xref: /kernel/linux/linux-5.10/drivers/atm/lanai.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* lanai.c -- Copyright 1999-2003 by Mitchell Blank Jr <mitch@sfgoth.com>
3 *
4 * This driver supports ATM cards based on the Efficient "Lanai"
5 * chipset such as the Speedstream 3010 and the ENI-25p.  The
6 * Speedstream 3060 is currently not supported since we don't
7 * have the code to drive the on-board Alcatel DSL chipset (yet).
8 *
9 * Thanks to Efficient for supporting this project with hardware,
10 * documentation, and by answering my questions.
11 *
12 * Things not working yet:
13 *
14 * o  We don't support the Speedstream 3060 yet - this card has
15 *    an on-board DSL modem chip by Alcatel and the driver will
16 *    need some extra code added to handle it
17 *
18 * o  Note that due to limitations of the Lanai only one VCC can be
19 *    in CBR at once
20 *
21 * o We don't currently parse the EEPROM at all.  The code is all
22 *   there as per the spec, but it doesn't actually work.  I think
23 *   there may be some issues with the docs.  Anyway, do NOT
24 *   enable it yet - bugs in that code may actually damage your
25 *   hardware!  Because of this you should hardware an ESI before
26 *   trying to use this in a LANE or MPOA environment.
27 *
28 * o  AAL0 is stubbed in but the actual rx/tx path isn't written yet:
29 *	vcc_tx_aal0() needs to send or queue a SKB
30 *	vcc_tx_unqueue_aal0() needs to attempt to send queued SKBs
31 *	vcc_rx_aal0() needs to handle AAL0 interrupts
32 *    This isn't too much work - I just wanted to get other things
33 *    done first.
34 *
35 * o  lanai_change_qos() isn't written yet
36 *
37 * o  There aren't any ioctl's yet -- I'd like to eventually support
38 *    setting loopback and LED modes that way.
39 *
40 * o  If the segmentation engine or DMA gets shut down we should restart
41 *    card as per section 17.0i.  (see lanai_reset)
42 *
43 * o setsockopt(SO_CIRANGE) isn't done (although despite what the
44 *   API says it isn't exactly commonly implemented)
45 */
46
47/* Version history:
48 *   v.1.00 -- 26-JUL-2003 -- PCI/DMA updates
49 *   v.0.02 -- 11-JAN-2000 -- Endian fixes
50 *   v.0.01 -- 30-NOV-1999 -- Initial release
51 */
52
53#include <linux/module.h>
54#include <linux/slab.h>
55#include <linux/mm.h>
56#include <linux/atmdev.h>
57#include <asm/io.h>
58#include <asm/byteorder.h>
59#include <linux/spinlock.h>
60#include <linux/pci.h>
61#include <linux/dma-mapping.h>
62#include <linux/init.h>
63#include <linux/delay.h>
64#include <linux/interrupt.h>
65
66/* -------------------- TUNABLE PARAMATERS: */
67
68/*
69 * Maximum number of VCIs per card.  Setting it lower could theoretically
70 * save some memory, but since we allocate our vcc list with get_free_pages,
71 * it's not really likely for most architectures
72 */
73#define NUM_VCI			(1024)
74
75/*
76 * Enable extra debugging
77 */
78#define DEBUG
79/*
80 * Debug _all_ register operations with card, except the memory test.
81 * Also disables the timed poll to prevent extra chattiness.  This
82 * isn't for normal use
83 */
84#undef DEBUG_RW
85
86/*
87 * The programming guide specifies a full test of the on-board SRAM
88 * at initialization time.  Undefine to remove this
89 */
90#define FULL_MEMORY_TEST
91
92/*
93 * This is the number of (4 byte) service entries that we will
94 * try to allocate at startup.  Note that we will end up with
95 * one PAGE_SIZE's worth regardless of what this is set to
96 */
97#define SERVICE_ENTRIES		(1024)
98/* TODO: make above a module load-time option */
99
100/*
101 * We normally read the onboard EEPROM in order to discover our MAC
102 * address.  Undefine to _not_ do this
103 */
104/* #define READ_EEPROM */ /* ***DONT ENABLE YET*** */
105/* TODO: make above a module load-time option (also) */
106
107/*
108 * Depth of TX fifo (in 128 byte units; range 2-31)
109 * Smaller numbers are better for network latency
110 * Larger numbers are better for PCI latency
111 * I'm really sure where the best tradeoff is, but the BSD driver uses
112 * 7 and it seems to work ok.
113 */
114#define TX_FIFO_DEPTH		(7)
115/* TODO: make above a module load-time option */
116
117/*
118 * How often (in jiffies) we will try to unstick stuck connections -
119 * shouldn't need to happen much
120 */
121#define LANAI_POLL_PERIOD	(10*HZ)
122/* TODO: make above a module load-time option */
123
124/*
125 * When allocating an AAL5 receiving buffer, try to make it at least
126 * large enough to hold this many max_sdu sized PDUs
127 */
128#define AAL5_RX_MULTIPLIER	(3)
129/* TODO: make above a module load-time option */
130
131/*
132 * Same for transmitting buffer
133 */
134#define AAL5_TX_MULTIPLIER	(3)
135/* TODO: make above a module load-time option */
136
137/*
138 * When allocating an AAL0 transmiting buffer, how many cells should fit.
139 * Remember we'll end up with a PAGE_SIZE of them anyway, so this isn't
140 * really critical
141 */
142#define AAL0_TX_MULTIPLIER	(40)
143/* TODO: make above a module load-time option */
144
145/*
146 * How large should we make the AAL0 receiving buffer.  Remember that this
147 * is shared between all AAL0 VC's
148 */
149#define AAL0_RX_BUFFER_SIZE	(PAGE_SIZE)
150/* TODO: make above a module load-time option */
151
152/*
153 * Should we use Lanai's "powerdown" feature when no vcc's are bound?
154 */
155/* #define USE_POWERDOWN */
156/* TODO: make above a module load-time option (also) */
157
158/* -------------------- DEBUGGING AIDS: */
159
160#define DEV_LABEL "lanai"
161
162#ifdef DEBUG
163
164#define DPRINTK(format, args...) \
165	printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
166#define APRINTK(truth, format, args...) \
167	do { \
168		if (unlikely(!(truth))) \
169			printk(KERN_ERR DEV_LABEL ": " format, ##args); \
170	} while (0)
171
172#else /* !DEBUG */
173
174#define DPRINTK(format, args...)
175#define APRINTK(truth, format, args...)
176
177#endif /* DEBUG */
178
179#ifdef DEBUG_RW
180#define RWDEBUG(format, args...) \
181	printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
182#else /* !DEBUG_RW */
183#define RWDEBUG(format, args...)
184#endif
185
186/* -------------------- DATA DEFINITIONS: */
187
188#define LANAI_MAPPING_SIZE	(0x40000)
189#define LANAI_EEPROM_SIZE	(128)
190
191typedef int vci_t;
192typedef void __iomem *bus_addr_t;
193
194/* DMA buffer in host memory for TX, RX, or service list. */
195struct lanai_buffer {
196	u32 *start;	/* From get_free_pages */
197	u32 *end;	/* One past last byte */
198	u32 *ptr;	/* Pointer to current host location */
199	dma_addr_t dmaaddr;
200};
201
202struct lanai_vcc_stats {
203	unsigned rx_nomem;
204	union {
205		struct {
206			unsigned rx_badlen;
207			unsigned service_trash;
208			unsigned service_stream;
209			unsigned service_rxcrc;
210		} aal5;
211		struct {
212		} aal0;
213	} x;
214};
215
216struct lanai_dev;			/* Forward declaration */
217
218/*
219 * This is the card-specific per-vcc data.  Note that unlike some other
220 * drivers there is NOT a 1-to-1 correspondance between these and
221 * atm_vcc's - each one of these represents an actual 2-way vcc, but
222 * an atm_vcc can be 1-way and share with a 1-way vcc in the other
223 * direction.  To make it weirder, there can even be 0-way vccs
224 * bound to us, waiting to do a change_qos
225 */
226struct lanai_vcc {
227	bus_addr_t vbase;		/* Base of VCC's registers */
228	struct lanai_vcc_stats stats;
229	int nref;			/* # of atm_vcc's who reference us */
230	vci_t vci;
231	struct {
232		struct lanai_buffer buf;
233		struct atm_vcc *atmvcc;	/* atm_vcc who is receiver */
234	} rx;
235	struct {
236		struct lanai_buffer buf;
237		struct atm_vcc *atmvcc;	/* atm_vcc who is transmitter */
238		int endptr;		/* last endptr from service entry */
239		struct sk_buff_head backlog;
240		void (*unqueue)(struct lanai_dev *, struct lanai_vcc *, int);
241	} tx;
242};
243
244enum lanai_type {
245	lanai2	= PCI_DEVICE_ID_EF_ATM_LANAI2,
246	lanaihb	= PCI_DEVICE_ID_EF_ATM_LANAIHB
247};
248
249struct lanai_dev_stats {
250	unsigned ovfl_trash;	/* # of cells dropped - buffer overflow */
251	unsigned vci_trash;	/* # of cells dropped - closed vci */
252	unsigned hec_err;	/* # of cells dropped - bad HEC */
253	unsigned atm_ovfl;	/* # of cells dropped - rx fifo overflow */
254	unsigned pcierr_parity_detect;
255	unsigned pcierr_serr_set;
256	unsigned pcierr_master_abort;
257	unsigned pcierr_m_target_abort;
258	unsigned pcierr_s_target_abort;
259	unsigned pcierr_master_parity;
260	unsigned service_notx;
261	unsigned service_norx;
262	unsigned service_rxnotaal5;
263	unsigned dma_reenable;
264	unsigned card_reset;
265};
266
267struct lanai_dev {
268	bus_addr_t base;
269	struct lanai_dev_stats stats;
270	struct lanai_buffer service;
271	struct lanai_vcc **vccs;
272#ifdef USE_POWERDOWN
273	int nbound;			/* number of bound vccs */
274#endif
275	enum lanai_type type;
276	vci_t num_vci;			/* Currently just NUM_VCI */
277	u8 eeprom[LANAI_EEPROM_SIZE];
278	u32 serialno, magicno;
279	struct pci_dev *pci;
280	DECLARE_BITMAP(backlog_vccs, NUM_VCI);   /* VCCs with tx backlog */
281	DECLARE_BITMAP(transmit_ready, NUM_VCI); /* VCCs with transmit space */
282	struct timer_list timer;
283	int naal0;
284	struct lanai_buffer aal0buf;	/* AAL0 RX buffers */
285	u32 conf1, conf2;		/* CONFIG[12] registers */
286	u32 status;			/* STATUS register */
287	spinlock_t endtxlock;
288	spinlock_t servicelock;
289	struct atm_vcc *cbrvcc;
290	int number;
291	int board_rev;
292/* TODO - look at race conditions with maintence of conf1/conf2 */
293/* TODO - transmit locking: should we use _irq not _irqsave? */
294/* TODO - organize above in some rational fashion (see <asm/cache.h>) */
295};
296
297/*
298 * Each device has two bitmaps for each VCC (baclog_vccs and transmit_ready)
299 * This function iterates one of these, calling a given function for each
300 * vci with their bit set
301 */
302static void vci_bitfield_iterate(struct lanai_dev *lanai,
303	const unsigned long *lp,
304	void (*func)(struct lanai_dev *,vci_t vci))
305{
306	vci_t vci;
307
308	for_each_set_bit(vci, lp, NUM_VCI)
309		func(lanai, vci);
310}
311
312/* -------------------- BUFFER  UTILITIES: */
313
314/*
315 * Lanai needs DMA buffers aligned to 256 bytes of at least 1024 bytes -
316 * usually any page allocation will do.  Just to be safe in case
317 * PAGE_SIZE is insanely tiny, though...
318 */
319#define LANAI_PAGE_SIZE   ((PAGE_SIZE >= 1024) ? PAGE_SIZE : 1024)
320
321/*
322 * Allocate a buffer in host RAM for service list, RX, or TX
323 * Returns buf->start==NULL if no memory
324 * Note that the size will be rounded up 2^n bytes, and
325 * if we can't allocate that we'll settle for something smaller
326 * until minbytes
327 */
328static void lanai_buf_allocate(struct lanai_buffer *buf,
329	size_t bytes, size_t minbytes, struct pci_dev *pci)
330{
331	int size;
332
333	if (bytes > (128 * 1024))	/* max lanai buffer size */
334		bytes = 128 * 1024;
335	for (size = LANAI_PAGE_SIZE; size < bytes; size *= 2)
336		;
337	if (minbytes < LANAI_PAGE_SIZE)
338		minbytes = LANAI_PAGE_SIZE;
339	do {
340		/*
341		 * Technically we could use non-consistent mappings for
342		 * everything, but the way the lanai uses DMA memory would
343		 * make that a terrific pain.  This is much simpler.
344		 */
345		buf->start = dma_alloc_coherent(&pci->dev,
346						size, &buf->dmaaddr, GFP_KERNEL);
347		if (buf->start != NULL) {	/* Success */
348			/* Lanai requires 256-byte alignment of DMA bufs */
349			APRINTK((buf->dmaaddr & ~0xFFFFFF00) == 0,
350			    "bad dmaaddr: 0x%lx\n",
351			    (unsigned long) buf->dmaaddr);
352			buf->ptr = buf->start;
353			buf->end = (u32 *)
354			    (&((unsigned char *) buf->start)[size]);
355			memset(buf->start, 0, size);
356			break;
357		}
358		size /= 2;
359	} while (size >= minbytes);
360}
361
362/* size of buffer in bytes */
363static inline size_t lanai_buf_size(const struct lanai_buffer *buf)
364{
365	return ((unsigned long) buf->end) - ((unsigned long) buf->start);
366}
367
368static void lanai_buf_deallocate(struct lanai_buffer *buf,
369	struct pci_dev *pci)
370{
371	if (buf->start != NULL) {
372		dma_free_coherent(&pci->dev, lanai_buf_size(buf),
373				  buf->start, buf->dmaaddr);
374		buf->start = buf->end = buf->ptr = NULL;
375	}
376}
377
378/* size of buffer as "card order" (0=1k .. 7=128k) */
379static int lanai_buf_size_cardorder(const struct lanai_buffer *buf)
380{
381	int order = get_order(lanai_buf_size(buf)) + (PAGE_SHIFT - 10);
382
383	/* This can only happen if PAGE_SIZE is gigantic, but just in case */
384	if (order > 7)
385		order = 7;
386	return order;
387}
388
389/* -------------------- PORT I/O UTILITIES: */
390
391/* Registers (and their bit-fields) */
392enum lanai_register {
393	Reset_Reg		= 0x00,	/* Reset; read for chip type; bits: */
394#define   RESET_GET_BOARD_REV(x)    (((x)>> 0)&0x03)	/* Board revision */
395#define   RESET_GET_BOARD_ID(x)	    (((x)>> 2)&0x03)	/* Board ID */
396#define     BOARD_ID_LANAI256		(0)	/* 25.6M adapter card */
397	Endian_Reg		= 0x04,	/* Endian setting */
398	IntStatus_Reg		= 0x08,	/* Interrupt status */
399	IntStatusMasked_Reg	= 0x0C,	/* Interrupt status (masked) */
400	IntAck_Reg		= 0x10,	/* Interrupt acknowledge */
401	IntAckMasked_Reg	= 0x14,	/* Interrupt acknowledge (masked) */
402	IntStatusSet_Reg	= 0x18,	/* Get status + enable/disable */
403	IntStatusSetMasked_Reg	= 0x1C,	/* Get status + en/di (masked) */
404	IntControlEna_Reg	= 0x20,	/* Interrupt control enable */
405	IntControlDis_Reg	= 0x24,	/* Interrupt control disable */
406	Status_Reg		= 0x28,	/* Status */
407#define   STATUS_PROMDATA	 (0x00000001)	/* PROM_DATA pin */
408#define   STATUS_WAITING	 (0x00000002)	/* Interrupt being delayed */
409#define	  STATUS_SOOL		 (0x00000004)	/* SOOL alarm */
410#define   STATUS_LOCD		 (0x00000008)	/* LOCD alarm */
411#define	  STATUS_LED		 (0x00000010)	/* LED (HAPPI) output */
412#define   STATUS_GPIN		 (0x00000020)	/* GPIN pin */
413#define   STATUS_BUTTBUSY	 (0x00000040)	/* Butt register is pending */
414	Config1_Reg		= 0x2C,	/* Config word 1; bits: */
415#define   CONFIG1_PROMDATA	 (0x00000001)	/* PROM_DATA pin */
416#define   CONFIG1_PROMCLK	 (0x00000002)	/* PROM_CLK pin */
417#define   CONFIG1_SET_READMODE(x) ((x)*0x004)	/* PCI BM reads; values: */
418#define     READMODE_PLAIN	    (0)		/*   Plain memory read */
419#define     READMODE_LINE	    (2)		/*   Memory read line */
420#define     READMODE_MULTIPLE	    (3)		/*   Memory read multiple */
421#define   CONFIG1_DMA_ENABLE	 (0x00000010)	/* Turn on DMA */
422#define   CONFIG1_POWERDOWN	 (0x00000020)	/* Turn off clocks */
423#define   CONFIG1_SET_LOOPMODE(x) ((x)*0x080)	/* Clock&loop mode; values: */
424#define     LOOPMODE_NORMAL	    (0)		/*   Normal - no loop */
425#define     LOOPMODE_TIME	    (1)
426#define     LOOPMODE_DIAG	    (2)
427#define     LOOPMODE_LINE	    (3)
428#define   CONFIG1_MASK_LOOPMODE  (0x00000180)
429#define   CONFIG1_SET_LEDMODE(x) ((x)*0x0200)	/* Mode of LED; values: */
430#define     LEDMODE_NOT_SOOL	    (0)		/*   !SOOL */
431#define	    LEDMODE_OFF		    (1)		/*   0     */
432#define	    LEDMODE_ON		    (2)		/*   1     */
433#define	    LEDMODE_NOT_LOCD	    (3)		/*   !LOCD */
434#define	    LEDMORE_GPIN	    (4)		/*   GPIN  */
435#define     LEDMODE_NOT_GPIN	    (7)		/*   !GPIN */
436#define   CONFIG1_MASK_LEDMODE	 (0x00000E00)
437#define   CONFIG1_GPOUT1	 (0x00001000)	/* Toggle for reset */
438#define   CONFIG1_GPOUT2	 (0x00002000)	/* Loopback PHY */
439#define   CONFIG1_GPOUT3	 (0x00004000)	/* Loopback lanai */
440	Config2_Reg		= 0x30,	/* Config word 2; bits: */
441#define   CONFIG2_HOWMANY	 (0x00000001)	/* >512 VCIs? */
442#define   CONFIG2_PTI7_MODE	 (0x00000002)	/* Make PTI=7 RM, not OAM */
443#define   CONFIG2_VPI_CHK_DIS	 (0x00000004)	/* Ignore RX VPI value */
444#define   CONFIG2_HEC_DROP	 (0x00000008)	/* Drop cells w/ HEC errors */
445#define   CONFIG2_VCI0_NORMAL	 (0x00000010)	/* Treat VCI=0 normally */
446#define   CONFIG2_CBR_ENABLE	 (0x00000020)	/* Deal with CBR traffic */
447#define   CONFIG2_TRASH_ALL	 (0x00000040)	/* Trashing incoming cells */
448#define   CONFIG2_TX_DISABLE	 (0x00000080)	/* Trashing outgoing cells */
449#define   CONFIG2_SET_TRASH	 (0x00000100)	/* Turn trashing on */
450	Statistics_Reg		= 0x34,	/* Statistics; bits: */
451#define   STATS_GET_FIFO_OVFL(x)    (((x)>> 0)&0xFF)	/* FIFO overflowed */
452#define   STATS_GET_HEC_ERR(x)      (((x)>> 8)&0xFF)	/* HEC was bad */
453#define   STATS_GET_BAD_VCI(x)      (((x)>>16)&0xFF)	/* VCI not open */
454#define   STATS_GET_BUF_OVFL(x)     (((x)>>24)&0xFF)	/* VCC buffer full */
455	ServiceStuff_Reg	= 0x38,	/* Service stuff; bits: */
456#define   SSTUFF_SET_SIZE(x) ((x)*0x20000000)	/* size of service buffer */
457#define   SSTUFF_SET_ADDR(x)	    ((x)>>8)	/* set address of buffer */
458	ServWrite_Reg		= 0x3C,	/* ServWrite Pointer */
459	ServRead_Reg		= 0x40,	/* ServRead Pointer */
460	TxDepth_Reg		= 0x44,	/* FIFO Transmit Depth */
461	Butt_Reg		= 0x48,	/* Butt register */
462	CBR_ICG_Reg		= 0x50,
463	CBR_PTR_Reg		= 0x54,
464	PingCount_Reg		= 0x58,	/* Ping count */
465	DMA_Addr_Reg		= 0x5C	/* DMA address */
466};
467
468static inline bus_addr_t reg_addr(const struct lanai_dev *lanai,
469	enum lanai_register reg)
470{
471	return lanai->base + reg;
472}
473
474static inline u32 reg_read(const struct lanai_dev *lanai,
475	enum lanai_register reg)
476{
477	u32 t;
478	t = readl(reg_addr(lanai, reg));
479	RWDEBUG("R [0x%08X] 0x%02X = 0x%08X\n", (unsigned int) lanai->base,
480	    (int) reg, t);
481	return t;
482}
483
484static inline void reg_write(const struct lanai_dev *lanai, u32 val,
485	enum lanai_register reg)
486{
487	RWDEBUG("W [0x%08X] 0x%02X < 0x%08X\n", (unsigned int) lanai->base,
488	    (int) reg, val);
489	writel(val, reg_addr(lanai, reg));
490}
491
492static inline void conf1_write(const struct lanai_dev *lanai)
493{
494	reg_write(lanai, lanai->conf1, Config1_Reg);
495}
496
497static inline void conf2_write(const struct lanai_dev *lanai)
498{
499	reg_write(lanai, lanai->conf2, Config2_Reg);
500}
501
502/* Same as conf2_write(), but defers I/O if we're powered down */
503static inline void conf2_write_if_powerup(const struct lanai_dev *lanai)
504{
505#ifdef USE_POWERDOWN
506	if (unlikely((lanai->conf1 & CONFIG1_POWERDOWN) != 0))
507		return;
508#endif /* USE_POWERDOWN */
509	conf2_write(lanai);
510}
511
512static inline void reset_board(const struct lanai_dev *lanai)
513{
514	DPRINTK("about to reset board\n");
515	reg_write(lanai, 0, Reset_Reg);
516	/*
517	 * If we don't delay a little while here then we can end up
518	 * leaving the card in a VERY weird state and lock up the
519	 * PCI bus.  This isn't documented anywhere but I've convinced
520	 * myself after a lot of painful experimentation
521	 */
522	udelay(5);
523}
524
525/* -------------------- CARD SRAM UTILITIES: */
526
527/* The SRAM is mapped into normal PCI memory space - the only catch is
528 * that it is only 16-bits wide but must be accessed as 32-bit.  The
529 * 16 high bits will be zero.  We don't hide this, since they get
530 * programmed mostly like discrete registers anyway
531 */
532#define SRAM_START (0x20000)
533#define SRAM_BYTES (0x20000)	/* Again, half don't really exist */
534
535static inline bus_addr_t sram_addr(const struct lanai_dev *lanai, int offset)
536{
537	return lanai->base + SRAM_START + offset;
538}
539
540static inline u32 sram_read(const struct lanai_dev *lanai, int offset)
541{
542	return readl(sram_addr(lanai, offset));
543}
544
545static inline void sram_write(const struct lanai_dev *lanai,
546	u32 val, int offset)
547{
548	writel(val, sram_addr(lanai, offset));
549}
550
551static int sram_test_word(const struct lanai_dev *lanai, int offset,
552			  u32 pattern)
553{
554	u32 readback;
555	sram_write(lanai, pattern, offset);
556	readback = sram_read(lanai, offset);
557	if (likely(readback == pattern))
558		return 0;
559	printk(KERN_ERR DEV_LABEL
560	    "(itf %d): SRAM word at %d bad: wrote 0x%X, read 0x%X\n",
561	    lanai->number, offset,
562	    (unsigned int) pattern, (unsigned int) readback);
563	return -EIO;
564}
565
566static int sram_test_pass(const struct lanai_dev *lanai, u32 pattern)
567{
568	int offset, result = 0;
569	for (offset = 0; offset < SRAM_BYTES && result == 0; offset += 4)
570		result = sram_test_word(lanai, offset, pattern);
571	return result;
572}
573
574static int sram_test_and_clear(const struct lanai_dev *lanai)
575{
576#ifdef FULL_MEMORY_TEST
577	int result;
578	DPRINTK("testing SRAM\n");
579	if ((result = sram_test_pass(lanai, 0x5555)) != 0)
580		return result;
581	if ((result = sram_test_pass(lanai, 0xAAAA)) != 0)
582		return result;
583#endif
584	DPRINTK("clearing SRAM\n");
585	return sram_test_pass(lanai, 0x0000);
586}
587
588/* -------------------- CARD-BASED VCC TABLE UTILITIES: */
589
590/* vcc table */
591enum lanai_vcc_offset {
592	vcc_rxaddr1		= 0x00,	/* Location1, plus bits: */
593#define   RXADDR1_SET_SIZE(x) ((x)*0x0000100)	/* size of RX buffer */
594#define   RXADDR1_SET_RMMODE(x) ((x)*0x00800)	/* RM cell action; values: */
595#define     RMMODE_TRASH	  (0)		/*   discard */
596#define     RMMODE_PRESERVE	  (1)		/*   input as AAL0 */
597#define     RMMODE_PIPE		  (2)		/*   pipe to coscheduler */
598#define     RMMODE_PIPEALL	  (3)		/*   pipe non-RM too */
599#define   RXADDR1_OAM_PRESERVE	 (0x00002000)	/* Input OAM cells as AAL0 */
600#define   RXADDR1_SET_MODE(x) ((x)*0x0004000)	/* Reassembly mode */
601#define     RXMODE_TRASH	  (0)		/*   discard */
602#define     RXMODE_AAL0		  (1)		/*   non-AAL5 mode */
603#define     RXMODE_AAL5		  (2)		/*   AAL5, intr. each PDU */
604#define     RXMODE_AAL5_STREAM	  (3)		/*   AAL5 w/o per-PDU intr */
605	vcc_rxaddr2		= 0x04,	/* Location2 */
606	vcc_rxcrc1		= 0x08,	/* RX CRC claculation space */
607	vcc_rxcrc2		= 0x0C,
608	vcc_rxwriteptr		= 0x10, /* RX writeptr, plus bits: */
609#define   RXWRITEPTR_LASTEFCI	 (0x00002000)	/* Last PDU had EFCI bit */
610#define   RXWRITEPTR_DROPPING	 (0x00004000)	/* Had error, dropping */
611#define   RXWRITEPTR_TRASHING	 (0x00008000)	/* Trashing */
612	vcc_rxbufstart		= 0x14,	/* RX bufstart, plus bits: */
613#define   RXBUFSTART_CLP	 (0x00004000)
614#define   RXBUFSTART_CI		 (0x00008000)
615	vcc_rxreadptr		= 0x18,	/* RX readptr */
616	vcc_txicg		= 0x1C, /* TX ICG */
617	vcc_txaddr1		= 0x20,	/* Location1, plus bits: */
618#define   TXADDR1_SET_SIZE(x) ((x)*0x0000100)	/* size of TX buffer */
619#define   TXADDR1_ABR		 (0x00008000)	/* use ABR (doesn't work) */
620	vcc_txaddr2		= 0x24,	/* Location2 */
621	vcc_txcrc1		= 0x28,	/* TX CRC claculation space */
622	vcc_txcrc2		= 0x2C,
623	vcc_txreadptr		= 0x30, /* TX Readptr, plus bits: */
624#define   TXREADPTR_GET_PTR(x) ((x)&0x01FFF)
625#define   TXREADPTR_MASK_DELTA	(0x0000E000)	/* ? */
626	vcc_txendptr		= 0x34, /* TX Endptr, plus bits: */
627#define   TXENDPTR_CLP		(0x00002000)
628#define   TXENDPTR_MASK_PDUMODE	(0x0000C000)	/* PDU mode; values: */
629#define     PDUMODE_AAL0	 (0*0x04000)
630#define     PDUMODE_AAL5	 (2*0x04000)
631#define     PDUMODE_AAL5STREAM	 (3*0x04000)
632	vcc_txwriteptr		= 0x38,	/* TX Writeptr */
633#define   TXWRITEPTR_GET_PTR(x) ((x)&0x1FFF)
634	vcc_txcbr_next		= 0x3C	/* # of next CBR VCI in ring */
635#define   TXCBR_NEXT_BOZO	(0x00008000)	/* "bozo bit" */
636};
637
638#define CARDVCC_SIZE	(0x40)
639
640static inline bus_addr_t cardvcc_addr(const struct lanai_dev *lanai,
641	vci_t vci)
642{
643	return sram_addr(lanai, vci * CARDVCC_SIZE);
644}
645
646static inline u32 cardvcc_read(const struct lanai_vcc *lvcc,
647	enum lanai_vcc_offset offset)
648{
649	u32 val;
650	APRINTK(lvcc->vbase != NULL, "cardvcc_read: unbound vcc!\n");
651	val= readl(lvcc->vbase + offset);
652	RWDEBUG("VR vci=%04d 0x%02X = 0x%08X\n",
653	    lvcc->vci, (int) offset, val);
654	return val;
655}
656
657static inline void cardvcc_write(const struct lanai_vcc *lvcc,
658	u32 val, enum lanai_vcc_offset offset)
659{
660	APRINTK(lvcc->vbase != NULL, "cardvcc_write: unbound vcc!\n");
661	APRINTK((val & ~0xFFFF) == 0,
662	    "cardvcc_write: bad val 0x%X (vci=%d, addr=0x%02X)\n",
663	    (unsigned int) val, lvcc->vci, (unsigned int) offset);
664	RWDEBUG("VW vci=%04d 0x%02X > 0x%08X\n",
665	    lvcc->vci, (unsigned int) offset, (unsigned int) val);
666	writel(val, lvcc->vbase + offset);
667}
668
669/* -------------------- COMPUTE SIZE OF AN AAL5 PDU: */
670
671/* How many bytes will an AAL5 PDU take to transmit - remember that:
672 *   o  we need to add 8 bytes for length, CPI, UU, and CRC
673 *   o  we need to round up to 48 bytes for cells
674 */
675static inline int aal5_size(int size)
676{
677	int cells = (size + 8 + 47) / 48;
678	return cells * 48;
679}
680
681/* -------------------- FREE AN ATM SKB: */
682
683static inline void lanai_free_skb(struct atm_vcc *atmvcc, struct sk_buff *skb)
684{
685	if (atmvcc->pop != NULL)
686		atmvcc->pop(atmvcc, skb);
687	else
688		dev_kfree_skb_any(skb);
689}
690
691/* -------------------- TURN VCCS ON AND OFF: */
692
693static void host_vcc_start_rx(const struct lanai_vcc *lvcc)
694{
695	u32 addr1;
696	if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5) {
697		dma_addr_t dmaaddr = lvcc->rx.buf.dmaaddr;
698		cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc1);
699		cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc2);
700		cardvcc_write(lvcc, 0, vcc_rxwriteptr);
701		cardvcc_write(lvcc, 0, vcc_rxbufstart);
702		cardvcc_write(lvcc, 0, vcc_rxreadptr);
703		cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_rxaddr2);
704		addr1 = ((dmaaddr >> 8) & 0xFF) |
705		    RXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->rx.buf))|
706		    RXADDR1_SET_RMMODE(RMMODE_TRASH) |	/* ??? */
707		 /* RXADDR1_OAM_PRESERVE |	--- no OAM support yet */
708		    RXADDR1_SET_MODE(RXMODE_AAL5);
709	} else
710		addr1 = RXADDR1_SET_RMMODE(RMMODE_PRESERVE) | /* ??? */
711		    RXADDR1_OAM_PRESERVE |		      /* ??? */
712		    RXADDR1_SET_MODE(RXMODE_AAL0);
713	/* This one must be last! */
714	cardvcc_write(lvcc, addr1, vcc_rxaddr1);
715}
716
717static void host_vcc_start_tx(const struct lanai_vcc *lvcc)
718{
719	dma_addr_t dmaaddr = lvcc->tx.buf.dmaaddr;
720	cardvcc_write(lvcc, 0, vcc_txicg);
721	cardvcc_write(lvcc, 0xFFFF, vcc_txcrc1);
722	cardvcc_write(lvcc, 0xFFFF, vcc_txcrc2);
723	cardvcc_write(lvcc, 0, vcc_txreadptr);
724	cardvcc_write(lvcc, 0, vcc_txendptr);
725	cardvcc_write(lvcc, 0, vcc_txwriteptr);
726	cardvcc_write(lvcc,
727		(lvcc->tx.atmvcc->qos.txtp.traffic_class == ATM_CBR) ?
728		TXCBR_NEXT_BOZO | lvcc->vci : 0, vcc_txcbr_next);
729	cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_txaddr2);
730	cardvcc_write(lvcc,
731	    ((dmaaddr >> 8) & 0xFF) |
732	    TXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->tx.buf)),
733	    vcc_txaddr1);
734}
735
736/* Shutdown receiving on card */
737static void lanai_shutdown_rx_vci(const struct lanai_vcc *lvcc)
738{
739	if (lvcc->vbase == NULL)	/* We were never bound to a VCI */
740		return;
741	/* 15.1.1 - set to trashing, wait one cell time (15us) */
742	cardvcc_write(lvcc,
743	    RXADDR1_SET_RMMODE(RMMODE_TRASH) |
744	    RXADDR1_SET_MODE(RXMODE_TRASH), vcc_rxaddr1);
745	udelay(15);
746	/* 15.1.2 - clear rest of entries */
747	cardvcc_write(lvcc, 0, vcc_rxaddr2);
748	cardvcc_write(lvcc, 0, vcc_rxcrc1);
749	cardvcc_write(lvcc, 0, vcc_rxcrc2);
750	cardvcc_write(lvcc, 0, vcc_rxwriteptr);
751	cardvcc_write(lvcc, 0, vcc_rxbufstart);
752	cardvcc_write(lvcc, 0, vcc_rxreadptr);
753}
754
755/* Shutdown transmitting on card.
756 * Unfortunately the lanai needs us to wait until all the data
757 * drains out of the buffer before we can dealloc it, so this
758 * can take awhile -- up to 370ms for a full 128KB buffer
759 * assuming everone else is quiet.  In theory the time is
760 * boundless if there's a CBR VCC holding things up.
761 */
762static void lanai_shutdown_tx_vci(struct lanai_dev *lanai,
763	struct lanai_vcc *lvcc)
764{
765	struct sk_buff *skb;
766	unsigned long flags, timeout;
767	int read, write, lastread = -1;
768	APRINTK(!in_interrupt(),
769	    "lanai_shutdown_tx_vci called w/o process context!\n");
770	if (lvcc->vbase == NULL)	/* We were never bound to a VCI */
771		return;
772	/* 15.2.1 - wait for queue to drain */
773	while ((skb = skb_dequeue(&lvcc->tx.backlog)) != NULL)
774		lanai_free_skb(lvcc->tx.atmvcc, skb);
775	read_lock_irqsave(&vcc_sklist_lock, flags);
776	__clear_bit(lvcc->vci, lanai->backlog_vccs);
777	read_unlock_irqrestore(&vcc_sklist_lock, flags);
778	/*
779	 * We need to wait for the VCC to drain but don't wait forever.  We
780	 * give each 1K of buffer size 1/128th of a second to clear out.
781	 * TODO: maybe disable CBR if we're about to timeout?
782	 */
783	timeout = jiffies +
784	    (((lanai_buf_size(&lvcc->tx.buf) / 1024) * HZ) >> 7);
785	write = TXWRITEPTR_GET_PTR(cardvcc_read(lvcc, vcc_txwriteptr));
786	for (;;) {
787		read = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
788		if (read == write &&	   /* Is TX buffer empty? */
789		    (lvcc->tx.atmvcc->qos.txtp.traffic_class != ATM_CBR ||
790		    (cardvcc_read(lvcc, vcc_txcbr_next) &
791		    TXCBR_NEXT_BOZO) == 0))
792			break;
793		if (read != lastread) {	   /* Has there been any progress? */
794			lastread = read;
795			timeout += HZ / 10;
796		}
797		if (unlikely(time_after(jiffies, timeout))) {
798			printk(KERN_ERR DEV_LABEL "(itf %d): Timed out on "
799			    "backlog closing vci %d\n",
800			    lvcc->tx.atmvcc->dev->number, lvcc->vci);
801			DPRINTK("read, write = %d, %d\n", read, write);
802			break;
803		}
804		msleep(40);
805	}
806	/* 15.2.2 - clear out all tx registers */
807	cardvcc_write(lvcc, 0, vcc_txreadptr);
808	cardvcc_write(lvcc, 0, vcc_txwriteptr);
809	cardvcc_write(lvcc, 0, vcc_txendptr);
810	cardvcc_write(lvcc, 0, vcc_txcrc1);
811	cardvcc_write(lvcc, 0, vcc_txcrc2);
812	cardvcc_write(lvcc, 0, vcc_txaddr2);
813	cardvcc_write(lvcc, 0, vcc_txaddr1);
814}
815
816/* -------------------- MANAGING AAL0 RX BUFFER: */
817
818static inline int aal0_buffer_allocate(struct lanai_dev *lanai)
819{
820	DPRINTK("aal0_buffer_allocate: allocating AAL0 RX buffer\n");
821	lanai_buf_allocate(&lanai->aal0buf, AAL0_RX_BUFFER_SIZE, 80,
822			   lanai->pci);
823	return (lanai->aal0buf.start == NULL) ? -ENOMEM : 0;
824}
825
826static inline void aal0_buffer_free(struct lanai_dev *lanai)
827{
828	DPRINTK("aal0_buffer_allocate: freeing AAL0 RX buffer\n");
829	lanai_buf_deallocate(&lanai->aal0buf, lanai->pci);
830}
831
832/* -------------------- EEPROM UTILITIES: */
833
834/* Offsets of data in the EEPROM */
835#define EEPROM_COPYRIGHT	(0)
836#define EEPROM_COPYRIGHT_LEN	(44)
837#define EEPROM_CHECKSUM		(62)
838#define EEPROM_CHECKSUM_REV	(63)
839#define EEPROM_MAC		(64)
840#define EEPROM_MAC_REV		(70)
841#define EEPROM_SERIAL		(112)
842#define EEPROM_SERIAL_REV	(116)
843#define EEPROM_MAGIC		(120)
844#define EEPROM_MAGIC_REV	(124)
845
846#define EEPROM_MAGIC_VALUE	(0x5AB478D2)
847
848#ifndef READ_EEPROM
849
850/* Stub functions to use if EEPROM reading is disabled */
851static int eeprom_read(struct lanai_dev *lanai)
852{
853	printk(KERN_INFO DEV_LABEL "(itf %d): *NOT* reading EEPROM\n",
854	    lanai->number);
855	memset(&lanai->eeprom[EEPROM_MAC], 0, 6);
856	return 0;
857}
858
859static int eeprom_validate(struct lanai_dev *lanai)
860{
861	lanai->serialno = 0;
862	lanai->magicno = EEPROM_MAGIC_VALUE;
863	return 0;
864}
865
866#else /* READ_EEPROM */
867
868static int eeprom_read(struct lanai_dev *lanai)
869{
870	int i, address;
871	u8 data;
872	u32 tmp;
873#define set_config1(x)   do { lanai->conf1 = x; conf1_write(lanai); \
874			    } while (0)
875#define clock_h()	 set_config1(lanai->conf1 | CONFIG1_PROMCLK)
876#define clock_l()	 set_config1(lanai->conf1 &~ CONFIG1_PROMCLK)
877#define data_h()	 set_config1(lanai->conf1 | CONFIG1_PROMDATA)
878#define data_l()	 set_config1(lanai->conf1 &~ CONFIG1_PROMDATA)
879#define pre_read()	 do { data_h(); clock_h(); udelay(5); } while (0)
880#define read_pin()	 (reg_read(lanai, Status_Reg) & STATUS_PROMDATA)
881#define send_stop()	 do { data_l(); udelay(5); clock_h(); udelay(5); \
882			      data_h(); udelay(5); } while (0)
883	/* start with both clock and data high */
884	data_h(); clock_h(); udelay(5);
885	for (address = 0; address < LANAI_EEPROM_SIZE; address++) {
886		data = (address << 1) | 1;	/* Command=read + address */
887		/* send start bit */
888		data_l(); udelay(5);
889		clock_l(); udelay(5);
890		for (i = 128; i != 0; i >>= 1) {   /* write command out */
891			tmp = (lanai->conf1 & ~CONFIG1_PROMDATA) |
892			    ((data & i) ? CONFIG1_PROMDATA : 0);
893			if (lanai->conf1 != tmp) {
894				set_config1(tmp);
895				udelay(5);	/* Let new data settle */
896			}
897			clock_h(); udelay(5); clock_l(); udelay(5);
898		}
899		/* look for ack */
900		data_h(); clock_h(); udelay(5);
901		if (read_pin() != 0)
902			goto error;	/* No ack seen */
903		clock_l(); udelay(5);
904		/* read back result */
905		for (data = 0, i = 7; i >= 0; i--) {
906			data_h(); clock_h(); udelay(5);
907			data = (data << 1) | !!read_pin();
908			clock_l(); udelay(5);
909		}
910		/* look again for ack */
911		data_h(); clock_h(); udelay(5);
912		if (read_pin() == 0)
913			goto error;	/* Spurious ack */
914		clock_l(); udelay(5);
915		send_stop();
916		lanai->eeprom[address] = data;
917		DPRINTK("EEPROM 0x%04X %02X\n",
918		    (unsigned int) address, (unsigned int) data);
919	}
920	return 0;
921    error:
922	clock_l(); udelay(5);		/* finish read */
923	send_stop();
924	printk(KERN_ERR DEV_LABEL "(itf %d): error reading EEPROM byte %d\n",
925	    lanai->number, address);
926	return -EIO;
927#undef set_config1
928#undef clock_h
929#undef clock_l
930#undef data_h
931#undef data_l
932#undef pre_read
933#undef read_pin
934#undef send_stop
935}
936
937/* read a big-endian 4-byte value out of eeprom */
938static inline u32 eeprom_be4(const struct lanai_dev *lanai, int address)
939{
940	return be32_to_cpup((const u32 *) &lanai->eeprom[address]);
941}
942
943/* Checksum/validate EEPROM contents */
944static int eeprom_validate(struct lanai_dev *lanai)
945{
946	int i, s;
947	u32 v;
948	const u8 *e = lanai->eeprom;
949#ifdef DEBUG
950	/* First, see if we can get an ASCIIZ string out of the copyright */
951	for (i = EEPROM_COPYRIGHT;
952	    i < (EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN); i++)
953		if (e[i] < 0x20 || e[i] > 0x7E)
954			break;
955	if ( i != EEPROM_COPYRIGHT &&
956	    i != EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN && e[i] == '\0')
957		DPRINTK("eeprom: copyright = \"%s\"\n",
958		    (char *) &e[EEPROM_COPYRIGHT]);
959	else
960		DPRINTK("eeprom: copyright not found\n");
961#endif
962	/* Validate checksum */
963	for (i = s = 0; i < EEPROM_CHECKSUM; i++)
964		s += e[i];
965	s &= 0xFF;
966	if (s != e[EEPROM_CHECKSUM]) {
967		printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM checksum bad "
968		    "(wanted 0x%02X, got 0x%02X)\n", lanai->number,
969		    (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM]);
970		return -EIO;
971	}
972	s ^= 0xFF;
973	if (s != e[EEPROM_CHECKSUM_REV]) {
974		printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM inverse checksum "
975		    "bad (wanted 0x%02X, got 0x%02X)\n", lanai->number,
976		    (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM_REV]);
977		return -EIO;
978	}
979	/* Verify MAC address */
980	for (i = 0; i < 6; i++)
981		if ((e[EEPROM_MAC + i] ^ e[EEPROM_MAC_REV + i]) != 0xFF) {
982			printk(KERN_ERR DEV_LABEL
983			    "(itf %d) : EEPROM MAC addresses don't match "
984			    "(0x%02X, inverse 0x%02X)\n", lanai->number,
985			    (unsigned int) e[EEPROM_MAC + i],
986			    (unsigned int) e[EEPROM_MAC_REV + i]);
987			return -EIO;
988		}
989	DPRINTK("eeprom: MAC address = %pM\n", &e[EEPROM_MAC]);
990	/* Verify serial number */
991	lanai->serialno = eeprom_be4(lanai, EEPROM_SERIAL);
992	v = eeprom_be4(lanai, EEPROM_SERIAL_REV);
993	if ((lanai->serialno ^ v) != 0xFFFFFFFF) {
994		printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM serial numbers "
995		    "don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
996		    (unsigned int) lanai->serialno, (unsigned int) v);
997		return -EIO;
998	}
999	DPRINTK("eeprom: Serial number = %d\n", (unsigned int) lanai->serialno);
1000	/* Verify magic number */
1001	lanai->magicno = eeprom_be4(lanai, EEPROM_MAGIC);
1002	v = eeprom_be4(lanai, EEPROM_MAGIC_REV);
1003	if ((lanai->magicno ^ v) != 0xFFFFFFFF) {
1004		printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM magic numbers "
1005		    "don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
1006		    lanai->magicno, v);
1007		return -EIO;
1008	}
1009	DPRINTK("eeprom: Magic number = 0x%08X\n", lanai->magicno);
1010	if (lanai->magicno != EEPROM_MAGIC_VALUE)
1011		printk(KERN_WARNING DEV_LABEL "(itf %d): warning - EEPROM "
1012		    "magic not what expected (got 0x%08X, not 0x%08X)\n",
1013		    lanai->number, (unsigned int) lanai->magicno,
1014		    (unsigned int) EEPROM_MAGIC_VALUE);
1015	return 0;
1016}
1017
1018#endif /* READ_EEPROM */
1019
1020static inline const u8 *eeprom_mac(const struct lanai_dev *lanai)
1021{
1022	return &lanai->eeprom[EEPROM_MAC];
1023}
1024
1025/* -------------------- INTERRUPT HANDLING UTILITIES: */
1026
1027/* Interrupt types */
1028#define INT_STATS	(0x00000002)	/* Statistics counter overflow */
1029#define INT_SOOL	(0x00000004)	/* SOOL changed state */
1030#define INT_LOCD	(0x00000008)	/* LOCD changed state */
1031#define INT_LED		(0x00000010)	/* LED (HAPPI) changed state */
1032#define INT_GPIN	(0x00000020)	/* GPIN changed state */
1033#define INT_PING	(0x00000040)	/* PING_COUNT fulfilled */
1034#define INT_WAKE	(0x00000080)	/* Lanai wants bus */
1035#define INT_CBR0	(0x00000100)	/* CBR sched hit VCI 0 */
1036#define INT_LOCK	(0x00000200)	/* Service list overflow */
1037#define INT_MISMATCH	(0x00000400)	/* TX magic list mismatch */
1038#define INT_AAL0_STR	(0x00000800)	/* Non-AAL5 buffer half filled */
1039#define INT_AAL0	(0x00001000)	/* Non-AAL5 data available */
1040#define INT_SERVICE	(0x00002000)	/* Service list entries available */
1041#define INT_TABORTSENT	(0x00004000)	/* Target abort sent by lanai */
1042#define INT_TABORTBM	(0x00008000)	/* Abort rcv'd as bus master */
1043#define INT_TIMEOUTBM	(0x00010000)	/* No response to bus master */
1044#define INT_PCIPARITY	(0x00020000)	/* Parity error on PCI */
1045
1046/* Sets of the above */
1047#define INT_ALL		(0x0003FFFE)	/* All interrupts */
1048#define INT_STATUS	(0x0000003C)	/* Some status pin changed */
1049#define INT_DMASHUT	(0x00038000)	/* DMA engine got shut down */
1050#define INT_SEGSHUT	(0x00000700)	/* Segmentation got shut down */
1051
1052static inline u32 intr_pending(const struct lanai_dev *lanai)
1053{
1054	return reg_read(lanai, IntStatusMasked_Reg);
1055}
1056
1057static inline void intr_enable(const struct lanai_dev *lanai, u32 i)
1058{
1059	reg_write(lanai, i, IntControlEna_Reg);
1060}
1061
1062static inline void intr_disable(const struct lanai_dev *lanai, u32 i)
1063{
1064	reg_write(lanai, i, IntControlDis_Reg);
1065}
1066
1067/* -------------------- CARD/PCI STATUS: */
1068
1069static void status_message(int itf, const char *name, int status)
1070{
1071	static const char *onoff[2] = { "off to on", "on to off" };
1072	printk(KERN_INFO DEV_LABEL "(itf %d): %s changed from %s\n",
1073	    itf, name, onoff[!status]);
1074}
1075
1076static void lanai_check_status(struct lanai_dev *lanai)
1077{
1078	u32 new = reg_read(lanai, Status_Reg);
1079	u32 changes = new ^ lanai->status;
1080	lanai->status = new;
1081#define e(flag, name) \
1082		if (changes & flag) \
1083			status_message(lanai->number, name, new & flag)
1084	e(STATUS_SOOL, "SOOL");
1085	e(STATUS_LOCD, "LOCD");
1086	e(STATUS_LED, "LED");
1087	e(STATUS_GPIN, "GPIN");
1088#undef e
1089}
1090
1091static void pcistatus_got(int itf, const char *name)
1092{
1093	printk(KERN_INFO DEV_LABEL "(itf %d): PCI got %s error\n", itf, name);
1094}
1095
1096static void pcistatus_check(struct lanai_dev *lanai, int clearonly)
1097{
1098	u16 s;
1099	int result;
1100	result = pci_read_config_word(lanai->pci, PCI_STATUS, &s);
1101	if (result != PCIBIOS_SUCCESSFUL) {
1102		printk(KERN_ERR DEV_LABEL "(itf %d): can't read PCI_STATUS: "
1103		    "%d\n", lanai->number, result);
1104		return;
1105	}
1106	s &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR |
1107	    PCI_STATUS_REC_MASTER_ABORT | PCI_STATUS_REC_TARGET_ABORT |
1108	    PCI_STATUS_SIG_TARGET_ABORT | PCI_STATUS_PARITY;
1109	if (s == 0)
1110		return;
1111	result = pci_write_config_word(lanai->pci, PCI_STATUS, s);
1112	if (result != PCIBIOS_SUCCESSFUL)
1113		printk(KERN_ERR DEV_LABEL "(itf %d): can't write PCI_STATUS: "
1114		    "%d\n", lanai->number, result);
1115	if (clearonly)
1116		return;
1117#define e(flag, name, stat) \
1118		if (s & flag) { \
1119			pcistatus_got(lanai->number, name); \
1120			++lanai->stats.pcierr_##stat; \
1121		}
1122	e(PCI_STATUS_DETECTED_PARITY, "parity", parity_detect);
1123	e(PCI_STATUS_SIG_SYSTEM_ERROR, "signalled system", serr_set);
1124	e(PCI_STATUS_REC_MASTER_ABORT, "master", master_abort);
1125	e(PCI_STATUS_REC_TARGET_ABORT, "master target", m_target_abort);
1126	e(PCI_STATUS_SIG_TARGET_ABORT, "slave", s_target_abort);
1127	e(PCI_STATUS_PARITY, "master parity", master_parity);
1128#undef e
1129}
1130
1131/* -------------------- VCC TX BUFFER UTILITIES: */
1132
1133/* space left in tx buffer in bytes */
1134static inline int vcc_tx_space(const struct lanai_vcc *lvcc, int endptr)
1135{
1136	int r;
1137	r = endptr * 16;
1138	r -= ((unsigned long) lvcc->tx.buf.ptr) -
1139	    ((unsigned long) lvcc->tx.buf.start);
1140	r -= 16;	/* Leave "bubble" - if start==end it looks empty */
1141	if (r < 0)
1142		r += lanai_buf_size(&lvcc->tx.buf);
1143	return r;
1144}
1145
1146/* test if VCC is currently backlogged */
1147static inline int vcc_is_backlogged(const struct lanai_vcc *lvcc)
1148{
1149	return !skb_queue_empty(&lvcc->tx.backlog);
1150}
1151
1152/* Bit fields in the segmentation buffer descriptor */
1153#define DESCRIPTOR_MAGIC	(0xD0000000)
1154#define DESCRIPTOR_AAL5		(0x00008000)
1155#define DESCRIPTOR_AAL5_STREAM	(0x00004000)
1156#define DESCRIPTOR_CLP		(0x00002000)
1157
1158/* Add 32-bit descriptor with its padding */
1159static inline void vcc_tx_add_aal5_descriptor(struct lanai_vcc *lvcc,
1160	u32 flags, int len)
1161{
1162	int pos;
1163	APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 0,
1164	    "vcc_tx_add_aal5_descriptor: bad ptr=%p\n", lvcc->tx.buf.ptr);
1165	lvcc->tx.buf.ptr += 4;	/* Hope the values REALLY don't matter */
1166	pos = ((unsigned char *) lvcc->tx.buf.ptr) -
1167	    (unsigned char *) lvcc->tx.buf.start;
1168	APRINTK((pos & ~0x0001FFF0) == 0,
1169	    "vcc_tx_add_aal5_descriptor: bad pos (%d) before, vci=%d, "
1170	    "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
1171	    lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
1172	pos = (pos + len) & (lanai_buf_size(&lvcc->tx.buf) - 1);
1173	APRINTK((pos & ~0x0001FFF0) == 0,
1174	    "vcc_tx_add_aal5_descriptor: bad pos (%d) after, vci=%d, "
1175	    "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
1176	    lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
1177	lvcc->tx.buf.ptr[-1] =
1178	    cpu_to_le32(DESCRIPTOR_MAGIC | DESCRIPTOR_AAL5 |
1179	    ((lvcc->tx.atmvcc->atm_options & ATM_ATMOPT_CLP) ?
1180	    DESCRIPTOR_CLP : 0) | flags | pos >> 4);
1181	if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
1182		lvcc->tx.buf.ptr = lvcc->tx.buf.start;
1183}
1184
1185/* Add 32-bit AAL5 trailer and leave room for its CRC */
1186static inline void vcc_tx_add_aal5_trailer(struct lanai_vcc *lvcc,
1187	int len, int cpi, int uu)
1188{
1189	APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 8,
1190	    "vcc_tx_add_aal5_trailer: bad ptr=%p\n", lvcc->tx.buf.ptr);
1191	lvcc->tx.buf.ptr += 2;
1192	lvcc->tx.buf.ptr[-2] = cpu_to_be32((uu << 24) | (cpi << 16) | len);
1193	if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
1194		lvcc->tx.buf.ptr = lvcc->tx.buf.start;
1195}
1196
1197static inline void vcc_tx_memcpy(struct lanai_vcc *lvcc,
1198	const unsigned char *src, int n)
1199{
1200	unsigned char *e;
1201	int m;
1202	e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
1203	m = e - (unsigned char *) lvcc->tx.buf.end;
1204	if (m < 0)
1205		m = 0;
1206	memcpy(lvcc->tx.buf.ptr, src, n - m);
1207	if (m != 0) {
1208		memcpy(lvcc->tx.buf.start, src + n - m, m);
1209		e = ((unsigned char *) lvcc->tx.buf.start) + m;
1210	}
1211	lvcc->tx.buf.ptr = (u32 *) e;
1212}
1213
1214static inline void vcc_tx_memzero(struct lanai_vcc *lvcc, int n)
1215{
1216	unsigned char *e;
1217	int m;
1218	if (n == 0)
1219		return;
1220	e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
1221	m = e - (unsigned char *) lvcc->tx.buf.end;
1222	if (m < 0)
1223		m = 0;
1224	memset(lvcc->tx.buf.ptr, 0, n - m);
1225	if (m != 0) {
1226		memset(lvcc->tx.buf.start, 0, m);
1227		e = ((unsigned char *) lvcc->tx.buf.start) + m;
1228	}
1229	lvcc->tx.buf.ptr = (u32 *) e;
1230}
1231
1232/* Update "butt" register to specify new WritePtr */
1233static inline void lanai_endtx(struct lanai_dev *lanai,
1234	const struct lanai_vcc *lvcc)
1235{
1236	int i, ptr = ((unsigned char *) lvcc->tx.buf.ptr) -
1237	    (unsigned char *) lvcc->tx.buf.start;
1238	APRINTK((ptr & ~0x0001FFF0) == 0,
1239	    "lanai_endtx: bad ptr (%d), vci=%d, start,ptr,end=%p,%p,%p\n",
1240	    ptr, lvcc->vci, lvcc->tx.buf.start, lvcc->tx.buf.ptr,
1241	    lvcc->tx.buf.end);
1242
1243	/*
1244	 * Since the "butt register" is a shared resounce on the card we
1245	 * serialize all accesses to it through this spinlock.  This is
1246	 * mostly just paranoia since the register is rarely "busy" anyway
1247	 * but is needed for correctness.
1248	 */
1249	spin_lock(&lanai->endtxlock);
1250	/*
1251	 * We need to check if the "butt busy" bit is set before
1252	 * updating the butt register.  In theory this should
1253	 * never happen because the ATM card is plenty fast at
1254	 * updating the register.  Still, we should make sure
1255	 */
1256	for (i = 0; reg_read(lanai, Status_Reg) & STATUS_BUTTBUSY; i++) {
1257		if (unlikely(i > 50)) {
1258			printk(KERN_ERR DEV_LABEL "(itf %d): butt register "
1259			    "always busy!\n", lanai->number);
1260			break;
1261		}
1262		udelay(5);
1263	}
1264	/*
1265	 * Before we tall the card to start work we need to be sure 100% of
1266	 * the info in the service buffer has been written before we tell
1267	 * the card about it
1268	 */
1269	wmb();
1270	reg_write(lanai, (ptr << 12) | lvcc->vci, Butt_Reg);
1271	spin_unlock(&lanai->endtxlock);
1272}
1273
1274/*
1275 * Add one AAL5 PDU to lvcc's transmit buffer.  Caller garauntees there's
1276 * space available.  "pdusize" is the number of bytes the PDU will take
1277 */
1278static void lanai_send_one_aal5(struct lanai_dev *lanai,
1279	struct lanai_vcc *lvcc, struct sk_buff *skb, int pdusize)
1280{
1281	int pad;
1282	APRINTK(pdusize == aal5_size(skb->len),
1283	    "lanai_send_one_aal5: wrong size packet (%d != %d)\n",
1284	    pdusize, aal5_size(skb->len));
1285	vcc_tx_add_aal5_descriptor(lvcc, 0, pdusize);
1286	pad = pdusize - skb->len - 8;
1287	APRINTK(pad >= 0, "pad is negative (%d)\n", pad);
1288	APRINTK(pad < 48, "pad is too big (%d)\n", pad);
1289	vcc_tx_memcpy(lvcc, skb->data, skb->len);
1290	vcc_tx_memzero(lvcc, pad);
1291	vcc_tx_add_aal5_trailer(lvcc, skb->len, 0, 0);
1292	lanai_endtx(lanai, lvcc);
1293	lanai_free_skb(lvcc->tx.atmvcc, skb);
1294	atomic_inc(&lvcc->tx.atmvcc->stats->tx);
1295}
1296
1297/* Try to fill the buffer - don't call unless there is backlog */
1298static void vcc_tx_unqueue_aal5(struct lanai_dev *lanai,
1299	struct lanai_vcc *lvcc, int endptr)
1300{
1301	int n;
1302	struct sk_buff *skb;
1303	int space = vcc_tx_space(lvcc, endptr);
1304	APRINTK(vcc_is_backlogged(lvcc),
1305	    "vcc_tx_unqueue() called with empty backlog (vci=%d)\n",
1306	    lvcc->vci);
1307	while (space >= 64) {
1308		skb = skb_dequeue(&lvcc->tx.backlog);
1309		if (skb == NULL)
1310			goto no_backlog;
1311		n = aal5_size(skb->len);
1312		if (n + 16 > space) {
1313			/* No room for this packet - put it back on queue */
1314			skb_queue_head(&lvcc->tx.backlog, skb);
1315			return;
1316		}
1317		lanai_send_one_aal5(lanai, lvcc, skb, n);
1318		space -= n + 16;
1319	}
1320	if (!vcc_is_backlogged(lvcc)) {
1321	    no_backlog:
1322		__clear_bit(lvcc->vci, lanai->backlog_vccs);
1323	}
1324}
1325
1326/* Given an skb that we want to transmit either send it now or queue */
1327static void vcc_tx_aal5(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1328	struct sk_buff *skb)
1329{
1330	int space, n;
1331	if (vcc_is_backlogged(lvcc))		/* Already backlogged */
1332		goto queue_it;
1333	space = vcc_tx_space(lvcc,
1334		    TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr)));
1335	n = aal5_size(skb->len);
1336	APRINTK(n + 16 >= 64, "vcc_tx_aal5: n too small (%d)\n", n);
1337	if (space < n + 16) {			/* No space for this PDU */
1338		__set_bit(lvcc->vci, lanai->backlog_vccs);
1339	    queue_it:
1340		skb_queue_tail(&lvcc->tx.backlog, skb);
1341		return;
1342	}
1343	lanai_send_one_aal5(lanai, lvcc, skb, n);
1344}
1345
1346static void vcc_tx_unqueue_aal0(struct lanai_dev *lanai,
1347	struct lanai_vcc *lvcc, int endptr)
1348{
1349	printk(KERN_INFO DEV_LABEL
1350	    ": vcc_tx_unqueue_aal0: not implemented\n");
1351}
1352
1353static void vcc_tx_aal0(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1354	struct sk_buff *skb)
1355{
1356	printk(KERN_INFO DEV_LABEL ": vcc_tx_aal0: not implemented\n");
1357	/* Remember to increment lvcc->tx.atmvcc->stats->tx */
1358	lanai_free_skb(lvcc->tx.atmvcc, skb);
1359}
1360
1361/* -------------------- VCC RX BUFFER UTILITIES: */
1362
1363/* unlike the _tx_ cousins, this doesn't update ptr */
1364static inline void vcc_rx_memcpy(unsigned char *dest,
1365	const struct lanai_vcc *lvcc, int n)
1366{
1367	int m = ((const unsigned char *) lvcc->rx.buf.ptr) + n -
1368	    ((const unsigned char *) (lvcc->rx.buf.end));
1369	if (m < 0)
1370		m = 0;
1371	memcpy(dest, lvcc->rx.buf.ptr, n - m);
1372	memcpy(dest + n - m, lvcc->rx.buf.start, m);
1373	/* Make sure that these copies don't get reordered */
1374	barrier();
1375}
1376
1377/* Receive AAL5 data on a VCC with a particular endptr */
1378static void vcc_rx_aal5(struct lanai_vcc *lvcc, int endptr)
1379{
1380	int size;
1381	struct sk_buff *skb;
1382	const u32 *x;
1383	u32 *end = &lvcc->rx.buf.start[endptr * 4];
1384	int n = ((unsigned long) end) - ((unsigned long) lvcc->rx.buf.ptr);
1385	if (n < 0)
1386		n += lanai_buf_size(&lvcc->rx.buf);
1387	APRINTK(n >= 0 && n < lanai_buf_size(&lvcc->rx.buf) && !(n & 15),
1388	    "vcc_rx_aal5: n out of range (%d/%zu)\n",
1389	    n, lanai_buf_size(&lvcc->rx.buf));
1390	/* Recover the second-to-last word to get true pdu length */
1391	if ((x = &end[-2]) < lvcc->rx.buf.start)
1392		x = &lvcc->rx.buf.end[-2];
1393	/*
1394	 * Before we actually read from the buffer, make sure the memory
1395	 * changes have arrived
1396	 */
1397	rmb();
1398	size = be32_to_cpup(x) & 0xffff;
1399	if (unlikely(n != aal5_size(size))) {
1400		/* Make sure size matches padding */
1401		printk(KERN_INFO DEV_LABEL "(itf %d): Got bad AAL5 length "
1402		    "on vci=%d - size=%d n=%d\n",
1403		    lvcc->rx.atmvcc->dev->number, lvcc->vci, size, n);
1404		lvcc->stats.x.aal5.rx_badlen++;
1405		goto out;
1406	}
1407	skb = atm_alloc_charge(lvcc->rx.atmvcc, size, GFP_ATOMIC);
1408	if (unlikely(skb == NULL)) {
1409		lvcc->stats.rx_nomem++;
1410		goto out;
1411	}
1412	skb_put(skb, size);
1413	vcc_rx_memcpy(skb->data, lvcc, size);
1414	ATM_SKB(skb)->vcc = lvcc->rx.atmvcc;
1415	__net_timestamp(skb);
1416	lvcc->rx.atmvcc->push(lvcc->rx.atmvcc, skb);
1417	atomic_inc(&lvcc->rx.atmvcc->stats->rx);
1418    out:
1419	lvcc->rx.buf.ptr = end;
1420	cardvcc_write(lvcc, endptr, vcc_rxreadptr);
1421}
1422
1423static void vcc_rx_aal0(struct lanai_dev *lanai)
1424{
1425	printk(KERN_INFO DEV_LABEL ": vcc_rx_aal0: not implemented\n");
1426	/* Remember to get read_lock(&vcc_sklist_lock) while looking up VC */
1427	/* Remember to increment lvcc->rx.atmvcc->stats->rx */
1428}
1429
1430/* -------------------- MANAGING HOST-BASED VCC TABLE: */
1431
1432/* Decide whether to use vmalloc or get_zeroed_page for VCC table */
1433#if (NUM_VCI * BITS_PER_LONG) <= PAGE_SIZE
1434#define VCCTABLE_GETFREEPAGE
1435#else
1436#include <linux/vmalloc.h>
1437#endif
1438
1439static int vcc_table_allocate(struct lanai_dev *lanai)
1440{
1441#ifdef VCCTABLE_GETFREEPAGE
1442	APRINTK((lanai->num_vci) * sizeof(struct lanai_vcc *) <= PAGE_SIZE,
1443	    "vcc table > PAGE_SIZE!");
1444	lanai->vccs = (struct lanai_vcc **) get_zeroed_page(GFP_KERNEL);
1445	return (lanai->vccs == NULL) ? -ENOMEM : 0;
1446#else
1447	int bytes = (lanai->num_vci) * sizeof(struct lanai_vcc *);
1448	lanai->vccs = vzalloc(bytes);
1449	if (unlikely(lanai->vccs == NULL))
1450		return -ENOMEM;
1451	return 0;
1452#endif
1453}
1454
1455static inline void vcc_table_deallocate(const struct lanai_dev *lanai)
1456{
1457#ifdef VCCTABLE_GETFREEPAGE
1458	free_page((unsigned long) lanai->vccs);
1459#else
1460	vfree(lanai->vccs);
1461#endif
1462}
1463
1464/* Allocate a fresh lanai_vcc, with the appropriate things cleared */
1465static inline struct lanai_vcc *new_lanai_vcc(void)
1466{
1467	struct lanai_vcc *lvcc;
1468	lvcc =  kzalloc(sizeof(*lvcc), GFP_KERNEL);
1469	if (likely(lvcc != NULL)) {
1470		skb_queue_head_init(&lvcc->tx.backlog);
1471#ifdef DEBUG
1472		lvcc->vci = -1;
1473#endif
1474	}
1475	return lvcc;
1476}
1477
1478static int lanai_get_sized_buffer(struct lanai_dev *lanai,
1479	struct lanai_buffer *buf, int max_sdu, int multiplier,
1480	const char *name)
1481{
1482	int size;
1483	if (unlikely(max_sdu < 1))
1484		max_sdu = 1;
1485	max_sdu = aal5_size(max_sdu);
1486	size = (max_sdu + 16) * multiplier + 16;
1487	lanai_buf_allocate(buf, size, max_sdu + 32, lanai->pci);
1488	if (unlikely(buf->start == NULL))
1489		return -ENOMEM;
1490	if (unlikely(lanai_buf_size(buf) < size))
1491		printk(KERN_WARNING DEV_LABEL "(itf %d): wanted %d bytes "
1492		    "for %s buffer, got only %zu\n", lanai->number, size,
1493		    name, lanai_buf_size(buf));
1494	DPRINTK("Allocated %zu byte %s buffer\n", lanai_buf_size(buf), name);
1495	return 0;
1496}
1497
1498/* Setup a RX buffer for a currently unbound AAL5 vci */
1499static inline int lanai_setup_rx_vci_aal5(struct lanai_dev *lanai,
1500	struct lanai_vcc *lvcc, const struct atm_qos *qos)
1501{
1502	return lanai_get_sized_buffer(lanai, &lvcc->rx.buf,
1503	    qos->rxtp.max_sdu, AAL5_RX_MULTIPLIER, "RX");
1504}
1505
1506/* Setup a TX buffer for a currently unbound AAL5 vci */
1507static int lanai_setup_tx_vci(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1508	const struct atm_qos *qos)
1509{
1510	int max_sdu, multiplier;
1511	if (qos->aal == ATM_AAL0) {
1512		lvcc->tx.unqueue = vcc_tx_unqueue_aal0;
1513		max_sdu = ATM_CELL_SIZE - 1;
1514		multiplier = AAL0_TX_MULTIPLIER;
1515	} else {
1516		lvcc->tx.unqueue = vcc_tx_unqueue_aal5;
1517		max_sdu = qos->txtp.max_sdu;
1518		multiplier = AAL5_TX_MULTIPLIER;
1519	}
1520	return lanai_get_sized_buffer(lanai, &lvcc->tx.buf, max_sdu,
1521	    multiplier, "TX");
1522}
1523
1524static inline void host_vcc_bind(struct lanai_dev *lanai,
1525	struct lanai_vcc *lvcc, vci_t vci)
1526{
1527	if (lvcc->vbase != NULL)
1528		return;    /* We already were bound in the other direction */
1529	DPRINTK("Binding vci %d\n", vci);
1530#ifdef USE_POWERDOWN
1531	if (lanai->nbound++ == 0) {
1532		DPRINTK("Coming out of powerdown\n");
1533		lanai->conf1 &= ~CONFIG1_POWERDOWN;
1534		conf1_write(lanai);
1535		conf2_write(lanai);
1536	}
1537#endif
1538	lvcc->vbase = cardvcc_addr(lanai, vci);
1539	lanai->vccs[lvcc->vci = vci] = lvcc;
1540}
1541
1542static inline void host_vcc_unbind(struct lanai_dev *lanai,
1543	struct lanai_vcc *lvcc)
1544{
1545	if (lvcc->vbase == NULL)
1546		return;	/* This vcc was never bound */
1547	DPRINTK("Unbinding vci %d\n", lvcc->vci);
1548	lvcc->vbase = NULL;
1549	lanai->vccs[lvcc->vci] = NULL;
1550#ifdef USE_POWERDOWN
1551	if (--lanai->nbound == 0) {
1552		DPRINTK("Going into powerdown\n");
1553		lanai->conf1 |= CONFIG1_POWERDOWN;
1554		conf1_write(lanai);
1555	}
1556#endif
1557}
1558
1559/* -------------------- RESET CARD: */
1560
1561static void lanai_reset(struct lanai_dev *lanai)
1562{
1563	printk(KERN_CRIT DEV_LABEL "(itf %d): *NOT* resetting - not "
1564	    "implemented\n", lanai->number);
1565	/* TODO */
1566	/* The following is just a hack until we write the real
1567	 * resetter - at least ack whatever interrupt sent us
1568	 * here
1569	 */
1570	reg_write(lanai, INT_ALL, IntAck_Reg);
1571	lanai->stats.card_reset++;
1572}
1573
1574/* -------------------- SERVICE LIST UTILITIES: */
1575
1576/*
1577 * Allocate service buffer and tell card about it
1578 */
1579static int service_buffer_allocate(struct lanai_dev *lanai)
1580{
1581	lanai_buf_allocate(&lanai->service, SERVICE_ENTRIES * 4, 8,
1582	    lanai->pci);
1583	if (unlikely(lanai->service.start == NULL))
1584		return -ENOMEM;
1585	DPRINTK("allocated service buffer at %p, size %zu(%d)\n",
1586	    lanai->service.start,
1587	    lanai_buf_size(&lanai->service),
1588	    lanai_buf_size_cardorder(&lanai->service));
1589	/* Clear ServWrite register to be safe */
1590	reg_write(lanai, 0, ServWrite_Reg);
1591	/* ServiceStuff register contains size and address of buffer */
1592	reg_write(lanai,
1593	    SSTUFF_SET_SIZE(lanai_buf_size_cardorder(&lanai->service)) |
1594	    SSTUFF_SET_ADDR(lanai->service.dmaaddr),
1595	    ServiceStuff_Reg);
1596	return 0;
1597}
1598
1599static inline void service_buffer_deallocate(struct lanai_dev *lanai)
1600{
1601	lanai_buf_deallocate(&lanai->service, lanai->pci);
1602}
1603
1604/* Bitfields in service list */
1605#define SERVICE_TX	(0x80000000)	/* Was from transmission */
1606#define SERVICE_TRASH	(0x40000000)	/* RXed PDU was trashed */
1607#define SERVICE_CRCERR	(0x20000000)	/* RXed PDU had CRC error */
1608#define SERVICE_CI	(0x10000000)	/* RXed PDU had CI set */
1609#define SERVICE_CLP	(0x08000000)	/* RXed PDU had CLP set */
1610#define SERVICE_STREAM	(0x04000000)	/* RX Stream mode */
1611#define SERVICE_GET_VCI(x) (((x)>>16)&0x3FF)
1612#define SERVICE_GET_END(x) ((x)&0x1FFF)
1613
1614/* Handle one thing from the service list - returns true if it marked a
1615 * VCC ready for xmit
1616 */
1617static int handle_service(struct lanai_dev *lanai, u32 s)
1618{
1619	vci_t vci = SERVICE_GET_VCI(s);
1620	struct lanai_vcc *lvcc;
1621	read_lock(&vcc_sklist_lock);
1622	lvcc = lanai->vccs[vci];
1623	if (unlikely(lvcc == NULL)) {
1624		read_unlock(&vcc_sklist_lock);
1625		DPRINTK("(itf %d) got service entry 0x%X for nonexistent "
1626		    "vcc %d\n", lanai->number, (unsigned int) s, vci);
1627		if (s & SERVICE_TX)
1628			lanai->stats.service_notx++;
1629		else
1630			lanai->stats.service_norx++;
1631		return 0;
1632	}
1633	if (s & SERVICE_TX) {			/* segmentation interrupt */
1634		if (unlikely(lvcc->tx.atmvcc == NULL)) {
1635			read_unlock(&vcc_sklist_lock);
1636			DPRINTK("(itf %d) got service entry 0x%X for non-TX "
1637			    "vcc %d\n", lanai->number, (unsigned int) s, vci);
1638			lanai->stats.service_notx++;
1639			return 0;
1640		}
1641		__set_bit(vci, lanai->transmit_ready);
1642		lvcc->tx.endptr = SERVICE_GET_END(s);
1643		read_unlock(&vcc_sklist_lock);
1644		return 1;
1645	}
1646	if (unlikely(lvcc->rx.atmvcc == NULL)) {
1647		read_unlock(&vcc_sklist_lock);
1648		DPRINTK("(itf %d) got service entry 0x%X for non-RX "
1649		    "vcc %d\n", lanai->number, (unsigned int) s, vci);
1650		lanai->stats.service_norx++;
1651		return 0;
1652	}
1653	if (unlikely(lvcc->rx.atmvcc->qos.aal != ATM_AAL5)) {
1654		read_unlock(&vcc_sklist_lock);
1655		DPRINTK("(itf %d) got RX service entry 0x%X for non-AAL5 "
1656		    "vcc %d\n", lanai->number, (unsigned int) s, vci);
1657		lanai->stats.service_rxnotaal5++;
1658		atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1659		return 0;
1660	}
1661	if (likely(!(s & (SERVICE_TRASH | SERVICE_STREAM | SERVICE_CRCERR)))) {
1662		vcc_rx_aal5(lvcc, SERVICE_GET_END(s));
1663		read_unlock(&vcc_sklist_lock);
1664		return 0;
1665	}
1666	if (s & SERVICE_TRASH) {
1667		int bytes;
1668		read_unlock(&vcc_sklist_lock);
1669		DPRINTK("got trashed rx pdu on vci %d\n", vci);
1670		atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1671		lvcc->stats.x.aal5.service_trash++;
1672		bytes = (SERVICE_GET_END(s) * 16) -
1673		    (((unsigned long) lvcc->rx.buf.ptr) -
1674		    ((unsigned long) lvcc->rx.buf.start)) + 47;
1675		if (bytes < 0)
1676			bytes += lanai_buf_size(&lvcc->rx.buf);
1677		lanai->stats.ovfl_trash += (bytes / 48);
1678		return 0;
1679	}
1680	if (s & SERVICE_STREAM) {
1681		read_unlock(&vcc_sklist_lock);
1682		atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1683		lvcc->stats.x.aal5.service_stream++;
1684		printk(KERN_ERR DEV_LABEL "(itf %d): Got AAL5 stream "
1685		    "PDU on VCI %d!\n", lanai->number, vci);
1686		lanai_reset(lanai);
1687		return 0;
1688	}
1689	DPRINTK("got rx crc error on vci %d\n", vci);
1690	atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1691	lvcc->stats.x.aal5.service_rxcrc++;
1692	lvcc->rx.buf.ptr = &lvcc->rx.buf.start[SERVICE_GET_END(s) * 4];
1693	cardvcc_write(lvcc, SERVICE_GET_END(s), vcc_rxreadptr);
1694	read_unlock(&vcc_sklist_lock);
1695	return 0;
1696}
1697
1698/* Try transmitting on all VCIs that we marked ready to serve */
1699static void iter_transmit(struct lanai_dev *lanai, vci_t vci)
1700{
1701	struct lanai_vcc *lvcc = lanai->vccs[vci];
1702	if (vcc_is_backlogged(lvcc))
1703		lvcc->tx.unqueue(lanai, lvcc, lvcc->tx.endptr);
1704}
1705
1706/* Run service queue -- called from interrupt context or with
1707 * interrupts otherwise disabled and with the lanai->servicelock
1708 * lock held
1709 */
1710static void run_service(struct lanai_dev *lanai)
1711{
1712	int ntx = 0;
1713	u32 wreg = reg_read(lanai, ServWrite_Reg);
1714	const u32 *end = lanai->service.start + wreg;
1715	while (lanai->service.ptr != end) {
1716		ntx += handle_service(lanai,
1717		    le32_to_cpup(lanai->service.ptr++));
1718		if (lanai->service.ptr >= lanai->service.end)
1719			lanai->service.ptr = lanai->service.start;
1720	}
1721	reg_write(lanai, wreg, ServRead_Reg);
1722	if (ntx != 0) {
1723		read_lock(&vcc_sklist_lock);
1724		vci_bitfield_iterate(lanai, lanai->transmit_ready,
1725		    iter_transmit);
1726		bitmap_zero(lanai->transmit_ready, NUM_VCI);
1727		read_unlock(&vcc_sklist_lock);
1728	}
1729}
1730
1731/* -------------------- GATHER STATISTICS: */
1732
1733static void get_statistics(struct lanai_dev *lanai)
1734{
1735	u32 statreg = reg_read(lanai, Statistics_Reg);
1736	lanai->stats.atm_ovfl += STATS_GET_FIFO_OVFL(statreg);
1737	lanai->stats.hec_err += STATS_GET_HEC_ERR(statreg);
1738	lanai->stats.vci_trash += STATS_GET_BAD_VCI(statreg);
1739	lanai->stats.ovfl_trash += STATS_GET_BUF_OVFL(statreg);
1740}
1741
1742/* -------------------- POLLING TIMER: */
1743
1744#ifndef DEBUG_RW
1745/* Try to undequeue 1 backlogged vcc */
1746static void iter_dequeue(struct lanai_dev *lanai, vci_t vci)
1747{
1748	struct lanai_vcc *lvcc = lanai->vccs[vci];
1749	int endptr;
1750	if (lvcc == NULL || lvcc->tx.atmvcc == NULL ||
1751	    !vcc_is_backlogged(lvcc)) {
1752		__clear_bit(vci, lanai->backlog_vccs);
1753		return;
1754	}
1755	endptr = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
1756	lvcc->tx.unqueue(lanai, lvcc, endptr);
1757}
1758#endif /* !DEBUG_RW */
1759
1760static void lanai_timed_poll(struct timer_list *t)
1761{
1762	struct lanai_dev *lanai = from_timer(lanai, t, timer);
1763#ifndef DEBUG_RW
1764	unsigned long flags;
1765#ifdef USE_POWERDOWN
1766	if (lanai->conf1 & CONFIG1_POWERDOWN)
1767		return;
1768#endif /* USE_POWERDOWN */
1769	local_irq_save(flags);
1770	/* If we can grab the spinlock, check if any services need to be run */
1771	if (spin_trylock(&lanai->servicelock)) {
1772		run_service(lanai);
1773		spin_unlock(&lanai->servicelock);
1774	}
1775	/* ...and see if any backlogged VCs can make progress */
1776	/* unfortunately linux has no read_trylock() currently */
1777	read_lock(&vcc_sklist_lock);
1778	vci_bitfield_iterate(lanai, lanai->backlog_vccs, iter_dequeue);
1779	read_unlock(&vcc_sklist_lock);
1780	local_irq_restore(flags);
1781
1782	get_statistics(lanai);
1783#endif /* !DEBUG_RW */
1784	mod_timer(&lanai->timer, jiffies + LANAI_POLL_PERIOD);
1785}
1786
1787static inline void lanai_timed_poll_start(struct lanai_dev *lanai)
1788{
1789	timer_setup(&lanai->timer, lanai_timed_poll, 0);
1790	lanai->timer.expires = jiffies + LANAI_POLL_PERIOD;
1791	add_timer(&lanai->timer);
1792}
1793
1794static inline void lanai_timed_poll_stop(struct lanai_dev *lanai)
1795{
1796	del_timer_sync(&lanai->timer);
1797}
1798
1799/* -------------------- INTERRUPT SERVICE: */
1800
1801static inline void lanai_int_1(struct lanai_dev *lanai, u32 reason)
1802{
1803	u32 ack = 0;
1804	if (reason & INT_SERVICE) {
1805		ack = INT_SERVICE;
1806		spin_lock(&lanai->servicelock);
1807		run_service(lanai);
1808		spin_unlock(&lanai->servicelock);
1809	}
1810	if (reason & (INT_AAL0_STR | INT_AAL0)) {
1811		ack |= reason & (INT_AAL0_STR | INT_AAL0);
1812		vcc_rx_aal0(lanai);
1813	}
1814	/* The rest of the interrupts are pretty rare */
1815	if (ack == reason)
1816		goto done;
1817	if (reason & INT_STATS) {
1818		reason &= ~INT_STATS;	/* No need to ack */
1819		get_statistics(lanai);
1820	}
1821	if (reason & INT_STATUS) {
1822		ack |= reason & INT_STATUS;
1823		lanai_check_status(lanai);
1824	}
1825	if (unlikely(reason & INT_DMASHUT)) {
1826		printk(KERN_ERR DEV_LABEL "(itf %d): driver error - DMA "
1827		    "shutdown, reason=0x%08X, address=0x%08X\n",
1828		    lanai->number, (unsigned int) (reason & INT_DMASHUT),
1829		    (unsigned int) reg_read(lanai, DMA_Addr_Reg));
1830		if (reason & INT_TABORTBM) {
1831			lanai_reset(lanai);
1832			return;
1833		}
1834		ack |= (reason & INT_DMASHUT);
1835		printk(KERN_ERR DEV_LABEL "(itf %d): re-enabling DMA\n",
1836		    lanai->number);
1837		conf1_write(lanai);
1838		lanai->stats.dma_reenable++;
1839		pcistatus_check(lanai, 0);
1840	}
1841	if (unlikely(reason & INT_TABORTSENT)) {
1842		ack |= (reason & INT_TABORTSENT);
1843		printk(KERN_ERR DEV_LABEL "(itf %d): sent PCI target abort\n",
1844		    lanai->number);
1845		pcistatus_check(lanai, 0);
1846	}
1847	if (unlikely(reason & INT_SEGSHUT)) {
1848		printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
1849		    "segmentation shutdown, reason=0x%08X\n", lanai->number,
1850		    (unsigned int) (reason & INT_SEGSHUT));
1851		lanai_reset(lanai);
1852		return;
1853	}
1854	if (unlikely(reason & (INT_PING | INT_WAKE))) {
1855		printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
1856		    "unexpected interrupt 0x%08X, resetting\n",
1857		    lanai->number,
1858		    (unsigned int) (reason & (INT_PING | INT_WAKE)));
1859		lanai_reset(lanai);
1860		return;
1861	}
1862#ifdef DEBUG
1863	if (unlikely(ack != reason)) {
1864		DPRINTK("unacked ints: 0x%08X\n",
1865		    (unsigned int) (reason & ~ack));
1866		ack = reason;
1867	}
1868#endif
1869   done:
1870	if (ack != 0)
1871		reg_write(lanai, ack, IntAck_Reg);
1872}
1873
1874static irqreturn_t lanai_int(int irq, void *devid)
1875{
1876	struct lanai_dev *lanai = devid;
1877	u32 reason;
1878
1879#ifdef USE_POWERDOWN
1880	/*
1881	 * If we're powered down we shouldn't be generating any interrupts -
1882	 * so assume that this is a shared interrupt line and it's for someone
1883	 * else
1884	 */
1885	if (unlikely(lanai->conf1 & CONFIG1_POWERDOWN))
1886		return IRQ_NONE;
1887#endif
1888
1889	reason = intr_pending(lanai);
1890	if (reason == 0)
1891		return IRQ_NONE;	/* Must be for someone else */
1892
1893	do {
1894		if (unlikely(reason == 0xFFFFFFFF))
1895			break;		/* Maybe we've been unplugged? */
1896		lanai_int_1(lanai, reason);
1897		reason = intr_pending(lanai);
1898	} while (reason != 0);
1899
1900	return IRQ_HANDLED;
1901}
1902
1903/* TODO - it would be nice if we could use the "delayed interrupt" system
1904 *   to some advantage
1905 */
1906
1907/* -------------------- CHECK BOARD ID/REV: */
1908
1909/*
1910 * The board id and revision are stored both in the reset register and
1911 * in the PCI configuration space - the documentation says to check
1912 * each of them.  If revp!=NULL we store the revision there
1913 */
1914static int check_board_id_and_rev(const char *name, u32 val, int *revp)
1915{
1916	DPRINTK("%s says board_id=%d, board_rev=%d\n", name,
1917		(int) RESET_GET_BOARD_ID(val),
1918		(int) RESET_GET_BOARD_REV(val));
1919	if (RESET_GET_BOARD_ID(val) != BOARD_ID_LANAI256) {
1920		printk(KERN_ERR DEV_LABEL ": Found %s board-id %d -- not a "
1921		    "Lanai 25.6\n", name, (int) RESET_GET_BOARD_ID(val));
1922		return -ENODEV;
1923	}
1924	if (revp != NULL)
1925		*revp = RESET_GET_BOARD_REV(val);
1926	return 0;
1927}
1928
1929/* -------------------- PCI INITIALIZATION/SHUTDOWN: */
1930
1931static int lanai_pci_start(struct lanai_dev *lanai)
1932{
1933	struct pci_dev *pci = lanai->pci;
1934	int result;
1935
1936	if (pci_enable_device(pci) != 0) {
1937		printk(KERN_ERR DEV_LABEL "(itf %d): can't enable "
1938		    "PCI device", lanai->number);
1939		return -ENXIO;
1940	}
1941	pci_set_master(pci);
1942	if (dma_set_mask_and_coherent(&pci->dev, DMA_BIT_MASK(32)) != 0) {
1943		printk(KERN_WARNING DEV_LABEL
1944		    "(itf %d): No suitable DMA available.\n", lanai->number);
1945		return -EBUSY;
1946	}
1947	result = check_board_id_and_rev("PCI", pci->subsystem_device, NULL);
1948	if (result != 0)
1949		return result;
1950	/* Set latency timer to zero as per lanai docs */
1951	result = pci_write_config_byte(pci, PCI_LATENCY_TIMER, 0);
1952	if (result != PCIBIOS_SUCCESSFUL) {
1953		printk(KERN_ERR DEV_LABEL "(itf %d): can't write "
1954		    "PCI_LATENCY_TIMER: %d\n", lanai->number, result);
1955		return -EINVAL;
1956	}
1957	pcistatus_check(lanai, 1);
1958	pcistatus_check(lanai, 0);
1959	return 0;
1960}
1961
1962/* -------------------- VPI/VCI ALLOCATION: */
1963
1964/*
1965 * We _can_ use VCI==0 for normal traffic, but only for UBR (or we'll
1966 * get a CBRZERO interrupt), and we can use it only if no one is receiving
1967 * AAL0 traffic (since they will use the same queue) - according to the
1968 * docs we shouldn't even use it for AAL0 traffic
1969 */
1970static inline int vci0_is_ok(struct lanai_dev *lanai,
1971	const struct atm_qos *qos)
1972{
1973	if (qos->txtp.traffic_class == ATM_CBR || qos->aal == ATM_AAL0)
1974		return 0;
1975	if (qos->rxtp.traffic_class != ATM_NONE) {
1976		if (lanai->naal0 != 0)
1977			return 0;
1978		lanai->conf2 |= CONFIG2_VCI0_NORMAL;
1979		conf2_write_if_powerup(lanai);
1980	}
1981	return 1;
1982}
1983
1984/* return true if vci is currently unused, or if requested qos is
1985 * compatible
1986 */
1987static int vci_is_ok(struct lanai_dev *lanai, vci_t vci,
1988	const struct atm_vcc *atmvcc)
1989{
1990	const struct atm_qos *qos = &atmvcc->qos;
1991	const struct lanai_vcc *lvcc = lanai->vccs[vci];
1992	if (vci == 0 && !vci0_is_ok(lanai, qos))
1993		return 0;
1994	if (unlikely(lvcc != NULL)) {
1995		if (qos->rxtp.traffic_class != ATM_NONE &&
1996		    lvcc->rx.atmvcc != NULL && lvcc->rx.atmvcc != atmvcc)
1997			return 0;
1998		if (qos->txtp.traffic_class != ATM_NONE &&
1999		    lvcc->tx.atmvcc != NULL && lvcc->tx.atmvcc != atmvcc)
2000			return 0;
2001		if (qos->txtp.traffic_class == ATM_CBR &&
2002		    lanai->cbrvcc != NULL && lanai->cbrvcc != atmvcc)
2003			return 0;
2004	}
2005	if (qos->aal == ATM_AAL0 && lanai->naal0 == 0 &&
2006	    qos->rxtp.traffic_class != ATM_NONE) {
2007		const struct lanai_vcc *vci0 = lanai->vccs[0];
2008		if (vci0 != NULL && vci0->rx.atmvcc != NULL)
2009			return 0;
2010		lanai->conf2 &= ~CONFIG2_VCI0_NORMAL;
2011		conf2_write_if_powerup(lanai);
2012	}
2013	return 1;
2014}
2015
2016static int lanai_normalize_ci(struct lanai_dev *lanai,
2017	const struct atm_vcc *atmvcc, short *vpip, vci_t *vcip)
2018{
2019	switch (*vpip) {
2020		case ATM_VPI_ANY:
2021			*vpip = 0;
2022			fallthrough;
2023		case 0:
2024			break;
2025		default:
2026			return -EADDRINUSE;
2027	}
2028	switch (*vcip) {
2029		case ATM_VCI_ANY:
2030			for (*vcip = ATM_NOT_RSV_VCI; *vcip < lanai->num_vci;
2031			    (*vcip)++)
2032				if (vci_is_ok(lanai, *vcip, atmvcc))
2033					return 0;
2034			return -EADDRINUSE;
2035		default:
2036			if (*vcip >= lanai->num_vci || *vcip < 0 ||
2037			    !vci_is_ok(lanai, *vcip, atmvcc))
2038				return -EADDRINUSE;
2039	}
2040	return 0;
2041}
2042
2043/* -------------------- MANAGE CBR: */
2044
2045/*
2046 * CBR ICG is stored as a fixed-point number with 4 fractional bits.
2047 * Note that storing a number greater than 2046.0 will result in
2048 * incorrect shaping
2049 */
2050#define CBRICG_FRAC_BITS	(4)
2051#define CBRICG_MAX		(2046 << CBRICG_FRAC_BITS)
2052
2053/*
2054 * ICG is related to PCR with the formula PCR = MAXPCR / (ICG + 1)
2055 * where MAXPCR is (according to the docs) 25600000/(54*8),
2056 * which is equal to (3125<<9)/27.
2057 *
2058 * Solving for ICG, we get:
2059 *    ICG = MAXPCR/PCR - 1
2060 *    ICG = (3125<<9)/(27*PCR) - 1
2061 *    ICG = ((3125<<9) - (27*PCR)) / (27*PCR)
2062 *
2063 * The end result is supposed to be a fixed-point number with FRAC_BITS
2064 * bits of a fractional part, so we keep everything in the numerator
2065 * shifted by that much as we compute
2066 *
2067 */
2068static int pcr_to_cbricg(const struct atm_qos *qos)
2069{
2070	int rounddown = 0;	/* 1 = Round PCR down, i.e. round ICG _up_ */
2071	int x, icg, pcr = atm_pcr_goal(&qos->txtp);
2072	if (pcr == 0)		/* Use maximum bandwidth */
2073		return 0;
2074	if (pcr < 0) {
2075		rounddown = 1;
2076		pcr = -pcr;
2077	}
2078	x = pcr * 27;
2079	icg = (3125 << (9 + CBRICG_FRAC_BITS)) - (x << CBRICG_FRAC_BITS);
2080	if (rounddown)
2081		icg += x - 1;
2082	icg /= x;
2083	if (icg > CBRICG_MAX)
2084		icg = CBRICG_MAX;
2085	DPRINTK("pcr_to_cbricg: pcr=%d rounddown=%c icg=%d\n",
2086	    pcr, rounddown ? 'Y' : 'N', icg);
2087	return icg;
2088}
2089
2090static inline void lanai_cbr_setup(struct lanai_dev *lanai)
2091{
2092	reg_write(lanai, pcr_to_cbricg(&lanai->cbrvcc->qos), CBR_ICG_Reg);
2093	reg_write(lanai, lanai->cbrvcc->vci, CBR_PTR_Reg);
2094	lanai->conf2 |= CONFIG2_CBR_ENABLE;
2095	conf2_write(lanai);
2096}
2097
2098static inline void lanai_cbr_shutdown(struct lanai_dev *lanai)
2099{
2100	lanai->conf2 &= ~CONFIG2_CBR_ENABLE;
2101	conf2_write(lanai);
2102}
2103
2104/* -------------------- OPERATIONS: */
2105
2106/* setup a newly detected device */
2107static int lanai_dev_open(struct atm_dev *atmdev)
2108{
2109	struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2110	unsigned long raw_base;
2111	int result;
2112
2113	DPRINTK("In lanai_dev_open()\n");
2114	/* Basic device fields */
2115	lanai->number = atmdev->number;
2116	lanai->num_vci = NUM_VCI;
2117	bitmap_zero(lanai->backlog_vccs, NUM_VCI);
2118	bitmap_zero(lanai->transmit_ready, NUM_VCI);
2119	lanai->naal0 = 0;
2120#ifdef USE_POWERDOWN
2121	lanai->nbound = 0;
2122#endif
2123	lanai->cbrvcc = NULL;
2124	memset(&lanai->stats, 0, sizeof lanai->stats);
2125	spin_lock_init(&lanai->endtxlock);
2126	spin_lock_init(&lanai->servicelock);
2127	atmdev->ci_range.vpi_bits = 0;
2128	atmdev->ci_range.vci_bits = 0;
2129	while (1 << atmdev->ci_range.vci_bits < lanai->num_vci)
2130		atmdev->ci_range.vci_bits++;
2131	atmdev->link_rate = ATM_25_PCR;
2132
2133	/* 3.2: PCI initialization */
2134	if ((result = lanai_pci_start(lanai)) != 0)
2135		goto error;
2136	raw_base = lanai->pci->resource[0].start;
2137	lanai->base = (bus_addr_t) ioremap(raw_base, LANAI_MAPPING_SIZE);
2138	if (lanai->base == NULL) {
2139		printk(KERN_ERR DEV_LABEL ": couldn't remap I/O space\n");
2140		result = -ENOMEM;
2141		goto error_pci;
2142	}
2143	/* 3.3: Reset lanai and PHY */
2144	reset_board(lanai);
2145	lanai->conf1 = reg_read(lanai, Config1_Reg);
2146	lanai->conf1 &= ~(CONFIG1_GPOUT1 | CONFIG1_POWERDOWN |
2147	    CONFIG1_MASK_LEDMODE);
2148	lanai->conf1 |= CONFIG1_SET_LEDMODE(LEDMODE_NOT_SOOL);
2149	reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
2150	udelay(1000);
2151	conf1_write(lanai);
2152
2153	/*
2154	 * 3.4: Turn on endian mode for big-endian hardware
2155	 *   We don't actually want to do this - the actual bit fields
2156	 *   in the endian register are not documented anywhere.
2157	 *   Instead we do the bit-flipping ourselves on big-endian
2158	 *   hardware.
2159	 *
2160	 * 3.5: get the board ID/rev by reading the reset register
2161	 */
2162	result = check_board_id_and_rev("register",
2163	    reg_read(lanai, Reset_Reg), &lanai->board_rev);
2164	if (result != 0)
2165		goto error_unmap;
2166
2167	/* 3.6: read EEPROM */
2168	if ((result = eeprom_read(lanai)) != 0)
2169		goto error_unmap;
2170	if ((result = eeprom_validate(lanai)) != 0)
2171		goto error_unmap;
2172
2173	/* 3.7: re-reset PHY, do loopback tests, setup PHY */
2174	reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
2175	udelay(1000);
2176	conf1_write(lanai);
2177	/* TODO - loopback tests */
2178	lanai->conf1 |= (CONFIG1_GPOUT2 | CONFIG1_GPOUT3 | CONFIG1_DMA_ENABLE);
2179	conf1_write(lanai);
2180
2181	/* 3.8/3.9: test and initialize card SRAM */
2182	if ((result = sram_test_and_clear(lanai)) != 0)
2183		goto error_unmap;
2184
2185	/* 3.10: initialize lanai registers */
2186	lanai->conf1 |= CONFIG1_DMA_ENABLE;
2187	conf1_write(lanai);
2188	if ((result = service_buffer_allocate(lanai)) != 0)
2189		goto error_unmap;
2190	if ((result = vcc_table_allocate(lanai)) != 0)
2191		goto error_service;
2192	lanai->conf2 = (lanai->num_vci >= 512 ? CONFIG2_HOWMANY : 0) |
2193	    CONFIG2_HEC_DROP |	/* ??? */ CONFIG2_PTI7_MODE;
2194	conf2_write(lanai);
2195	reg_write(lanai, TX_FIFO_DEPTH, TxDepth_Reg);
2196	reg_write(lanai, 0, CBR_ICG_Reg);	/* CBR defaults to no limit */
2197	if ((result = request_irq(lanai->pci->irq, lanai_int, IRQF_SHARED,
2198	    DEV_LABEL, lanai)) != 0) {
2199		printk(KERN_ERR DEV_LABEL ": can't allocate interrupt\n");
2200		goto error_vcctable;
2201	}
2202	mb();				/* Make sure that all that made it */
2203	intr_enable(lanai, INT_ALL & ~(INT_PING | INT_WAKE));
2204	/* 3.11: initialize loop mode (i.e. turn looping off) */
2205	lanai->conf1 = (lanai->conf1 & ~CONFIG1_MASK_LOOPMODE) |
2206	    CONFIG1_SET_LOOPMODE(LOOPMODE_NORMAL) |
2207	    CONFIG1_GPOUT2 | CONFIG1_GPOUT3;
2208	conf1_write(lanai);
2209	lanai->status = reg_read(lanai, Status_Reg);
2210	/* We're now done initializing this card */
2211#ifdef USE_POWERDOWN
2212	lanai->conf1 |= CONFIG1_POWERDOWN;
2213	conf1_write(lanai);
2214#endif
2215	memcpy(atmdev->esi, eeprom_mac(lanai), ESI_LEN);
2216	lanai_timed_poll_start(lanai);
2217	printk(KERN_NOTICE DEV_LABEL "(itf %d): rev.%d, base=%p, irq=%u "
2218		"(%pMF)\n", lanai->number, (int) lanai->pci->revision,
2219		lanai->base, lanai->pci->irq, atmdev->esi);
2220	printk(KERN_NOTICE DEV_LABEL "(itf %d): LANAI%s, serialno=%u(0x%X), "
2221	    "board_rev=%d\n", lanai->number,
2222	    lanai->type==lanai2 ? "2" : "HB", (unsigned int) lanai->serialno,
2223	    (unsigned int) lanai->serialno, lanai->board_rev);
2224	return 0;
2225
2226    error_vcctable:
2227	vcc_table_deallocate(lanai);
2228    error_service:
2229	service_buffer_deallocate(lanai);
2230    error_unmap:
2231	reset_board(lanai);
2232#ifdef USE_POWERDOWN
2233	lanai->conf1 = reg_read(lanai, Config1_Reg) | CONFIG1_POWERDOWN;
2234	conf1_write(lanai);
2235#endif
2236	iounmap(lanai->base);
2237	lanai->base = NULL;
2238    error_pci:
2239	pci_disable_device(lanai->pci);
2240    error:
2241	return result;
2242}
2243
2244/* called when device is being shutdown, and all vcc's are gone - higher
2245 * levels will deallocate the atm device for us
2246 */
2247static void lanai_dev_close(struct atm_dev *atmdev)
2248{
2249	struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2250	if (lanai->base==NULL)
2251		return;
2252	printk(KERN_INFO DEV_LABEL "(itf %d): shutting down interface\n",
2253	    lanai->number);
2254	lanai_timed_poll_stop(lanai);
2255#ifdef USE_POWERDOWN
2256	lanai->conf1 = reg_read(lanai, Config1_Reg) & ~CONFIG1_POWERDOWN;
2257	conf1_write(lanai);
2258#endif
2259	intr_disable(lanai, INT_ALL);
2260	free_irq(lanai->pci->irq, lanai);
2261	reset_board(lanai);
2262#ifdef USE_POWERDOWN
2263	lanai->conf1 |= CONFIG1_POWERDOWN;
2264	conf1_write(lanai);
2265#endif
2266	pci_disable_device(lanai->pci);
2267	vcc_table_deallocate(lanai);
2268	service_buffer_deallocate(lanai);
2269	iounmap(lanai->base);
2270	kfree(lanai);
2271}
2272
2273/* close a vcc */
2274static void lanai_close(struct atm_vcc *atmvcc)
2275{
2276	struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
2277	struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2278	if (lvcc == NULL)
2279		return;
2280	clear_bit(ATM_VF_READY, &atmvcc->flags);
2281	clear_bit(ATM_VF_PARTIAL, &atmvcc->flags);
2282	if (lvcc->rx.atmvcc == atmvcc) {
2283		lanai_shutdown_rx_vci(lvcc);
2284		if (atmvcc->qos.aal == ATM_AAL0) {
2285			if (--lanai->naal0 <= 0)
2286				aal0_buffer_free(lanai);
2287		} else
2288			lanai_buf_deallocate(&lvcc->rx.buf, lanai->pci);
2289		lvcc->rx.atmvcc = NULL;
2290	}
2291	if (lvcc->tx.atmvcc == atmvcc) {
2292		if (atmvcc == lanai->cbrvcc) {
2293			if (lvcc->vbase != NULL)
2294				lanai_cbr_shutdown(lanai);
2295			lanai->cbrvcc = NULL;
2296		}
2297		lanai_shutdown_tx_vci(lanai, lvcc);
2298		lanai_buf_deallocate(&lvcc->tx.buf, lanai->pci);
2299		lvcc->tx.atmvcc = NULL;
2300	}
2301	if (--lvcc->nref == 0) {
2302		host_vcc_unbind(lanai, lvcc);
2303		kfree(lvcc);
2304	}
2305	atmvcc->dev_data = NULL;
2306	clear_bit(ATM_VF_ADDR, &atmvcc->flags);
2307}
2308
2309/* open a vcc on the card to vpi/vci */
2310static int lanai_open(struct atm_vcc *atmvcc)
2311{
2312	struct lanai_dev *lanai;
2313	struct lanai_vcc *lvcc;
2314	int result = 0;
2315	int vci = atmvcc->vci;
2316	short vpi = atmvcc->vpi;
2317	/* we don't support partial open - it's not really useful anyway */
2318	if ((test_bit(ATM_VF_PARTIAL, &atmvcc->flags)) ||
2319	    (vpi == ATM_VPI_UNSPEC) || (vci == ATM_VCI_UNSPEC))
2320		return -EINVAL;
2321	lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2322	result = lanai_normalize_ci(lanai, atmvcc, &vpi, &vci);
2323	if (unlikely(result != 0))
2324		goto out;
2325	set_bit(ATM_VF_ADDR, &atmvcc->flags);
2326	if (atmvcc->qos.aal != ATM_AAL0 && atmvcc->qos.aal != ATM_AAL5)
2327		return -EINVAL;
2328	DPRINTK(DEV_LABEL "(itf %d): open %d.%d\n", lanai->number,
2329	    (int) vpi, vci);
2330	lvcc = lanai->vccs[vci];
2331	if (lvcc == NULL) {
2332		lvcc = new_lanai_vcc();
2333		if (unlikely(lvcc == NULL))
2334			return -ENOMEM;
2335		atmvcc->dev_data = lvcc;
2336	}
2337	lvcc->nref++;
2338	if (atmvcc->qos.rxtp.traffic_class != ATM_NONE) {
2339		APRINTK(lvcc->rx.atmvcc == NULL, "rx.atmvcc!=NULL, vci=%d\n",
2340		    vci);
2341		if (atmvcc->qos.aal == ATM_AAL0) {
2342			if (lanai->naal0 == 0)
2343				result = aal0_buffer_allocate(lanai);
2344		} else
2345			result = lanai_setup_rx_vci_aal5(
2346			    lanai, lvcc, &atmvcc->qos);
2347		if (unlikely(result != 0))
2348			goto out_free;
2349		lvcc->rx.atmvcc = atmvcc;
2350		lvcc->stats.rx_nomem = 0;
2351		lvcc->stats.x.aal5.rx_badlen = 0;
2352		lvcc->stats.x.aal5.service_trash = 0;
2353		lvcc->stats.x.aal5.service_stream = 0;
2354		lvcc->stats.x.aal5.service_rxcrc = 0;
2355		if (atmvcc->qos.aal == ATM_AAL0)
2356			lanai->naal0++;
2357	}
2358	if (atmvcc->qos.txtp.traffic_class != ATM_NONE) {
2359		APRINTK(lvcc->tx.atmvcc == NULL, "tx.atmvcc!=NULL, vci=%d\n",
2360		    vci);
2361		result = lanai_setup_tx_vci(lanai, lvcc, &atmvcc->qos);
2362		if (unlikely(result != 0))
2363			goto out_free;
2364		lvcc->tx.atmvcc = atmvcc;
2365		if (atmvcc->qos.txtp.traffic_class == ATM_CBR) {
2366			APRINTK(lanai->cbrvcc == NULL,
2367			    "cbrvcc!=NULL, vci=%d\n", vci);
2368			lanai->cbrvcc = atmvcc;
2369		}
2370	}
2371	host_vcc_bind(lanai, lvcc, vci);
2372	/*
2373	 * Make sure everything made it to RAM before we tell the card about
2374	 * the VCC
2375	 */
2376	wmb();
2377	if (atmvcc == lvcc->rx.atmvcc)
2378		host_vcc_start_rx(lvcc);
2379	if (atmvcc == lvcc->tx.atmvcc) {
2380		host_vcc_start_tx(lvcc);
2381		if (lanai->cbrvcc == atmvcc)
2382			lanai_cbr_setup(lanai);
2383	}
2384	set_bit(ATM_VF_READY, &atmvcc->flags);
2385	return 0;
2386    out_free:
2387	lanai_close(atmvcc);
2388    out:
2389	return result;
2390}
2391
2392static int lanai_send(struct atm_vcc *atmvcc, struct sk_buff *skb)
2393{
2394	struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
2395	struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2396	unsigned long flags;
2397	if (unlikely(lvcc == NULL || lvcc->vbase == NULL ||
2398	      lvcc->tx.atmvcc != atmvcc))
2399		goto einval;
2400#ifdef DEBUG
2401	if (unlikely(skb == NULL)) {
2402		DPRINTK("lanai_send: skb==NULL for vci=%d\n", atmvcc->vci);
2403		goto einval;
2404	}
2405	if (unlikely(lanai == NULL)) {
2406		DPRINTK("lanai_send: lanai==NULL for vci=%d\n", atmvcc->vci);
2407		goto einval;
2408	}
2409#endif
2410	ATM_SKB(skb)->vcc = atmvcc;
2411	switch (atmvcc->qos.aal) {
2412		case ATM_AAL5:
2413			read_lock_irqsave(&vcc_sklist_lock, flags);
2414			vcc_tx_aal5(lanai, lvcc, skb);
2415			read_unlock_irqrestore(&vcc_sklist_lock, flags);
2416			return 0;
2417		case ATM_AAL0:
2418			if (unlikely(skb->len != ATM_CELL_SIZE-1))
2419				goto einval;
2420  /* NOTE - this next line is technically invalid - we haven't unshared skb */
2421			cpu_to_be32s((u32 *) skb->data);
2422			read_lock_irqsave(&vcc_sklist_lock, flags);
2423			vcc_tx_aal0(lanai, lvcc, skb);
2424			read_unlock_irqrestore(&vcc_sklist_lock, flags);
2425			return 0;
2426	}
2427	DPRINTK("lanai_send: bad aal=%d on vci=%d\n", (int) atmvcc->qos.aal,
2428	    atmvcc->vci);
2429    einval:
2430	lanai_free_skb(atmvcc, skb);
2431	return -EINVAL;
2432}
2433
2434static int lanai_change_qos(struct atm_vcc *atmvcc,
2435	/*const*/ struct atm_qos *qos, int flags)
2436{
2437	return -EBUSY;		/* TODO: need to write this */
2438}
2439
2440#ifndef CONFIG_PROC_FS
2441#define lanai_proc_read NULL
2442#else
2443static int lanai_proc_read(struct atm_dev *atmdev, loff_t *pos, char *page)
2444{
2445	struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2446	loff_t left = *pos;
2447	struct lanai_vcc *lvcc;
2448	if (left-- == 0)
2449		return sprintf(page, DEV_LABEL "(itf %d): chip=LANAI%s, "
2450		    "serial=%u, magic=0x%08X, num_vci=%d\n",
2451		    atmdev->number, lanai->type==lanai2 ? "2" : "HB",
2452		    (unsigned int) lanai->serialno,
2453		    (unsigned int) lanai->magicno, lanai->num_vci);
2454	if (left-- == 0)
2455		return sprintf(page, "revision: board=%d, pci_if=%d\n",
2456		    lanai->board_rev, (int) lanai->pci->revision);
2457	if (left-- == 0)
2458		return sprintf(page, "EEPROM ESI: %pM\n",
2459		    &lanai->eeprom[EEPROM_MAC]);
2460	if (left-- == 0)
2461		return sprintf(page, "status: SOOL=%d, LOCD=%d, LED=%d, "
2462		    "GPIN=%d\n", (lanai->status & STATUS_SOOL) ? 1 : 0,
2463		    (lanai->status & STATUS_LOCD) ? 1 : 0,
2464		    (lanai->status & STATUS_LED) ? 1 : 0,
2465		    (lanai->status & STATUS_GPIN) ? 1 : 0);
2466	if (left-- == 0)
2467		return sprintf(page, "global buffer sizes: service=%zu, "
2468		    "aal0_rx=%zu\n", lanai_buf_size(&lanai->service),
2469		    lanai->naal0 ? lanai_buf_size(&lanai->aal0buf) : 0);
2470	if (left-- == 0) {
2471		get_statistics(lanai);
2472		return sprintf(page, "cells in error: overflow=%u, "
2473		    "closed_vci=%u, bad_HEC=%u, rx_fifo=%u\n",
2474		    lanai->stats.ovfl_trash, lanai->stats.vci_trash,
2475		    lanai->stats.hec_err, lanai->stats.atm_ovfl);
2476	}
2477	if (left-- == 0)
2478		return sprintf(page, "PCI errors: parity_detect=%u, "
2479		    "master_abort=%u, master_target_abort=%u,\n",
2480		    lanai->stats.pcierr_parity_detect,
2481		    lanai->stats.pcierr_serr_set,
2482		    lanai->stats.pcierr_m_target_abort);
2483	if (left-- == 0)
2484		return sprintf(page, "            slave_target_abort=%u, "
2485		    "master_parity=%u\n", lanai->stats.pcierr_s_target_abort,
2486		    lanai->stats.pcierr_master_parity);
2487	if (left-- == 0)
2488		return sprintf(page, "                     no_tx=%u, "
2489		    "no_rx=%u, bad_rx_aal=%u\n", lanai->stats.service_norx,
2490		    lanai->stats.service_notx,
2491		    lanai->stats.service_rxnotaal5);
2492	if (left-- == 0)
2493		return sprintf(page, "resets: dma=%u, card=%u\n",
2494		    lanai->stats.dma_reenable, lanai->stats.card_reset);
2495	/* At this point, "left" should be the VCI we're looking for */
2496	read_lock(&vcc_sklist_lock);
2497	for (; ; left++) {
2498		if (left >= NUM_VCI) {
2499			left = 0;
2500			goto out;
2501		}
2502		if ((lvcc = lanai->vccs[left]) != NULL)
2503			break;
2504		(*pos)++;
2505	}
2506	/* Note that we re-use "left" here since we're done with it */
2507	left = sprintf(page, "VCI %4d: nref=%d, rx_nomem=%u",  (vci_t) left,
2508	    lvcc->nref, lvcc->stats.rx_nomem);
2509	if (lvcc->rx.atmvcc != NULL) {
2510		left += sprintf(&page[left], ",\n          rx_AAL=%d",
2511		    lvcc->rx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0);
2512		if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5)
2513			left += sprintf(&page[left], ", rx_buf_size=%zu, "
2514			    "rx_bad_len=%u,\n          rx_service_trash=%u, "
2515			    "rx_service_stream=%u, rx_bad_crc=%u",
2516			    lanai_buf_size(&lvcc->rx.buf),
2517			    lvcc->stats.x.aal5.rx_badlen,
2518			    lvcc->stats.x.aal5.service_trash,
2519			    lvcc->stats.x.aal5.service_stream,
2520			    lvcc->stats.x.aal5.service_rxcrc);
2521	}
2522	if (lvcc->tx.atmvcc != NULL)
2523		left += sprintf(&page[left], ",\n          tx_AAL=%d, "
2524		    "tx_buf_size=%zu, tx_qos=%cBR, tx_backlogged=%c",
2525		    lvcc->tx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0,
2526		    lanai_buf_size(&lvcc->tx.buf),
2527		    lvcc->tx.atmvcc == lanai->cbrvcc ? 'C' : 'U',
2528		    vcc_is_backlogged(lvcc) ? 'Y' : 'N');
2529	page[left++] = '\n';
2530	page[left] = '\0';
2531    out:
2532	read_unlock(&vcc_sklist_lock);
2533	return left;
2534}
2535#endif /* CONFIG_PROC_FS */
2536
2537/* -------------------- HOOKS: */
2538
2539static const struct atmdev_ops ops = {
2540	.dev_close	= lanai_dev_close,
2541	.open		= lanai_open,
2542	.close		= lanai_close,
2543	.send		= lanai_send,
2544	.phy_put	= NULL,
2545	.phy_get	= NULL,
2546	.change_qos	= lanai_change_qos,
2547	.proc_read	= lanai_proc_read,
2548	.owner		= THIS_MODULE
2549};
2550
2551/* initialize one probed card */
2552static int lanai_init_one(struct pci_dev *pci,
2553			  const struct pci_device_id *ident)
2554{
2555	struct lanai_dev *lanai;
2556	struct atm_dev *atmdev;
2557	int result;
2558
2559	lanai = kzalloc(sizeof(*lanai), GFP_KERNEL);
2560	if (lanai == NULL) {
2561		printk(KERN_ERR DEV_LABEL
2562		       ": couldn't allocate dev_data structure!\n");
2563		return -ENOMEM;
2564	}
2565
2566	atmdev = atm_dev_register(DEV_LABEL, &pci->dev, &ops, -1, NULL);
2567	if (atmdev == NULL) {
2568		printk(KERN_ERR DEV_LABEL
2569		    ": couldn't register atm device!\n");
2570		kfree(lanai);
2571		return -EBUSY;
2572	}
2573
2574	atmdev->dev_data = lanai;
2575	lanai->pci = pci;
2576	lanai->type = (enum lanai_type) ident->device;
2577
2578	result = lanai_dev_open(atmdev);
2579	if (result != 0) {
2580		DPRINTK("lanai_start() failed, err=%d\n", -result);
2581		atm_dev_deregister(atmdev);
2582		kfree(lanai);
2583	}
2584	return result;
2585}
2586
2587static const struct pci_device_id lanai_pci_tbl[] = {
2588	{ PCI_VDEVICE(EF, PCI_DEVICE_ID_EF_ATM_LANAI2) },
2589	{ PCI_VDEVICE(EF, PCI_DEVICE_ID_EF_ATM_LANAIHB) },
2590	{ 0, }	/* terminal entry */
2591};
2592MODULE_DEVICE_TABLE(pci, lanai_pci_tbl);
2593
2594static struct pci_driver lanai_driver = {
2595	.name     = DEV_LABEL,
2596	.id_table = lanai_pci_tbl,
2597	.probe    = lanai_init_one,
2598};
2599
2600module_pci_driver(lanai_driver);
2601
2602MODULE_AUTHOR("Mitchell Blank Jr <mitch@sfgoth.com>");
2603MODULE_DESCRIPTION("Efficient Networks Speedstream 3010 driver");
2604MODULE_LICENSE("GPL");
2605