xref: /kernel/linux/linux-5.10/drivers/base/devres.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * drivers/base/devres.c - device resource management
4 *
5 * Copyright (c) 2006  SUSE Linux Products GmbH
6 * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
7 */
8
9#include <linux/device.h>
10#include <linux/module.h>
11#include <linux/slab.h>
12#include <linux/percpu.h>
13
14#include <asm/sections.h>
15
16#include "base.h"
17
18struct devres_node {
19	struct list_head		entry;
20	dr_release_t			release;
21#ifdef CONFIG_DEBUG_DEVRES
22	const char			*name;
23	size_t				size;
24#endif
25};
26
27struct devres {
28	struct devres_node		node;
29	/*
30	 * Some archs want to perform DMA into kmalloc caches
31	 * and need a guaranteed alignment larger than
32	 * the alignment of a 64-bit integer.
33	 * Thus we use ARCH_KMALLOC_MINALIGN here and get exactly the same
34	 * buffer alignment as if it was allocated by plain kmalloc().
35	 */
36	u8 __aligned(ARCH_KMALLOC_MINALIGN) data[];
37};
38
39struct devres_group {
40	struct devres_node		node[2];
41	void				*id;
42	int				color;
43	/* -- 8 pointers */
44};
45
46#ifdef CONFIG_DEBUG_DEVRES
47static int log_devres = 0;
48module_param_named(log, log_devres, int, S_IRUGO | S_IWUSR);
49
50static void set_node_dbginfo(struct devres_node *node, const char *name,
51			     size_t size)
52{
53	node->name = name;
54	node->size = size;
55}
56
57static void devres_log(struct device *dev, struct devres_node *node,
58		       const char *op)
59{
60	if (unlikely(log_devres))
61		dev_err(dev, "DEVRES %3s %p %s (%lu bytes)\n",
62			op, node, node->name, (unsigned long)node->size);
63}
64#else /* CONFIG_DEBUG_DEVRES */
65#define set_node_dbginfo(node, n, s)	do {} while (0)
66#define devres_log(dev, node, op)	do {} while (0)
67#endif /* CONFIG_DEBUG_DEVRES */
68
69/*
70 * Release functions for devres group.  These callbacks are used only
71 * for identification.
72 */
73static void group_open_release(struct device *dev, void *res)
74{
75	/* noop */
76}
77
78static void group_close_release(struct device *dev, void *res)
79{
80	/* noop */
81}
82
83static struct devres_group * node_to_group(struct devres_node *node)
84{
85	if (node->release == &group_open_release)
86		return container_of(node, struct devres_group, node[0]);
87	if (node->release == &group_close_release)
88		return container_of(node, struct devres_group, node[1]);
89	return NULL;
90}
91
92static bool check_dr_size(size_t size, size_t *tot_size)
93{
94	/* We must catch any near-SIZE_MAX cases that could overflow. */
95	if (unlikely(check_add_overflow(sizeof(struct devres),
96					size, tot_size)))
97		return false;
98
99	return true;
100}
101
102static __always_inline struct devres * alloc_dr(dr_release_t release,
103						size_t size, gfp_t gfp, int nid)
104{
105	size_t tot_size;
106	struct devres *dr;
107
108	if (!check_dr_size(size, &tot_size))
109		return NULL;
110
111	dr = kmalloc_node_track_caller(tot_size, gfp, nid);
112	if (unlikely(!dr))
113		return NULL;
114
115	memset(dr, 0, offsetof(struct devres, data));
116
117	INIT_LIST_HEAD(&dr->node.entry);
118	dr->node.release = release;
119	return dr;
120}
121
122static void add_dr(struct device *dev, struct devres_node *node)
123{
124	devres_log(dev, node, "ADD");
125	BUG_ON(!list_empty(&node->entry));
126	list_add_tail(&node->entry, &dev->devres_head);
127}
128
129static void replace_dr(struct device *dev,
130		       struct devres_node *old, struct devres_node *new)
131{
132	devres_log(dev, old, "REPLACE");
133	BUG_ON(!list_empty(&new->entry));
134	list_replace(&old->entry, &new->entry);
135}
136
137#ifdef CONFIG_DEBUG_DEVRES
138void * __devres_alloc_node(dr_release_t release, size_t size, gfp_t gfp, int nid,
139		      const char *name)
140{
141	struct devres *dr;
142
143	dr = alloc_dr(release, size, gfp | __GFP_ZERO, nid);
144	if (unlikely(!dr))
145		return NULL;
146	set_node_dbginfo(&dr->node, name, size);
147	return dr->data;
148}
149EXPORT_SYMBOL_GPL(__devres_alloc_node);
150#else
151/**
152 * devres_alloc - Allocate device resource data
153 * @release: Release function devres will be associated with
154 * @size: Allocation size
155 * @gfp: Allocation flags
156 * @nid: NUMA node
157 *
158 * Allocate devres of @size bytes.  The allocated area is zeroed, then
159 * associated with @release.  The returned pointer can be passed to
160 * other devres_*() functions.
161 *
162 * RETURNS:
163 * Pointer to allocated devres on success, NULL on failure.
164 */
165void * devres_alloc_node(dr_release_t release, size_t size, gfp_t gfp, int nid)
166{
167	struct devres *dr;
168
169	dr = alloc_dr(release, size, gfp | __GFP_ZERO, nid);
170	if (unlikely(!dr))
171		return NULL;
172	return dr->data;
173}
174EXPORT_SYMBOL_GPL(devres_alloc_node);
175#endif
176
177/**
178 * devres_for_each_res - Resource iterator
179 * @dev: Device to iterate resource from
180 * @release: Look for resources associated with this release function
181 * @match: Match function (optional)
182 * @match_data: Data for the match function
183 * @fn: Function to be called for each matched resource.
184 * @data: Data for @fn, the 3rd parameter of @fn
185 *
186 * Call @fn for each devres of @dev which is associated with @release
187 * and for which @match returns 1.
188 *
189 * RETURNS:
190 * 	void
191 */
192void devres_for_each_res(struct device *dev, dr_release_t release,
193			dr_match_t match, void *match_data,
194			void (*fn)(struct device *, void *, void *),
195			void *data)
196{
197	struct devres_node *node;
198	struct devres_node *tmp;
199	unsigned long flags;
200
201	if (!fn)
202		return;
203
204	spin_lock_irqsave(&dev->devres_lock, flags);
205	list_for_each_entry_safe_reverse(node, tmp,
206			&dev->devres_head, entry) {
207		struct devres *dr = container_of(node, struct devres, node);
208
209		if (node->release != release)
210			continue;
211		if (match && !match(dev, dr->data, match_data))
212			continue;
213		fn(dev, dr->data, data);
214	}
215	spin_unlock_irqrestore(&dev->devres_lock, flags);
216}
217EXPORT_SYMBOL_GPL(devres_for_each_res);
218
219/**
220 * devres_free - Free device resource data
221 * @res: Pointer to devres data to free
222 *
223 * Free devres created with devres_alloc().
224 */
225void devres_free(void *res)
226{
227	if (res) {
228		struct devres *dr = container_of(res, struct devres, data);
229
230		BUG_ON(!list_empty(&dr->node.entry));
231		kfree(dr);
232	}
233}
234EXPORT_SYMBOL_GPL(devres_free);
235
236/**
237 * devres_add - Register device resource
238 * @dev: Device to add resource to
239 * @res: Resource to register
240 *
241 * Register devres @res to @dev.  @res should have been allocated
242 * using devres_alloc().  On driver detach, the associated release
243 * function will be invoked and devres will be freed automatically.
244 */
245void devres_add(struct device *dev, void *res)
246{
247	struct devres *dr = container_of(res, struct devres, data);
248	unsigned long flags;
249
250	spin_lock_irqsave(&dev->devres_lock, flags);
251	add_dr(dev, &dr->node);
252	spin_unlock_irqrestore(&dev->devres_lock, flags);
253}
254EXPORT_SYMBOL_GPL(devres_add);
255
256static struct devres *find_dr(struct device *dev, dr_release_t release,
257			      dr_match_t match, void *match_data)
258{
259	struct devres_node *node;
260
261	list_for_each_entry_reverse(node, &dev->devres_head, entry) {
262		struct devres *dr = container_of(node, struct devres, node);
263
264		if (node->release != release)
265			continue;
266		if (match && !match(dev, dr->data, match_data))
267			continue;
268		return dr;
269	}
270
271	return NULL;
272}
273
274/**
275 * devres_find - Find device resource
276 * @dev: Device to lookup resource from
277 * @release: Look for resources associated with this release function
278 * @match: Match function (optional)
279 * @match_data: Data for the match function
280 *
281 * Find the latest devres of @dev which is associated with @release
282 * and for which @match returns 1.  If @match is NULL, it's considered
283 * to match all.
284 *
285 * RETURNS:
286 * Pointer to found devres, NULL if not found.
287 */
288void * devres_find(struct device *dev, dr_release_t release,
289		   dr_match_t match, void *match_data)
290{
291	struct devres *dr;
292	unsigned long flags;
293
294	spin_lock_irqsave(&dev->devres_lock, flags);
295	dr = find_dr(dev, release, match, match_data);
296	spin_unlock_irqrestore(&dev->devres_lock, flags);
297
298	if (dr)
299		return dr->data;
300	return NULL;
301}
302EXPORT_SYMBOL_GPL(devres_find);
303
304/**
305 * devres_get - Find devres, if non-existent, add one atomically
306 * @dev: Device to lookup or add devres for
307 * @new_res: Pointer to new initialized devres to add if not found
308 * @match: Match function (optional)
309 * @match_data: Data for the match function
310 *
311 * Find the latest devres of @dev which has the same release function
312 * as @new_res and for which @match return 1.  If found, @new_res is
313 * freed; otherwise, @new_res is added atomically.
314 *
315 * RETURNS:
316 * Pointer to found or added devres.
317 */
318void * devres_get(struct device *dev, void *new_res,
319		  dr_match_t match, void *match_data)
320{
321	struct devres *new_dr = container_of(new_res, struct devres, data);
322	struct devres *dr;
323	unsigned long flags;
324
325	spin_lock_irqsave(&dev->devres_lock, flags);
326	dr = find_dr(dev, new_dr->node.release, match, match_data);
327	if (!dr) {
328		add_dr(dev, &new_dr->node);
329		dr = new_dr;
330		new_res = NULL;
331	}
332	spin_unlock_irqrestore(&dev->devres_lock, flags);
333	devres_free(new_res);
334
335	return dr->data;
336}
337EXPORT_SYMBOL_GPL(devres_get);
338
339/**
340 * devres_remove - Find a device resource and remove it
341 * @dev: Device to find resource from
342 * @release: Look for resources associated with this release function
343 * @match: Match function (optional)
344 * @match_data: Data for the match function
345 *
346 * Find the latest devres of @dev associated with @release and for
347 * which @match returns 1.  If @match is NULL, it's considered to
348 * match all.  If found, the resource is removed atomically and
349 * returned.
350 *
351 * RETURNS:
352 * Pointer to removed devres on success, NULL if not found.
353 */
354void * devres_remove(struct device *dev, dr_release_t release,
355		     dr_match_t match, void *match_data)
356{
357	struct devres *dr;
358	unsigned long flags;
359
360	spin_lock_irqsave(&dev->devres_lock, flags);
361	dr = find_dr(dev, release, match, match_data);
362	if (dr) {
363		list_del_init(&dr->node.entry);
364		devres_log(dev, &dr->node, "REM");
365	}
366	spin_unlock_irqrestore(&dev->devres_lock, flags);
367
368	if (dr)
369		return dr->data;
370	return NULL;
371}
372EXPORT_SYMBOL_GPL(devres_remove);
373
374/**
375 * devres_destroy - Find a device resource and destroy it
376 * @dev: Device to find resource from
377 * @release: Look for resources associated with this release function
378 * @match: Match function (optional)
379 * @match_data: Data for the match function
380 *
381 * Find the latest devres of @dev associated with @release and for
382 * which @match returns 1.  If @match is NULL, it's considered to
383 * match all.  If found, the resource is removed atomically and freed.
384 *
385 * Note that the release function for the resource will not be called,
386 * only the devres-allocated data will be freed.  The caller becomes
387 * responsible for freeing any other data.
388 *
389 * RETURNS:
390 * 0 if devres is found and freed, -ENOENT if not found.
391 */
392int devres_destroy(struct device *dev, dr_release_t release,
393		   dr_match_t match, void *match_data)
394{
395	void *res;
396
397	res = devres_remove(dev, release, match, match_data);
398	if (unlikely(!res))
399		return -ENOENT;
400
401	devres_free(res);
402	return 0;
403}
404EXPORT_SYMBOL_GPL(devres_destroy);
405
406
407/**
408 * devres_release - Find a device resource and destroy it, calling release
409 * @dev: Device to find resource from
410 * @release: Look for resources associated with this release function
411 * @match: Match function (optional)
412 * @match_data: Data for the match function
413 *
414 * Find the latest devres of @dev associated with @release and for
415 * which @match returns 1.  If @match is NULL, it's considered to
416 * match all.  If found, the resource is removed atomically, the
417 * release function called and the resource freed.
418 *
419 * RETURNS:
420 * 0 if devres is found and freed, -ENOENT if not found.
421 */
422int devres_release(struct device *dev, dr_release_t release,
423		   dr_match_t match, void *match_data)
424{
425	void *res;
426
427	res = devres_remove(dev, release, match, match_data);
428	if (unlikely(!res))
429		return -ENOENT;
430
431	(*release)(dev, res);
432	devres_free(res);
433	return 0;
434}
435EXPORT_SYMBOL_GPL(devres_release);
436
437static int remove_nodes(struct device *dev,
438			struct list_head *first, struct list_head *end,
439			struct list_head *todo)
440{
441	int cnt = 0, nr_groups = 0;
442	struct list_head *cur;
443
444	/* First pass - move normal devres entries to @todo and clear
445	 * devres_group colors.
446	 */
447	cur = first;
448	while (cur != end) {
449		struct devres_node *node;
450		struct devres_group *grp;
451
452		node = list_entry(cur, struct devres_node, entry);
453		cur = cur->next;
454
455		grp = node_to_group(node);
456		if (grp) {
457			/* clear color of group markers in the first pass */
458			grp->color = 0;
459			nr_groups++;
460		} else {
461			/* regular devres entry */
462			if (&node->entry == first)
463				first = first->next;
464			list_move_tail(&node->entry, todo);
465			cnt++;
466		}
467	}
468
469	if (!nr_groups)
470		return cnt;
471
472	/* Second pass - Scan groups and color them.  A group gets
473	 * color value of two iff the group is wholly contained in
474	 * [cur, end).  That is, for a closed group, both opening and
475	 * closing markers should be in the range, while just the
476	 * opening marker is enough for an open group.
477	 */
478	cur = first;
479	while (cur != end) {
480		struct devres_node *node;
481		struct devres_group *grp;
482
483		node = list_entry(cur, struct devres_node, entry);
484		cur = cur->next;
485
486		grp = node_to_group(node);
487		BUG_ON(!grp || list_empty(&grp->node[0].entry));
488
489		grp->color++;
490		if (list_empty(&grp->node[1].entry))
491			grp->color++;
492
493		BUG_ON(grp->color <= 0 || grp->color > 2);
494		if (grp->color == 2) {
495			/* No need to update cur or end.  The removed
496			 * nodes are always before both.
497			 */
498			list_move_tail(&grp->node[0].entry, todo);
499			list_del_init(&grp->node[1].entry);
500		}
501	}
502
503	return cnt;
504}
505
506static int release_nodes(struct device *dev, struct list_head *first,
507			 struct list_head *end, unsigned long flags)
508	__releases(&dev->devres_lock)
509{
510	LIST_HEAD(todo);
511	int cnt;
512	struct devres *dr, *tmp;
513
514	cnt = remove_nodes(dev, first, end, &todo);
515
516	spin_unlock_irqrestore(&dev->devres_lock, flags);
517
518	/* Release.  Note that both devres and devres_group are
519	 * handled as devres in the following loop.  This is safe.
520	 */
521	list_for_each_entry_safe_reverse(dr, tmp, &todo, node.entry) {
522		devres_log(dev, &dr->node, "REL");
523		dr->node.release(dev, dr->data);
524		kfree(dr);
525	}
526
527	return cnt;
528}
529
530/**
531 * devres_release_all - Release all managed resources
532 * @dev: Device to release resources for
533 *
534 * Release all resources associated with @dev.  This function is
535 * called on driver detach.
536 */
537int devres_release_all(struct device *dev)
538{
539	unsigned long flags;
540
541	/* Looks like an uninitialized device structure */
542	if (WARN_ON(dev->devres_head.next == NULL))
543		return -ENODEV;
544	spin_lock_irqsave(&dev->devres_lock, flags);
545	return release_nodes(dev, dev->devres_head.next, &dev->devres_head,
546			     flags);
547}
548
549/**
550 * devres_open_group - Open a new devres group
551 * @dev: Device to open devres group for
552 * @id: Separator ID
553 * @gfp: Allocation flags
554 *
555 * Open a new devres group for @dev with @id.  For @id, using a
556 * pointer to an object which won't be used for another group is
557 * recommended.  If @id is NULL, address-wise unique ID is created.
558 *
559 * RETURNS:
560 * ID of the new group, NULL on failure.
561 */
562void * devres_open_group(struct device *dev, void *id, gfp_t gfp)
563{
564	struct devres_group *grp;
565	unsigned long flags;
566
567	grp = kmalloc(sizeof(*grp), gfp);
568	if (unlikely(!grp))
569		return NULL;
570
571	grp->node[0].release = &group_open_release;
572	grp->node[1].release = &group_close_release;
573	INIT_LIST_HEAD(&grp->node[0].entry);
574	INIT_LIST_HEAD(&grp->node[1].entry);
575	set_node_dbginfo(&grp->node[0], "grp<", 0);
576	set_node_dbginfo(&grp->node[1], "grp>", 0);
577	grp->id = grp;
578	if (id)
579		grp->id = id;
580
581	spin_lock_irqsave(&dev->devres_lock, flags);
582	add_dr(dev, &grp->node[0]);
583	spin_unlock_irqrestore(&dev->devres_lock, flags);
584	return grp->id;
585}
586EXPORT_SYMBOL_GPL(devres_open_group);
587
588/* Find devres group with ID @id.  If @id is NULL, look for the latest. */
589static struct devres_group * find_group(struct device *dev, void *id)
590{
591	struct devres_node *node;
592
593	list_for_each_entry_reverse(node, &dev->devres_head, entry) {
594		struct devres_group *grp;
595
596		if (node->release != &group_open_release)
597			continue;
598
599		grp = container_of(node, struct devres_group, node[0]);
600
601		if (id) {
602			if (grp->id == id)
603				return grp;
604		} else if (list_empty(&grp->node[1].entry))
605			return grp;
606	}
607
608	return NULL;
609}
610
611/**
612 * devres_close_group - Close a devres group
613 * @dev: Device to close devres group for
614 * @id: ID of target group, can be NULL
615 *
616 * Close the group identified by @id.  If @id is NULL, the latest open
617 * group is selected.
618 */
619void devres_close_group(struct device *dev, void *id)
620{
621	struct devres_group *grp;
622	unsigned long flags;
623
624	spin_lock_irqsave(&dev->devres_lock, flags);
625
626	grp = find_group(dev, id);
627	if (grp)
628		add_dr(dev, &grp->node[1]);
629	else
630		WARN_ON(1);
631
632	spin_unlock_irqrestore(&dev->devres_lock, flags);
633}
634EXPORT_SYMBOL_GPL(devres_close_group);
635
636/**
637 * devres_remove_group - Remove a devres group
638 * @dev: Device to remove group for
639 * @id: ID of target group, can be NULL
640 *
641 * Remove the group identified by @id.  If @id is NULL, the latest
642 * open group is selected.  Note that removing a group doesn't affect
643 * any other resources.
644 */
645void devres_remove_group(struct device *dev, void *id)
646{
647	struct devres_group *grp;
648	unsigned long flags;
649
650	spin_lock_irqsave(&dev->devres_lock, flags);
651
652	grp = find_group(dev, id);
653	if (grp) {
654		list_del_init(&grp->node[0].entry);
655		list_del_init(&grp->node[1].entry);
656		devres_log(dev, &grp->node[0], "REM");
657	} else
658		WARN_ON(1);
659
660	spin_unlock_irqrestore(&dev->devres_lock, flags);
661
662	kfree(grp);
663}
664EXPORT_SYMBOL_GPL(devres_remove_group);
665
666/**
667 * devres_release_group - Release resources in a devres group
668 * @dev: Device to release group for
669 * @id: ID of target group, can be NULL
670 *
671 * Release all resources in the group identified by @id.  If @id is
672 * NULL, the latest open group is selected.  The selected group and
673 * groups properly nested inside the selected group are removed.
674 *
675 * RETURNS:
676 * The number of released non-group resources.
677 */
678int devres_release_group(struct device *dev, void *id)
679{
680	struct devres_group *grp;
681	unsigned long flags;
682	int cnt = 0;
683
684	spin_lock_irqsave(&dev->devres_lock, flags);
685
686	grp = find_group(dev, id);
687	if (grp) {
688		struct list_head *first = &grp->node[0].entry;
689		struct list_head *end = &dev->devres_head;
690
691		if (!list_empty(&grp->node[1].entry))
692			end = grp->node[1].entry.next;
693
694		cnt = release_nodes(dev, first, end, flags);
695	} else {
696		WARN_ON(1);
697		spin_unlock_irqrestore(&dev->devres_lock, flags);
698	}
699
700	return cnt;
701}
702EXPORT_SYMBOL_GPL(devres_release_group);
703
704/*
705 * Custom devres actions allow inserting a simple function call
706 * into the teadown sequence.
707 */
708
709struct action_devres {
710	void *data;
711	void (*action)(void *);
712};
713
714static int devm_action_match(struct device *dev, void *res, void *p)
715{
716	struct action_devres *devres = res;
717	struct action_devres *target = p;
718
719	return devres->action == target->action &&
720	       devres->data == target->data;
721}
722
723static void devm_action_release(struct device *dev, void *res)
724{
725	struct action_devres *devres = res;
726
727	devres->action(devres->data);
728}
729
730/**
731 * devm_add_action() - add a custom action to list of managed resources
732 * @dev: Device that owns the action
733 * @action: Function that should be called
734 * @data: Pointer to data passed to @action implementation
735 *
736 * This adds a custom action to the list of managed resources so that
737 * it gets executed as part of standard resource unwinding.
738 */
739int devm_add_action(struct device *dev, void (*action)(void *), void *data)
740{
741	struct action_devres *devres;
742
743	devres = devres_alloc(devm_action_release,
744			      sizeof(struct action_devres), GFP_KERNEL);
745	if (!devres)
746		return -ENOMEM;
747
748	devres->data = data;
749	devres->action = action;
750
751	devres_add(dev, devres);
752	return 0;
753}
754EXPORT_SYMBOL_GPL(devm_add_action);
755
756/**
757 * devm_remove_action() - removes previously added custom action
758 * @dev: Device that owns the action
759 * @action: Function implementing the action
760 * @data: Pointer to data passed to @action implementation
761 *
762 * Removes instance of @action previously added by devm_add_action().
763 * Both action and data should match one of the existing entries.
764 */
765void devm_remove_action(struct device *dev, void (*action)(void *), void *data)
766{
767	struct action_devres devres = {
768		.data = data,
769		.action = action,
770	};
771
772	WARN_ON(devres_destroy(dev, devm_action_release, devm_action_match,
773			       &devres));
774}
775EXPORT_SYMBOL_GPL(devm_remove_action);
776
777/**
778 * devm_release_action() - release previously added custom action
779 * @dev: Device that owns the action
780 * @action: Function implementing the action
781 * @data: Pointer to data passed to @action implementation
782 *
783 * Releases and removes instance of @action previously added by
784 * devm_add_action().  Both action and data should match one of the
785 * existing entries.
786 */
787void devm_release_action(struct device *dev, void (*action)(void *), void *data)
788{
789	struct action_devres devres = {
790		.data = data,
791		.action = action,
792	};
793
794	WARN_ON(devres_release(dev, devm_action_release, devm_action_match,
795			       &devres));
796
797}
798EXPORT_SYMBOL_GPL(devm_release_action);
799
800/*
801 * Managed kmalloc/kfree
802 */
803static void devm_kmalloc_release(struct device *dev, void *res)
804{
805	/* noop */
806}
807
808static int devm_kmalloc_match(struct device *dev, void *res, void *data)
809{
810	return res == data;
811}
812
813/**
814 * devm_kmalloc - Resource-managed kmalloc
815 * @dev: Device to allocate memory for
816 * @size: Allocation size
817 * @gfp: Allocation gfp flags
818 *
819 * Managed kmalloc.  Memory allocated with this function is
820 * automatically freed on driver detach.  Like all other devres
821 * resources, guaranteed alignment is unsigned long long.
822 *
823 * RETURNS:
824 * Pointer to allocated memory on success, NULL on failure.
825 */
826void *devm_kmalloc(struct device *dev, size_t size, gfp_t gfp)
827{
828	struct devres *dr;
829
830	if (unlikely(!size))
831		return ZERO_SIZE_PTR;
832
833	/* use raw alloc_dr for kmalloc caller tracing */
834	dr = alloc_dr(devm_kmalloc_release, size, gfp, dev_to_node(dev));
835	if (unlikely(!dr))
836		return NULL;
837
838	/*
839	 * This is named devm_kzalloc_release for historical reasons
840	 * The initial implementation did not support kmalloc, only kzalloc
841	 */
842	set_node_dbginfo(&dr->node, "devm_kzalloc_release", size);
843	devres_add(dev, dr->data);
844	return dr->data;
845}
846EXPORT_SYMBOL_GPL(devm_kmalloc);
847
848/**
849 * devm_krealloc - Resource-managed krealloc()
850 * @dev: Device to re-allocate memory for
851 * @ptr: Pointer to the memory chunk to re-allocate
852 * @new_size: New allocation size
853 * @gfp: Allocation gfp flags
854 *
855 * Managed krealloc(). Resizes the memory chunk allocated with devm_kmalloc().
856 * Behaves similarly to regular krealloc(): if @ptr is NULL or ZERO_SIZE_PTR,
857 * it's the equivalent of devm_kmalloc(). If new_size is zero, it frees the
858 * previously allocated memory and returns ZERO_SIZE_PTR. This function doesn't
859 * change the order in which the release callback for the re-alloc'ed devres
860 * will be called (except when falling back to devm_kmalloc() or when freeing
861 * resources when new_size is zero). The contents of the memory are preserved
862 * up to the lesser of new and old sizes.
863 */
864void *devm_krealloc(struct device *dev, void *ptr, size_t new_size, gfp_t gfp)
865{
866	size_t total_new_size, total_old_size;
867	struct devres *old_dr, *new_dr;
868	unsigned long flags;
869
870	if (unlikely(!new_size)) {
871		devm_kfree(dev, ptr);
872		return ZERO_SIZE_PTR;
873	}
874
875	if (unlikely(ZERO_OR_NULL_PTR(ptr)))
876		return devm_kmalloc(dev, new_size, gfp);
877
878	if (WARN_ON(is_kernel_rodata((unsigned long)ptr)))
879		/*
880		 * We cannot reliably realloc a const string returned by
881		 * devm_kstrdup_const().
882		 */
883		return NULL;
884
885	if (!check_dr_size(new_size, &total_new_size))
886		return NULL;
887
888	total_old_size = ksize(container_of(ptr, struct devres, data));
889	if (total_old_size == 0) {
890		WARN(1, "Pointer doesn't point to dynamically allocated memory.");
891		return NULL;
892	}
893
894	/*
895	 * If new size is smaller or equal to the actual number of bytes
896	 * allocated previously - just return the same pointer.
897	 */
898	if (total_new_size <= total_old_size)
899		return ptr;
900
901	/*
902	 * Otherwise: allocate new, larger chunk. We need to allocate before
903	 * taking the lock as most probably the caller uses GFP_KERNEL.
904	 */
905	new_dr = alloc_dr(devm_kmalloc_release,
906			  total_new_size, gfp, dev_to_node(dev));
907	if (!new_dr)
908		return NULL;
909
910	/*
911	 * The spinlock protects the linked list against concurrent
912	 * modifications but not the resource itself.
913	 */
914	spin_lock_irqsave(&dev->devres_lock, flags);
915
916	old_dr = find_dr(dev, devm_kmalloc_release, devm_kmalloc_match, ptr);
917	if (!old_dr) {
918		spin_unlock_irqrestore(&dev->devres_lock, flags);
919		kfree(new_dr);
920		WARN(1, "Memory chunk not managed or managed by a different device.");
921		return NULL;
922	}
923
924	replace_dr(dev, &old_dr->node, &new_dr->node);
925
926	spin_unlock_irqrestore(&dev->devres_lock, flags);
927
928	/*
929	 * We can copy the memory contents after releasing the lock as we're
930	 * no longer modyfing the list links.
931	 */
932	memcpy(new_dr->data, old_dr->data,
933	       total_old_size - offsetof(struct devres, data));
934	/*
935	 * Same for releasing the old devres - it's now been removed from the
936	 * list. This is also the reason why we must not use devm_kfree() - the
937	 * links are no longer valid.
938	 */
939	kfree(old_dr);
940
941	return new_dr->data;
942}
943EXPORT_SYMBOL_GPL(devm_krealloc);
944
945/**
946 * devm_kstrdup - Allocate resource managed space and
947 *                copy an existing string into that.
948 * @dev: Device to allocate memory for
949 * @s: the string to duplicate
950 * @gfp: the GFP mask used in the devm_kmalloc() call when
951 *       allocating memory
952 * RETURNS:
953 * Pointer to allocated string on success, NULL on failure.
954 */
955char *devm_kstrdup(struct device *dev, const char *s, gfp_t gfp)
956{
957	size_t size;
958	char *buf;
959
960	if (!s)
961		return NULL;
962
963	size = strlen(s) + 1;
964	buf = devm_kmalloc(dev, size, gfp);
965	if (buf)
966		memcpy(buf, s, size);
967	return buf;
968}
969EXPORT_SYMBOL_GPL(devm_kstrdup);
970
971/**
972 * devm_kstrdup_const - resource managed conditional string duplication
973 * @dev: device for which to duplicate the string
974 * @s: the string to duplicate
975 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
976 *
977 * Strings allocated by devm_kstrdup_const will be automatically freed when
978 * the associated device is detached.
979 *
980 * RETURNS:
981 * Source string if it is in .rodata section otherwise it falls back to
982 * devm_kstrdup.
983 */
984const char *devm_kstrdup_const(struct device *dev, const char *s, gfp_t gfp)
985{
986	if (is_kernel_rodata((unsigned long)s))
987		return s;
988
989	return devm_kstrdup(dev, s, gfp);
990}
991EXPORT_SYMBOL_GPL(devm_kstrdup_const);
992
993/**
994 * devm_kvasprintf - Allocate resource managed space and format a string
995 *		     into that.
996 * @dev: Device to allocate memory for
997 * @gfp: the GFP mask used in the devm_kmalloc() call when
998 *       allocating memory
999 * @fmt: The printf()-style format string
1000 * @ap: Arguments for the format string
1001 * RETURNS:
1002 * Pointer to allocated string on success, NULL on failure.
1003 */
1004char *devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt,
1005		      va_list ap)
1006{
1007	unsigned int len;
1008	char *p;
1009	va_list aq;
1010
1011	va_copy(aq, ap);
1012	len = vsnprintf(NULL, 0, fmt, aq);
1013	va_end(aq);
1014
1015	p = devm_kmalloc(dev, len+1, gfp);
1016	if (!p)
1017		return NULL;
1018
1019	vsnprintf(p, len+1, fmt, ap);
1020
1021	return p;
1022}
1023EXPORT_SYMBOL(devm_kvasprintf);
1024
1025/**
1026 * devm_kasprintf - Allocate resource managed space and format a string
1027 *		    into that.
1028 * @dev: Device to allocate memory for
1029 * @gfp: the GFP mask used in the devm_kmalloc() call when
1030 *       allocating memory
1031 * @fmt: The printf()-style format string
1032 * @...: Arguments for the format string
1033 * RETURNS:
1034 * Pointer to allocated string on success, NULL on failure.
1035 */
1036char *devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...)
1037{
1038	va_list ap;
1039	char *p;
1040
1041	va_start(ap, fmt);
1042	p = devm_kvasprintf(dev, gfp, fmt, ap);
1043	va_end(ap);
1044
1045	return p;
1046}
1047EXPORT_SYMBOL_GPL(devm_kasprintf);
1048
1049/**
1050 * devm_kfree - Resource-managed kfree
1051 * @dev: Device this memory belongs to
1052 * @p: Memory to free
1053 *
1054 * Free memory allocated with devm_kmalloc().
1055 */
1056void devm_kfree(struct device *dev, const void *p)
1057{
1058	int rc;
1059
1060	/*
1061	 * Special cases: pointer to a string in .rodata returned by
1062	 * devm_kstrdup_const() or NULL/ZERO ptr.
1063	 */
1064	if (unlikely(is_kernel_rodata((unsigned long)p) || ZERO_OR_NULL_PTR(p)))
1065		return;
1066
1067	rc = devres_destroy(dev, devm_kmalloc_release,
1068			    devm_kmalloc_match, (void *)p);
1069	WARN_ON(rc);
1070}
1071EXPORT_SYMBOL_GPL(devm_kfree);
1072
1073/**
1074 * devm_kmemdup - Resource-managed kmemdup
1075 * @dev: Device this memory belongs to
1076 * @src: Memory region to duplicate
1077 * @len: Memory region length
1078 * @gfp: GFP mask to use
1079 *
1080 * Duplicate region of a memory using resource managed kmalloc
1081 */
1082void *devm_kmemdup(struct device *dev, const void *src, size_t len, gfp_t gfp)
1083{
1084	void *p;
1085
1086	p = devm_kmalloc(dev, len, gfp);
1087	if (p)
1088		memcpy(p, src, len);
1089
1090	return p;
1091}
1092EXPORT_SYMBOL_GPL(devm_kmemdup);
1093
1094struct pages_devres {
1095	unsigned long addr;
1096	unsigned int order;
1097};
1098
1099static int devm_pages_match(struct device *dev, void *res, void *p)
1100{
1101	struct pages_devres *devres = res;
1102	struct pages_devres *target = p;
1103
1104	return devres->addr == target->addr;
1105}
1106
1107static void devm_pages_release(struct device *dev, void *res)
1108{
1109	struct pages_devres *devres = res;
1110
1111	free_pages(devres->addr, devres->order);
1112}
1113
1114/**
1115 * devm_get_free_pages - Resource-managed __get_free_pages
1116 * @dev: Device to allocate memory for
1117 * @gfp_mask: Allocation gfp flags
1118 * @order: Allocation size is (1 << order) pages
1119 *
1120 * Managed get_free_pages.  Memory allocated with this function is
1121 * automatically freed on driver detach.
1122 *
1123 * RETURNS:
1124 * Address of allocated memory on success, 0 on failure.
1125 */
1126
1127unsigned long devm_get_free_pages(struct device *dev,
1128				  gfp_t gfp_mask, unsigned int order)
1129{
1130	struct pages_devres *devres;
1131	unsigned long addr;
1132
1133	addr = __get_free_pages(gfp_mask, order);
1134
1135	if (unlikely(!addr))
1136		return 0;
1137
1138	devres = devres_alloc(devm_pages_release,
1139			      sizeof(struct pages_devres), GFP_KERNEL);
1140	if (unlikely(!devres)) {
1141		free_pages(addr, order);
1142		return 0;
1143	}
1144
1145	devres->addr = addr;
1146	devres->order = order;
1147
1148	devres_add(dev, devres);
1149	return addr;
1150}
1151EXPORT_SYMBOL_GPL(devm_get_free_pages);
1152
1153/**
1154 * devm_free_pages - Resource-managed free_pages
1155 * @dev: Device this memory belongs to
1156 * @addr: Memory to free
1157 *
1158 * Free memory allocated with devm_get_free_pages(). Unlike free_pages,
1159 * there is no need to supply the @order.
1160 */
1161void devm_free_pages(struct device *dev, unsigned long addr)
1162{
1163	struct pages_devres devres = { .addr = addr };
1164
1165	WARN_ON(devres_release(dev, devm_pages_release, devm_pages_match,
1166			       &devres));
1167}
1168EXPORT_SYMBOL_GPL(devm_free_pages);
1169
1170static void devm_percpu_release(struct device *dev, void *pdata)
1171{
1172	void __percpu *p;
1173
1174	p = *(void __percpu **)pdata;
1175	free_percpu(p);
1176}
1177
1178static int devm_percpu_match(struct device *dev, void *data, void *p)
1179{
1180	struct devres *devr = container_of(data, struct devres, data);
1181
1182	return *(void **)devr->data == p;
1183}
1184
1185/**
1186 * __devm_alloc_percpu - Resource-managed alloc_percpu
1187 * @dev: Device to allocate per-cpu memory for
1188 * @size: Size of per-cpu memory to allocate
1189 * @align: Alignment of per-cpu memory to allocate
1190 *
1191 * Managed alloc_percpu. Per-cpu memory allocated with this function is
1192 * automatically freed on driver detach.
1193 *
1194 * RETURNS:
1195 * Pointer to allocated memory on success, NULL on failure.
1196 */
1197void __percpu *__devm_alloc_percpu(struct device *dev, size_t size,
1198		size_t align)
1199{
1200	void *p;
1201	void __percpu *pcpu;
1202
1203	pcpu = __alloc_percpu(size, align);
1204	if (!pcpu)
1205		return NULL;
1206
1207	p = devres_alloc(devm_percpu_release, sizeof(void *), GFP_KERNEL);
1208	if (!p) {
1209		free_percpu(pcpu);
1210		return NULL;
1211	}
1212
1213	*(void __percpu **)p = pcpu;
1214
1215	devres_add(dev, p);
1216
1217	return pcpu;
1218}
1219EXPORT_SYMBOL_GPL(__devm_alloc_percpu);
1220
1221/**
1222 * devm_free_percpu - Resource-managed free_percpu
1223 * @dev: Device this memory belongs to
1224 * @pdata: Per-cpu memory to free
1225 *
1226 * Free memory allocated with devm_alloc_percpu().
1227 */
1228void devm_free_percpu(struct device *dev, void __percpu *pdata)
1229{
1230	/*
1231	 * Use devres_release() to prevent memory leakage as
1232	 * devm_free_pages() does.
1233	 */
1234	WARN_ON(devres_release(dev, devm_percpu_release, devm_percpu_match,
1235			       (__force void *)pdata));
1236}
1237EXPORT_SYMBOL_GPL(devm_free_percpu);
1238