1// SPDX-License-Identifier: GPL-2.0
2/*
3 * main.c - Multi purpose firmware loading support
4 *
5 * Copyright (c) 2003 Manuel Estrada Sainz
6 *
7 * Please see Documentation/driver-api/firmware/ for more information.
8 *
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/capability.h>
14#include <linux/device.h>
15#include <linux/kernel_read_file.h>
16#include <linux/module.h>
17#include <linux/init.h>
18#include <linux/timer.h>
19#include <linux/vmalloc.h>
20#include <linux/interrupt.h>
21#include <linux/bitops.h>
22#include <linux/mutex.h>
23#include <linux/workqueue.h>
24#include <linux/highmem.h>
25#include <linux/firmware.h>
26#include <linux/slab.h>
27#include <linux/sched.h>
28#include <linux/file.h>
29#include <linux/list.h>
30#include <linux/fs.h>
31#include <linux/async.h>
32#include <linux/pm.h>
33#include <linux/suspend.h>
34#include <linux/syscore_ops.h>
35#include <linux/reboot.h>
36#include <linux/security.h>
37#include <linux/xz.h>
38
39#include <generated/utsrelease.h>
40
41#include "../base.h"
42#include "firmware.h"
43#include "fallback.h"
44
45MODULE_AUTHOR("Manuel Estrada Sainz");
46MODULE_DESCRIPTION("Multi purpose firmware loading support");
47MODULE_LICENSE("GPL");
48
49struct firmware_cache {
50	/* firmware_buf instance will be added into the below list */
51	spinlock_t lock;
52	struct list_head head;
53	int state;
54
55#ifdef CONFIG_FW_CACHE
56	/*
57	 * Names of firmware images which have been cached successfully
58	 * will be added into the below list so that device uncache
59	 * helper can trace which firmware images have been cached
60	 * before.
61	 */
62	spinlock_t name_lock;
63	struct list_head fw_names;
64
65	struct delayed_work work;
66
67	struct notifier_block   pm_notify;
68#endif
69};
70
71struct fw_cache_entry {
72	struct list_head list;
73	const char *name;
74};
75
76struct fw_name_devm {
77	unsigned long magic;
78	const char *name;
79};
80
81static inline struct fw_priv *to_fw_priv(struct kref *ref)
82{
83	return container_of(ref, struct fw_priv, ref);
84}
85
86#define	FW_LOADER_NO_CACHE	0
87#define	FW_LOADER_START_CACHE	1
88
89/* fw_lock could be moved to 'struct fw_sysfs' but since it is just
90 * guarding for corner cases a global lock should be OK */
91DEFINE_MUTEX(fw_lock);
92
93static struct firmware_cache fw_cache;
94
95/* Builtin firmware support */
96
97#ifdef CONFIG_FW_LOADER
98
99extern struct builtin_fw __start_builtin_fw[];
100extern struct builtin_fw __end_builtin_fw[];
101
102static bool fw_copy_to_prealloc_buf(struct firmware *fw,
103				    void *buf, size_t size)
104{
105	if (!buf)
106		return true;
107	if (size < fw->size)
108		return false;
109	memcpy(buf, fw->data, fw->size);
110	return true;
111}
112
113static bool fw_get_builtin_firmware(struct firmware *fw, const char *name,
114				    void *buf, size_t size)
115{
116	struct builtin_fw *b_fw;
117
118	for (b_fw = __start_builtin_fw; b_fw != __end_builtin_fw; b_fw++) {
119		if (strcmp(name, b_fw->name) == 0) {
120			fw->size = b_fw->size;
121			fw->data = b_fw->data;
122			return fw_copy_to_prealloc_buf(fw, buf, size);
123		}
124	}
125
126	return false;
127}
128
129static bool fw_is_builtin_firmware(const struct firmware *fw)
130{
131	struct builtin_fw *b_fw;
132
133	for (b_fw = __start_builtin_fw; b_fw != __end_builtin_fw; b_fw++)
134		if (fw->data == b_fw->data)
135			return true;
136
137	return false;
138}
139
140#else /* Module case - no builtin firmware support */
141
142static inline bool fw_get_builtin_firmware(struct firmware *fw,
143					   const char *name, void *buf,
144					   size_t size)
145{
146	return false;
147}
148
149static inline bool fw_is_builtin_firmware(const struct firmware *fw)
150{
151	return false;
152}
153#endif
154
155static void fw_state_init(struct fw_priv *fw_priv)
156{
157	struct fw_state *fw_st = &fw_priv->fw_st;
158
159	init_completion(&fw_st->completion);
160	fw_st->status = FW_STATUS_UNKNOWN;
161}
162
163static inline int fw_state_wait(struct fw_priv *fw_priv)
164{
165	return __fw_state_wait_common(fw_priv, MAX_SCHEDULE_TIMEOUT);
166}
167
168static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv);
169
170static struct fw_priv *__allocate_fw_priv(const char *fw_name,
171					  struct firmware_cache *fwc,
172					  void *dbuf,
173					  size_t size,
174					  size_t offset,
175					  u32 opt_flags)
176{
177	struct fw_priv *fw_priv;
178
179	/* For a partial read, the buffer must be preallocated. */
180	if ((opt_flags & FW_OPT_PARTIAL) && !dbuf)
181		return NULL;
182
183	/* Only partial reads are allowed to use an offset. */
184	if (offset != 0 && !(opt_flags & FW_OPT_PARTIAL))
185		return NULL;
186
187	fw_priv = kzalloc(sizeof(*fw_priv), GFP_ATOMIC);
188	if (!fw_priv)
189		return NULL;
190
191	fw_priv->fw_name = kstrdup_const(fw_name, GFP_ATOMIC);
192	if (!fw_priv->fw_name) {
193		kfree(fw_priv);
194		return NULL;
195	}
196
197	kref_init(&fw_priv->ref);
198	fw_priv->fwc = fwc;
199	fw_priv->data = dbuf;
200	fw_priv->allocated_size = size;
201	fw_priv->offset = offset;
202	fw_priv->opt_flags = opt_flags;
203	fw_state_init(fw_priv);
204#ifdef CONFIG_FW_LOADER_USER_HELPER
205	INIT_LIST_HEAD(&fw_priv->pending_list);
206#endif
207
208	pr_debug("%s: fw-%s fw_priv=%p\n", __func__, fw_name, fw_priv);
209
210	return fw_priv;
211}
212
213static struct fw_priv *__lookup_fw_priv(const char *fw_name)
214{
215	struct fw_priv *tmp;
216	struct firmware_cache *fwc = &fw_cache;
217
218	list_for_each_entry(tmp, &fwc->head, list)
219		if (!strcmp(tmp->fw_name, fw_name))
220			return tmp;
221	return NULL;
222}
223
224/* Returns 1 for batching firmware requests with the same name */
225static int alloc_lookup_fw_priv(const char *fw_name,
226				struct firmware_cache *fwc,
227				struct fw_priv **fw_priv,
228				void *dbuf,
229				size_t size,
230				size_t offset,
231				u32 opt_flags)
232{
233	struct fw_priv *tmp;
234
235	spin_lock(&fwc->lock);
236	/*
237	 * Do not merge requests that are marked to be non-cached or
238	 * are performing partial reads.
239	 */
240	if (!(opt_flags & (FW_OPT_NOCACHE | FW_OPT_PARTIAL))) {
241		tmp = __lookup_fw_priv(fw_name);
242		if (tmp) {
243			kref_get(&tmp->ref);
244			spin_unlock(&fwc->lock);
245			*fw_priv = tmp;
246			pr_debug("batched request - sharing the same struct fw_priv and lookup for multiple requests\n");
247			return 1;
248		}
249	}
250
251	tmp = __allocate_fw_priv(fw_name, fwc, dbuf, size, offset, opt_flags);
252	if (tmp) {
253		INIT_LIST_HEAD(&tmp->list);
254		if (!(opt_flags & FW_OPT_NOCACHE))
255			list_add(&tmp->list, &fwc->head);
256	}
257	spin_unlock(&fwc->lock);
258
259	*fw_priv = tmp;
260
261	return tmp ? 0 : -ENOMEM;
262}
263
264static void __free_fw_priv(struct kref *ref)
265	__releases(&fwc->lock)
266{
267	struct fw_priv *fw_priv = to_fw_priv(ref);
268	struct firmware_cache *fwc = fw_priv->fwc;
269
270	pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
271		 __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
272		 (unsigned int)fw_priv->size);
273
274	list_del(&fw_priv->list);
275	spin_unlock(&fwc->lock);
276
277	if (fw_is_paged_buf(fw_priv))
278		fw_free_paged_buf(fw_priv);
279	else if (!fw_priv->allocated_size)
280		vfree(fw_priv->data);
281
282	kfree_const(fw_priv->fw_name);
283	kfree(fw_priv);
284}
285
286static void free_fw_priv(struct fw_priv *fw_priv)
287{
288	struct firmware_cache *fwc = fw_priv->fwc;
289	spin_lock(&fwc->lock);
290	if (!kref_put(&fw_priv->ref, __free_fw_priv))
291		spin_unlock(&fwc->lock);
292}
293
294#ifdef CONFIG_FW_LOADER_PAGED_BUF
295bool fw_is_paged_buf(struct fw_priv *fw_priv)
296{
297	return fw_priv->is_paged_buf;
298}
299
300void fw_free_paged_buf(struct fw_priv *fw_priv)
301{
302	int i;
303
304	if (!fw_priv->pages)
305		return;
306
307	vunmap(fw_priv->data);
308
309	for (i = 0; i < fw_priv->nr_pages; i++)
310		__free_page(fw_priv->pages[i]);
311	kvfree(fw_priv->pages);
312	fw_priv->pages = NULL;
313	fw_priv->page_array_size = 0;
314	fw_priv->nr_pages = 0;
315}
316
317int fw_grow_paged_buf(struct fw_priv *fw_priv, int pages_needed)
318{
319	/* If the array of pages is too small, grow it */
320	if (fw_priv->page_array_size < pages_needed) {
321		int new_array_size = max(pages_needed,
322					 fw_priv->page_array_size * 2);
323		struct page **new_pages;
324
325		new_pages = kvmalloc_array(new_array_size, sizeof(void *),
326					   GFP_KERNEL);
327		if (!new_pages)
328			return -ENOMEM;
329		memcpy(new_pages, fw_priv->pages,
330		       fw_priv->page_array_size * sizeof(void *));
331		memset(&new_pages[fw_priv->page_array_size], 0, sizeof(void *) *
332		       (new_array_size - fw_priv->page_array_size));
333		kvfree(fw_priv->pages);
334		fw_priv->pages = new_pages;
335		fw_priv->page_array_size = new_array_size;
336	}
337
338	while (fw_priv->nr_pages < pages_needed) {
339		fw_priv->pages[fw_priv->nr_pages] =
340			alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
341
342		if (!fw_priv->pages[fw_priv->nr_pages])
343			return -ENOMEM;
344		fw_priv->nr_pages++;
345	}
346
347	return 0;
348}
349
350int fw_map_paged_buf(struct fw_priv *fw_priv)
351{
352	/* one pages buffer should be mapped/unmapped only once */
353	if (!fw_priv->pages)
354		return 0;
355
356	vunmap(fw_priv->data);
357	fw_priv->data = vmap(fw_priv->pages, fw_priv->nr_pages, 0,
358			     PAGE_KERNEL_RO);
359	if (!fw_priv->data)
360		return -ENOMEM;
361
362	return 0;
363}
364#endif
365
366/*
367 * XZ-compressed firmware support
368 */
369#ifdef CONFIG_FW_LOADER_COMPRESS
370/* show an error and return the standard error code */
371static int fw_decompress_xz_error(struct device *dev, enum xz_ret xz_ret)
372{
373	if (xz_ret != XZ_STREAM_END) {
374		dev_warn(dev, "xz decompression failed (xz_ret=%d)\n", xz_ret);
375		return xz_ret == XZ_MEM_ERROR ? -ENOMEM : -EINVAL;
376	}
377	return 0;
378}
379
380/* single-shot decompression onto the pre-allocated buffer */
381static int fw_decompress_xz_single(struct device *dev, struct fw_priv *fw_priv,
382				   size_t in_size, const void *in_buffer)
383{
384	struct xz_dec *xz_dec;
385	struct xz_buf xz_buf;
386	enum xz_ret xz_ret;
387
388	xz_dec = xz_dec_init(XZ_SINGLE, (u32)-1);
389	if (!xz_dec)
390		return -ENOMEM;
391
392	xz_buf.in_size = in_size;
393	xz_buf.in = in_buffer;
394	xz_buf.in_pos = 0;
395	xz_buf.out_size = fw_priv->allocated_size;
396	xz_buf.out = fw_priv->data;
397	xz_buf.out_pos = 0;
398
399	xz_ret = xz_dec_run(xz_dec, &xz_buf);
400	xz_dec_end(xz_dec);
401
402	fw_priv->size = xz_buf.out_pos;
403	return fw_decompress_xz_error(dev, xz_ret);
404}
405
406/* decompression on paged buffer and map it */
407static int fw_decompress_xz_pages(struct device *dev, struct fw_priv *fw_priv,
408				  size_t in_size, const void *in_buffer)
409{
410	struct xz_dec *xz_dec;
411	struct xz_buf xz_buf;
412	enum xz_ret xz_ret;
413	struct page *page;
414	int err = 0;
415
416	xz_dec = xz_dec_init(XZ_DYNALLOC, (u32)-1);
417	if (!xz_dec)
418		return -ENOMEM;
419
420	xz_buf.in_size = in_size;
421	xz_buf.in = in_buffer;
422	xz_buf.in_pos = 0;
423
424	fw_priv->is_paged_buf = true;
425	fw_priv->size = 0;
426	do {
427		if (fw_grow_paged_buf(fw_priv, fw_priv->nr_pages + 1)) {
428			err = -ENOMEM;
429			goto out;
430		}
431
432		/* decompress onto the new allocated page */
433		page = fw_priv->pages[fw_priv->nr_pages - 1];
434		xz_buf.out = kmap(page);
435		xz_buf.out_pos = 0;
436		xz_buf.out_size = PAGE_SIZE;
437		xz_ret = xz_dec_run(xz_dec, &xz_buf);
438		kunmap(page);
439		fw_priv->size += xz_buf.out_pos;
440		/* partial decompression means either end or error */
441		if (xz_buf.out_pos != PAGE_SIZE)
442			break;
443	} while (xz_ret == XZ_OK);
444
445	err = fw_decompress_xz_error(dev, xz_ret);
446	if (!err)
447		err = fw_map_paged_buf(fw_priv);
448
449 out:
450	xz_dec_end(xz_dec);
451	return err;
452}
453
454static int fw_decompress_xz(struct device *dev, struct fw_priv *fw_priv,
455			    size_t in_size, const void *in_buffer)
456{
457	/* if the buffer is pre-allocated, we can perform in single-shot mode */
458	if (fw_priv->data)
459		return fw_decompress_xz_single(dev, fw_priv, in_size, in_buffer);
460	else
461		return fw_decompress_xz_pages(dev, fw_priv, in_size, in_buffer);
462}
463#endif /* CONFIG_FW_LOADER_COMPRESS */
464
465/* direct firmware loading support */
466static char fw_path_para[256];
467static const char * const fw_path[] = {
468	fw_path_para,
469	"/lib/firmware/updates/" UTS_RELEASE,
470	"/lib/firmware/updates",
471	"/lib/firmware/" UTS_RELEASE,
472	"/lib/firmware"
473};
474
475/*
476 * Typical usage is that passing 'firmware_class.path=$CUSTOMIZED_PATH'
477 * from kernel command line because firmware_class is generally built in
478 * kernel instead of module.
479 */
480module_param_string(path, fw_path_para, sizeof(fw_path_para), 0644);
481MODULE_PARM_DESC(path, "customized firmware image search path with a higher priority than default path");
482
483static int
484fw_get_filesystem_firmware(struct device *device, struct fw_priv *fw_priv,
485			   const char *suffix,
486			   int (*decompress)(struct device *dev,
487					     struct fw_priv *fw_priv,
488					     size_t in_size,
489					     const void *in_buffer))
490{
491	size_t size;
492	int i, len;
493	int rc = -ENOENT;
494	char *path;
495	size_t msize = INT_MAX;
496	void *buffer = NULL;
497
498	/* Already populated data member means we're loading into a buffer */
499	if (!decompress && fw_priv->data) {
500		buffer = fw_priv->data;
501		msize = fw_priv->allocated_size;
502	}
503
504	path = __getname();
505	if (!path)
506		return -ENOMEM;
507
508	for (i = 0; i < ARRAY_SIZE(fw_path); i++) {
509		size_t file_size = 0;
510		size_t *file_size_ptr = NULL;
511
512		/* skip the unset customized path */
513		if (!fw_path[i][0])
514			continue;
515
516		len = snprintf(path, PATH_MAX, "%s/%s%s",
517			       fw_path[i], fw_priv->fw_name, suffix);
518		if (len >= PATH_MAX) {
519			rc = -ENAMETOOLONG;
520			break;
521		}
522
523		fw_priv->size = 0;
524
525		/*
526		 * The total file size is only examined when doing a partial
527		 * read; the "full read" case needs to fail if the whole
528		 * firmware was not completely loaded.
529		 */
530		if ((fw_priv->opt_flags & FW_OPT_PARTIAL) && buffer)
531			file_size_ptr = &file_size;
532
533		/* load firmware files from the mount namespace of init */
534		rc = kernel_read_file_from_path_initns(path, fw_priv->offset,
535						       &buffer, msize,
536						       file_size_ptr,
537						       READING_FIRMWARE);
538		if (rc < 0) {
539			if (rc != -ENOENT)
540				dev_warn(device, "loading %s failed with error %d\n",
541					 path, rc);
542			else
543				dev_dbg(device, "loading %s failed for no such file or directory.\n",
544					 path);
545			continue;
546		}
547		size = rc;
548		rc = 0;
549
550		dev_dbg(device, "Loading firmware from %s\n", path);
551		if (decompress) {
552			dev_dbg(device, "f/w decompressing %s\n",
553				fw_priv->fw_name);
554			rc = decompress(device, fw_priv, size, buffer);
555			/* discard the superfluous original content */
556			vfree(buffer);
557			buffer = NULL;
558			if (rc) {
559				fw_free_paged_buf(fw_priv);
560				continue;
561			}
562		} else {
563			dev_dbg(device, "direct-loading %s\n",
564				fw_priv->fw_name);
565			if (!fw_priv->data)
566				fw_priv->data = buffer;
567			fw_priv->size = size;
568		}
569		fw_state_done(fw_priv);
570		break;
571	}
572	__putname(path);
573
574	return rc;
575}
576
577/* firmware holds the ownership of pages */
578static void firmware_free_data(const struct firmware *fw)
579{
580	/* Loaded directly? */
581	if (!fw->priv) {
582		vfree(fw->data);
583		return;
584	}
585	free_fw_priv(fw->priv);
586}
587
588/* store the pages buffer info firmware from buf */
589static void fw_set_page_data(struct fw_priv *fw_priv, struct firmware *fw)
590{
591	fw->priv = fw_priv;
592	fw->size = fw_priv->size;
593	fw->data = fw_priv->data;
594
595	pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
596		 __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
597		 (unsigned int)fw_priv->size);
598}
599
600#ifdef CONFIG_FW_CACHE
601static void fw_name_devm_release(struct device *dev, void *res)
602{
603	struct fw_name_devm *fwn = res;
604
605	if (fwn->magic == (unsigned long)&fw_cache)
606		pr_debug("%s: fw_name-%s devm-%p released\n",
607				__func__, fwn->name, res);
608	kfree_const(fwn->name);
609}
610
611static int fw_devm_match(struct device *dev, void *res,
612		void *match_data)
613{
614	struct fw_name_devm *fwn = res;
615
616	return (fwn->magic == (unsigned long)&fw_cache) &&
617		!strcmp(fwn->name, match_data);
618}
619
620static struct fw_name_devm *fw_find_devm_name(struct device *dev,
621		const char *name)
622{
623	struct fw_name_devm *fwn;
624
625	fwn = devres_find(dev, fw_name_devm_release,
626			  fw_devm_match, (void *)name);
627	return fwn;
628}
629
630static bool fw_cache_is_setup(struct device *dev, const char *name)
631{
632	struct fw_name_devm *fwn;
633
634	fwn = fw_find_devm_name(dev, name);
635	if (fwn)
636		return true;
637
638	return false;
639}
640
641/* add firmware name into devres list */
642static int fw_add_devm_name(struct device *dev, const char *name)
643{
644	struct fw_name_devm *fwn;
645
646	if (fw_cache_is_setup(dev, name))
647		return 0;
648
649	fwn = devres_alloc(fw_name_devm_release, sizeof(struct fw_name_devm),
650			   GFP_KERNEL);
651	if (!fwn)
652		return -ENOMEM;
653	fwn->name = kstrdup_const(name, GFP_KERNEL);
654	if (!fwn->name) {
655		devres_free(fwn);
656		return -ENOMEM;
657	}
658
659	fwn->magic = (unsigned long)&fw_cache;
660	devres_add(dev, fwn);
661
662	return 0;
663}
664#else
665static bool fw_cache_is_setup(struct device *dev, const char *name)
666{
667	return false;
668}
669
670static int fw_add_devm_name(struct device *dev, const char *name)
671{
672	return 0;
673}
674#endif
675
676int assign_fw(struct firmware *fw, struct device *device)
677{
678	struct fw_priv *fw_priv = fw->priv;
679	int ret;
680
681	mutex_lock(&fw_lock);
682	if (!fw_priv->size || fw_state_is_aborted(fw_priv)) {
683		mutex_unlock(&fw_lock);
684		return -ENOENT;
685	}
686
687	/*
688	 * add firmware name into devres list so that we can auto cache
689	 * and uncache firmware for device.
690	 *
691	 * device may has been deleted already, but the problem
692	 * should be fixed in devres or driver core.
693	 */
694	/* don't cache firmware handled without uevent */
695	if (device && (fw_priv->opt_flags & FW_OPT_UEVENT) &&
696	    !(fw_priv->opt_flags & FW_OPT_NOCACHE)) {
697		ret = fw_add_devm_name(device, fw_priv->fw_name);
698		if (ret) {
699			mutex_unlock(&fw_lock);
700			return ret;
701		}
702	}
703
704	/*
705	 * After caching firmware image is started, let it piggyback
706	 * on request firmware.
707	 */
708	if (!(fw_priv->opt_flags & FW_OPT_NOCACHE) &&
709	    fw_priv->fwc->state == FW_LOADER_START_CACHE)
710		fw_cache_piggyback_on_request(fw_priv);
711
712	/* pass the pages buffer to driver at the last minute */
713	fw_set_page_data(fw_priv, fw);
714	mutex_unlock(&fw_lock);
715	return 0;
716}
717
718/* prepare firmware and firmware_buf structs;
719 * return 0 if a firmware is already assigned, 1 if need to load one,
720 * or a negative error code
721 */
722static int
723_request_firmware_prepare(struct firmware **firmware_p, const char *name,
724			  struct device *device, void *dbuf, size_t size,
725			  size_t offset, u32 opt_flags)
726{
727	struct firmware *firmware;
728	struct fw_priv *fw_priv;
729	int ret;
730
731	*firmware_p = firmware = kzalloc(sizeof(*firmware), GFP_KERNEL);
732	if (!firmware) {
733		dev_err(device, "%s: kmalloc(struct firmware) failed\n",
734			__func__);
735		return -ENOMEM;
736	}
737
738	if (fw_get_builtin_firmware(firmware, name, dbuf, size)) {
739		dev_dbg(device, "using built-in %s\n", name);
740		return 0; /* assigned */
741	}
742
743	ret = alloc_lookup_fw_priv(name, &fw_cache, &fw_priv, dbuf, size,
744				   offset, opt_flags);
745
746	/*
747	 * bind with 'priv' now to avoid warning in failure path
748	 * of requesting firmware.
749	 */
750	firmware->priv = fw_priv;
751
752	if (ret > 0) {
753		ret = fw_state_wait(fw_priv);
754		if (!ret) {
755			fw_set_page_data(fw_priv, firmware);
756			return 0; /* assigned */
757		}
758	}
759
760	if (ret < 0)
761		return ret;
762	return 1; /* need to load */
763}
764
765/*
766 * Batched requests need only one wake, we need to do this step last due to the
767 * fallback mechanism. The buf is protected with kref_get(), and it won't be
768 * released until the last user calls release_firmware().
769 *
770 * Failed batched requests are possible as well, in such cases we just share
771 * the struct fw_priv and won't release it until all requests are woken
772 * and have gone through this same path.
773 */
774static void fw_abort_batch_reqs(struct firmware *fw)
775{
776	struct fw_priv *fw_priv;
777
778	/* Loaded directly? */
779	if (!fw || !fw->priv)
780		return;
781
782	fw_priv = fw->priv;
783	mutex_lock(&fw_lock);
784	if (!fw_state_is_aborted(fw_priv))
785		fw_state_aborted(fw_priv);
786	mutex_unlock(&fw_lock);
787}
788
789/* called from request_firmware() and request_firmware_work_func() */
790static int
791_request_firmware(const struct firmware **firmware_p, const char *name,
792		  struct device *device, void *buf, size_t size,
793		  size_t offset, u32 opt_flags)
794{
795	struct firmware *fw = NULL;
796	struct cred *kern_cred = NULL;
797	const struct cred *old_cred;
798	bool nondirect = false;
799	int ret;
800
801	if (!firmware_p)
802		return -EINVAL;
803
804	if (!name || name[0] == '\0') {
805		ret = -EINVAL;
806		goto out;
807	}
808
809	ret = _request_firmware_prepare(&fw, name, device, buf, size,
810					offset, opt_flags);
811	if (ret <= 0) /* error or already assigned */
812		goto out;
813
814	/*
815	 * We are about to try to access the firmware file. Because we may have been
816	 * called by a driver when serving an unrelated request from userland, we use
817	 * the kernel credentials to read the file.
818	 */
819	kern_cred = prepare_kernel_cred(NULL);
820	if (!kern_cred) {
821		ret = -ENOMEM;
822		goto out;
823	}
824	old_cred = override_creds(kern_cred);
825
826	ret = fw_get_filesystem_firmware(device, fw->priv, "", NULL);
827
828	/* Only full reads can support decompression, platform, and sysfs. */
829	if (!(opt_flags & FW_OPT_PARTIAL))
830		nondirect = true;
831
832#ifdef CONFIG_FW_LOADER_COMPRESS
833	if (ret == -ENOENT && nondirect)
834		ret = fw_get_filesystem_firmware(device, fw->priv, ".xz",
835						 fw_decompress_xz);
836#endif
837	if (ret == -ENOENT && nondirect)
838		ret = firmware_fallback_platform(fw->priv);
839
840	if (ret) {
841		if (!(opt_flags & FW_OPT_NO_WARN))
842			dev_warn(device,
843				 "Direct firmware load for %s failed with error %d\n",
844				 name, ret);
845		if (nondirect)
846			ret = firmware_fallback_sysfs(fw, name, device,
847						      opt_flags, ret);
848	} else
849		ret = assign_fw(fw, device);
850
851	revert_creds(old_cred);
852	put_cred(kern_cred);
853
854 out:
855	if (ret < 0) {
856		fw_abort_batch_reqs(fw);
857		release_firmware(fw);
858		fw = NULL;
859	}
860
861	*firmware_p = fw;
862	return ret;
863}
864
865/**
866 * request_firmware() - send firmware request and wait for it
867 * @firmware_p: pointer to firmware image
868 * @name: name of firmware file
869 * @device: device for which firmware is being loaded
870 *
871 *      @firmware_p will be used to return a firmware image by the name
872 *      of @name for device @device.
873 *
874 *      Should be called from user context where sleeping is allowed.
875 *
876 *      @name will be used as $FIRMWARE in the uevent environment and
877 *      should be distinctive enough not to be confused with any other
878 *      firmware image for this or any other device.
879 *
880 *	Caller must hold the reference count of @device.
881 *
882 *	The function can be called safely inside device's suspend and
883 *	resume callback.
884 **/
885int
886request_firmware(const struct firmware **firmware_p, const char *name,
887		 struct device *device)
888{
889	int ret;
890
891	/* Need to pin this module until return */
892	__module_get(THIS_MODULE);
893	ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
894				FW_OPT_UEVENT);
895	module_put(THIS_MODULE);
896	return ret;
897}
898EXPORT_SYMBOL(request_firmware);
899
900/**
901 * firmware_request_nowarn() - request for an optional fw module
902 * @firmware: pointer to firmware image
903 * @name: name of firmware file
904 * @device: device for which firmware is being loaded
905 *
906 * This function is similar in behaviour to request_firmware(), except it
907 * doesn't produce warning messages when the file is not found. The sysfs
908 * fallback mechanism is enabled if direct filesystem lookup fails. However,
909 * failures to find the firmware file with it are still suppressed. It is
910 * therefore up to the driver to check for the return value of this call and to
911 * decide when to inform the users of errors.
912 **/
913int firmware_request_nowarn(const struct firmware **firmware, const char *name,
914			    struct device *device)
915{
916	int ret;
917
918	/* Need to pin this module until return */
919	__module_get(THIS_MODULE);
920	ret = _request_firmware(firmware, name, device, NULL, 0, 0,
921				FW_OPT_UEVENT | FW_OPT_NO_WARN);
922	module_put(THIS_MODULE);
923	return ret;
924}
925EXPORT_SYMBOL_GPL(firmware_request_nowarn);
926
927/**
928 * request_firmware_direct() - load firmware directly without usermode helper
929 * @firmware_p: pointer to firmware image
930 * @name: name of firmware file
931 * @device: device for which firmware is being loaded
932 *
933 * This function works pretty much like request_firmware(), but this doesn't
934 * fall back to usermode helper even if the firmware couldn't be loaded
935 * directly from fs.  Hence it's useful for loading optional firmwares, which
936 * aren't always present, without extra long timeouts of udev.
937 **/
938int request_firmware_direct(const struct firmware **firmware_p,
939			    const char *name, struct device *device)
940{
941	int ret;
942
943	__module_get(THIS_MODULE);
944	ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
945				FW_OPT_UEVENT | FW_OPT_NO_WARN |
946				FW_OPT_NOFALLBACK_SYSFS);
947	module_put(THIS_MODULE);
948	return ret;
949}
950EXPORT_SYMBOL_GPL(request_firmware_direct);
951
952/**
953 * firmware_request_platform() - request firmware with platform-fw fallback
954 * @firmware: pointer to firmware image
955 * @name: name of firmware file
956 * @device: device for which firmware is being loaded
957 *
958 * This function is similar in behaviour to request_firmware, except that if
959 * direct filesystem lookup fails, it will fallback to looking for a copy of the
960 * requested firmware embedded in the platform's main (e.g. UEFI) firmware.
961 **/
962int firmware_request_platform(const struct firmware **firmware,
963			      const char *name, struct device *device)
964{
965	int ret;
966
967	/* Need to pin this module until return */
968	__module_get(THIS_MODULE);
969	ret = _request_firmware(firmware, name, device, NULL, 0, 0,
970				FW_OPT_UEVENT | FW_OPT_FALLBACK_PLATFORM);
971	module_put(THIS_MODULE);
972	return ret;
973}
974EXPORT_SYMBOL_GPL(firmware_request_platform);
975
976/**
977 * firmware_request_cache() - cache firmware for suspend so resume can use it
978 * @name: name of firmware file
979 * @device: device for which firmware should be cached for
980 *
981 * There are some devices with an optimization that enables the device to not
982 * require loading firmware on system reboot. This optimization may still
983 * require the firmware present on resume from suspend. This routine can be
984 * used to ensure the firmware is present on resume from suspend in these
985 * situations. This helper is not compatible with drivers which use
986 * request_firmware_into_buf() or request_firmware_nowait() with no uevent set.
987 **/
988int firmware_request_cache(struct device *device, const char *name)
989{
990	int ret;
991
992	mutex_lock(&fw_lock);
993	ret = fw_add_devm_name(device, name);
994	mutex_unlock(&fw_lock);
995
996	return ret;
997}
998EXPORT_SYMBOL_GPL(firmware_request_cache);
999
1000/**
1001 * request_firmware_into_buf() - load firmware into a previously allocated buffer
1002 * @firmware_p: pointer to firmware image
1003 * @name: name of firmware file
1004 * @device: device for which firmware is being loaded and DMA region allocated
1005 * @buf: address of buffer to load firmware into
1006 * @size: size of buffer
1007 *
1008 * This function works pretty much like request_firmware(), but it doesn't
1009 * allocate a buffer to hold the firmware data. Instead, the firmware
1010 * is loaded directly into the buffer pointed to by @buf and the @firmware_p
1011 * data member is pointed at @buf.
1012 *
1013 * This function doesn't cache firmware either.
1014 */
1015int
1016request_firmware_into_buf(const struct firmware **firmware_p, const char *name,
1017			  struct device *device, void *buf, size_t size)
1018{
1019	int ret;
1020
1021	if (fw_cache_is_setup(device, name))
1022		return -EOPNOTSUPP;
1023
1024	__module_get(THIS_MODULE);
1025	ret = _request_firmware(firmware_p, name, device, buf, size, 0,
1026				FW_OPT_UEVENT | FW_OPT_NOCACHE);
1027	module_put(THIS_MODULE);
1028	return ret;
1029}
1030EXPORT_SYMBOL(request_firmware_into_buf);
1031
1032/**
1033 * request_partial_firmware_into_buf() - load partial firmware into a previously allocated buffer
1034 * @firmware_p: pointer to firmware image
1035 * @name: name of firmware file
1036 * @device: device for which firmware is being loaded and DMA region allocated
1037 * @buf: address of buffer to load firmware into
1038 * @size: size of buffer
1039 * @offset: offset into file to read
1040 *
1041 * This function works pretty much like request_firmware_into_buf except
1042 * it allows a partial read of the file.
1043 */
1044int
1045request_partial_firmware_into_buf(const struct firmware **firmware_p,
1046				  const char *name, struct device *device,
1047				  void *buf, size_t size, size_t offset)
1048{
1049	int ret;
1050
1051	if (fw_cache_is_setup(device, name))
1052		return -EOPNOTSUPP;
1053
1054	__module_get(THIS_MODULE);
1055	ret = _request_firmware(firmware_p, name, device, buf, size, offset,
1056				FW_OPT_UEVENT | FW_OPT_NOCACHE |
1057				FW_OPT_PARTIAL);
1058	module_put(THIS_MODULE);
1059	return ret;
1060}
1061EXPORT_SYMBOL(request_partial_firmware_into_buf);
1062
1063/**
1064 * release_firmware() - release the resource associated with a firmware image
1065 * @fw: firmware resource to release
1066 **/
1067void release_firmware(const struct firmware *fw)
1068{
1069	if (fw) {
1070		if (!fw_is_builtin_firmware(fw))
1071			firmware_free_data(fw);
1072		kfree(fw);
1073	}
1074}
1075EXPORT_SYMBOL(release_firmware);
1076
1077/* Async support */
1078struct firmware_work {
1079	struct work_struct work;
1080	struct module *module;
1081	const char *name;
1082	struct device *device;
1083	void *context;
1084	void (*cont)(const struct firmware *fw, void *context);
1085	u32 opt_flags;
1086};
1087
1088static void request_firmware_work_func(struct work_struct *work)
1089{
1090	struct firmware_work *fw_work;
1091	const struct firmware *fw;
1092
1093	fw_work = container_of(work, struct firmware_work, work);
1094
1095	_request_firmware(&fw, fw_work->name, fw_work->device, NULL, 0, 0,
1096			  fw_work->opt_flags);
1097	fw_work->cont(fw, fw_work->context);
1098	put_device(fw_work->device); /* taken in request_firmware_nowait() */
1099
1100	module_put(fw_work->module);
1101	kfree_const(fw_work->name);
1102	kfree(fw_work);
1103}
1104
1105/**
1106 * request_firmware_nowait() - asynchronous version of request_firmware
1107 * @module: module requesting the firmware
1108 * @uevent: sends uevent to copy the firmware image if this flag
1109 *	is non-zero else the firmware copy must be done manually.
1110 * @name: name of firmware file
1111 * @device: device for which firmware is being loaded
1112 * @gfp: allocation flags
1113 * @context: will be passed over to @cont, and
1114 *	@fw may be %NULL if firmware request fails.
1115 * @cont: function will be called asynchronously when the firmware
1116 *	request is over.
1117 *
1118 *	Caller must hold the reference count of @device.
1119 *
1120 *	Asynchronous variant of request_firmware() for user contexts:
1121 *		- sleep for as small periods as possible since it may
1122 *		  increase kernel boot time of built-in device drivers
1123 *		  requesting firmware in their ->probe() methods, if
1124 *		  @gfp is GFP_KERNEL.
1125 *
1126 *		- can't sleep at all if @gfp is GFP_ATOMIC.
1127 **/
1128int
1129request_firmware_nowait(
1130	struct module *module, bool uevent,
1131	const char *name, struct device *device, gfp_t gfp, void *context,
1132	void (*cont)(const struct firmware *fw, void *context))
1133{
1134	struct firmware_work *fw_work;
1135
1136	fw_work = kzalloc(sizeof(struct firmware_work), gfp);
1137	if (!fw_work)
1138		return -ENOMEM;
1139
1140	fw_work->module = module;
1141	fw_work->name = kstrdup_const(name, gfp);
1142	if (!fw_work->name) {
1143		kfree(fw_work);
1144		return -ENOMEM;
1145	}
1146	fw_work->device = device;
1147	fw_work->context = context;
1148	fw_work->cont = cont;
1149	fw_work->opt_flags = FW_OPT_NOWAIT |
1150		(uevent ? FW_OPT_UEVENT : FW_OPT_USERHELPER);
1151
1152	if (!uevent && fw_cache_is_setup(device, name)) {
1153		kfree_const(fw_work->name);
1154		kfree(fw_work);
1155		return -EOPNOTSUPP;
1156	}
1157
1158	if (!try_module_get(module)) {
1159		kfree_const(fw_work->name);
1160		kfree(fw_work);
1161		return -EFAULT;
1162	}
1163
1164	get_device(fw_work->device);
1165	INIT_WORK(&fw_work->work, request_firmware_work_func);
1166	schedule_work(&fw_work->work);
1167	return 0;
1168}
1169EXPORT_SYMBOL(request_firmware_nowait);
1170
1171#ifdef CONFIG_FW_CACHE
1172static ASYNC_DOMAIN_EXCLUSIVE(fw_cache_domain);
1173
1174/**
1175 * cache_firmware() - cache one firmware image in kernel memory space
1176 * @fw_name: the firmware image name
1177 *
1178 * Cache firmware in kernel memory so that drivers can use it when
1179 * system isn't ready for them to request firmware image from userspace.
1180 * Once it returns successfully, driver can use request_firmware or its
1181 * nowait version to get the cached firmware without any interacting
1182 * with userspace
1183 *
1184 * Return 0 if the firmware image has been cached successfully
1185 * Return !0 otherwise
1186 *
1187 */
1188static int cache_firmware(const char *fw_name)
1189{
1190	int ret;
1191	const struct firmware *fw;
1192
1193	pr_debug("%s: %s\n", __func__, fw_name);
1194
1195	ret = request_firmware(&fw, fw_name, NULL);
1196	if (!ret)
1197		kfree(fw);
1198
1199	pr_debug("%s: %s ret=%d\n", __func__, fw_name, ret);
1200
1201	return ret;
1202}
1203
1204static struct fw_priv *lookup_fw_priv(const char *fw_name)
1205{
1206	struct fw_priv *tmp;
1207	struct firmware_cache *fwc = &fw_cache;
1208
1209	spin_lock(&fwc->lock);
1210	tmp = __lookup_fw_priv(fw_name);
1211	spin_unlock(&fwc->lock);
1212
1213	return tmp;
1214}
1215
1216/**
1217 * uncache_firmware() - remove one cached firmware image
1218 * @fw_name: the firmware image name
1219 *
1220 * Uncache one firmware image which has been cached successfully
1221 * before.
1222 *
1223 * Return 0 if the firmware cache has been removed successfully
1224 * Return !0 otherwise
1225 *
1226 */
1227static int uncache_firmware(const char *fw_name)
1228{
1229	struct fw_priv *fw_priv;
1230	struct firmware fw;
1231
1232	pr_debug("%s: %s\n", __func__, fw_name);
1233
1234	if (fw_get_builtin_firmware(&fw, fw_name, NULL, 0))
1235		return 0;
1236
1237	fw_priv = lookup_fw_priv(fw_name);
1238	if (fw_priv) {
1239		free_fw_priv(fw_priv);
1240		return 0;
1241	}
1242
1243	return -EINVAL;
1244}
1245
1246static struct fw_cache_entry *alloc_fw_cache_entry(const char *name)
1247{
1248	struct fw_cache_entry *fce;
1249
1250	fce = kzalloc(sizeof(*fce), GFP_ATOMIC);
1251	if (!fce)
1252		goto exit;
1253
1254	fce->name = kstrdup_const(name, GFP_ATOMIC);
1255	if (!fce->name) {
1256		kfree(fce);
1257		fce = NULL;
1258		goto exit;
1259	}
1260exit:
1261	return fce;
1262}
1263
1264static int __fw_entry_found(const char *name)
1265{
1266	struct firmware_cache *fwc = &fw_cache;
1267	struct fw_cache_entry *fce;
1268
1269	list_for_each_entry(fce, &fwc->fw_names, list) {
1270		if (!strcmp(fce->name, name))
1271			return 1;
1272	}
1273	return 0;
1274}
1275
1276static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
1277{
1278	const char *name = fw_priv->fw_name;
1279	struct firmware_cache *fwc = fw_priv->fwc;
1280	struct fw_cache_entry *fce;
1281
1282	spin_lock(&fwc->name_lock);
1283	if (__fw_entry_found(name))
1284		goto found;
1285
1286	fce = alloc_fw_cache_entry(name);
1287	if (fce) {
1288		list_add(&fce->list, &fwc->fw_names);
1289		kref_get(&fw_priv->ref);
1290		pr_debug("%s: fw: %s\n", __func__, name);
1291	}
1292found:
1293	spin_unlock(&fwc->name_lock);
1294}
1295
1296static void free_fw_cache_entry(struct fw_cache_entry *fce)
1297{
1298	kfree_const(fce->name);
1299	kfree(fce);
1300}
1301
1302static void __async_dev_cache_fw_image(void *fw_entry,
1303				       async_cookie_t cookie)
1304{
1305	struct fw_cache_entry *fce = fw_entry;
1306	struct firmware_cache *fwc = &fw_cache;
1307	int ret;
1308
1309	ret = cache_firmware(fce->name);
1310	if (ret) {
1311		spin_lock(&fwc->name_lock);
1312		list_del(&fce->list);
1313		spin_unlock(&fwc->name_lock);
1314
1315		free_fw_cache_entry(fce);
1316	}
1317}
1318
1319/* called with dev->devres_lock held */
1320static void dev_create_fw_entry(struct device *dev, void *res,
1321				void *data)
1322{
1323	struct fw_name_devm *fwn = res;
1324	const char *fw_name = fwn->name;
1325	struct list_head *head = data;
1326	struct fw_cache_entry *fce;
1327
1328	fce = alloc_fw_cache_entry(fw_name);
1329	if (fce)
1330		list_add(&fce->list, head);
1331}
1332
1333static int devm_name_match(struct device *dev, void *res,
1334			   void *match_data)
1335{
1336	struct fw_name_devm *fwn = res;
1337	return (fwn->magic == (unsigned long)match_data);
1338}
1339
1340static void dev_cache_fw_image(struct device *dev, void *data)
1341{
1342	LIST_HEAD(todo);
1343	struct fw_cache_entry *fce;
1344	struct fw_cache_entry *fce_next;
1345	struct firmware_cache *fwc = &fw_cache;
1346
1347	devres_for_each_res(dev, fw_name_devm_release,
1348			    devm_name_match, &fw_cache,
1349			    dev_create_fw_entry, &todo);
1350
1351	list_for_each_entry_safe(fce, fce_next, &todo, list) {
1352		list_del(&fce->list);
1353
1354		spin_lock(&fwc->name_lock);
1355		/* only one cache entry for one firmware */
1356		if (!__fw_entry_found(fce->name)) {
1357			list_add(&fce->list, &fwc->fw_names);
1358		} else {
1359			free_fw_cache_entry(fce);
1360			fce = NULL;
1361		}
1362		spin_unlock(&fwc->name_lock);
1363
1364		if (fce)
1365			async_schedule_domain(__async_dev_cache_fw_image,
1366					      (void *)fce,
1367					      &fw_cache_domain);
1368	}
1369}
1370
1371static void __device_uncache_fw_images(void)
1372{
1373	struct firmware_cache *fwc = &fw_cache;
1374	struct fw_cache_entry *fce;
1375
1376	spin_lock(&fwc->name_lock);
1377	while (!list_empty(&fwc->fw_names)) {
1378		fce = list_entry(fwc->fw_names.next,
1379				struct fw_cache_entry, list);
1380		list_del(&fce->list);
1381		spin_unlock(&fwc->name_lock);
1382
1383		uncache_firmware(fce->name);
1384		free_fw_cache_entry(fce);
1385
1386		spin_lock(&fwc->name_lock);
1387	}
1388	spin_unlock(&fwc->name_lock);
1389}
1390
1391/**
1392 * device_cache_fw_images() - cache devices' firmware
1393 *
1394 * If one device called request_firmware or its nowait version
1395 * successfully before, the firmware names are recored into the
1396 * device's devres link list, so device_cache_fw_images can call
1397 * cache_firmware() to cache these firmwares for the device,
1398 * then the device driver can load its firmwares easily at
1399 * time when system is not ready to complete loading firmware.
1400 */
1401static void device_cache_fw_images(void)
1402{
1403	struct firmware_cache *fwc = &fw_cache;
1404	DEFINE_WAIT(wait);
1405
1406	pr_debug("%s\n", __func__);
1407
1408	/* cancel uncache work */
1409	cancel_delayed_work_sync(&fwc->work);
1410
1411	fw_fallback_set_cache_timeout();
1412
1413	mutex_lock(&fw_lock);
1414	fwc->state = FW_LOADER_START_CACHE;
1415	dpm_for_each_dev(NULL, dev_cache_fw_image);
1416	mutex_unlock(&fw_lock);
1417
1418	/* wait for completion of caching firmware for all devices */
1419	async_synchronize_full_domain(&fw_cache_domain);
1420
1421	fw_fallback_set_default_timeout();
1422}
1423
1424/**
1425 * device_uncache_fw_images() - uncache devices' firmware
1426 *
1427 * uncache all firmwares which have been cached successfully
1428 * by device_uncache_fw_images earlier
1429 */
1430static void device_uncache_fw_images(void)
1431{
1432	pr_debug("%s\n", __func__);
1433	__device_uncache_fw_images();
1434}
1435
1436static void device_uncache_fw_images_work(struct work_struct *work)
1437{
1438	device_uncache_fw_images();
1439}
1440
1441/**
1442 * device_uncache_fw_images_delay() - uncache devices firmwares
1443 * @delay: number of milliseconds to delay uncache device firmwares
1444 *
1445 * uncache all devices's firmwares which has been cached successfully
1446 * by device_cache_fw_images after @delay milliseconds.
1447 */
1448static void device_uncache_fw_images_delay(unsigned long delay)
1449{
1450	queue_delayed_work(system_power_efficient_wq, &fw_cache.work,
1451			   msecs_to_jiffies(delay));
1452}
1453
1454static int fw_pm_notify(struct notifier_block *notify_block,
1455			unsigned long mode, void *unused)
1456{
1457	switch (mode) {
1458	case PM_HIBERNATION_PREPARE:
1459	case PM_SUSPEND_PREPARE:
1460	case PM_RESTORE_PREPARE:
1461		/*
1462		 * kill pending fallback requests with a custom fallback
1463		 * to avoid stalling suspend.
1464		 */
1465		kill_pending_fw_fallback_reqs(true);
1466		device_cache_fw_images();
1467		break;
1468
1469	case PM_POST_SUSPEND:
1470	case PM_POST_HIBERNATION:
1471	case PM_POST_RESTORE:
1472		/*
1473		 * In case that system sleep failed and syscore_suspend is
1474		 * not called.
1475		 */
1476		mutex_lock(&fw_lock);
1477		fw_cache.state = FW_LOADER_NO_CACHE;
1478		mutex_unlock(&fw_lock);
1479
1480		device_uncache_fw_images_delay(10 * MSEC_PER_SEC);
1481		break;
1482	}
1483
1484	return 0;
1485}
1486
1487/* stop caching firmware once syscore_suspend is reached */
1488static int fw_suspend(void)
1489{
1490	fw_cache.state = FW_LOADER_NO_CACHE;
1491	return 0;
1492}
1493
1494static struct syscore_ops fw_syscore_ops = {
1495	.suspend = fw_suspend,
1496};
1497
1498static int __init register_fw_pm_ops(void)
1499{
1500	int ret;
1501
1502	spin_lock_init(&fw_cache.name_lock);
1503	INIT_LIST_HEAD(&fw_cache.fw_names);
1504
1505	INIT_DELAYED_WORK(&fw_cache.work,
1506			  device_uncache_fw_images_work);
1507
1508	fw_cache.pm_notify.notifier_call = fw_pm_notify;
1509	ret = register_pm_notifier(&fw_cache.pm_notify);
1510	if (ret)
1511		return ret;
1512
1513	register_syscore_ops(&fw_syscore_ops);
1514
1515	return ret;
1516}
1517
1518static inline void unregister_fw_pm_ops(void)
1519{
1520	unregister_syscore_ops(&fw_syscore_ops);
1521	unregister_pm_notifier(&fw_cache.pm_notify);
1522}
1523#else
1524static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
1525{
1526}
1527static inline int register_fw_pm_ops(void)
1528{
1529	return 0;
1530}
1531static inline void unregister_fw_pm_ops(void)
1532{
1533}
1534#endif
1535
1536static void __init fw_cache_init(void)
1537{
1538	spin_lock_init(&fw_cache.lock);
1539	INIT_LIST_HEAD(&fw_cache.head);
1540	fw_cache.state = FW_LOADER_NO_CACHE;
1541}
1542
1543static int fw_shutdown_notify(struct notifier_block *unused1,
1544			      unsigned long unused2, void *unused3)
1545{
1546	/*
1547	 * Kill all pending fallback requests to avoid both stalling shutdown,
1548	 * and avoid a deadlock with the usermode_lock.
1549	 */
1550	kill_pending_fw_fallback_reqs(false);
1551
1552	return NOTIFY_DONE;
1553}
1554
1555static struct notifier_block fw_shutdown_nb = {
1556	.notifier_call = fw_shutdown_notify,
1557};
1558
1559static int __init firmware_class_init(void)
1560{
1561	int ret;
1562
1563	/* No need to unfold these on exit */
1564	fw_cache_init();
1565
1566	ret = register_fw_pm_ops();
1567	if (ret)
1568		return ret;
1569
1570	ret = register_reboot_notifier(&fw_shutdown_nb);
1571	if (ret)
1572		goto out;
1573
1574	return register_sysfs_loader();
1575
1576out:
1577	unregister_fw_pm_ops();
1578	return ret;
1579}
1580
1581static void __exit firmware_class_exit(void)
1582{
1583	unregister_fw_pm_ops();
1584	unregister_reboot_notifier(&fw_shutdown_nb);
1585	unregister_sysfs_loader();
1586}
1587
1588fs_initcall(firmware_class_init);
1589module_exit(firmware_class_exit);
1590