xref: /kernel/linux/linux-5.10/drivers/atm/fore200e.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3  A FORE Systems 200E-series driver for ATM on Linux.
4  Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
5
6  Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
7
8  This driver simultaneously supports PCA-200E and SBA-200E adapters
9  on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
10
11*/
12
13
14#include <linux/kernel.h>
15#include <linux/slab.h>
16#include <linux/init.h>
17#include <linux/capability.h>
18#include <linux/interrupt.h>
19#include <linux/bitops.h>
20#include <linux/pci.h>
21#include <linux/module.h>
22#include <linux/atmdev.h>
23#include <linux/sonet.h>
24#include <linux/atm_suni.h>
25#include <linux/dma-mapping.h>
26#include <linux/delay.h>
27#include <linux/firmware.h>
28#include <linux/pgtable.h>
29#include <asm/io.h>
30#include <asm/string.h>
31#include <asm/page.h>
32#include <asm/irq.h>
33#include <asm/dma.h>
34#include <asm/byteorder.h>
35#include <linux/uaccess.h>
36#include <linux/atomic.h>
37
38#ifdef CONFIG_SBUS
39#include <linux/of.h>
40#include <linux/of_device.h>
41#include <asm/idprom.h>
42#include <asm/openprom.h>
43#include <asm/oplib.h>
44#endif
45
46#if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
47#define FORE200E_USE_TASKLET
48#endif
49
50#if 0 /* enable the debugging code of the buffer supply queues */
51#define FORE200E_BSQ_DEBUG
52#endif
53
54#if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
55#define FORE200E_52BYTE_AAL0_SDU
56#endif
57
58#include "fore200e.h"
59#include "suni.h"
60
61#define FORE200E_VERSION "0.3e"
62
63#define FORE200E         "fore200e: "
64
65#if 0 /* override .config */
66#define CONFIG_ATM_FORE200E_DEBUG 1
67#endif
68#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
69#define DPRINTK(level, format, args...)  do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
70                                                  printk(FORE200E format, ##args); } while (0)
71#else
72#define DPRINTK(level, format, args...)  do {} while (0)
73#endif
74
75
76#define FORE200E_ALIGN(addr, alignment) \
77        ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
78
79#define FORE200E_DMA_INDEX(dma_addr, type, index)  ((dma_addr) + (index) * sizeof(type))
80
81#define FORE200E_INDEX(virt_addr, type, index)     (&((type *)(virt_addr))[ index ])
82
83#define FORE200E_NEXT_ENTRY(index, modulo)         (index = ((index) + 1) % (modulo))
84
85#if 1
86#define ASSERT(expr)     if (!(expr)) { \
87			     printk(FORE200E "assertion failed! %s[%d]: %s\n", \
88				    __func__, __LINE__, #expr); \
89			     panic(FORE200E "%s", __func__); \
90			 }
91#else
92#define ASSERT(expr)     do {} while (0)
93#endif
94
95
96static const struct atmdev_ops   fore200e_ops;
97
98static LIST_HEAD(fore200e_boards);
99
100
101MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
102MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
103MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E");
104
105
106static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
107    { BUFFER_S1_NBR, BUFFER_L1_NBR },
108    { BUFFER_S2_NBR, BUFFER_L2_NBR }
109};
110
111static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
112    { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
113    { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
114};
115
116
117#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
118static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
119#endif
120
121
122#if 0 /* currently unused */
123static int
124fore200e_fore2atm_aal(enum fore200e_aal aal)
125{
126    switch(aal) {
127    case FORE200E_AAL0:  return ATM_AAL0;
128    case FORE200E_AAL34: return ATM_AAL34;
129    case FORE200E_AAL5:  return ATM_AAL5;
130    }
131
132    return -EINVAL;
133}
134#endif
135
136
137static enum fore200e_aal
138fore200e_atm2fore_aal(int aal)
139{
140    switch(aal) {
141    case ATM_AAL0:  return FORE200E_AAL0;
142    case ATM_AAL34: return FORE200E_AAL34;
143    case ATM_AAL1:
144    case ATM_AAL2:
145    case ATM_AAL5:  return FORE200E_AAL5;
146    }
147
148    return -EINVAL;
149}
150
151
152static char*
153fore200e_irq_itoa(int irq)
154{
155    static char str[8];
156    sprintf(str, "%d", irq);
157    return str;
158}
159
160
161/* allocate and align a chunk of memory intended to hold the data behing exchanged
162   between the driver and the adapter (using streaming DVMA) */
163
164static int
165fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
166{
167    unsigned long offset = 0;
168
169    if (alignment <= sizeof(int))
170	alignment = 0;
171
172    chunk->alloc_size = size + alignment;
173    chunk->direction  = direction;
174
175    chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL);
176    if (chunk->alloc_addr == NULL)
177	return -ENOMEM;
178
179    if (alignment > 0)
180	offset = FORE200E_ALIGN(chunk->alloc_addr, alignment);
181
182    chunk->align_addr = chunk->alloc_addr + offset;
183
184    chunk->dma_addr = dma_map_single(fore200e->dev, chunk->align_addr,
185				     size, direction);
186    if (dma_mapping_error(fore200e->dev, chunk->dma_addr)) {
187	kfree(chunk->alloc_addr);
188	return -ENOMEM;
189    }
190    return 0;
191}
192
193
194/* free a chunk of memory */
195
196static void
197fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
198{
199    dma_unmap_single(fore200e->dev, chunk->dma_addr, chunk->dma_size,
200		     chunk->direction);
201    kfree(chunk->alloc_addr);
202}
203
204/*
205 * Allocate a DMA consistent chunk of memory intended to act as a communication
206 * mechanism (to hold descriptors, status, queues, etc.) shared by the driver
207 * and the adapter.
208 */
209static int
210fore200e_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
211		int size, int nbr, int alignment)
212{
213	/* returned chunks are page-aligned */
214	chunk->alloc_size = size * nbr;
215	chunk->alloc_addr = dma_alloc_coherent(fore200e->dev, chunk->alloc_size,
216					       &chunk->dma_addr, GFP_KERNEL);
217	if (!chunk->alloc_addr)
218		return -ENOMEM;
219	chunk->align_addr = chunk->alloc_addr;
220	return 0;
221}
222
223/*
224 * Free a DMA consistent chunk of memory.
225 */
226static void
227fore200e_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
228{
229	dma_free_coherent(fore200e->dev, chunk->alloc_size, chunk->alloc_addr,
230			  chunk->dma_addr);
231}
232
233static void
234fore200e_spin(int msecs)
235{
236    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
237    while (time_before(jiffies, timeout));
238}
239
240
241static int
242fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
243{
244    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
245    int           ok;
246
247    mb();
248    do {
249	if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
250	    break;
251
252    } while (time_before(jiffies, timeout));
253
254#if 1
255    if (!ok) {
256	printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
257	       *addr, val);
258    }
259#endif
260
261    return ok;
262}
263
264
265static int
266fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
267{
268    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
269    int           ok;
270
271    do {
272	if ((ok = (fore200e->bus->read(addr) == val)))
273	    break;
274
275    } while (time_before(jiffies, timeout));
276
277#if 1
278    if (!ok) {
279	printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
280	       fore200e->bus->read(addr), val);
281    }
282#endif
283
284    return ok;
285}
286
287
288static void
289fore200e_free_rx_buf(struct fore200e* fore200e)
290{
291    int scheme, magn, nbr;
292    struct buffer* buffer;
293
294    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
295	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
296
297	    if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
298
299		for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
300
301		    struct chunk* data = &buffer[ nbr ].data;
302
303		    if (data->alloc_addr != NULL)
304			fore200e_chunk_free(fore200e, data);
305		}
306	    }
307	}
308    }
309}
310
311
312static void
313fore200e_uninit_bs_queue(struct fore200e* fore200e)
314{
315    int scheme, magn;
316
317    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
318	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
319
320	    struct chunk* status    = &fore200e->host_bsq[ scheme ][ magn ].status;
321	    struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
322
323	    if (status->alloc_addr)
324		fore200e_dma_chunk_free(fore200e, status);
325
326	    if (rbd_block->alloc_addr)
327		fore200e_dma_chunk_free(fore200e, rbd_block);
328	}
329    }
330}
331
332
333static int
334fore200e_reset(struct fore200e* fore200e, int diag)
335{
336    int ok;
337
338    fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
339
340    fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
341
342    fore200e->bus->reset(fore200e);
343
344    if (diag) {
345	ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
346	if (ok == 0) {
347
348	    printk(FORE200E "device %s self-test failed\n", fore200e->name);
349	    return -ENODEV;
350	}
351
352	printk(FORE200E "device %s self-test passed\n", fore200e->name);
353
354	fore200e->state = FORE200E_STATE_RESET;
355    }
356
357    return 0;
358}
359
360
361static void
362fore200e_shutdown(struct fore200e* fore200e)
363{
364    printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
365	   fore200e->name, fore200e->phys_base,
366	   fore200e_irq_itoa(fore200e->irq));
367
368    if (fore200e->state > FORE200E_STATE_RESET) {
369	/* first, reset the board to prevent further interrupts or data transfers */
370	fore200e_reset(fore200e, 0);
371    }
372
373    /* then, release all allocated resources */
374    switch(fore200e->state) {
375
376    case FORE200E_STATE_COMPLETE:
377	kfree(fore200e->stats);
378
379	fallthrough;
380    case FORE200E_STATE_IRQ:
381	free_irq(fore200e->irq, fore200e->atm_dev);
382
383	fallthrough;
384    case FORE200E_STATE_ALLOC_BUF:
385	fore200e_free_rx_buf(fore200e);
386
387	fallthrough;
388    case FORE200E_STATE_INIT_BSQ:
389	fore200e_uninit_bs_queue(fore200e);
390
391	fallthrough;
392    case FORE200E_STATE_INIT_RXQ:
393	fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.status);
394	fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
395
396	fallthrough;
397    case FORE200E_STATE_INIT_TXQ:
398	fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.status);
399	fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
400
401	fallthrough;
402    case FORE200E_STATE_INIT_CMDQ:
403	fore200e_dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
404
405	fallthrough;
406    case FORE200E_STATE_INITIALIZE:
407	/* nothing to do for that state */
408
409    case FORE200E_STATE_START_FW:
410	/* nothing to do for that state */
411
412    case FORE200E_STATE_RESET:
413	/* nothing to do for that state */
414
415    case FORE200E_STATE_MAP:
416	fore200e->bus->unmap(fore200e);
417
418	fallthrough;
419    case FORE200E_STATE_CONFIGURE:
420	/* nothing to do for that state */
421
422    case FORE200E_STATE_REGISTER:
423	/* XXX shouldn't we *start* by deregistering the device? */
424	atm_dev_deregister(fore200e->atm_dev);
425
426    case FORE200E_STATE_BLANK:
427	/* nothing to do for that state */
428	break;
429    }
430}
431
432
433#ifdef CONFIG_PCI
434
435static u32 fore200e_pca_read(volatile u32 __iomem *addr)
436{
437    /* on big-endian hosts, the board is configured to convert
438       the endianess of slave RAM accesses  */
439    return le32_to_cpu(readl(addr));
440}
441
442
443static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
444{
445    /* on big-endian hosts, the board is configured to convert
446       the endianess of slave RAM accesses  */
447    writel(cpu_to_le32(val), addr);
448}
449
450static int
451fore200e_pca_irq_check(struct fore200e* fore200e)
452{
453    /* this is a 1 bit register */
454    int irq_posted = readl(fore200e->regs.pca.psr);
455
456#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
457    if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
458	DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
459    }
460#endif
461
462    return irq_posted;
463}
464
465
466static void
467fore200e_pca_irq_ack(struct fore200e* fore200e)
468{
469    writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
470}
471
472
473static void
474fore200e_pca_reset(struct fore200e* fore200e)
475{
476    writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
477    fore200e_spin(10);
478    writel(0, fore200e->regs.pca.hcr);
479}
480
481
482static int fore200e_pca_map(struct fore200e* fore200e)
483{
484    DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
485
486    fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
487
488    if (fore200e->virt_base == NULL) {
489	printk(FORE200E "can't map device %s\n", fore200e->name);
490	return -EFAULT;
491    }
492
493    DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
494
495    /* gain access to the PCA specific registers  */
496    fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
497    fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
498    fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
499
500    fore200e->state = FORE200E_STATE_MAP;
501    return 0;
502}
503
504
505static void
506fore200e_pca_unmap(struct fore200e* fore200e)
507{
508    DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
509
510    if (fore200e->virt_base != NULL)
511	iounmap(fore200e->virt_base);
512}
513
514
515static int fore200e_pca_configure(struct fore200e *fore200e)
516{
517    struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
518    u8              master_ctrl, latency;
519
520    DPRINTK(2, "device %s being configured\n", fore200e->name);
521
522    if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
523	printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
524	return -EIO;
525    }
526
527    pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
528
529    master_ctrl = master_ctrl
530#if defined(__BIG_ENDIAN)
531	/* request the PCA board to convert the endianess of slave RAM accesses */
532	| PCA200E_CTRL_CONVERT_ENDIAN
533#endif
534#if 0
535        | PCA200E_CTRL_DIS_CACHE_RD
536        | PCA200E_CTRL_DIS_WRT_INVAL
537        | PCA200E_CTRL_ENA_CONT_REQ_MODE
538        | PCA200E_CTRL_2_CACHE_WRT_INVAL
539#endif
540	| PCA200E_CTRL_LARGE_PCI_BURSTS;
541
542    pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
543
544    /* raise latency from 32 (default) to 192, as this seems to prevent NIC
545       lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
546       this may impact the performances of other PCI devices on the same bus, though */
547    latency = 192;
548    pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
549
550    fore200e->state = FORE200E_STATE_CONFIGURE;
551    return 0;
552}
553
554
555static int __init
556fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
557{
558    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
559    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
560    struct prom_opcode      opcode;
561    int                     ok;
562    u32                     prom_dma;
563
564    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
565
566    opcode.opcode = OPCODE_GET_PROM;
567    opcode.pad    = 0;
568
569    prom_dma = dma_map_single(fore200e->dev, prom, sizeof(struct prom_data),
570			      DMA_FROM_DEVICE);
571    if (dma_mapping_error(fore200e->dev, prom_dma))
572	return -ENOMEM;
573
574    fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
575
576    *entry->status = STATUS_PENDING;
577
578    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
579
580    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
581
582    *entry->status = STATUS_FREE;
583
584    dma_unmap_single(fore200e->dev, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
585
586    if (ok == 0) {
587	printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
588	return -EIO;
589    }
590
591#if defined(__BIG_ENDIAN)
592
593#define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
594
595    /* MAC address is stored as little-endian */
596    swap_here(&prom->mac_addr[0]);
597    swap_here(&prom->mac_addr[4]);
598#endif
599
600    return 0;
601}
602
603
604static int
605fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
606{
607    struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
608
609    return sprintf(page, "   PCI bus/slot/function:\t%d/%d/%d\n",
610		   pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
611}
612
613static const struct fore200e_bus fore200e_pci_ops = {
614	.model_name		= "PCA-200E",
615	.proc_name		= "pca200e",
616	.descr_alignment	= 32,
617	.buffer_alignment	= 4,
618	.status_alignment	= 32,
619	.read			= fore200e_pca_read,
620	.write			= fore200e_pca_write,
621	.configure		= fore200e_pca_configure,
622	.map			= fore200e_pca_map,
623	.reset			= fore200e_pca_reset,
624	.prom_read		= fore200e_pca_prom_read,
625	.unmap			= fore200e_pca_unmap,
626	.irq_check		= fore200e_pca_irq_check,
627	.irq_ack		= fore200e_pca_irq_ack,
628	.proc_read		= fore200e_pca_proc_read,
629};
630#endif /* CONFIG_PCI */
631
632#ifdef CONFIG_SBUS
633
634static u32 fore200e_sba_read(volatile u32 __iomem *addr)
635{
636    return sbus_readl(addr);
637}
638
639static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
640{
641    sbus_writel(val, addr);
642}
643
644static void fore200e_sba_irq_enable(struct fore200e *fore200e)
645{
646	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
647	fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
648}
649
650static int fore200e_sba_irq_check(struct fore200e *fore200e)
651{
652	return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
653}
654
655static void fore200e_sba_irq_ack(struct fore200e *fore200e)
656{
657	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
658	fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
659}
660
661static void fore200e_sba_reset(struct fore200e *fore200e)
662{
663	fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
664	fore200e_spin(10);
665	fore200e->bus->write(0, fore200e->regs.sba.hcr);
666}
667
668static int __init fore200e_sba_map(struct fore200e *fore200e)
669{
670	struct platform_device *op = to_platform_device(fore200e->dev);
671	unsigned int bursts;
672
673	/* gain access to the SBA specific registers  */
674	fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
675	fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
676	fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
677	fore200e->virt_base    = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
678
679	if (!fore200e->virt_base) {
680		printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
681		return -EFAULT;
682	}
683
684	DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
685
686	fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
687
688	/* get the supported DVMA burst sizes */
689	bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
690
691	if (sbus_can_dma_64bit())
692		sbus_set_sbus64(&op->dev, bursts);
693
694	fore200e->state = FORE200E_STATE_MAP;
695	return 0;
696}
697
698static void fore200e_sba_unmap(struct fore200e *fore200e)
699{
700	struct platform_device *op = to_platform_device(fore200e->dev);
701
702	of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
703	of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
704	of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
705	of_iounmap(&op->resource[3], fore200e->virt_base,    SBA200E_RAM_LENGTH);
706}
707
708static int __init fore200e_sba_configure(struct fore200e *fore200e)
709{
710	fore200e->state = FORE200E_STATE_CONFIGURE;
711	return 0;
712}
713
714static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
715{
716	struct platform_device *op = to_platform_device(fore200e->dev);
717	const u8 *prop;
718	int len;
719
720	prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
721	if (!prop)
722		return -ENODEV;
723	memcpy(&prom->mac_addr[4], prop, 4);
724
725	prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
726	if (!prop)
727		return -ENODEV;
728	memcpy(&prom->mac_addr[2], prop, 4);
729
730	prom->serial_number = of_getintprop_default(op->dev.of_node,
731						    "serialnumber", 0);
732	prom->hw_revision = of_getintprop_default(op->dev.of_node,
733						  "promversion", 0);
734
735	return 0;
736}
737
738static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
739{
740	struct platform_device *op = to_platform_device(fore200e->dev);
741	const struct linux_prom_registers *regs;
742
743	regs = of_get_property(op->dev.of_node, "reg", NULL);
744
745	return sprintf(page, "   SBUS slot/device:\t\t%d/'%pOFn'\n",
746		       (regs ? regs->which_io : 0), op->dev.of_node);
747}
748
749static const struct fore200e_bus fore200e_sbus_ops = {
750	.model_name		= "SBA-200E",
751	.proc_name		= "sba200e",
752	.descr_alignment	= 32,
753	.buffer_alignment	= 64,
754	.status_alignment	= 32,
755	.read			= fore200e_sba_read,
756	.write			= fore200e_sba_write,
757	.configure		= fore200e_sba_configure,
758	.map			= fore200e_sba_map,
759	.reset			= fore200e_sba_reset,
760	.prom_read		= fore200e_sba_prom_read,
761	.unmap			= fore200e_sba_unmap,
762	.irq_enable		= fore200e_sba_irq_enable,
763	.irq_check		= fore200e_sba_irq_check,
764	.irq_ack		= fore200e_sba_irq_ack,
765	.proc_read		= fore200e_sba_proc_read,
766};
767#endif /* CONFIG_SBUS */
768
769static void
770fore200e_tx_irq(struct fore200e* fore200e)
771{
772    struct host_txq*        txq = &fore200e->host_txq;
773    struct host_txq_entry*  entry;
774    struct atm_vcc*         vcc;
775    struct fore200e_vc_map* vc_map;
776
777    if (fore200e->host_txq.txing == 0)
778	return;
779
780    for (;;) {
781
782	entry = &txq->host_entry[ txq->tail ];
783
784        if ((*entry->status & STATUS_COMPLETE) == 0) {
785	    break;
786	}
787
788	DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n",
789		entry, txq->tail, entry->vc_map, entry->skb);
790
791	/* free copy of misaligned data */
792	kfree(entry->data);
793
794	/* remove DMA mapping */
795	dma_unmap_single(fore200e->dev, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
796				 DMA_TO_DEVICE);
797
798	vc_map = entry->vc_map;
799
800	/* vcc closed since the time the entry was submitted for tx? */
801	if ((vc_map->vcc == NULL) ||
802	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
803
804	    DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
805		    fore200e->atm_dev->number);
806
807	    dev_kfree_skb_any(entry->skb);
808	}
809	else {
810	    ASSERT(vc_map->vcc);
811
812	    /* vcc closed then immediately re-opened? */
813	    if (vc_map->incarn != entry->incarn) {
814
815		/* when a vcc is closed, some PDUs may be still pending in the tx queue.
816		   if the same vcc is immediately re-opened, those pending PDUs must
817		   not be popped after the completion of their emission, as they refer
818		   to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
819		   would be decremented by the size of the (unrelated) skb, possibly
820		   leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
821		   we thus bind the tx entry to the current incarnation of the vcc
822		   when the entry is submitted for tx. When the tx later completes,
823		   if the incarnation number of the tx entry does not match the one
824		   of the vcc, then this implies that the vcc has been closed then re-opened.
825		   we thus just drop the skb here. */
826
827		DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
828			fore200e->atm_dev->number);
829
830		dev_kfree_skb_any(entry->skb);
831	    }
832	    else {
833		vcc = vc_map->vcc;
834		ASSERT(vcc);
835
836		/* notify tx completion */
837		if (vcc->pop) {
838		    vcc->pop(vcc, entry->skb);
839		}
840		else {
841		    dev_kfree_skb_any(entry->skb);
842		}
843
844		/* check error condition */
845		if (*entry->status & STATUS_ERROR)
846		    atomic_inc(&vcc->stats->tx_err);
847		else
848		    atomic_inc(&vcc->stats->tx);
849	    }
850	}
851
852	*entry->status = STATUS_FREE;
853
854	fore200e->host_txq.txing--;
855
856	FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
857    }
858}
859
860
861#ifdef FORE200E_BSQ_DEBUG
862int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
863{
864    struct buffer* buffer;
865    int count = 0;
866
867    buffer = bsq->freebuf;
868    while (buffer) {
869
870	if (buffer->supplied) {
871	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
872		   where, scheme, magn, buffer->index);
873	}
874
875	if (buffer->magn != magn) {
876	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
877		   where, scheme, magn, buffer->index, buffer->magn);
878	}
879
880	if (buffer->scheme != scheme) {
881	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
882		   where, scheme, magn, buffer->index, buffer->scheme);
883	}
884
885	if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
886	    printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
887		   where, scheme, magn, buffer->index);
888	}
889
890	count++;
891	buffer = buffer->next;
892    }
893
894    if (count != bsq->freebuf_count) {
895	printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
896	       where, scheme, magn, count, bsq->freebuf_count);
897    }
898    return 0;
899}
900#endif
901
902
903static void
904fore200e_supply(struct fore200e* fore200e)
905{
906    int  scheme, magn, i;
907
908    struct host_bsq*       bsq;
909    struct host_bsq_entry* entry;
910    struct buffer*         buffer;
911
912    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
913	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
914
915	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
916
917#ifdef FORE200E_BSQ_DEBUG
918	    bsq_audit(1, bsq, scheme, magn);
919#endif
920	    while (bsq->freebuf_count >= RBD_BLK_SIZE) {
921
922		DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
923			RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
924
925		entry = &bsq->host_entry[ bsq->head ];
926
927		for (i = 0; i < RBD_BLK_SIZE; i++) {
928
929		    /* take the first buffer in the free buffer list */
930		    buffer = bsq->freebuf;
931		    if (!buffer) {
932			printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
933			       scheme, magn, bsq->freebuf_count);
934			return;
935		    }
936		    bsq->freebuf = buffer->next;
937
938#ifdef FORE200E_BSQ_DEBUG
939		    if (buffer->supplied)
940			printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
941			       scheme, magn, buffer->index);
942		    buffer->supplied = 1;
943#endif
944		    entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
945		    entry->rbd_block->rbd[ i ].handle       = FORE200E_BUF2HDL(buffer);
946		}
947
948		FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
949
950 		/* decrease accordingly the number of free rx buffers */
951		bsq->freebuf_count -= RBD_BLK_SIZE;
952
953		*entry->status = STATUS_PENDING;
954		fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
955	    }
956	}
957    }
958}
959
960
961static int
962fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
963{
964    struct sk_buff*      skb;
965    struct buffer*       buffer;
966    struct fore200e_vcc* fore200e_vcc;
967    int                  i, pdu_len = 0;
968#ifdef FORE200E_52BYTE_AAL0_SDU
969    u32                  cell_header = 0;
970#endif
971
972    ASSERT(vcc);
973
974    fore200e_vcc = FORE200E_VCC(vcc);
975    ASSERT(fore200e_vcc);
976
977#ifdef FORE200E_52BYTE_AAL0_SDU
978    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
979
980	cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
981	              (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
982                      (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
983                      (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) |
984                       rpd->atm_header.clp;
985	pdu_len = 4;
986    }
987#endif
988
989    /* compute total PDU length */
990    for (i = 0; i < rpd->nseg; i++)
991	pdu_len += rpd->rsd[ i ].length;
992
993    skb = alloc_skb(pdu_len, GFP_ATOMIC);
994    if (skb == NULL) {
995	DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
996
997	atomic_inc(&vcc->stats->rx_drop);
998	return -ENOMEM;
999    }
1000
1001    __net_timestamp(skb);
1002
1003#ifdef FORE200E_52BYTE_AAL0_SDU
1004    if (cell_header) {
1005	*((u32*)skb_put(skb, 4)) = cell_header;
1006    }
1007#endif
1008
1009    /* reassemble segments */
1010    for (i = 0; i < rpd->nseg; i++) {
1011
1012	/* rebuild rx buffer address from rsd handle */
1013	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1014
1015	/* Make device DMA transfer visible to CPU.  */
1016	dma_sync_single_for_cpu(fore200e->dev, buffer->data.dma_addr,
1017				rpd->rsd[i].length, DMA_FROM_DEVICE);
1018
1019	skb_put_data(skb, buffer->data.align_addr, rpd->rsd[i].length);
1020
1021	/* Now let the device get at it again.  */
1022	dma_sync_single_for_device(fore200e->dev, buffer->data.dma_addr,
1023				   rpd->rsd[i].length, DMA_FROM_DEVICE);
1024    }
1025
1026    DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1027
1028    if (pdu_len < fore200e_vcc->rx_min_pdu)
1029	fore200e_vcc->rx_min_pdu = pdu_len;
1030    if (pdu_len > fore200e_vcc->rx_max_pdu)
1031	fore200e_vcc->rx_max_pdu = pdu_len;
1032    fore200e_vcc->rx_pdu++;
1033
1034    /* push PDU */
1035    if (atm_charge(vcc, skb->truesize) == 0) {
1036
1037	DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1038		vcc->itf, vcc->vpi, vcc->vci);
1039
1040	dev_kfree_skb_any(skb);
1041
1042	atomic_inc(&vcc->stats->rx_drop);
1043	return -ENOMEM;
1044    }
1045
1046    vcc->push(vcc, skb);
1047    atomic_inc(&vcc->stats->rx);
1048
1049    return 0;
1050}
1051
1052
1053static void
1054fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1055{
1056    struct host_bsq* bsq;
1057    struct buffer*   buffer;
1058    int              i;
1059
1060    for (i = 0; i < rpd->nseg; i++) {
1061
1062	/* rebuild rx buffer address from rsd handle */
1063	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1064
1065	bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1066
1067#ifdef FORE200E_BSQ_DEBUG
1068	bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1069
1070	if (buffer->supplied == 0)
1071	    printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1072		   buffer->scheme, buffer->magn, buffer->index);
1073	buffer->supplied = 0;
1074#endif
1075
1076	/* re-insert the buffer into the free buffer list */
1077	buffer->next = bsq->freebuf;
1078	bsq->freebuf = buffer;
1079
1080	/* then increment the number of free rx buffers */
1081	bsq->freebuf_count++;
1082    }
1083}
1084
1085
1086static void
1087fore200e_rx_irq(struct fore200e* fore200e)
1088{
1089    struct host_rxq*        rxq = &fore200e->host_rxq;
1090    struct host_rxq_entry*  entry;
1091    struct atm_vcc*         vcc;
1092    struct fore200e_vc_map* vc_map;
1093
1094    for (;;) {
1095
1096	entry = &rxq->host_entry[ rxq->head ];
1097
1098	/* no more received PDUs */
1099	if ((*entry->status & STATUS_COMPLETE) == 0)
1100	    break;
1101
1102	vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1103
1104	if ((vc_map->vcc == NULL) ||
1105	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1106
1107	    DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1108		    fore200e->atm_dev->number,
1109		    entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1110	}
1111	else {
1112	    vcc = vc_map->vcc;
1113	    ASSERT(vcc);
1114
1115	    if ((*entry->status & STATUS_ERROR) == 0) {
1116
1117		fore200e_push_rpd(fore200e, vcc, entry->rpd);
1118	    }
1119	    else {
1120		DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1121			fore200e->atm_dev->number,
1122			entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1123		atomic_inc(&vcc->stats->rx_err);
1124	    }
1125	}
1126
1127	FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1128
1129	fore200e_collect_rpd(fore200e, entry->rpd);
1130
1131	/* rewrite the rpd address to ack the received PDU */
1132	fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1133	*entry->status = STATUS_FREE;
1134
1135	fore200e_supply(fore200e);
1136    }
1137}
1138
1139
1140#ifndef FORE200E_USE_TASKLET
1141static void
1142fore200e_irq(struct fore200e* fore200e)
1143{
1144    unsigned long flags;
1145
1146    spin_lock_irqsave(&fore200e->q_lock, flags);
1147    fore200e_rx_irq(fore200e);
1148    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1149
1150    spin_lock_irqsave(&fore200e->q_lock, flags);
1151    fore200e_tx_irq(fore200e);
1152    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1153}
1154#endif
1155
1156
1157static irqreturn_t
1158fore200e_interrupt(int irq, void* dev)
1159{
1160    struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1161
1162    if (fore200e->bus->irq_check(fore200e) == 0) {
1163
1164	DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1165	return IRQ_NONE;
1166    }
1167    DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1168
1169#ifdef FORE200E_USE_TASKLET
1170    tasklet_schedule(&fore200e->tx_tasklet);
1171    tasklet_schedule(&fore200e->rx_tasklet);
1172#else
1173    fore200e_irq(fore200e);
1174#endif
1175
1176    fore200e->bus->irq_ack(fore200e);
1177    return IRQ_HANDLED;
1178}
1179
1180
1181#ifdef FORE200E_USE_TASKLET
1182static void
1183fore200e_tx_tasklet(unsigned long data)
1184{
1185    struct fore200e* fore200e = (struct fore200e*) data;
1186    unsigned long flags;
1187
1188    DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1189
1190    spin_lock_irqsave(&fore200e->q_lock, flags);
1191    fore200e_tx_irq(fore200e);
1192    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1193}
1194
1195
1196static void
1197fore200e_rx_tasklet(unsigned long data)
1198{
1199    struct fore200e* fore200e = (struct fore200e*) data;
1200    unsigned long    flags;
1201
1202    DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1203
1204    spin_lock_irqsave(&fore200e->q_lock, flags);
1205    fore200e_rx_irq((struct fore200e*) data);
1206    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1207}
1208#endif
1209
1210
1211static int
1212fore200e_select_scheme(struct atm_vcc* vcc)
1213{
1214    /* fairly balance the VCs over (identical) buffer schemes */
1215    int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1216
1217    DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1218	    vcc->itf, vcc->vpi, vcc->vci, scheme);
1219
1220    return scheme;
1221}
1222
1223
1224static int
1225fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1226{
1227    struct host_cmdq*        cmdq  = &fore200e->host_cmdq;
1228    struct host_cmdq_entry*  entry = &cmdq->host_entry[ cmdq->head ];
1229    struct activate_opcode   activ_opcode;
1230    struct deactivate_opcode deactiv_opcode;
1231    struct vpvc              vpvc;
1232    int                      ok;
1233    enum fore200e_aal        aal = fore200e_atm2fore_aal(vcc->qos.aal);
1234
1235    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1236
1237    if (activate) {
1238	FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1239
1240	activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1241	activ_opcode.aal    = aal;
1242	activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1243	activ_opcode.pad    = 0;
1244    }
1245    else {
1246	deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1247	deactiv_opcode.pad    = 0;
1248    }
1249
1250    vpvc.vci = vcc->vci;
1251    vpvc.vpi = vcc->vpi;
1252
1253    *entry->status = STATUS_PENDING;
1254
1255    if (activate) {
1256
1257#ifdef FORE200E_52BYTE_AAL0_SDU
1258	mtu = 48;
1259#endif
1260	/* the MTU is not used by the cp, except in the case of AAL0 */
1261	fore200e->bus->write(mtu,                        &entry->cp_entry->cmd.activate_block.mtu);
1262	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1263	fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1264    }
1265    else {
1266	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1267	fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1268    }
1269
1270    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1271
1272    *entry->status = STATUS_FREE;
1273
1274    if (ok == 0) {
1275	printk(FORE200E "unable to %s VC %d.%d.%d\n",
1276	       activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1277	return -EIO;
1278    }
1279
1280    DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci,
1281	    activate ? "open" : "clos");
1282
1283    return 0;
1284}
1285
1286
1287#define FORE200E_MAX_BACK2BACK_CELLS 255    /* XXX depends on CDVT */
1288
1289static void
1290fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1291{
1292    if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1293
1294	/* compute the data cells to idle cells ratio from the tx PCR */
1295	rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1296	rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1297    }
1298    else {
1299	/* disable rate control */
1300	rate->data_cells = rate->idle_cells = 0;
1301    }
1302}
1303
1304
1305static int
1306fore200e_open(struct atm_vcc *vcc)
1307{
1308    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1309    struct fore200e_vcc*    fore200e_vcc;
1310    struct fore200e_vc_map* vc_map;
1311    unsigned long	    flags;
1312    int			    vci = vcc->vci;
1313    short		    vpi = vcc->vpi;
1314
1315    ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1316    ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1317
1318    spin_lock_irqsave(&fore200e->q_lock, flags);
1319
1320    vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1321    if (vc_map->vcc) {
1322
1323	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1324
1325	printk(FORE200E "VC %d.%d.%d already in use\n",
1326	       fore200e->atm_dev->number, vpi, vci);
1327
1328	return -EINVAL;
1329    }
1330
1331    vc_map->vcc = vcc;
1332
1333    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1334
1335    fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1336    if (fore200e_vcc == NULL) {
1337	vc_map->vcc = NULL;
1338	return -ENOMEM;
1339    }
1340
1341    DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1342	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1343	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1344	    fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1345	    vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1346	    fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1347	    vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1348
1349    /* pseudo-CBR bandwidth requested? */
1350    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1351
1352	mutex_lock(&fore200e->rate_mtx);
1353	if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1354	    mutex_unlock(&fore200e->rate_mtx);
1355
1356	    kfree(fore200e_vcc);
1357	    vc_map->vcc = NULL;
1358	    return -EAGAIN;
1359	}
1360
1361	/* reserve bandwidth */
1362	fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1363	mutex_unlock(&fore200e->rate_mtx);
1364    }
1365
1366    vcc->itf = vcc->dev->number;
1367
1368    set_bit(ATM_VF_PARTIAL,&vcc->flags);
1369    set_bit(ATM_VF_ADDR, &vcc->flags);
1370
1371    vcc->dev_data = fore200e_vcc;
1372
1373    if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1374
1375	vc_map->vcc = NULL;
1376
1377	clear_bit(ATM_VF_ADDR, &vcc->flags);
1378	clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1379
1380	vcc->dev_data = NULL;
1381
1382	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1383
1384	kfree(fore200e_vcc);
1385	return -EINVAL;
1386    }
1387
1388    /* compute rate control parameters */
1389    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1390
1391	fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1392	set_bit(ATM_VF_HASQOS, &vcc->flags);
1393
1394	DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1395		vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1396		vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr,
1397		fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1398    }
1399
1400    fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1401    fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1402    fore200e_vcc->tx_pdu     = fore200e_vcc->rx_pdu     = 0;
1403
1404    /* new incarnation of the vcc */
1405    vc_map->incarn = ++fore200e->incarn_count;
1406
1407    /* VC unusable before this flag is set */
1408    set_bit(ATM_VF_READY, &vcc->flags);
1409
1410    return 0;
1411}
1412
1413
1414static void
1415fore200e_close(struct atm_vcc* vcc)
1416{
1417    struct fore200e_vcc*    fore200e_vcc;
1418    struct fore200e*        fore200e;
1419    struct fore200e_vc_map* vc_map;
1420    unsigned long           flags;
1421
1422    ASSERT(vcc);
1423    fore200e = FORE200E_DEV(vcc->dev);
1424
1425    ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1426    ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1427
1428    DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1429
1430    clear_bit(ATM_VF_READY, &vcc->flags);
1431
1432    fore200e_activate_vcin(fore200e, 0, vcc, 0);
1433
1434    spin_lock_irqsave(&fore200e->q_lock, flags);
1435
1436    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1437
1438    /* the vc is no longer considered as "in use" by fore200e_open() */
1439    vc_map->vcc = NULL;
1440
1441    vcc->itf = vcc->vci = vcc->vpi = 0;
1442
1443    fore200e_vcc = FORE200E_VCC(vcc);
1444    vcc->dev_data = NULL;
1445
1446    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1447
1448    /* release reserved bandwidth, if any */
1449    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1450
1451	mutex_lock(&fore200e->rate_mtx);
1452	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1453	mutex_unlock(&fore200e->rate_mtx);
1454
1455	clear_bit(ATM_VF_HASQOS, &vcc->flags);
1456    }
1457
1458    clear_bit(ATM_VF_ADDR, &vcc->flags);
1459    clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1460
1461    ASSERT(fore200e_vcc);
1462    kfree(fore200e_vcc);
1463}
1464
1465
1466static int
1467fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1468{
1469    struct fore200e*        fore200e;
1470    struct fore200e_vcc*    fore200e_vcc;
1471    struct fore200e_vc_map* vc_map;
1472    struct host_txq*        txq;
1473    struct host_txq_entry*  entry;
1474    struct tpd*             tpd;
1475    struct tpd_haddr        tpd_haddr;
1476    int                     retry        = CONFIG_ATM_FORE200E_TX_RETRY;
1477    int                     tx_copy      = 0;
1478    int                     tx_len       = skb->len;
1479    u32*                    cell_header  = NULL;
1480    unsigned char*          skb_data;
1481    int                     skb_len;
1482    unsigned char*          data;
1483    unsigned long           flags;
1484
1485    if (!vcc)
1486        return -EINVAL;
1487
1488    fore200e = FORE200E_DEV(vcc->dev);
1489    fore200e_vcc = FORE200E_VCC(vcc);
1490
1491    if (!fore200e)
1492        return -EINVAL;
1493
1494    txq = &fore200e->host_txq;
1495    if (!fore200e_vcc)
1496        return -EINVAL;
1497
1498    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1499	DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1500	dev_kfree_skb_any(skb);
1501	return -EINVAL;
1502    }
1503
1504#ifdef FORE200E_52BYTE_AAL0_SDU
1505    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1506	cell_header = (u32*) skb->data;
1507	skb_data    = skb->data + 4;    /* skip 4-byte cell header */
1508	skb_len     = tx_len = skb->len  - 4;
1509
1510	DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1511    }
1512    else
1513#endif
1514    {
1515	skb_data = skb->data;
1516	skb_len  = skb->len;
1517    }
1518
1519    if (((unsigned long)skb_data) & 0x3) {
1520
1521	DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1522	tx_copy = 1;
1523	tx_len  = skb_len;
1524    }
1525
1526    if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1527
1528        /* this simply NUKES the PCA board */
1529	DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1530	tx_copy = 1;
1531	tx_len  = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1532    }
1533
1534    if (tx_copy) {
1535	data = kmalloc(tx_len, GFP_ATOMIC);
1536	if (data == NULL) {
1537	    if (vcc->pop) {
1538		vcc->pop(vcc, skb);
1539	    }
1540	    else {
1541		dev_kfree_skb_any(skb);
1542	    }
1543	    return -ENOMEM;
1544	}
1545
1546	memcpy(data, skb_data, skb_len);
1547	if (skb_len < tx_len)
1548	    memset(data + skb_len, 0x00, tx_len - skb_len);
1549    }
1550    else {
1551	data = skb_data;
1552    }
1553
1554    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1555    ASSERT(vc_map->vcc == vcc);
1556
1557  retry_here:
1558
1559    spin_lock_irqsave(&fore200e->q_lock, flags);
1560
1561    entry = &txq->host_entry[ txq->head ];
1562
1563    if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1564
1565	/* try to free completed tx queue entries */
1566	fore200e_tx_irq(fore200e);
1567
1568	if (*entry->status != STATUS_FREE) {
1569
1570	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1571
1572	    /* retry once again? */
1573	    if (--retry > 0) {
1574		udelay(50);
1575		goto retry_here;
1576	    }
1577
1578	    atomic_inc(&vcc->stats->tx_err);
1579
1580	    fore200e->tx_sat++;
1581	    DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1582		    fore200e->name, fore200e->cp_queues->heartbeat);
1583	    if (vcc->pop) {
1584		vcc->pop(vcc, skb);
1585	    }
1586	    else {
1587		dev_kfree_skb_any(skb);
1588	    }
1589
1590	    if (tx_copy)
1591		kfree(data);
1592
1593	    return -ENOBUFS;
1594	}
1595    }
1596
1597    entry->incarn = vc_map->incarn;
1598    entry->vc_map = vc_map;
1599    entry->skb    = skb;
1600    entry->data   = tx_copy ? data : NULL;
1601
1602    tpd = entry->tpd;
1603    tpd->tsd[ 0 ].buffer = dma_map_single(fore200e->dev, data, tx_len,
1604					  DMA_TO_DEVICE);
1605    if (dma_mapping_error(fore200e->dev, tpd->tsd[0].buffer)) {
1606	if (tx_copy)
1607	    kfree(data);
1608	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1609	return -ENOMEM;
1610    }
1611    tpd->tsd[ 0 ].length = tx_len;
1612
1613    FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1614    txq->txing++;
1615
1616    /* The dma_map call above implies a dma_sync so the device can use it,
1617     * thus no explicit dma_sync call is necessary here.
1618     */
1619
1620    DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n",
1621	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1622	    tpd->tsd[0].length, skb_len);
1623
1624    if (skb_len < fore200e_vcc->tx_min_pdu)
1625	fore200e_vcc->tx_min_pdu = skb_len;
1626    if (skb_len > fore200e_vcc->tx_max_pdu)
1627	fore200e_vcc->tx_max_pdu = skb_len;
1628    fore200e_vcc->tx_pdu++;
1629
1630    /* set tx rate control information */
1631    tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1632    tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1633
1634    if (cell_header) {
1635	tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1636	tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1637	tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1638	tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1639	tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1640    }
1641    else {
1642	/* set the ATM header, common to all cells conveying the PDU */
1643	tpd->atm_header.clp = 0;
1644	tpd->atm_header.plt = 0;
1645	tpd->atm_header.vci = vcc->vci;
1646	tpd->atm_header.vpi = vcc->vpi;
1647	tpd->atm_header.gfc = 0;
1648    }
1649
1650    tpd->spec.length = tx_len;
1651    tpd->spec.nseg   = 1;
1652    tpd->spec.aal    = fore200e_atm2fore_aal(vcc->qos.aal);
1653    tpd->spec.intr   = 1;
1654
1655    tpd_haddr.size  = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT);  /* size is expressed in 32 byte blocks */
1656    tpd_haddr.pad   = 0;
1657    tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT;          /* shift the address, as we are in a bitfield */
1658
1659    *entry->status = STATUS_PENDING;
1660    fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1661
1662    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1663
1664    return 0;
1665}
1666
1667
1668static int
1669fore200e_getstats(struct fore200e* fore200e)
1670{
1671    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1672    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1673    struct stats_opcode     opcode;
1674    int                     ok;
1675    u32                     stats_dma_addr;
1676
1677    if (fore200e->stats == NULL) {
1678	fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL);
1679	if (fore200e->stats == NULL)
1680	    return -ENOMEM;
1681    }
1682
1683    stats_dma_addr = dma_map_single(fore200e->dev, fore200e->stats,
1684				    sizeof(struct stats), DMA_FROM_DEVICE);
1685    if (dma_mapping_error(fore200e->dev, stats_dma_addr))
1686    	return -ENOMEM;
1687
1688    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1689
1690    opcode.opcode = OPCODE_GET_STATS;
1691    opcode.pad    = 0;
1692
1693    fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1694
1695    *entry->status = STATUS_PENDING;
1696
1697    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1698
1699    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1700
1701    *entry->status = STATUS_FREE;
1702
1703    dma_unmap_single(fore200e->dev, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1704
1705    if (ok == 0) {
1706	printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1707	return -EIO;
1708    }
1709
1710    return 0;
1711}
1712
1713#if 0 /* currently unused */
1714static int
1715fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1716{
1717    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1718    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1719    struct oc3_opcode       opcode;
1720    int                     ok;
1721    u32                     oc3_regs_dma_addr;
1722
1723    oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1724
1725    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1726
1727    opcode.opcode = OPCODE_GET_OC3;
1728    opcode.reg    = 0;
1729    opcode.value  = 0;
1730    opcode.mask   = 0;
1731
1732    fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1733
1734    *entry->status = STATUS_PENDING;
1735
1736    fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1737
1738    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1739
1740    *entry->status = STATUS_FREE;
1741
1742    fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1743
1744    if (ok == 0) {
1745	printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1746	return -EIO;
1747    }
1748
1749    return 0;
1750}
1751#endif
1752
1753
1754static int
1755fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1756{
1757    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1758    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1759    struct oc3_opcode       opcode;
1760    int                     ok;
1761
1762    DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1763
1764    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1765
1766    opcode.opcode = OPCODE_SET_OC3;
1767    opcode.reg    = reg;
1768    opcode.value  = value;
1769    opcode.mask   = mask;
1770
1771    fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1772
1773    *entry->status = STATUS_PENDING;
1774
1775    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1776
1777    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1778
1779    *entry->status = STATUS_FREE;
1780
1781    if (ok == 0) {
1782	printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1783	return -EIO;
1784    }
1785
1786    return 0;
1787}
1788
1789
1790static int
1791fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1792{
1793    u32 mct_value, mct_mask;
1794    int error;
1795
1796    if (!capable(CAP_NET_ADMIN))
1797	return -EPERM;
1798
1799    switch (loop_mode) {
1800
1801    case ATM_LM_NONE:
1802	mct_value = 0;
1803	mct_mask  = SUNI_MCT_DLE | SUNI_MCT_LLE;
1804	break;
1805
1806    case ATM_LM_LOC_PHY:
1807	mct_value = mct_mask = SUNI_MCT_DLE;
1808	break;
1809
1810    case ATM_LM_RMT_PHY:
1811	mct_value = mct_mask = SUNI_MCT_LLE;
1812	break;
1813
1814    default:
1815	return -EINVAL;
1816    }
1817
1818    error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1819    if (error == 0)
1820	fore200e->loop_mode = loop_mode;
1821
1822    return error;
1823}
1824
1825
1826static int
1827fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1828{
1829    struct sonet_stats tmp;
1830
1831    if (fore200e_getstats(fore200e) < 0)
1832	return -EIO;
1833
1834    tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1835    tmp.line_bip    = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1836    tmp.path_bip    = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1837    tmp.line_febe   = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1838    tmp.path_febe   = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1839    tmp.corr_hcs    = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1840    tmp.uncorr_hcs  = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1841    tmp.tx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_transmitted)  +
1842	              be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1843	              be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1844    tmp.rx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_received)     +
1845	              be32_to_cpu(fore200e->stats->aal34.cells_received)    +
1846	              be32_to_cpu(fore200e->stats->aal5.cells_received);
1847
1848    if (arg)
1849	return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;
1850
1851    return 0;
1852}
1853
1854
1855static int
1856fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1857{
1858    struct fore200e* fore200e = FORE200E_DEV(dev);
1859
1860    DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1861
1862    switch (cmd) {
1863
1864    case SONET_GETSTAT:
1865	return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1866
1867    case SONET_GETDIAG:
1868	return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1869
1870    case ATM_SETLOOP:
1871	return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1872
1873    case ATM_GETLOOP:
1874	return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1875
1876    case ATM_QUERYLOOP:
1877	return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1878    }
1879
1880    return -ENOSYS; /* not implemented */
1881}
1882
1883
1884static int
1885fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1886{
1887    struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1888    struct fore200e*     fore200e     = FORE200E_DEV(vcc->dev);
1889
1890    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1891	DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1892	return -EINVAL;
1893    }
1894
1895    DPRINTK(2, "change_qos %d.%d.%d, "
1896	    "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1897	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1898	    "available_cell_rate = %u",
1899	    vcc->itf, vcc->vpi, vcc->vci,
1900	    fore200e_traffic_class[ qos->txtp.traffic_class ],
1901	    qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1902	    fore200e_traffic_class[ qos->rxtp.traffic_class ],
1903	    qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
1904	    flags, fore200e->available_cell_rate);
1905
1906    if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
1907
1908	mutex_lock(&fore200e->rate_mtx);
1909	if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
1910	    mutex_unlock(&fore200e->rate_mtx);
1911	    return -EAGAIN;
1912	}
1913
1914	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1915	fore200e->available_cell_rate -= qos->txtp.max_pcr;
1916
1917	mutex_unlock(&fore200e->rate_mtx);
1918
1919	memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
1920
1921	/* update rate control parameters */
1922	fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
1923
1924	set_bit(ATM_VF_HASQOS, &vcc->flags);
1925
1926	return 0;
1927    }
1928
1929    return -EINVAL;
1930}
1931
1932
1933static int fore200e_irq_request(struct fore200e *fore200e)
1934{
1935    if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
1936
1937	printk(FORE200E "unable to reserve IRQ %s for device %s\n",
1938	       fore200e_irq_itoa(fore200e->irq), fore200e->name);
1939	return -EBUSY;
1940    }
1941
1942    printk(FORE200E "IRQ %s reserved for device %s\n",
1943	   fore200e_irq_itoa(fore200e->irq), fore200e->name);
1944
1945#ifdef FORE200E_USE_TASKLET
1946    tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
1947    tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
1948#endif
1949
1950    fore200e->state = FORE200E_STATE_IRQ;
1951    return 0;
1952}
1953
1954
1955static int fore200e_get_esi(struct fore200e *fore200e)
1956{
1957    struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL);
1958    int ok, i;
1959
1960    if (!prom)
1961	return -ENOMEM;
1962
1963    ok = fore200e->bus->prom_read(fore200e, prom);
1964    if (ok < 0) {
1965	kfree(prom);
1966	return -EBUSY;
1967    }
1968
1969    printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
1970	   fore200e->name,
1971	   (prom->hw_revision & 0xFF) + '@',    /* probably meaningless with SBA boards */
1972	   prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
1973
1974    for (i = 0; i < ESI_LEN; i++) {
1975	fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
1976    }
1977
1978    kfree(prom);
1979
1980    return 0;
1981}
1982
1983
1984static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
1985{
1986    int scheme, magn, nbr, size, i;
1987
1988    struct host_bsq* bsq;
1989    struct buffer*   buffer;
1990
1991    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1992	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1993
1994	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
1995
1996	    nbr  = fore200e_rx_buf_nbr[ scheme ][ magn ];
1997	    size = fore200e_rx_buf_size[ scheme ][ magn ];
1998
1999	    DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
2000
2001	    /* allocate the array of receive buffers */
2002	    buffer = bsq->buffer = kcalloc(nbr, sizeof(struct buffer),
2003                                           GFP_KERNEL);
2004
2005	    if (buffer == NULL)
2006		return -ENOMEM;
2007
2008	    bsq->freebuf = NULL;
2009
2010	    for (i = 0; i < nbr; i++) {
2011
2012		buffer[ i ].scheme = scheme;
2013		buffer[ i ].magn   = magn;
2014#ifdef FORE200E_BSQ_DEBUG
2015		buffer[ i ].index  = i;
2016		buffer[ i ].supplied = 0;
2017#endif
2018
2019		/* allocate the receive buffer body */
2020		if (fore200e_chunk_alloc(fore200e,
2021					 &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2022					 DMA_FROM_DEVICE) < 0) {
2023
2024		    while (i > 0)
2025			fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2026		    kfree(buffer);
2027
2028		    return -ENOMEM;
2029		}
2030
2031		/* insert the buffer into the free buffer list */
2032		buffer[ i ].next = bsq->freebuf;
2033		bsq->freebuf = &buffer[ i ];
2034	    }
2035	    /* all the buffers are free, initially */
2036	    bsq->freebuf_count = nbr;
2037
2038#ifdef FORE200E_BSQ_DEBUG
2039	    bsq_audit(3, bsq, scheme, magn);
2040#endif
2041	}
2042    }
2043
2044    fore200e->state = FORE200E_STATE_ALLOC_BUF;
2045    return 0;
2046}
2047
2048
2049static int fore200e_init_bs_queue(struct fore200e *fore200e)
2050{
2051    int scheme, magn, i;
2052
2053    struct host_bsq*     bsq;
2054    struct cp_bsq_entry __iomem * cp_entry;
2055
2056    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2057	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2058
2059	    DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2060
2061	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2062
2063	    /* allocate and align the array of status words */
2064	    if (fore200e_dma_chunk_alloc(fore200e,
2065					       &bsq->status,
2066					       sizeof(enum status),
2067					       QUEUE_SIZE_BS,
2068					       fore200e->bus->status_alignment) < 0) {
2069		return -ENOMEM;
2070	    }
2071
2072	    /* allocate and align the array of receive buffer descriptors */
2073	    if (fore200e_dma_chunk_alloc(fore200e,
2074					       &bsq->rbd_block,
2075					       sizeof(struct rbd_block),
2076					       QUEUE_SIZE_BS,
2077					       fore200e->bus->descr_alignment) < 0) {
2078
2079		fore200e_dma_chunk_free(fore200e, &bsq->status);
2080		return -ENOMEM;
2081	    }
2082
2083	    /* get the base address of the cp resident buffer supply queue entries */
2084	    cp_entry = fore200e->virt_base +
2085		       fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2086
2087	    /* fill the host resident and cp resident buffer supply queue entries */
2088	    for (i = 0; i < QUEUE_SIZE_BS; i++) {
2089
2090		bsq->host_entry[ i ].status =
2091		                     FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2092	        bsq->host_entry[ i ].rbd_block =
2093		                     FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2094		bsq->host_entry[ i ].rbd_block_dma =
2095		                     FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2096		bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2097
2098		*bsq->host_entry[ i ].status = STATUS_FREE;
2099
2100		fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i),
2101				     &cp_entry[ i ].status_haddr);
2102	    }
2103	}
2104    }
2105
2106    fore200e->state = FORE200E_STATE_INIT_BSQ;
2107    return 0;
2108}
2109
2110
2111static int fore200e_init_rx_queue(struct fore200e *fore200e)
2112{
2113    struct host_rxq*     rxq =  &fore200e->host_rxq;
2114    struct cp_rxq_entry __iomem * cp_entry;
2115    int i;
2116
2117    DPRINTK(2, "receive queue is being initialized\n");
2118
2119    /* allocate and align the array of status words */
2120    if (fore200e_dma_chunk_alloc(fore200e,
2121				       &rxq->status,
2122				       sizeof(enum status),
2123				       QUEUE_SIZE_RX,
2124				       fore200e->bus->status_alignment) < 0) {
2125	return -ENOMEM;
2126    }
2127
2128    /* allocate and align the array of receive PDU descriptors */
2129    if (fore200e_dma_chunk_alloc(fore200e,
2130				       &rxq->rpd,
2131				       sizeof(struct rpd),
2132				       QUEUE_SIZE_RX,
2133				       fore200e->bus->descr_alignment) < 0) {
2134
2135	fore200e_dma_chunk_free(fore200e, &rxq->status);
2136	return -ENOMEM;
2137    }
2138
2139    /* get the base address of the cp resident rx queue entries */
2140    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2141
2142    /* fill the host resident and cp resident rx entries */
2143    for (i=0; i < QUEUE_SIZE_RX; i++) {
2144
2145	rxq->host_entry[ i ].status =
2146	                     FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2147	rxq->host_entry[ i ].rpd =
2148	                     FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2149	rxq->host_entry[ i ].rpd_dma =
2150	                     FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2151	rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2152
2153	*rxq->host_entry[ i ].status = STATUS_FREE;
2154
2155	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i),
2156			     &cp_entry[ i ].status_haddr);
2157
2158	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2159			     &cp_entry[ i ].rpd_haddr);
2160    }
2161
2162    /* set the head entry of the queue */
2163    rxq->head = 0;
2164
2165    fore200e->state = FORE200E_STATE_INIT_RXQ;
2166    return 0;
2167}
2168
2169
2170static int fore200e_init_tx_queue(struct fore200e *fore200e)
2171{
2172    struct host_txq*     txq =  &fore200e->host_txq;
2173    struct cp_txq_entry __iomem * cp_entry;
2174    int i;
2175
2176    DPRINTK(2, "transmit queue is being initialized\n");
2177
2178    /* allocate and align the array of status words */
2179    if (fore200e_dma_chunk_alloc(fore200e,
2180				       &txq->status,
2181				       sizeof(enum status),
2182				       QUEUE_SIZE_TX,
2183				       fore200e->bus->status_alignment) < 0) {
2184	return -ENOMEM;
2185    }
2186
2187    /* allocate and align the array of transmit PDU descriptors */
2188    if (fore200e_dma_chunk_alloc(fore200e,
2189				       &txq->tpd,
2190				       sizeof(struct tpd),
2191				       QUEUE_SIZE_TX,
2192				       fore200e->bus->descr_alignment) < 0) {
2193
2194	fore200e_dma_chunk_free(fore200e, &txq->status);
2195	return -ENOMEM;
2196    }
2197
2198    /* get the base address of the cp resident tx queue entries */
2199    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2200
2201    /* fill the host resident and cp resident tx entries */
2202    for (i=0; i < QUEUE_SIZE_TX; i++) {
2203
2204	txq->host_entry[ i ].status =
2205	                     FORE200E_INDEX(txq->status.align_addr, enum status, i);
2206	txq->host_entry[ i ].tpd =
2207	                     FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2208	txq->host_entry[ i ].tpd_dma  =
2209                             FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2210	txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2211
2212	*txq->host_entry[ i ].status = STATUS_FREE;
2213
2214	fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i),
2215			     &cp_entry[ i ].status_haddr);
2216
2217        /* although there is a one-to-one mapping of tx queue entries and tpds,
2218	   we do not write here the DMA (physical) base address of each tpd into
2219	   the related cp resident entry, because the cp relies on this write
2220	   operation to detect that a new pdu has been submitted for tx */
2221    }
2222
2223    /* set the head and tail entries of the queue */
2224    txq->head = 0;
2225    txq->tail = 0;
2226
2227    fore200e->state = FORE200E_STATE_INIT_TXQ;
2228    return 0;
2229}
2230
2231
2232static int fore200e_init_cmd_queue(struct fore200e *fore200e)
2233{
2234    struct host_cmdq*     cmdq =  &fore200e->host_cmdq;
2235    struct cp_cmdq_entry __iomem * cp_entry;
2236    int i;
2237
2238    DPRINTK(2, "command queue is being initialized\n");
2239
2240    /* allocate and align the array of status words */
2241    if (fore200e_dma_chunk_alloc(fore200e,
2242				       &cmdq->status,
2243				       sizeof(enum status),
2244				       QUEUE_SIZE_CMD,
2245				       fore200e->bus->status_alignment) < 0) {
2246	return -ENOMEM;
2247    }
2248
2249    /* get the base address of the cp resident cmd queue entries */
2250    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2251
2252    /* fill the host resident and cp resident cmd entries */
2253    for (i=0; i < QUEUE_SIZE_CMD; i++) {
2254
2255	cmdq->host_entry[ i ].status   =
2256                              FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2257	cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2258
2259	*cmdq->host_entry[ i ].status = STATUS_FREE;
2260
2261	fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i),
2262                             &cp_entry[ i ].status_haddr);
2263    }
2264
2265    /* set the head entry of the queue */
2266    cmdq->head = 0;
2267
2268    fore200e->state = FORE200E_STATE_INIT_CMDQ;
2269    return 0;
2270}
2271
2272
2273static void fore200e_param_bs_queue(struct fore200e *fore200e,
2274				    enum buffer_scheme scheme,
2275				    enum buffer_magn magn, int queue_length,
2276				    int pool_size, int supply_blksize)
2277{
2278    struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2279
2280    fore200e->bus->write(queue_length,                           &bs_spec->queue_length);
2281    fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2282    fore200e->bus->write(pool_size,                              &bs_spec->pool_size);
2283    fore200e->bus->write(supply_blksize,                         &bs_spec->supply_blksize);
2284}
2285
2286
2287static int fore200e_initialize(struct fore200e *fore200e)
2288{
2289    struct cp_queues __iomem * cpq;
2290    int               ok, scheme, magn;
2291
2292    DPRINTK(2, "device %s being initialized\n", fore200e->name);
2293
2294    mutex_init(&fore200e->rate_mtx);
2295    spin_lock_init(&fore200e->q_lock);
2296
2297    cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2298
2299    /* enable cp to host interrupts */
2300    fore200e->bus->write(1, &cpq->imask);
2301
2302    if (fore200e->bus->irq_enable)
2303	fore200e->bus->irq_enable(fore200e);
2304
2305    fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2306
2307    fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2308    fore200e->bus->write(QUEUE_SIZE_RX,  &cpq->init.rx_queue_len);
2309    fore200e->bus->write(QUEUE_SIZE_TX,  &cpq->init.tx_queue_len);
2310
2311    fore200e->bus->write(RSD_EXTENSION,  &cpq->init.rsd_extension);
2312    fore200e->bus->write(TSD_EXTENSION,  &cpq->init.tsd_extension);
2313
2314    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2315	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2316	    fore200e_param_bs_queue(fore200e, scheme, magn,
2317				    QUEUE_SIZE_BS,
2318				    fore200e_rx_buf_nbr[ scheme ][ magn ],
2319				    RBD_BLK_SIZE);
2320
2321    /* issue the initialize command */
2322    fore200e->bus->write(STATUS_PENDING,    &cpq->init.status);
2323    fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2324
2325    ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2326    if (ok == 0) {
2327	printk(FORE200E "device %s initialization failed\n", fore200e->name);
2328	return -ENODEV;
2329    }
2330
2331    printk(FORE200E "device %s initialized\n", fore200e->name);
2332
2333    fore200e->state = FORE200E_STATE_INITIALIZE;
2334    return 0;
2335}
2336
2337
2338static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
2339{
2340    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2341
2342#if 0
2343    printk("%c", c);
2344#endif
2345    fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2346}
2347
2348
2349static int fore200e_monitor_getc(struct fore200e *fore200e)
2350{
2351    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2352    unsigned long      timeout = jiffies + msecs_to_jiffies(50);
2353    int                c;
2354
2355    while (time_before(jiffies, timeout)) {
2356
2357	c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2358
2359	if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2360
2361	    fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2362#if 0
2363	    printk("%c", c & 0xFF);
2364#endif
2365	    return c & 0xFF;
2366	}
2367    }
2368
2369    return -1;
2370}
2371
2372
2373static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
2374{
2375    while (*str) {
2376
2377	/* the i960 monitor doesn't accept any new character if it has something to say */
2378	while (fore200e_monitor_getc(fore200e) >= 0);
2379
2380	fore200e_monitor_putc(fore200e, *str++);
2381    }
2382
2383    while (fore200e_monitor_getc(fore200e) >= 0);
2384}
2385
2386#ifdef __LITTLE_ENDIAN
2387#define FW_EXT ".bin"
2388#else
2389#define FW_EXT "_ecd.bin2"
2390#endif
2391
2392static int fore200e_load_and_start_fw(struct fore200e *fore200e)
2393{
2394    const struct firmware *firmware;
2395    const struct fw_header *fw_header;
2396    const __le32 *fw_data;
2397    u32 fw_size;
2398    u32 __iomem *load_addr;
2399    char buf[48];
2400    int err;
2401
2402    sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2403    if ((err = request_firmware(&firmware, buf, fore200e->dev)) < 0) {
2404	printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2405	return err;
2406    }
2407
2408    fw_data = (const __le32 *)firmware->data;
2409    fw_size = firmware->size / sizeof(u32);
2410    fw_header = (const struct fw_header *)firmware->data;
2411    load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2412
2413    DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2414	    fore200e->name, load_addr, fw_size);
2415
2416    if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2417	printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2418	goto release;
2419    }
2420
2421    for (; fw_size--; fw_data++, load_addr++)
2422	fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2423
2424    DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2425
2426#if defined(__sparc_v9__)
2427    /* reported to be required by SBA cards on some sparc64 hosts */
2428    fore200e_spin(100);
2429#endif
2430
2431    sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2432    fore200e_monitor_puts(fore200e, buf);
2433
2434    if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2435	printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2436	goto release;
2437    }
2438
2439    printk(FORE200E "device %s firmware started\n", fore200e->name);
2440
2441    fore200e->state = FORE200E_STATE_START_FW;
2442    err = 0;
2443
2444release:
2445    release_firmware(firmware);
2446    return err;
2447}
2448
2449
2450static int fore200e_register(struct fore200e *fore200e, struct device *parent)
2451{
2452    struct atm_dev* atm_dev;
2453
2454    DPRINTK(2, "device %s being registered\n", fore200e->name);
2455
2456    atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2457                               -1, NULL);
2458    if (atm_dev == NULL) {
2459	printk(FORE200E "unable to register device %s\n", fore200e->name);
2460	return -ENODEV;
2461    }
2462
2463    atm_dev->dev_data = fore200e;
2464    fore200e->atm_dev = atm_dev;
2465
2466    atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2467    atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2468
2469    fore200e->available_cell_rate = ATM_OC3_PCR;
2470
2471    fore200e->state = FORE200E_STATE_REGISTER;
2472    return 0;
2473}
2474
2475
2476static int fore200e_init(struct fore200e *fore200e, struct device *parent)
2477{
2478    if (fore200e_register(fore200e, parent) < 0)
2479	return -ENODEV;
2480
2481    if (fore200e->bus->configure(fore200e) < 0)
2482	return -ENODEV;
2483
2484    if (fore200e->bus->map(fore200e) < 0)
2485	return -ENODEV;
2486
2487    if (fore200e_reset(fore200e, 1) < 0)
2488	return -ENODEV;
2489
2490    if (fore200e_load_and_start_fw(fore200e) < 0)
2491	return -ENODEV;
2492
2493    if (fore200e_initialize(fore200e) < 0)
2494	return -ENODEV;
2495
2496    if (fore200e_init_cmd_queue(fore200e) < 0)
2497	return -ENOMEM;
2498
2499    if (fore200e_init_tx_queue(fore200e) < 0)
2500	return -ENOMEM;
2501
2502    if (fore200e_init_rx_queue(fore200e) < 0)
2503	return -ENOMEM;
2504
2505    if (fore200e_init_bs_queue(fore200e) < 0)
2506	return -ENOMEM;
2507
2508    if (fore200e_alloc_rx_buf(fore200e) < 0)
2509	return -ENOMEM;
2510
2511    if (fore200e_get_esi(fore200e) < 0)
2512	return -EIO;
2513
2514    if (fore200e_irq_request(fore200e) < 0)
2515	return -EBUSY;
2516
2517    fore200e_supply(fore200e);
2518
2519    /* all done, board initialization is now complete */
2520    fore200e->state = FORE200E_STATE_COMPLETE;
2521    return 0;
2522}
2523
2524#ifdef CONFIG_SBUS
2525static const struct of_device_id fore200e_sba_match[];
2526static int fore200e_sba_probe(struct platform_device *op)
2527{
2528	const struct of_device_id *match;
2529	struct fore200e *fore200e;
2530	static int index = 0;
2531	int err;
2532
2533	match = of_match_device(fore200e_sba_match, &op->dev);
2534	if (!match)
2535		return -EINVAL;
2536
2537	fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2538	if (!fore200e)
2539		return -ENOMEM;
2540
2541	fore200e->bus = &fore200e_sbus_ops;
2542	fore200e->dev = &op->dev;
2543	fore200e->irq = op->archdata.irqs[0];
2544	fore200e->phys_base = op->resource[0].start;
2545
2546	sprintf(fore200e->name, "SBA-200E-%d", index);
2547
2548	err = fore200e_init(fore200e, &op->dev);
2549	if (err < 0) {
2550		fore200e_shutdown(fore200e);
2551		kfree(fore200e);
2552		return err;
2553	}
2554
2555	index++;
2556	dev_set_drvdata(&op->dev, fore200e);
2557
2558	return 0;
2559}
2560
2561static int fore200e_sba_remove(struct platform_device *op)
2562{
2563	struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2564
2565	fore200e_shutdown(fore200e);
2566	kfree(fore200e);
2567
2568	return 0;
2569}
2570
2571static const struct of_device_id fore200e_sba_match[] = {
2572	{
2573		.name = SBA200E_PROM_NAME,
2574	},
2575	{},
2576};
2577MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2578
2579static struct platform_driver fore200e_sba_driver = {
2580	.driver = {
2581		.name = "fore_200e",
2582		.of_match_table = fore200e_sba_match,
2583	},
2584	.probe		= fore200e_sba_probe,
2585	.remove		= fore200e_sba_remove,
2586};
2587#endif
2588
2589#ifdef CONFIG_PCI
2590static int fore200e_pca_detect(struct pci_dev *pci_dev,
2591			       const struct pci_device_id *pci_ent)
2592{
2593    struct fore200e* fore200e;
2594    int err = 0;
2595    static int index = 0;
2596
2597    if (pci_enable_device(pci_dev)) {
2598	err = -EINVAL;
2599	goto out;
2600    }
2601
2602    if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
2603	err = -EINVAL;
2604	goto out;
2605    }
2606
2607    fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2608    if (fore200e == NULL) {
2609	err = -ENOMEM;
2610	goto out_disable;
2611    }
2612
2613    fore200e->bus       = &fore200e_pci_ops;
2614    fore200e->dev	= &pci_dev->dev;
2615    fore200e->irq       = pci_dev->irq;
2616    fore200e->phys_base = pci_resource_start(pci_dev, 0);
2617
2618    sprintf(fore200e->name, "PCA-200E-%d", index - 1);
2619
2620    pci_set_master(pci_dev);
2621
2622    printk(FORE200E "device PCA-200E found at 0x%lx, IRQ %s\n",
2623	   fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2624
2625    sprintf(fore200e->name, "PCA-200E-%d", index);
2626
2627    err = fore200e_init(fore200e, &pci_dev->dev);
2628    if (err < 0) {
2629	fore200e_shutdown(fore200e);
2630	goto out_free;
2631    }
2632
2633    ++index;
2634    pci_set_drvdata(pci_dev, fore200e);
2635
2636out:
2637    return err;
2638
2639out_free:
2640    kfree(fore200e);
2641out_disable:
2642    pci_disable_device(pci_dev);
2643    goto out;
2644}
2645
2646
2647static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2648{
2649    struct fore200e *fore200e;
2650
2651    fore200e = pci_get_drvdata(pci_dev);
2652
2653    fore200e_shutdown(fore200e);
2654    kfree(fore200e);
2655    pci_disable_device(pci_dev);
2656}
2657
2658
2659static const struct pci_device_id fore200e_pca_tbl[] = {
2660    { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID },
2661    { 0, }
2662};
2663
2664MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2665
2666static struct pci_driver fore200e_pca_driver = {
2667    .name =     "fore_200e",
2668    .probe =    fore200e_pca_detect,
2669    .remove =   fore200e_pca_remove_one,
2670    .id_table = fore200e_pca_tbl,
2671};
2672#endif
2673
2674static int __init fore200e_module_init(void)
2675{
2676	int err = 0;
2677
2678	printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2679
2680#ifdef CONFIG_SBUS
2681	err = platform_driver_register(&fore200e_sba_driver);
2682	if (err)
2683		return err;
2684#endif
2685
2686#ifdef CONFIG_PCI
2687	err = pci_register_driver(&fore200e_pca_driver);
2688#endif
2689
2690#ifdef CONFIG_SBUS
2691	if (err)
2692		platform_driver_unregister(&fore200e_sba_driver);
2693#endif
2694
2695	return err;
2696}
2697
2698static void __exit fore200e_module_cleanup(void)
2699{
2700#ifdef CONFIG_PCI
2701	pci_unregister_driver(&fore200e_pca_driver);
2702#endif
2703#ifdef CONFIG_SBUS
2704	platform_driver_unregister(&fore200e_sba_driver);
2705#endif
2706}
2707
2708static int
2709fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2710{
2711    struct fore200e*     fore200e  = FORE200E_DEV(dev);
2712    struct fore200e_vcc* fore200e_vcc;
2713    struct atm_vcc*      vcc;
2714    int                  i, len, left = *pos;
2715    unsigned long        flags;
2716
2717    if (!left--) {
2718
2719	if (fore200e_getstats(fore200e) < 0)
2720	    return -EIO;
2721
2722	len = sprintf(page,"\n"
2723		       " device:\n"
2724		       "   internal name:\t\t%s\n", fore200e->name);
2725
2726	/* print bus-specific information */
2727	if (fore200e->bus->proc_read)
2728	    len += fore200e->bus->proc_read(fore200e, page + len);
2729
2730	len += sprintf(page + len,
2731		"   interrupt line:\t\t%s\n"
2732		"   physical base address:\t0x%p\n"
2733		"   virtual base address:\t0x%p\n"
2734		"   factory address (ESI):\t%pM\n"
2735		"   board serial number:\t\t%d\n\n",
2736		fore200e_irq_itoa(fore200e->irq),
2737		(void*)fore200e->phys_base,
2738		fore200e->virt_base,
2739		fore200e->esi,
2740		fore200e->esi[4] * 256 + fore200e->esi[5]);
2741
2742	return len;
2743    }
2744
2745    if (!left--)
2746	return sprintf(page,
2747		       "   free small bufs, scheme 1:\t%d\n"
2748		       "   free large bufs, scheme 1:\t%d\n"
2749		       "   free small bufs, scheme 2:\t%d\n"
2750		       "   free large bufs, scheme 2:\t%d\n",
2751		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2752		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2753		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2754		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2755
2756    if (!left--) {
2757	u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2758
2759	len = sprintf(page,"\n\n"
2760		      " cell processor:\n"
2761		      "   heartbeat state:\t\t");
2762
2763	if (hb >> 16 != 0xDEAD)
2764	    len += sprintf(page + len, "0x%08x\n", hb);
2765	else
2766	    len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2767
2768	return len;
2769    }
2770
2771    if (!left--) {
2772	static const char* media_name[] = {
2773	    "unshielded twisted pair",
2774	    "multimode optical fiber ST",
2775	    "multimode optical fiber SC",
2776	    "single-mode optical fiber ST",
2777	    "single-mode optical fiber SC",
2778	    "unknown"
2779	};
2780
2781	static const char* oc3_mode[] = {
2782	    "normal operation",
2783	    "diagnostic loopback",
2784	    "line loopback",
2785	    "unknown"
2786	};
2787
2788	u32 fw_release     = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2789	u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2790	u32 oc3_revision   = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2791	u32 media_index    = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2792	u32 oc3_index;
2793
2794	if (media_index > 4)
2795		media_index = 5;
2796
2797	switch (fore200e->loop_mode) {
2798	    case ATM_LM_NONE:    oc3_index = 0;
2799		                 break;
2800	    case ATM_LM_LOC_PHY: oc3_index = 1;
2801		                 break;
2802	    case ATM_LM_RMT_PHY: oc3_index = 2;
2803		                 break;
2804	    default:             oc3_index = 3;
2805	}
2806
2807	return sprintf(page,
2808		       "   firmware release:\t\t%d.%d.%d\n"
2809		       "   monitor release:\t\t%d.%d\n"
2810		       "   media type:\t\t\t%s\n"
2811		       "   OC-3 revision:\t\t0x%x\n"
2812                       "   OC-3 mode:\t\t\t%s",
2813		       fw_release >> 16, fw_release << 16 >> 24,  fw_release << 24 >> 24,
2814		       mon960_release >> 16, mon960_release << 16 >> 16,
2815		       media_name[ media_index ],
2816		       oc3_revision,
2817		       oc3_mode[ oc3_index ]);
2818    }
2819
2820    if (!left--) {
2821	struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2822
2823	return sprintf(page,
2824		       "\n\n"
2825		       " monitor:\n"
2826		       "   version number:\t\t%d\n"
2827		       "   boot status word:\t\t0x%08x\n",
2828		       fore200e->bus->read(&cp_monitor->mon_version),
2829		       fore200e->bus->read(&cp_monitor->bstat));
2830    }
2831
2832    if (!left--)
2833	return sprintf(page,
2834		       "\n"
2835		       " device statistics:\n"
2836		       "  4b5b:\n"
2837		       "     crc_header_errors:\t\t%10u\n"
2838		       "     framing_errors:\t\t%10u\n",
2839		       be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2840		       be32_to_cpu(fore200e->stats->phy.framing_errors));
2841
2842    if (!left--)
2843	return sprintf(page, "\n"
2844		       "  OC-3:\n"
2845		       "     section_bip8_errors:\t%10u\n"
2846		       "     path_bip8_errors:\t\t%10u\n"
2847		       "     line_bip24_errors:\t\t%10u\n"
2848		       "     line_febe_errors:\t\t%10u\n"
2849		       "     path_febe_errors:\t\t%10u\n"
2850		       "     corr_hcs_errors:\t\t%10u\n"
2851		       "     ucorr_hcs_errors:\t\t%10u\n",
2852		       be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2853		       be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2854		       be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2855		       be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2856		       be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2857		       be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2858		       be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2859
2860    if (!left--)
2861	return sprintf(page,"\n"
2862		       "   ATM:\t\t\t\t     cells\n"
2863		       "     TX:\t\t\t%10u\n"
2864		       "     RX:\t\t\t%10u\n"
2865		       "     vpi out of range:\t\t%10u\n"
2866		       "     vpi no conn:\t\t%10u\n"
2867		       "     vci out of range:\t\t%10u\n"
2868		       "     vci no conn:\t\t%10u\n",
2869		       be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2870		       be32_to_cpu(fore200e->stats->atm.cells_received),
2871		       be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2872		       be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2873		       be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2874		       be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2875
2876    if (!left--)
2877	return sprintf(page,"\n"
2878		       "   AAL0:\t\t\t     cells\n"
2879		       "     TX:\t\t\t%10u\n"
2880		       "     RX:\t\t\t%10u\n"
2881		       "     dropped:\t\t\t%10u\n",
2882		       be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2883		       be32_to_cpu(fore200e->stats->aal0.cells_received),
2884		       be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2885
2886    if (!left--)
2887	return sprintf(page,"\n"
2888		       "   AAL3/4:\n"
2889		       "     SAR sublayer:\t\t     cells\n"
2890		       "       TX:\t\t\t%10u\n"
2891		       "       RX:\t\t\t%10u\n"
2892		       "       dropped:\t\t\t%10u\n"
2893		       "       CRC errors:\t\t%10u\n"
2894		       "       protocol errors:\t\t%10u\n\n"
2895		       "     CS  sublayer:\t\t      PDUs\n"
2896		       "       TX:\t\t\t%10u\n"
2897		       "       RX:\t\t\t%10u\n"
2898		       "       dropped:\t\t\t%10u\n"
2899		       "       protocol errors:\t\t%10u\n",
2900		       be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
2901		       be32_to_cpu(fore200e->stats->aal34.cells_received),
2902		       be32_to_cpu(fore200e->stats->aal34.cells_dropped),
2903		       be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
2904		       be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
2905		       be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
2906		       be32_to_cpu(fore200e->stats->aal34.cspdus_received),
2907		       be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
2908		       be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
2909
2910    if (!left--)
2911	return sprintf(page,"\n"
2912		       "   AAL5:\n"
2913		       "     SAR sublayer:\t\t     cells\n"
2914		       "       TX:\t\t\t%10u\n"
2915		       "       RX:\t\t\t%10u\n"
2916		       "       dropped:\t\t\t%10u\n"
2917		       "       congestions:\t\t%10u\n\n"
2918		       "     CS  sublayer:\t\t      PDUs\n"
2919		       "       TX:\t\t\t%10u\n"
2920		       "       RX:\t\t\t%10u\n"
2921		       "       dropped:\t\t\t%10u\n"
2922		       "       CRC errors:\t\t%10u\n"
2923		       "       protocol errors:\t\t%10u\n",
2924		       be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
2925		       be32_to_cpu(fore200e->stats->aal5.cells_received),
2926		       be32_to_cpu(fore200e->stats->aal5.cells_dropped),
2927		       be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
2928		       be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
2929		       be32_to_cpu(fore200e->stats->aal5.cspdus_received),
2930		       be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
2931		       be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
2932		       be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
2933
2934    if (!left--)
2935	return sprintf(page,"\n"
2936		       "   AUX:\t\t       allocation failures\n"
2937		       "     small b1:\t\t\t%10u\n"
2938		       "     large b1:\t\t\t%10u\n"
2939		       "     small b2:\t\t\t%10u\n"
2940		       "     large b2:\t\t\t%10u\n"
2941		       "     RX PDUs:\t\t\t%10u\n"
2942		       "     TX PDUs:\t\t\t%10lu\n",
2943		       be32_to_cpu(fore200e->stats->aux.small_b1_failed),
2944		       be32_to_cpu(fore200e->stats->aux.large_b1_failed),
2945		       be32_to_cpu(fore200e->stats->aux.small_b2_failed),
2946		       be32_to_cpu(fore200e->stats->aux.large_b2_failed),
2947		       be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
2948		       fore200e->tx_sat);
2949
2950    if (!left--)
2951	return sprintf(page,"\n"
2952		       " receive carrier:\t\t\t%s\n",
2953		       fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
2954
2955    if (!left--) {
2956        return sprintf(page,"\n"
2957		       " VCCs:\n  address   VPI VCI   AAL "
2958		       "TX PDUs   TX min/max size  RX PDUs   RX min/max size\n");
2959    }
2960
2961    for (i = 0; i < NBR_CONNECT; i++) {
2962
2963	vcc = fore200e->vc_map[i].vcc;
2964
2965	if (vcc == NULL)
2966	    continue;
2967
2968	spin_lock_irqsave(&fore200e->q_lock, flags);
2969
2970	if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
2971
2972	    fore200e_vcc = FORE200E_VCC(vcc);
2973	    ASSERT(fore200e_vcc);
2974
2975	    len = sprintf(page,
2976			  "  %pK  %03d %05d %1d   %09lu %05d/%05d      %09lu %05d/%05d\n",
2977			  vcc,
2978			  vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
2979			  fore200e_vcc->tx_pdu,
2980			  fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
2981			  fore200e_vcc->tx_max_pdu,
2982			  fore200e_vcc->rx_pdu,
2983			  fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
2984			  fore200e_vcc->rx_max_pdu);
2985
2986	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
2987	    return len;
2988	}
2989
2990	spin_unlock_irqrestore(&fore200e->q_lock, flags);
2991    }
2992
2993    return 0;
2994}
2995
2996module_init(fore200e_module_init);
2997module_exit(fore200e_module_cleanup);
2998
2999
3000static const struct atmdev_ops fore200e_ops = {
3001	.open       = fore200e_open,
3002	.close      = fore200e_close,
3003	.ioctl      = fore200e_ioctl,
3004	.send       = fore200e_send,
3005	.change_qos = fore200e_change_qos,
3006	.proc_read  = fore200e_proc_read,
3007	.owner      = THIS_MODULE
3008};
3009
3010MODULE_LICENSE("GPL");
3011#ifdef CONFIG_PCI
3012#ifdef __LITTLE_ENDIAN__
3013MODULE_FIRMWARE("pca200e.bin");
3014#else
3015MODULE_FIRMWARE("pca200e_ecd.bin2");
3016#endif
3017#endif /* CONFIG_PCI */
3018#ifdef CONFIG_SBUS
3019MODULE_FIRMWARE("sba200e_ecd.bin2");
3020#endif
3021