h>
13#include <linux/of.h>
14#include <linux/of_address.h>
15#include <linux/of_graph.h>
16#include <linux/of_irq.h>
17#include <linux/property.h>
18#include <linux/etherdevice.h>
19#include <linux/phy.h>
20
21struct fwnode_handle *dev_fwnode(struct device *dev)
22{
23	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
24		&dev->of_node->fwnode : dev->fwnode;
25}
26EXPORT_SYMBOL_GPL(dev_fwnode);
27
28/**
29 * device_property_present - check if a property of a device is present
30 * @dev: Device whose property is being checked
31 * @propname: Name of the property
32 *
33 * Check if property @propname is present in the device firmware description.
34 */
35bool device_property_present(struct device *dev, const char *propname)
36{
37	return fwnode_property_present(dev_fwnode(dev), propname);
38}
39EXPORT_SYMBOL_GPL(device_property_present);
40
41/**
42 * fwnode_property_present - check if a property of a firmware node is present
43 * @fwnode: Firmware node whose property to check
44 * @propname: Name of the property
45 */
46bool fwnode_property_present(const struct fwnode_handle *fwnode,
47			     const char *propname)
48{
49	bool ret;
50
51	ret = fwnode_call_bool_op(fwnode, property_present, propname);
52	if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
53	    !IS_ERR_OR_NULL(fwnode->secondary))
54		ret = fwnode_call_bool_op(fwnode->secondary, property_present,
55					 propname);
56	return ret;
57}
58EXPORT_SYMBOL_GPL(fwnode_property_present);
59
60/**
61 * device_property_read_u8_array - return a u8 array property of a device
62 * @dev: Device to get the property of
63 * @propname: Name of the property
64 * @val: The values are stored here or %NULL to return the number of values
65 * @nval: Size of the @val array
66 *
67 * Function reads an array of u8 properties with @propname from the device
68 * firmware description and stores them to @val if found.
69 *
70 * Return: number of values if @val was %NULL,
71 *         %0 if the property was found (success),
72 *	   %-EINVAL if given arguments are not valid,
73 *	   %-ENODATA if the property does not have a value,
74 *	   %-EPROTO if the property is not an array of numbers,
75 *	   %-EOVERFLOW if the size of the property is not as expected.
76 *	   %-ENXIO if no suitable firmware interface is present.
77 */
78int device_property_read_u8_array(struct device *dev, const char *propname,
79				  u8 *val, size_t nval)
80{
81	return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
82}
83EXPORT_SYMBOL_GPL(device_property_read_u8_array);
84
85/**
86 * device_property_read_u16_array - return a u16 array property of a device
87 * @dev: Device to get the property of
88 * @propname: Name of the property
89 * @val: The values are stored here or %NULL to return the number of values
90 * @nval: Size of the @val array
91 *
92 * Function reads an array of u16 properties with @propname from the device
93 * firmware description and stores them to @val if found.
94 *
95 * Return: number of values if @val was %NULL,
96 *         %0 if the property was found (success),
97 *	   %-EINVAL if given arguments are not valid,
98 *	   %-ENODATA if the property does not have a value,
99 *	   %-EPROTO if the property is not an array of numbers,
100 *	   %-EOVERFLOW if the size of the property is not as expected.
101 *	   %-ENXIO if no suitable firmware interface is present.
102 */
103int device_property_read_u16_array(struct device *dev, const char *propname,
104				   u16 *val, size_t nval)
105{
106	return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
107}
108EXPORT_SYMBOL_GPL(device_property_read_u16_array);
109
110/**
111 * device_property_read_u32_array - return a u32 array property of a device
112 * @dev: Device to get the property of
113 * @propname: Name of the property
114 * @val: The values are stored here or %NULL to return the number of values
115 * @nval: Size of the @val array
116 *
117 * Function reads an array of u32 properties with @propname from the device
118 * firmware description and stores them to @val if found.
119 *
120 * Return: number of values if @val was %NULL,
121 *         %0 if the property was found (success),
122 *	   %-EINVAL if given arguments are not valid,
123 *	   %-ENODATA if the property does not have a value,
124 *	   %-EPROTO if the property is not an array of numbers,
125 *	   %-EOVERFLOW if the size of the property is not as expected.
126 *	   %-ENXIO if no suitable firmware interface is present.
127 */
128int device_property_read_u32_array(struct device *dev, const char *propname,
129				   u32 *val, size_t nval)
130{
131	return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
132}
133EXPORT_SYMBOL_GPL(device_property_read_u32_array);
134
135/**
136 * device_property_read_u64_array - return a u64 array property of a device
137 * @dev: Device to get the property of
138 * @propname: Name of the property
139 * @val: The values are stored here or %NULL to return the number of values
140 * @nval: Size of the @val array
141 *
142 * Function reads an array of u64 properties with @propname from the device
143 * firmware description and stores them to @val if found.
144 *
145 * Return: number of values if @val was %NULL,
146 *         %0 if the property was found (success),
147 *	   %-EINVAL if given arguments are not valid,
148 *	   %-ENODATA if the property does not have a value,
149 *	   %-EPROTO if the property is not an array of numbers,
150 *	   %-EOVERFLOW if the size of the property is not as expected.
151 *	   %-ENXIO if no suitable firmware interface is present.
152 */
153int device_property_read_u64_array(struct device *dev, const char *propname,
154				   u64 *val, size_t nval)
155{
156	return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
157}
158EXPORT_SYMBOL_GPL(device_property_read_u64_array);
159
160/**
161 * device_property_read_string_array - return a string array property of device
162 * @dev: Device to get the property of
163 * @propname: Name of the property
164 * @val: The values are stored here or %NULL to return the number of values
165 * @nval: Size of the @val array
166 *
167 * Function reads an array of string properties with @propname from the device
168 * firmware description and stores them to @val if found.
169 *
170 * Return: number of values read on success if @val is non-NULL,
171 *	   number of values available on success if @val is NULL,
172 *	   %-EINVAL if given arguments are not valid,
173 *	   %-ENODATA if the property does not have a value,
174 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
175 *	   %-EOVERFLOW if the size of the property is not as expected.
176 *	   %-ENXIO if no suitable firmware interface is present.
177 */
178int device_property_read_string_array(struct device *dev, const char *propname,
179				      const char **val, size_t nval)
180{
181	return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
182}
183EXPORT_SYMBOL_GPL(device_property_read_string_array);
184
185/**
186 * device_property_read_string - return a string property of a device
187 * @dev: Device to get the property of
188 * @propname: Name of the property
189 * @val: The value is stored here
190 *
191 * Function reads property @propname from the device firmware description and
192 * stores the value into @val if found. The value is checked to be a string.
193 *
194 * Return: %0 if the property was found (success),
195 *	   %-EINVAL if given arguments are not valid,
196 *	   %-ENODATA if the property does not have a value,
197 *	   %-EPROTO or %-EILSEQ if the property type is not a string.
198 *	   %-ENXIO if no suitable firmware interface is present.
199 */
200int device_property_read_string(struct device *dev, const char *propname,
201				const char **val)
202{
203	return fwnode_property_read_string(dev_fwnode(dev), propname, val);
204}
205EXPORT_SYMBOL_GPL(device_property_read_string);
206
207/**
208 * device_property_match_string - find a string in an array and return index
209 * @dev: Device to get the property of
210 * @propname: Name of the property holding the array
211 * @string: String to look for
212 *
213 * Find a given string in a string array and if it is found return the
214 * index back.
215 *
216 * Return: %0 if the property was found (success),
217 *	   %-EINVAL if given arguments are not valid,
218 *	   %-ENODATA if the property does not have a value,
219 *	   %-EPROTO if the property is not an array of strings,
220 *	   %-ENXIO if no suitable firmware interface is present.
221 */
222int device_property_match_string(struct device *dev, const char *propname,
223				 const char *string)
224{
225	return fwnode_property_match_string(dev_fwnode(dev), propname, string);
226}
227EXPORT_SYMBOL_GPL(device_property_match_string);
228
229static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
230					  const char *propname,
231					  unsigned int elem_size, void *val,
232					  size_t nval)
233{
234	int ret;
235
236	ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
237				 elem_size, val, nval);
238	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
239	    !IS_ERR_OR_NULL(fwnode->secondary))
240		ret = fwnode_call_int_op(
241			fwnode->secondary, property_read_int_array, propname,
242			elem_size, val, nval);
243
244	return ret;
245}
246
247/**
248 * fwnode_property_read_u8_array - return a u8 array property of firmware node
249 * @fwnode: Firmware node to get the property of
250 * @propname: Name of the property
251 * @val: The values are stored here or %NULL to return the number of values
252 * @nval: Size of the @val array
253 *
254 * Read an array of u8 properties with @propname from @fwnode and stores them to
255 * @val if found.
256 *
257 * Return: number of values if @val was %NULL,
258 *         %0 if the property was found (success),
259 *	   %-EINVAL if given arguments are not valid,
260 *	   %-ENODATA if the property does not have a value,
261 *	   %-EPROTO if the property is not an array of numbers,
262 *	   %-EOVERFLOW if the size of the property is not as expected,
263 *	   %-ENXIO if no suitable firmware interface is present.
264 */
265int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
266				  const char *propname, u8 *val, size_t nval)
267{
268	return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
269					      val, nval);
270}
271EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
272
273/**
274 * fwnode_property_read_u16_array - return a u16 array property of firmware node
275 * @fwnode: Firmware node to get the property of
276 * @propname: Name of the property
277 * @val: The values are stored here or %NULL to return the number of values
278 * @nval: Size of the @val array
279 *
280 * Read an array of u16 properties with @propname from @fwnode and store them to
281 * @val if found.
282 *
283 * Return: number of values if @val was %NULL,
284 *         %0 if the property was found (success),
285 *	   %-EINVAL if given arguments are not valid,
286 *	   %-ENODATA if the property does not have a value,
287 *	   %-EPROTO if the property is not an array of numbers,
288 *	   %-EOVERFLOW if the size of the property is not as expected,
289 *	   %-ENXIO if no suitable firmware interface is present.
290 */
291int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
292				   const char *propname, u16 *val, size_t nval)
293{
294	return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
295					      val, nval);
296}
297EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
298
299/**
300 * fwnode_property_read_u32_array - return a u32 array property of firmware node
301 * @fwnode: Firmware node to get the property of
302 * @propname: Name of the property
303 * @val: The values are stored here or %NULL to return the number of values
304 * @nval: Size of the @val array
305 *
306 * Read an array of u32 properties with @propname from @fwnode store them to
307 * @val if found.
308 *
309 * Return: number of values if @val was %NULL,
310 *         %0 if the property was found (success),
311 *	   %-EINVAL if given arguments are not valid,
312 *	   %-ENODATA if the property does not have a value,
313 *	   %-EPROTO if the property is not an array of numbers,
314 *	   %-EOVERFLOW if the size of the property is not as expected,
315 *	   %-ENXIO if no suitable firmware interface is present.
316 */
317int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
318				   const char *propname, u32 *val, size_t nval)
319{
320	return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
321					      val, nval);
322}
323EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
324
325/**
326 * fwnode_property_read_u64_array - return a u64 array property firmware node
327 * @fwnode: Firmware node to get the property of
328 * @propname: Name of the property
329 * @val: The values are stored here or %NULL to return the number of values
330 * @nval: Size of the @val array
331 *
332 * Read an array of u64 properties with @propname from @fwnode and store them to
333 * @val if found.
334 *
335 * Return: number of values if @val was %NULL,
336 *         %0 if the property was found (success),
337 *	   %-EINVAL if given arguments are not valid,
338 *	   %-ENODATA if the property does not have a value,
339 *	   %-EPROTO if the property is not an array of numbers,
340 *	   %-EOVERFLOW if the size of the property is not as expected,
341 *	   %-ENXIO if no suitable firmware interface is present.
342 */
343int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
344				   const char *propname, u64 *val, size_t nval)
345{
346	return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
347					      val, nval);
348}
349EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
350
351/**
352 * fwnode_property_read_string_array - return string array property of a node
353 * @fwnode: Firmware node to get the property of
354 * @propname: Name of the property
355 * @val: The values are stored here or %NULL to return the number of values
356 * @nval: Size of the @val array
357 *
358 * Read an string list property @propname from the given firmware node and store
359 * them to @val if found.
360 *
361 * Return: number of values read on success if @val is non-NULL,
362 *	   number of values available on success if @val is NULL,
363 *	   %-EINVAL if given arguments are not valid,
364 *	   %-ENODATA if the property does not have a value,
365 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
366 *	   %-EOVERFLOW if the size of the property is not as expected,
367 *	   %-ENXIO if no suitable firmware interface is present.
368 */
369int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
370				      const char *propname, const char **val,
371				      size_t nval)
372{
373	int ret;
374
375	ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
376				 val, nval);
377	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
378	    !IS_ERR_OR_NULL(fwnode->secondary))
379		ret = fwnode_call_int_op(fwnode->secondary,
380					 property_read_string_array, propname,
381					 val, nval);
382	return ret;
383}
384EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
385
386/**
387 * fwnode_property_read_string - return a string property of a firmware node
388 * @fwnode: Firmware node to get the property of
389 * @propname: Name of the property
390 * @val: The value is stored here
391 *
392 * Read property @propname from the given firmware node and store the value into
393 * @val if found.  The value is checked to be a string.
394 *
395 * Return: %0 if the property was found (success),
396 *	   %-EINVAL if given arguments are not valid,
397 *	   %-ENODATA if the property does not have a value,
398 *	   %-EPROTO or %-EILSEQ if the property is not a string,
399 *	   %-ENXIO if no suitable firmware interface is present.
400 */
401int fwnode_property_read_string(const struct fwnode_handle *fwnode,
402				const char *propname, const char **val)
403{
404	int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
405
406	return ret < 0 ? ret : 0;
407}
408EXPORT_SYMBOL_GPL(fwnode_property_read_string);
409
410/**
411 * fwnode_property_match_string - find a string in an array and return index
412 * @fwnode: Firmware node to get the property of
413 * @propname: Name of the property holding the array
414 * @string: String to look for
415 *
416 * Find a given string in a string array and if it is found return the
417 * index back.
418 *
419 * Return: %0 if the property was found (success),
420 *	   %-EINVAL if given arguments are not valid,
421 *	   %-ENODATA if the property does not have a value,
422 *	   %-EPROTO if the property is not an array of strings,
423 *	   %-ENXIO if no suitable firmware interface is present.
424 */
425int fwnode_property_match_string(const struct fwnode_handle *fwnode,
426	const char *propname, const char *string)
427{
428	const char **values;
429	int nval, ret;
430
431	nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
432	if (nval < 0)
433		return nval;
434
435	if (nval == 0)
436		return -ENODATA;
437
438	values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
439	if (!values)
440		return -ENOMEM;
441
442	ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
443	if (ret < 0)
444		goto out;
445
446	ret = match_string(values, nval, string);
447	if (ret < 0)
448		ret = -ENODATA;
449out:
450	kfree(values);
451	return ret;
452}
453EXPORT_SYMBOL_GPL(fwnode_property_match_string);
454
455/**
456 * fwnode_property_get_reference_args() - Find a reference with arguments
457 * @fwnode:	Firmware node where to look for the reference
458 * @prop:	The name of the property
459 * @nargs_prop:	The name of the property telling the number of
460 *		arguments in the referred node. NULL if @nargs is known,
461 *		otherwise @nargs is ignored. Only relevant on OF.
462 * @nargs:	Number of arguments. Ignored if @nargs_prop is non-NULL.
463 * @index:	Index of the reference, from zero onwards.
464 * @args:	Result structure with reference and integer arguments.
465 *
466 * Obtain a reference based on a named property in an fwnode, with
467 * integer arguments.
468 *
469 * Caller is responsible to call fwnode_handle_put() on the returned
470 * args->fwnode pointer.
471 *
472 * Returns: %0 on success
473 *	    %-ENOENT when the index is out of bounds, the index has an empty
474 *		     reference or the property was not found
475 *	    %-EINVAL on parse error
476 */
477int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
478				       const char *prop, const char *nargs_prop,
479				       unsigned int nargs, unsigned int index,
480				       struct fwnode_reference_args *args)
481{
482	return fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
483				  nargs, index, args);
484}
485EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
486
487/**
488 * fwnode_find_reference - Find named reference to a fwnode_handle
489 * @fwnode: Firmware node where to look for the reference
490 * @name: The name of the reference
491 * @index: Index of the reference
492 *
493 * @index can be used when the named reference holds a table of references.
494 *
495 * Returns pointer to the reference fwnode, or ERR_PTR. Caller is responsible to
496 * call fwnode_handle_put() on the returned fwnode pointer.
497 */
498struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode,
499					    const char *name,
500					    unsigned int index)
501{
502	struct fwnode_reference_args args;
503	int ret;
504
505	ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index,
506						 &args);
507	return ret ? ERR_PTR(ret) : args.fwnode;
508}
509EXPORT_SYMBOL_GPL(fwnode_find_reference);
510
511/**
512 * device_remove_properties - Remove properties from a device object.
513 * @dev: Device whose properties to remove.
514 *
515 * The function removes properties previously associated to the device
516 * firmware node with device_add_properties(). Memory allocated to the
517 * properties will also be released.
518 */
519void device_remove_properties(struct device *dev)
520{
521	struct fwnode_handle *fwnode = dev_fwnode(dev);
522
523	if (!fwnode)
524		return;
525
526	if (is_software_node(fwnode->secondary)) {
527		fwnode_remove_software_node(fwnode->secondary);
528		set_secondary_fwnode(dev, NULL);
529	}
530}
531EXPORT_SYMBOL_GPL(device_remove_properties);
532
533/**
534 * device_add_properties - Add a collection of properties to a device object.
535 * @dev: Device to add properties to.
536 * @properties: Collection of properties to add.
537 *
538 * Associate a collection of device properties represented by @properties with
539 * @dev. The function takes a copy of @properties.
540 *
541 * WARNING: The callers should not use this function if it is known that there
542 * is no real firmware node associated with @dev! In that case the callers
543 * should create a software node and assign it to @dev directly.
544 */
545int device_add_properties(struct device *dev,
546			  const struct property_entry *properties)
547{
548	struct fwnode_handle *fwnode;
549
550	fwnode = fwnode_create_software_node(properties, NULL);
551	if (IS_ERR(fwnode))
552		return PTR_ERR(fwnode);
553
554	set_secondary_fwnode(dev, fwnode);
555	return 0;
556}
557EXPORT_SYMBOL_GPL(device_add_properties);
558
559/**
560 * fwnode_get_name - Return the name of a node
561 * @fwnode: The firmware node
562 *
563 * Returns a pointer to the node name.
564 */
565const char *fwnode_get_name(const struct fwnode_handle *fwnode)
566{
567	return fwnode_call_ptr_op(fwnode, get_name);
568}
569EXPORT_SYMBOL_GPL(fwnode_get_name);
570
571/**
572 * fwnode_get_name_prefix - Return the prefix of node for printing purposes
573 * @fwnode: The firmware node
574 *
575 * Returns the prefix of a node, intended to be printed right before the node.
576 * The prefix works also as a separator between the nodes.
577 */
578const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
579{
580	return fwnode_call_ptr_op(fwnode, get_name_prefix);
581}
582
583/**
584 * fwnode_get_parent - Return parent firwmare node
585 * @fwnode: Firmware whose parent is retrieved
586 *
587 * Return parent firmware node of the given node if possible or %NULL if no
588 * parent was available.
589 */
590struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
591{
592	return fwnode_call_ptr_op(fwnode, get_parent);
593}
594EXPORT_SYMBOL_GPL(fwnode_get_parent);
595
596/**
597 * fwnode_get_next_parent - Iterate to the node's parent
598 * @fwnode: Firmware whose parent is retrieved
599 *
600 * This is like fwnode_get_parent() except that it drops the refcount
601 * on the passed node, making it suitable for iterating through a
602 * node's parents.
603 *
604 * Returns a node pointer with refcount incremented, use
605 * fwnode_handle_node() on it when done.
606 */
607struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
608{
609	struct fwnode_handle *parent = fwnode_get_parent(fwnode);
610
611	fwnode_handle_put(fwnode);
612
613	return parent;
614}
615EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
616
617/**
618 * fwnode_count_parents - Return the number of parents a node has
619 * @fwnode: The node the parents of which are to be counted
620 *
621 * Returns the number of parents a node has.
622 */
623unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode)
624{
625	struct fwnode_handle *__fwnode;
626	unsigned int count;
627
628	__fwnode = fwnode_get_parent(fwnode);
629
630	for (count = 0; __fwnode; count++)
631		__fwnode = fwnode_get_next_parent(__fwnode);
632
633	return count;
634}
635EXPORT_SYMBOL_GPL(fwnode_count_parents);
636
637/**
638 * fwnode_get_nth_parent - Return an nth parent of a node
639 * @fwnode: The node the parent of which is requested
640 * @depth: Distance of the parent from the node
641 *
642 * Returns the nth parent of a node. If there is no parent at the requested
643 * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to
644 * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on.
645 *
646 * The caller is responsible for calling fwnode_handle_put() for the returned
647 * node.
648 */
649struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode,
650					    unsigned int depth)
651{
652	unsigned int i;
653
654	fwnode_handle_get(fwnode);
655
656	for (i = 0; i < depth && fwnode; i++)
657		fwnode = fwnode_get_next_parent(fwnode);
658
659	return fwnode;
660}
661EXPORT_SYMBOL_GPL(fwnode_get_nth_parent);
662
663/**
664 * fwnode_get_next_child_node - Return the next child node handle for a node
665 * @fwnode: Firmware node to find the next child node for.
666 * @child: Handle to one of the node's child nodes or a %NULL handle.
667 */
668struct fwnode_handle *
669fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
670			   struct fwnode_handle *child)
671{
672	return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
673}
674EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
675
676/**
677 * fwnode_get_next_available_child_node - Return the next
678 * available child node handle for a node
679 * @fwnode: Firmware node to find the next child node for.
680 * @child: Handle to one of the node's child nodes or a %NULL handle.
681 */
682struct fwnode_handle *
683fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
684				     struct fwnode_handle *child)
685{
686	struct fwnode_handle *next_child = child;
687
688	if (!fwnode)
689		return NULL;
690
691	do {
692		next_child = fwnode_get_next_child_node(fwnode, next_child);
693
694		if (!next_child || fwnode_device_is_available(next_child))
695			break;
696	} while (next_child);
697
698	return next_child;
699}
700EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
701
702/**
703 * device_get_next_child_node - Return the next child node handle for a device
704 * @dev: Device to find the next child node for.
705 * @child: Handle to one of the device's child nodes or a null handle.
706 */
707struct fwnode_handle *device_get_next_child_node(struct device *dev,
708						 struct fwnode_handle *child)
709{
710	struct acpi_device *adev = ACPI_COMPANION(dev);
711	struct fwnode_handle *fwnode = NULL, *next;
712
713	if (dev->of_node)
714		fwnode = &dev->of_node->fwnode;
715	else if (adev)
716		fwnode = acpi_fwnode_handle(adev);
717
718	/* Try to find a child in primary fwnode */
719	next = fwnode_get_next_child_node(fwnode, child);
720	if (next)
721		return next;
722
723	/* When no more children in primary, continue with secondary */
724	if (fwnode && !IS_ERR_OR_NULL(fwnode->secondary))
725		next = fwnode_get_next_child_node(fwnode->secondary, child);
726
727	return next;
728}
729EXPORT_SYMBOL_GPL(device_get_next_child_node);
730
731/**
732 * fwnode_get_named_child_node - Return first matching named child node handle
733 * @fwnode: Firmware node to find the named child node for.
734 * @childname: String to match child node name against.
735 */
736struct fwnode_handle *
737fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
738			    const char *childname)
739{
740	return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
741}
742EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
743
744/**
745 * device_get_named_child_node - Return first matching named child node handle
746 * @dev: Device to find the named child node for.
747 * @childname: String to match child node name against.
748 */
749struct fwnode_handle *device_get_named_child_node(struct device *dev,
750						  const char *childname)
751{
752	return fwnode_get_named_child_node(dev_fwnode(dev), childname);
753}
754EXPORT_SYMBOL_GPL(device_get_named_child_node);
755
756/**
757 * fwnode_handle_get - Obtain a reference to a device node
758 * @fwnode: Pointer to the device node to obtain the reference to.
759 *
760 * Returns the fwnode handle.
761 */
762struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
763{
764	if (!fwnode_has_op(fwnode, get))
765		return fwnode;
766
767	return fwnode_call_ptr_op(fwnode, get);
768}
769EXPORT_SYMBOL_GPL(fwnode_handle_get);
770
771/**
772 * fwnode_handle_put - Drop reference to a device node
773 * @fwnode: Pointer to the device node to drop the reference to.
774 *
775 * This has to be used when terminating device_for_each_child_node() iteration
776 * with break or return to prevent stale device node references from being left
777 * behind.
778 */
779void fwnode_handle_put(struct fwnode_handle *fwnode)
780{
781	fwnode_call_void_op(fwnode, put);
782}
783EXPORT_SYMBOL_GPL(fwnode_handle_put);
784
785/**
786 * fwnode_device_is_available - check if a device is available for use
787 * @fwnode: Pointer to the fwnode of the device.
788 */
789bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
790{
791	return fwnode_call_bool_op(fwnode, device_is_available);
792}
793EXPORT_SYMBOL_GPL(fwnode_device_is_available);
794
795/**
796 * device_get_child_node_count - return the number of child nodes for device
797 * @dev: Device to cound the child nodes for
798 */
799unsigned int device_get_child_node_count(struct device *dev)
800{
801	struct fwnode_handle *child;
802	unsigned int count = 0;
803
804	device_for_each_child_node(dev, child)
805		count++;
806
807	return count;
808}
809EXPORT_SYMBOL_GPL(device_get_child_node_count);
810
811bool device_dma_supported(struct device *dev)
812{
813	/* For DT, this is always supported.
814	 * For ACPI, this depends on CCA, which
815	 * is determined by the acpi_dma_supported().
816	 */
817	if (IS_ENABLED(CONFIG_OF) && dev->of_node)
818		return true;
819
820	return acpi_dma_supported(ACPI_COMPANION(dev));
821}
822EXPORT_SYMBOL_GPL(device_dma_supported);
823
824enum dev_dma_attr device_get_dma_attr(struct device *dev)
825{
826	enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;
827
828	if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
829		if (of_dma_is_coherent(dev->of_node))
830			attr = DEV_DMA_COHERENT;
831		else
832			attr = DEV_DMA_NON_COHERENT;
833	} else
834		attr = acpi_get_dma_attr(ACPI_COMPANION(dev));
835
836	return attr;
837}
838EXPORT_SYMBOL_GPL(device_get_dma_attr);
839
840/**
841 * fwnode_get_phy_mode - Get phy mode for given firmware node
842 * @fwnode:	Pointer to the given node
843 *
844 * The function gets phy interface string from property 'phy-mode' or
845 * 'phy-connection-type', and return its index in phy_modes table, or errno in
846 * error case.
847 */
848int fwnode_get_phy_mode(struct fwnode_handle *fwnode)
849{
850	const char *pm;
851	int err, i;
852
853	err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
854	if (err < 0)
855		err = fwnode_property_read_string(fwnode,
856						  "phy-connection-type", &pm);
857	if (err < 0)
858		return err;
859
860	for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
861		if (!strcasecmp(pm, phy_modes(i)))
862			return i;
863
864	return -ENODEV;
865}
866EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
867
868/**
869 * device_get_phy_mode - Get phy mode for given device
870 * @dev:	Pointer to the given device
871 *
872 * The function gets phy interface string from property 'phy-mode' or
873 * 'phy-connection-type', and return its index in phy_modes table, or errno in
874 * error case.
875 */
876int device_get_phy_mode(struct device *dev)
877{
878	return fwnode_get_phy_mode(dev_fwnode(dev));
879}
880EXPORT_SYMBOL_GPL(device_get_phy_mode);
881
882static void *fwnode_get_mac_addr(struct fwnode_handle *fwnode,
883				 const char *name, char *addr,
884				 int alen)
885{
886	int ret = fwnode_property_read_u8_array(fwnode, name, addr, alen);
887
888	if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
889		return addr;
890	return NULL;
891}
892
893/**
894 * fwnode_get_mac_address - Get the MAC from the firmware node
895 * @fwnode:	Pointer to the firmware node
896 * @addr:	Address of buffer to store the MAC in
897 * @alen:	Length of the buffer pointed to by addr, should be ETH_ALEN
898 *
899 * Search the firmware node for the best MAC address to use.  'mac-address' is
900 * checked first, because that is supposed to contain to "most recent" MAC
901 * address. If that isn't set, then 'local-mac-address' is checked next,
902 * because that is the default address.  If that isn't set, then the obsolete
903 * 'address' is checked, just in case we're using an old device tree.
904 *
905 * Note that the 'address' property is supposed to contain a virtual address of
906 * the register set, but some DTS files have redefined that property to be the
907 * MAC address.
908 *
909 * All-zero MAC addresses are rejected, because those could be properties that
910 * exist in the firmware tables, but were not updated by the firmware.  For
911 * example, the DTS could define 'mac-address' and 'local-mac-address', with
912 * zero MAC addresses.  Some older U-Boots only initialized 'local-mac-address'.
913 * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
914 * exists but is all zeros.
915*/
916void *fwnode_get_mac_address(struct fwnode_handle *fwnode, char *addr, int alen)
917{
918	char *res;
919
920	res = fwnode_get_mac_addr(fwnode, "mac-address", addr, alen);
921	if (res)
922		return res;
923
924	res = fwnode_get_mac_addr(fwnode, "local-mac-address", addr, alen);
925	if (res)
926		return res;
927
928	return fwnode_get_mac_addr(fwnode, "address", addr, alen);
929}
930EXPORT_SYMBOL(fwnode_get_mac_address);
931
932/**
933 * device_get_mac_address - Get the MAC for a given device
934 * @dev:	Pointer to the device
935 * @addr:	Address of buffer to store the MAC in
936 * @alen:	Length of the buffer pointed to by addr, should be ETH_ALEN
937 */
938void *device_get_mac_address(struct device *dev, char *addr, int alen)
939{
940	return fwnode_get_mac_address(dev_fwnode(dev), addr, alen);
941}
942EXPORT_SYMBOL(device_get_mac_address);
943
944/**
945 * fwnode_irq_get - Get IRQ directly from a fwnode
946 * @fwnode:	Pointer to the firmware node
947 * @index:	Zero-based index of the IRQ
948 *
949 * Returns Linux IRQ number on success. Other values are determined
950 * accordingly to acpi_/of_ irq_get() operation.
951 */
952int fwnode_irq_get(struct fwnode_handle *fwnode, unsigned int index)
953{
954	struct device_node *of_node = to_of_node(fwnode);
955	struct resource res;
956	int ret;
957
958	if (IS_ENABLED(CONFIG_OF) && of_node)
959		return of_irq_get(of_node, index);
960
961	ret = acpi_irq_get(ACPI_HANDLE_FWNODE(fwnode), index, &res);
962	if (ret)
963		return ret;
964
965	return res.start;
966}
967EXPORT_SYMBOL(fwnode_irq_get);
968
969/**
970 * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
971 * @fwnode: Pointer to the parent firmware node
972 * @prev: Previous endpoint node or %NULL to get the first
973 *
974 * Returns an endpoint firmware node pointer or %NULL if no more endpoints
975 * are available.
976 */
977struct fwnode_handle *
978fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
979			       struct fwnode_handle *prev)
980{
981	return fwnode_call_ptr_op(fwnode, graph_get_next_endpoint, prev);
982}
983EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
984
985/**
986 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
987 * @endpoint: Endpoint firmware node of the port
988 *
989 * Return: the firmware node of the device the @endpoint belongs to.
990 */
991struct fwnode_handle *
992fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
993{
994	struct fwnode_handle *port, *parent;
995
996	port = fwnode_get_parent(endpoint);
997	parent = fwnode_call_ptr_op(port, graph_get_port_parent);
998
999	fwnode_handle_put(port);
1000
1001	return parent;
1002}
1003EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1004
1005/**
1006 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1007 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1008 *
1009 * Extracts firmware node of a remote device the @fwnode points to.
1010 */
1011struct fwnode_handle *
1012fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1013{
1014	struct fwnode_handle *endpoint, *parent;
1015
1016	endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1017	parent = fwnode_graph_get_port_parent(endpoint);
1018
1019	fwnode_handle_put(endpoint);
1020
1021	return parent;
1022}
1023EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1024
1025/**
1026 * fwnode_graph_get_remote_port - Return fwnode of a remote port
1027 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1028 *
1029 * Extracts firmware node of a remote port the @fwnode points to.
1030 */
1031struct fwnode_handle *
1032fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1033{
1034	return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1035}
1036EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1037
1038/**
1039 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1040 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1041 *
1042 * Extracts firmware node of a remote endpoint the @fwnode points to.
1043 */
1044struct fwnode_handle *
1045fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1046{
1047	return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1048}
1049EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1050
1051/**
1052 * fwnode_graph_get_remote_node - get remote parent node for given port/endpoint
1053 * @fwnode: pointer to parent fwnode_handle containing graph port/endpoint
1054 * @port_id: identifier of the parent port node
1055 * @endpoint_id: identifier of the endpoint node
1056 *
1057 * Return: Remote fwnode handle associated with remote endpoint node linked
1058 *	   to @node. Use fwnode_node_put() on it when done.
1059 */
1060struct fwnode_handle *
1061fwnode_graph_get_remote_node(const struct fwnode_handle *fwnode, u32 port_id,
1062			     u32 endpoint_id)
1063{
1064	struct fwnode_handle *endpoint = NULL;
1065
1066	while ((endpoint = fwnode_graph_get_next_endpoint(fwnode, endpoint))) {
1067		struct fwnode_endpoint fwnode_ep;
1068		struct fwnode_handle *remote;
1069		int ret;
1070
1071		ret = fwnode_graph_parse_endpoint(endpoint, &fwnode_ep);
1072		if (ret < 0)
1073			continue;
1074
1075		if (fwnode_ep.port != port_id || fwnode_ep.id != endpoint_id)
1076			continue;
1077
1078		remote = fwnode_graph_get_remote_port_parent(endpoint);
1079		if (!remote)
1080			return NULL;
1081
1082		return fwnode_device_is_available(remote) ? remote : NULL;
1083	}
1084
1085	return NULL;
1086}
1087EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_node);
1088
1089/**
1090 * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
1091 * @fwnode: parent fwnode_handle containing the graph
1092 * @port: identifier of the port node
1093 * @endpoint: identifier of the endpoint node under the port node
1094 * @flags: fwnode lookup flags
1095 *
1096 * Return the fwnode handle of the local endpoint corresponding the port and
1097 * endpoint IDs or NULL if not found.
1098 *
1099 * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
1100 * has not been found, look for the closest endpoint ID greater than the
1101 * specified one and return the endpoint that corresponds to it, if present.
1102 *
1103 * Do not return endpoints that belong to disabled devices, unless
1104 * FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1105 *
1106 * The returned endpoint needs to be released by calling fwnode_handle_put() on
1107 * it when it is not needed any more.
1108 */
1109struct fwnode_handle *
1110fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1111				u32 port, u32 endpoint, unsigned long flags)
1112{
1113	struct fwnode_handle *ep = NULL, *best_ep = NULL;
1114	unsigned int best_ep_id = 0;
1115	bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1116	bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1117
1118	while ((ep = fwnode_graph_get_next_endpoint(fwnode, ep))) {
1119		struct fwnode_endpoint fwnode_ep = { 0 };
1120		int ret;
1121
1122		if (enabled_only) {
1123			struct fwnode_handle *dev_node;
1124			bool available;
1125
1126			dev_node = fwnode_graph_get_remote_port_parent(ep);
1127			available = fwnode_device_is_available(dev_node);
1128			fwnode_handle_put(dev_node);
1129			if (!available)
1130				continue;
1131		}
1132
1133		ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep);
1134		if (ret < 0)
1135			continue;
1136
1137		if (fwnode_ep.port != port)
1138			continue;
1139
1140		if (fwnode_ep.id == endpoint)
1141			return ep;
1142
1143		if (!endpoint_next)
1144			continue;
1145
1146		/*
1147		 * If the endpoint that has just been found is not the first
1148		 * matching one and the ID of the one found previously is closer
1149		 * to the requested endpoint ID, skip it.
1150		 */
1151		if (fwnode_ep.id < endpoint ||
1152		    (best_ep && best_ep_id < fwnode_ep.id))
1153			continue;
1154
1155		fwnode_handle_put(best_ep);
1156		best_ep = fwnode_handle_get(ep);
1157		best_ep_id = fwnode_ep.id;
1158	}
1159
1160	return best_ep;
1161}
1162EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1163
1164/**
1165 * fwnode_graph_parse_endpoint - parse common endpoint node properties
1166 * @fwnode: pointer to endpoint fwnode_handle
1167 * @endpoint: pointer to the fwnode endpoint data structure
1168 *
1169 * Parse @fwnode representing a graph endpoint node and store the
1170 * information in @endpoint. The caller must hold a reference to
1171 * @fwnode.
1172 */
1173int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1174				struct fwnode_endpoint *endpoint)
1175{
1176	memset(endpoint, 0, sizeof(*endpoint));
1177
1178	return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1179}
1180EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1181
1182const void *device_get_match_data(struct device *dev)
1183{
1184	return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1185}
1186EXPORT_SYMBOL_GPL(device_get_match_data);
1187
1188static void *
1189fwnode_graph_devcon_match(struct fwnode_handle *fwnode, const char *con_id,
1190			  void *data, devcon_match_fn_t match)
1191{
1192	struct fwnode_handle *node;
1193	struct fwnode_handle *ep;
1194	void *ret;
1195
1196	fwnode_graph_for_each_endpoint(fwnode, ep) {
1197		node = fwnode_graph_get_remote_port_parent(ep);
1198		if (!fwnode_device_is_available(node)) {
1199			fwnode_handle_put(node);
1200			continue;
1201		}
1202
1203		ret = match(node, con_id, data);
1204		fwnode_handle_put(node);
1205		if (ret) {
1206			fwnode_handle_put(ep);
1207			return ret;
1208		}
1209	}
1210	return NULL;
1211}
1212
1213static void *
1214fwnode_devcon_match(struct fwnode_handle *fwnode, const char *con_id,
1215		    void *data, devcon_match_fn_t match)
1216{
1217	struct fwnode_handle *node;
1218	void *ret;
1219	int i;
1220
1221	for (i = 0; ; i++) {
1222		node = fwnode_find_reference(fwnode, con_id, i);
1223		if (IS_ERR(node))
1224			break;
1225
1226		ret = match(node, NULL, data);
1227		fwnode_handle_put(node);
1228		if (ret)
1229			return ret;
1230	}
1231
1232	return NULL;
1233}
1234
1235/**
1236 * fwnode_connection_find_match - Find connection from a device node
1237 * @fwnode: Device node with the connection
1238 * @con_id: Identifier for the connection
1239 * @data: Data for the match function
1240 * @match: Function to check and convert the connection description
1241 *
1242 * Find a connection with unique identifier @con_id between @fwnode and another
1243 * device node. @match will be used to convert the connection description to
1244 * data the caller is expecting to be returned.
1245 */
1246void *fwnode_connection_find_match(struct fwnode_handle *fwnode,
1247				   const char *con_id, void *data,
1248				   devcon_match_fn_t match)
1249{
1250	void *ret;
1251
1252	if (!fwnode || !match)
1253		return NULL;
1254
1255	ret = fwnode_graph_devcon_match(fwnode, con_id, data, match);
1256	if (ret)
1257		return ret;
1258
1259	return fwnode_devcon_match(fwnode, con_id, data, match);
1260}
1261EXPORT_SYMBOL_GPL(fwnode_connection_find_match);
1262