1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *  libata-sff.c - helper library for PCI IDE BMDMA
4 *
5 *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
6 *  Copyright 2003-2006 Jeff Garzik
7 *
8 *  libata documentation is available via 'make {ps|pdf}docs',
9 *  as Documentation/driver-api/libata.rst
10 *
11 *  Hardware documentation available from http://www.t13.org/ and
12 *  http://www.sata-io.org/
13 */
14
15#include <linux/kernel.h>
16#include <linux/gfp.h>
17#include <linux/pci.h>
18#include <linux/module.h>
19#include <linux/libata.h>
20#include <linux/highmem.h>
21
22#include "libata.h"
23
24static struct workqueue_struct *ata_sff_wq;
25
26const struct ata_port_operations ata_sff_port_ops = {
27	.inherits		= &ata_base_port_ops,
28
29	.qc_prep		= ata_noop_qc_prep,
30	.qc_issue		= ata_sff_qc_issue,
31	.qc_fill_rtf		= ata_sff_qc_fill_rtf,
32
33	.freeze			= ata_sff_freeze,
34	.thaw			= ata_sff_thaw,
35	.prereset		= ata_sff_prereset,
36	.softreset		= ata_sff_softreset,
37	.hardreset		= sata_sff_hardreset,
38	.postreset		= ata_sff_postreset,
39	.error_handler		= ata_sff_error_handler,
40
41	.sff_dev_select		= ata_sff_dev_select,
42	.sff_check_status	= ata_sff_check_status,
43	.sff_tf_load		= ata_sff_tf_load,
44	.sff_tf_read		= ata_sff_tf_read,
45	.sff_exec_command	= ata_sff_exec_command,
46	.sff_data_xfer		= ata_sff_data_xfer,
47	.sff_drain_fifo		= ata_sff_drain_fifo,
48
49	.lost_interrupt		= ata_sff_lost_interrupt,
50};
51EXPORT_SYMBOL_GPL(ata_sff_port_ops);
52
53/**
54 *	ata_sff_check_status - Read device status reg & clear interrupt
55 *	@ap: port where the device is
56 *
57 *	Reads ATA taskfile status register for currently-selected device
58 *	and return its value. This also clears pending interrupts
59 *      from this device
60 *
61 *	LOCKING:
62 *	Inherited from caller.
63 */
64u8 ata_sff_check_status(struct ata_port *ap)
65{
66	return ioread8(ap->ioaddr.status_addr);
67}
68EXPORT_SYMBOL_GPL(ata_sff_check_status);
69
70/**
71 *	ata_sff_altstatus - Read device alternate status reg
72 *	@ap: port where the device is
73 *
74 *	Reads ATA taskfile alternate status register for
75 *	currently-selected device and return its value.
76 *
77 *	Note: may NOT be used as the check_altstatus() entry in
78 *	ata_port_operations.
79 *
80 *	LOCKING:
81 *	Inherited from caller.
82 */
83static u8 ata_sff_altstatus(struct ata_port *ap)
84{
85	if (ap->ops->sff_check_altstatus)
86		return ap->ops->sff_check_altstatus(ap);
87
88	return ioread8(ap->ioaddr.altstatus_addr);
89}
90
91/**
92 *	ata_sff_irq_status - Check if the device is busy
93 *	@ap: port where the device is
94 *
95 *	Determine if the port is currently busy. Uses altstatus
96 *	if available in order to avoid clearing shared IRQ status
97 *	when finding an IRQ source. Non ctl capable devices don't
98 *	share interrupt lines fortunately for us.
99 *
100 *	LOCKING:
101 *	Inherited from caller.
102 */
103static u8 ata_sff_irq_status(struct ata_port *ap)
104{
105	u8 status;
106
107	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
108		status = ata_sff_altstatus(ap);
109		/* Not us: We are busy */
110		if (status & ATA_BUSY)
111			return status;
112	}
113	/* Clear INTRQ latch */
114	status = ap->ops->sff_check_status(ap);
115	return status;
116}
117
118/**
119 *	ata_sff_sync - Flush writes
120 *	@ap: Port to wait for.
121 *
122 *	CAUTION:
123 *	If we have an mmio device with no ctl and no altstatus
124 *	method this will fail. No such devices are known to exist.
125 *
126 *	LOCKING:
127 *	Inherited from caller.
128 */
129
130static void ata_sff_sync(struct ata_port *ap)
131{
132	if (ap->ops->sff_check_altstatus)
133		ap->ops->sff_check_altstatus(ap);
134	else if (ap->ioaddr.altstatus_addr)
135		ioread8(ap->ioaddr.altstatus_addr);
136}
137
138/**
139 *	ata_sff_pause		-	Flush writes and wait 400nS
140 *	@ap: Port to pause for.
141 *
142 *	CAUTION:
143 *	If we have an mmio device with no ctl and no altstatus
144 *	method this will fail. No such devices are known to exist.
145 *
146 *	LOCKING:
147 *	Inherited from caller.
148 */
149
150void ata_sff_pause(struct ata_port *ap)
151{
152	ata_sff_sync(ap);
153	ndelay(400);
154}
155EXPORT_SYMBOL_GPL(ata_sff_pause);
156
157/**
158 *	ata_sff_dma_pause	-	Pause before commencing DMA
159 *	@ap: Port to pause for.
160 *
161 *	Perform I/O fencing and ensure sufficient cycle delays occur
162 *	for the HDMA1:0 transition
163 */
164
165void ata_sff_dma_pause(struct ata_port *ap)
166{
167	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
168		/* An altstatus read will cause the needed delay without
169		   messing up the IRQ status */
170		ata_sff_altstatus(ap);
171		return;
172	}
173	/* There are no DMA controllers without ctl. BUG here to ensure
174	   we never violate the HDMA1:0 transition timing and risk
175	   corruption. */
176	BUG();
177}
178EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
179
180/**
181 *	ata_sff_busy_sleep - sleep until BSY clears, or timeout
182 *	@ap: port containing status register to be polled
183 *	@tmout_pat: impatience timeout in msecs
184 *	@tmout: overall timeout in msecs
185 *
186 *	Sleep until ATA Status register bit BSY clears,
187 *	or a timeout occurs.
188 *
189 *	LOCKING:
190 *	Kernel thread context (may sleep).
191 *
192 *	RETURNS:
193 *	0 on success, -errno otherwise.
194 */
195int ata_sff_busy_sleep(struct ata_port *ap,
196		       unsigned long tmout_pat, unsigned long tmout)
197{
198	unsigned long timer_start, timeout;
199	u8 status;
200
201	status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
202	timer_start = jiffies;
203	timeout = ata_deadline(timer_start, tmout_pat);
204	while (status != 0xff && (status & ATA_BUSY) &&
205	       time_before(jiffies, timeout)) {
206		ata_msleep(ap, 50);
207		status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
208	}
209
210	if (status != 0xff && (status & ATA_BUSY))
211		ata_port_warn(ap,
212			      "port is slow to respond, please be patient (Status 0x%x)\n",
213			      status);
214
215	timeout = ata_deadline(timer_start, tmout);
216	while (status != 0xff && (status & ATA_BUSY) &&
217	       time_before(jiffies, timeout)) {
218		ata_msleep(ap, 50);
219		status = ap->ops->sff_check_status(ap);
220	}
221
222	if (status == 0xff)
223		return -ENODEV;
224
225	if (status & ATA_BUSY) {
226		ata_port_err(ap,
227			     "port failed to respond (%lu secs, Status 0x%x)\n",
228			     DIV_ROUND_UP(tmout, 1000), status);
229		return -EBUSY;
230	}
231
232	return 0;
233}
234EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
235
236static int ata_sff_check_ready(struct ata_link *link)
237{
238	u8 status = link->ap->ops->sff_check_status(link->ap);
239
240	return ata_check_ready(status);
241}
242
243/**
244 *	ata_sff_wait_ready - sleep until BSY clears, or timeout
245 *	@link: SFF link to wait ready status for
246 *	@deadline: deadline jiffies for the operation
247 *
248 *	Sleep until ATA Status register bit BSY clears, or timeout
249 *	occurs.
250 *
251 *	LOCKING:
252 *	Kernel thread context (may sleep).
253 *
254 *	RETURNS:
255 *	0 on success, -errno otherwise.
256 */
257int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
258{
259	return ata_wait_ready(link, deadline, ata_sff_check_ready);
260}
261EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
262
263/**
264 *	ata_sff_set_devctl - Write device control reg
265 *	@ap: port where the device is
266 *	@ctl: value to write
267 *
268 *	Writes ATA taskfile device control register.
269 *
270 *	Note: may NOT be used as the sff_set_devctl() entry in
271 *	ata_port_operations.
272 *
273 *	LOCKING:
274 *	Inherited from caller.
275 */
276static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
277{
278	if (ap->ops->sff_set_devctl)
279		ap->ops->sff_set_devctl(ap, ctl);
280	else
281		iowrite8(ctl, ap->ioaddr.ctl_addr);
282}
283
284/**
285 *	ata_sff_dev_select - Select device 0/1 on ATA bus
286 *	@ap: ATA channel to manipulate
287 *	@device: ATA device (numbered from zero) to select
288 *
289 *	Use the method defined in the ATA specification to
290 *	make either device 0, or device 1, active on the
291 *	ATA channel.  Works with both PIO and MMIO.
292 *
293 *	May be used as the dev_select() entry in ata_port_operations.
294 *
295 *	LOCKING:
296 *	caller.
297 */
298void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
299{
300	u8 tmp;
301
302	if (device == 0)
303		tmp = ATA_DEVICE_OBS;
304	else
305		tmp = ATA_DEVICE_OBS | ATA_DEV1;
306
307	iowrite8(tmp, ap->ioaddr.device_addr);
308	ata_sff_pause(ap);	/* needed; also flushes, for mmio */
309}
310EXPORT_SYMBOL_GPL(ata_sff_dev_select);
311
312/**
313 *	ata_dev_select - Select device 0/1 on ATA bus
314 *	@ap: ATA channel to manipulate
315 *	@device: ATA device (numbered from zero) to select
316 *	@wait: non-zero to wait for Status register BSY bit to clear
317 *	@can_sleep: non-zero if context allows sleeping
318 *
319 *	Use the method defined in the ATA specification to
320 *	make either device 0, or device 1, active on the
321 *	ATA channel.
322 *
323 *	This is a high-level version of ata_sff_dev_select(), which
324 *	additionally provides the services of inserting the proper
325 *	pauses and status polling, where needed.
326 *
327 *	LOCKING:
328 *	caller.
329 */
330static void ata_dev_select(struct ata_port *ap, unsigned int device,
331			   unsigned int wait, unsigned int can_sleep)
332{
333	if (ata_msg_probe(ap))
334		ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n",
335			      device, wait);
336
337	if (wait)
338		ata_wait_idle(ap);
339
340	ap->ops->sff_dev_select(ap, device);
341
342	if (wait) {
343		if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
344			ata_msleep(ap, 150);
345		ata_wait_idle(ap);
346	}
347}
348
349/**
350 *	ata_sff_irq_on - Enable interrupts on a port.
351 *	@ap: Port on which interrupts are enabled.
352 *
353 *	Enable interrupts on a legacy IDE device using MMIO or PIO,
354 *	wait for idle, clear any pending interrupts.
355 *
356 *	Note: may NOT be used as the sff_irq_on() entry in
357 *	ata_port_operations.
358 *
359 *	LOCKING:
360 *	Inherited from caller.
361 */
362void ata_sff_irq_on(struct ata_port *ap)
363{
364	struct ata_ioports *ioaddr = &ap->ioaddr;
365
366	if (ap->ops->sff_irq_on) {
367		ap->ops->sff_irq_on(ap);
368		return;
369	}
370
371	ap->ctl &= ~ATA_NIEN;
372	ap->last_ctl = ap->ctl;
373
374	if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
375		ata_sff_set_devctl(ap, ap->ctl);
376	ata_wait_idle(ap);
377
378	if (ap->ops->sff_irq_clear)
379		ap->ops->sff_irq_clear(ap);
380}
381EXPORT_SYMBOL_GPL(ata_sff_irq_on);
382
383/**
384 *	ata_sff_tf_load - send taskfile registers to host controller
385 *	@ap: Port to which output is sent
386 *	@tf: ATA taskfile register set
387 *
388 *	Outputs ATA taskfile to standard ATA host controller.
389 *
390 *	LOCKING:
391 *	Inherited from caller.
392 */
393void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
394{
395	struct ata_ioports *ioaddr = &ap->ioaddr;
396	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
397
398	if (tf->ctl != ap->last_ctl) {
399		if (ioaddr->ctl_addr)
400			iowrite8(tf->ctl, ioaddr->ctl_addr);
401		ap->last_ctl = tf->ctl;
402		ata_wait_idle(ap);
403	}
404
405	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
406		WARN_ON_ONCE(!ioaddr->ctl_addr);
407		iowrite8(tf->hob_feature, ioaddr->feature_addr);
408		iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
409		iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
410		iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
411		iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
412		VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
413			tf->hob_feature,
414			tf->hob_nsect,
415			tf->hob_lbal,
416			tf->hob_lbam,
417			tf->hob_lbah);
418	}
419
420	if (is_addr) {
421		iowrite8(tf->feature, ioaddr->feature_addr);
422		iowrite8(tf->nsect, ioaddr->nsect_addr);
423		iowrite8(tf->lbal, ioaddr->lbal_addr);
424		iowrite8(tf->lbam, ioaddr->lbam_addr);
425		iowrite8(tf->lbah, ioaddr->lbah_addr);
426		VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
427			tf->feature,
428			tf->nsect,
429			tf->lbal,
430			tf->lbam,
431			tf->lbah);
432	}
433
434	if (tf->flags & ATA_TFLAG_DEVICE) {
435		iowrite8(tf->device, ioaddr->device_addr);
436		VPRINTK("device 0x%X\n", tf->device);
437	}
438
439	ata_wait_idle(ap);
440}
441EXPORT_SYMBOL_GPL(ata_sff_tf_load);
442
443/**
444 *	ata_sff_tf_read - input device's ATA taskfile shadow registers
445 *	@ap: Port from which input is read
446 *	@tf: ATA taskfile register set for storing input
447 *
448 *	Reads ATA taskfile registers for currently-selected device
449 *	into @tf. Assumes the device has a fully SFF compliant task file
450 *	layout and behaviour. If you device does not (eg has a different
451 *	status method) then you will need to provide a replacement tf_read
452 *
453 *	LOCKING:
454 *	Inherited from caller.
455 */
456void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
457{
458	struct ata_ioports *ioaddr = &ap->ioaddr;
459
460	tf->command = ata_sff_check_status(ap);
461	tf->feature = ioread8(ioaddr->error_addr);
462	tf->nsect = ioread8(ioaddr->nsect_addr);
463	tf->lbal = ioread8(ioaddr->lbal_addr);
464	tf->lbam = ioread8(ioaddr->lbam_addr);
465	tf->lbah = ioread8(ioaddr->lbah_addr);
466	tf->device = ioread8(ioaddr->device_addr);
467
468	if (tf->flags & ATA_TFLAG_LBA48) {
469		if (likely(ioaddr->ctl_addr)) {
470			iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
471			tf->hob_feature = ioread8(ioaddr->error_addr);
472			tf->hob_nsect = ioread8(ioaddr->nsect_addr);
473			tf->hob_lbal = ioread8(ioaddr->lbal_addr);
474			tf->hob_lbam = ioread8(ioaddr->lbam_addr);
475			tf->hob_lbah = ioread8(ioaddr->lbah_addr);
476			iowrite8(tf->ctl, ioaddr->ctl_addr);
477			ap->last_ctl = tf->ctl;
478		} else
479			WARN_ON_ONCE(1);
480	}
481}
482EXPORT_SYMBOL_GPL(ata_sff_tf_read);
483
484/**
485 *	ata_sff_exec_command - issue ATA command to host controller
486 *	@ap: port to which command is being issued
487 *	@tf: ATA taskfile register set
488 *
489 *	Issues ATA command, with proper synchronization with interrupt
490 *	handler / other threads.
491 *
492 *	LOCKING:
493 *	spin_lock_irqsave(host lock)
494 */
495void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
496{
497	DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
498
499	iowrite8(tf->command, ap->ioaddr.command_addr);
500	ata_sff_pause(ap);
501}
502EXPORT_SYMBOL_GPL(ata_sff_exec_command);
503
504/**
505 *	ata_tf_to_host - issue ATA taskfile to host controller
506 *	@ap: port to which command is being issued
507 *	@tf: ATA taskfile register set
508 *
509 *	Issues ATA taskfile register set to ATA host controller,
510 *	with proper synchronization with interrupt handler and
511 *	other threads.
512 *
513 *	LOCKING:
514 *	spin_lock_irqsave(host lock)
515 */
516static inline void ata_tf_to_host(struct ata_port *ap,
517				  const struct ata_taskfile *tf)
518{
519	ap->ops->sff_tf_load(ap, tf);
520	ap->ops->sff_exec_command(ap, tf);
521}
522
523/**
524 *	ata_sff_data_xfer - Transfer data by PIO
525 *	@qc: queued command
526 *	@buf: data buffer
527 *	@buflen: buffer length
528 *	@rw: read/write
529 *
530 *	Transfer data from/to the device data register by PIO.
531 *
532 *	LOCKING:
533 *	Inherited from caller.
534 *
535 *	RETURNS:
536 *	Bytes consumed.
537 */
538unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf,
539			       unsigned int buflen, int rw)
540{
541	struct ata_port *ap = qc->dev->link->ap;
542	void __iomem *data_addr = ap->ioaddr.data_addr;
543	unsigned int words = buflen >> 1;
544
545	/* Transfer multiple of 2 bytes */
546	if (rw == READ)
547		ioread16_rep(data_addr, buf, words);
548	else
549		iowrite16_rep(data_addr, buf, words);
550
551	/* Transfer trailing byte, if any. */
552	if (unlikely(buflen & 0x01)) {
553		unsigned char pad[2] = { };
554
555		/* Point buf to the tail of buffer */
556		buf += buflen - 1;
557
558		/*
559		 * Use io*16_rep() accessors here as well to avoid pointlessly
560		 * swapping bytes to and from on the big endian machines...
561		 */
562		if (rw == READ) {
563			ioread16_rep(data_addr, pad, 1);
564			*buf = pad[0];
565		} else {
566			pad[0] = *buf;
567			iowrite16_rep(data_addr, pad, 1);
568		}
569		words++;
570	}
571
572	return words << 1;
573}
574EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
575
576/**
577 *	ata_sff_data_xfer32 - Transfer data by PIO
578 *	@qc: queued command
579 *	@buf: data buffer
580 *	@buflen: buffer length
581 *	@rw: read/write
582 *
583 *	Transfer data from/to the device data register by PIO using 32bit
584 *	I/O operations.
585 *
586 *	LOCKING:
587 *	Inherited from caller.
588 *
589 *	RETURNS:
590 *	Bytes consumed.
591 */
592
593unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf,
594			       unsigned int buflen, int rw)
595{
596	struct ata_device *dev = qc->dev;
597	struct ata_port *ap = dev->link->ap;
598	void __iomem *data_addr = ap->ioaddr.data_addr;
599	unsigned int words = buflen >> 2;
600	int slop = buflen & 3;
601
602	if (!(ap->pflags & ATA_PFLAG_PIO32))
603		return ata_sff_data_xfer(qc, buf, buflen, rw);
604
605	/* Transfer multiple of 4 bytes */
606	if (rw == READ)
607		ioread32_rep(data_addr, buf, words);
608	else
609		iowrite32_rep(data_addr, buf, words);
610
611	/* Transfer trailing bytes, if any */
612	if (unlikely(slop)) {
613		unsigned char pad[4] = { };
614
615		/* Point buf to the tail of buffer */
616		buf += buflen - slop;
617
618		/*
619		 * Use io*_rep() accessors here as well to avoid pointlessly
620		 * swapping bytes to and from on the big endian machines...
621		 */
622		if (rw == READ) {
623			if (slop < 3)
624				ioread16_rep(data_addr, pad, 1);
625			else
626				ioread32_rep(data_addr, pad, 1);
627			memcpy(buf, pad, slop);
628		} else {
629			memcpy(pad, buf, slop);
630			if (slop < 3)
631				iowrite16_rep(data_addr, pad, 1);
632			else
633				iowrite32_rep(data_addr, pad, 1);
634		}
635	}
636	return (buflen + 1) & ~1;
637}
638EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
639
640static void ata_pio_xfer(struct ata_queued_cmd *qc, struct page *page,
641		unsigned int offset, size_t xfer_size)
642{
643	bool do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
644	unsigned char *buf;
645
646	buf = kmap_atomic(page);
647	qc->ap->ops->sff_data_xfer(qc, buf + offset, xfer_size, do_write);
648	kunmap_atomic(buf);
649
650	if (!do_write && !PageSlab(page))
651		flush_dcache_page(page);
652}
653
654/**
655 *	ata_pio_sector - Transfer a sector of data.
656 *	@qc: Command on going
657 *
658 *	Transfer qc->sect_size bytes of data from/to the ATA device.
659 *
660 *	LOCKING:
661 *	Inherited from caller.
662 */
663static void ata_pio_sector(struct ata_queued_cmd *qc)
664{
665	struct ata_port *ap = qc->ap;
666	struct page *page;
667	unsigned int offset;
668
669	if (!qc->cursg) {
670		qc->curbytes = qc->nbytes;
671		return;
672	}
673	if (qc->curbytes == qc->nbytes - qc->sect_size)
674		ap->hsm_task_state = HSM_ST_LAST;
675
676	page = sg_page(qc->cursg);
677	offset = qc->cursg->offset + qc->cursg_ofs;
678
679	/* get the current page and offset */
680	page = nth_page(page, (offset >> PAGE_SHIFT));
681	offset %= PAGE_SIZE;
682
683	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
684
685	/*
686	 * Split the transfer when it splits a page boundary.  Note that the
687	 * split still has to be dword aligned like all ATA data transfers.
688	 */
689	WARN_ON_ONCE(offset % 4);
690	if (offset + qc->sect_size > PAGE_SIZE) {
691		unsigned int split_len = PAGE_SIZE - offset;
692
693		ata_pio_xfer(qc, page, offset, split_len);
694		ata_pio_xfer(qc, nth_page(page, 1), 0,
695			     qc->sect_size - split_len);
696	} else {
697		ata_pio_xfer(qc, page, offset, qc->sect_size);
698	}
699
700	qc->curbytes += qc->sect_size;
701	qc->cursg_ofs += qc->sect_size;
702
703	if (qc->cursg_ofs == qc->cursg->length) {
704		qc->cursg = sg_next(qc->cursg);
705		if (!qc->cursg)
706			ap->hsm_task_state = HSM_ST_LAST;
707		qc->cursg_ofs = 0;
708	}
709}
710
711/**
712 *	ata_pio_sectors - Transfer one or many sectors.
713 *	@qc: Command on going
714 *
715 *	Transfer one or many sectors of data from/to the
716 *	ATA device for the DRQ request.
717 *
718 *	LOCKING:
719 *	Inherited from caller.
720 */
721static void ata_pio_sectors(struct ata_queued_cmd *qc)
722{
723	if (is_multi_taskfile(&qc->tf)) {
724		/* READ/WRITE MULTIPLE */
725		unsigned int nsect;
726
727		WARN_ON_ONCE(qc->dev->multi_count == 0);
728
729		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
730			    qc->dev->multi_count);
731		while (nsect--)
732			ata_pio_sector(qc);
733	} else
734		ata_pio_sector(qc);
735
736	ata_sff_sync(qc->ap); /* flush */
737}
738
739/**
740 *	atapi_send_cdb - Write CDB bytes to hardware
741 *	@ap: Port to which ATAPI device is attached.
742 *	@qc: Taskfile currently active
743 *
744 *	When device has indicated its readiness to accept
745 *	a CDB, this function is called.  Send the CDB.
746 *
747 *	LOCKING:
748 *	caller.
749 */
750static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
751{
752	/* send SCSI cdb */
753	DPRINTK("send cdb\n");
754	WARN_ON_ONCE(qc->dev->cdb_len < 12);
755
756	ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1);
757	ata_sff_sync(ap);
758	/* FIXME: If the CDB is for DMA do we need to do the transition delay
759	   or is bmdma_start guaranteed to do it ? */
760	switch (qc->tf.protocol) {
761	case ATAPI_PROT_PIO:
762		ap->hsm_task_state = HSM_ST;
763		break;
764	case ATAPI_PROT_NODATA:
765		ap->hsm_task_state = HSM_ST_LAST;
766		break;
767#ifdef CONFIG_ATA_BMDMA
768	case ATAPI_PROT_DMA:
769		ap->hsm_task_state = HSM_ST_LAST;
770		/* initiate bmdma */
771		ap->ops->bmdma_start(qc);
772		break;
773#endif /* CONFIG_ATA_BMDMA */
774	default:
775		BUG();
776	}
777}
778
779/**
780 *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
781 *	@qc: Command on going
782 *	@bytes: number of bytes
783 *
784 *	Transfer Transfer data from/to the ATAPI device.
785 *
786 *	LOCKING:
787 *	Inherited from caller.
788 *
789 */
790static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
791{
792	int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
793	struct ata_port *ap = qc->ap;
794	struct ata_device *dev = qc->dev;
795	struct ata_eh_info *ehi = &dev->link->eh_info;
796	struct scatterlist *sg;
797	struct page *page;
798	unsigned char *buf;
799	unsigned int offset, count, consumed;
800
801next_sg:
802	sg = qc->cursg;
803	if (unlikely(!sg)) {
804		ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
805				  "buf=%u cur=%u bytes=%u",
806				  qc->nbytes, qc->curbytes, bytes);
807		return -1;
808	}
809
810	page = sg_page(sg);
811	offset = sg->offset + qc->cursg_ofs;
812
813	/* get the current page and offset */
814	page = nth_page(page, (offset >> PAGE_SHIFT));
815	offset %= PAGE_SIZE;
816
817	/* don't overrun current sg */
818	count = min(sg->length - qc->cursg_ofs, bytes);
819
820	/* don't cross page boundaries */
821	count = min(count, (unsigned int)PAGE_SIZE - offset);
822
823	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
824
825	/* do the actual data transfer */
826	buf = kmap_atomic(page);
827	consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw);
828	kunmap_atomic(buf);
829
830	bytes -= min(bytes, consumed);
831	qc->curbytes += count;
832	qc->cursg_ofs += count;
833
834	if (qc->cursg_ofs == sg->length) {
835		qc->cursg = sg_next(qc->cursg);
836		qc->cursg_ofs = 0;
837	}
838
839	/*
840	 * There used to be a  WARN_ON_ONCE(qc->cursg && count != consumed);
841	 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
842	 * check correctly as it doesn't know if it is the last request being
843	 * made. Somebody should implement a proper sanity check.
844	 */
845	if (bytes)
846		goto next_sg;
847	return 0;
848}
849
850/**
851 *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
852 *	@qc: Command on going
853 *
854 *	Transfer Transfer data from/to the ATAPI device.
855 *
856 *	LOCKING:
857 *	Inherited from caller.
858 */
859static void atapi_pio_bytes(struct ata_queued_cmd *qc)
860{
861	struct ata_port *ap = qc->ap;
862	struct ata_device *dev = qc->dev;
863	struct ata_eh_info *ehi = &dev->link->eh_info;
864	unsigned int ireason, bc_lo, bc_hi, bytes;
865	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
866
867	/* Abuse qc->result_tf for temp storage of intermediate TF
868	 * here to save some kernel stack usage.
869	 * For normal completion, qc->result_tf is not relevant. For
870	 * error, qc->result_tf is later overwritten by ata_qc_complete().
871	 * So, the correctness of qc->result_tf is not affected.
872	 */
873	ap->ops->sff_tf_read(ap, &qc->result_tf);
874	ireason = qc->result_tf.nsect;
875	bc_lo = qc->result_tf.lbam;
876	bc_hi = qc->result_tf.lbah;
877	bytes = (bc_hi << 8) | bc_lo;
878
879	/* shall be cleared to zero, indicating xfer of data */
880	if (unlikely(ireason & ATAPI_COD))
881		goto atapi_check;
882
883	/* make sure transfer direction matches expected */
884	i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
885	if (unlikely(do_write != i_write))
886		goto atapi_check;
887
888	if (unlikely(!bytes))
889		goto atapi_check;
890
891	VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
892
893	if (unlikely(__atapi_pio_bytes(qc, bytes)))
894		goto err_out;
895	ata_sff_sync(ap); /* flush */
896
897	return;
898
899 atapi_check:
900	ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
901			  ireason, bytes);
902 err_out:
903	qc->err_mask |= AC_ERR_HSM;
904	ap->hsm_task_state = HSM_ST_ERR;
905}
906
907/**
908 *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
909 *	@ap: the target ata_port
910 *	@qc: qc on going
911 *
912 *	RETURNS:
913 *	1 if ok in workqueue, 0 otherwise.
914 */
915static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
916						struct ata_queued_cmd *qc)
917{
918	if (qc->tf.flags & ATA_TFLAG_POLLING)
919		return 1;
920
921	if (ap->hsm_task_state == HSM_ST_FIRST) {
922		if (qc->tf.protocol == ATA_PROT_PIO &&
923		   (qc->tf.flags & ATA_TFLAG_WRITE))
924		    return 1;
925
926		if (ata_is_atapi(qc->tf.protocol) &&
927		   !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
928			return 1;
929	}
930
931	return 0;
932}
933
934/**
935 *	ata_hsm_qc_complete - finish a qc running on standard HSM
936 *	@qc: Command to complete
937 *	@in_wq: 1 if called from workqueue, 0 otherwise
938 *
939 *	Finish @qc which is running on standard HSM.
940 *
941 *	LOCKING:
942 *	If @in_wq is zero, spin_lock_irqsave(host lock).
943 *	Otherwise, none on entry and grabs host lock.
944 */
945static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
946{
947	struct ata_port *ap = qc->ap;
948
949	if (ap->ops->error_handler) {
950		if (in_wq) {
951			/* EH might have kicked in while host lock is
952			 * released.
953			 */
954			qc = ata_qc_from_tag(ap, qc->tag);
955			if (qc) {
956				if (likely(!(qc->err_mask & AC_ERR_HSM))) {
957					ata_sff_irq_on(ap);
958					ata_qc_complete(qc);
959				} else
960					ata_port_freeze(ap);
961			}
962		} else {
963			if (likely(!(qc->err_mask & AC_ERR_HSM)))
964				ata_qc_complete(qc);
965			else
966				ata_port_freeze(ap);
967		}
968	} else {
969		if (in_wq) {
970			ata_sff_irq_on(ap);
971			ata_qc_complete(qc);
972		} else
973			ata_qc_complete(qc);
974	}
975}
976
977/**
978 *	ata_sff_hsm_move - move the HSM to the next state.
979 *	@ap: the target ata_port
980 *	@qc: qc on going
981 *	@status: current device status
982 *	@in_wq: 1 if called from workqueue, 0 otherwise
983 *
984 *	RETURNS:
985 *	1 when poll next status needed, 0 otherwise.
986 */
987int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
988		     u8 status, int in_wq)
989{
990	struct ata_link *link = qc->dev->link;
991	struct ata_eh_info *ehi = &link->eh_info;
992	int poll_next;
993
994	lockdep_assert_held(ap->lock);
995
996	WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
997
998	/* Make sure ata_sff_qc_issue() does not throw things
999	 * like DMA polling into the workqueue. Notice that
1000	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1001	 */
1002	WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
1003
1004fsm_start:
1005	DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1006		ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1007
1008	switch (ap->hsm_task_state) {
1009	case HSM_ST_FIRST:
1010		/* Send first data block or PACKET CDB */
1011
1012		/* If polling, we will stay in the work queue after
1013		 * sending the data. Otherwise, interrupt handler
1014		 * takes over after sending the data.
1015		 */
1016		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1017
1018		/* check device status */
1019		if (unlikely((status & ATA_DRQ) == 0)) {
1020			/* handle BSY=0, DRQ=0 as error */
1021			if (likely(status & (ATA_ERR | ATA_DF)))
1022				/* device stops HSM for abort/error */
1023				qc->err_mask |= AC_ERR_DEV;
1024			else {
1025				/* HSM violation. Let EH handle this */
1026				ata_ehi_push_desc(ehi,
1027					"ST_FIRST: !(DRQ|ERR|DF)");
1028				qc->err_mask |= AC_ERR_HSM;
1029			}
1030
1031			ap->hsm_task_state = HSM_ST_ERR;
1032			goto fsm_start;
1033		}
1034
1035		/* Device should not ask for data transfer (DRQ=1)
1036		 * when it finds something wrong.
1037		 * We ignore DRQ here and stop the HSM by
1038		 * changing hsm_task_state to HSM_ST_ERR and
1039		 * let the EH abort the command or reset the device.
1040		 */
1041		if (unlikely(status & (ATA_ERR | ATA_DF))) {
1042			/* Some ATAPI tape drives forget to clear the ERR bit
1043			 * when doing the next command (mostly request sense).
1044			 * We ignore ERR here to workaround and proceed sending
1045			 * the CDB.
1046			 */
1047			if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1048				ata_ehi_push_desc(ehi, "ST_FIRST: "
1049					"DRQ=1 with device error, "
1050					"dev_stat 0x%X", status);
1051				qc->err_mask |= AC_ERR_HSM;
1052				ap->hsm_task_state = HSM_ST_ERR;
1053				goto fsm_start;
1054			}
1055		}
1056
1057		if (qc->tf.protocol == ATA_PROT_PIO) {
1058			/* PIO data out protocol.
1059			 * send first data block.
1060			 */
1061
1062			/* ata_pio_sectors() might change the state
1063			 * to HSM_ST_LAST. so, the state is changed here
1064			 * before ata_pio_sectors().
1065			 */
1066			ap->hsm_task_state = HSM_ST;
1067			ata_pio_sectors(qc);
1068		} else
1069			/* send CDB */
1070			atapi_send_cdb(ap, qc);
1071
1072		/* if polling, ata_sff_pio_task() handles the rest.
1073		 * otherwise, interrupt handler takes over from here.
1074		 */
1075		break;
1076
1077	case HSM_ST:
1078		/* complete command or read/write the data register */
1079		if (qc->tf.protocol == ATAPI_PROT_PIO) {
1080			/* ATAPI PIO protocol */
1081			if ((status & ATA_DRQ) == 0) {
1082				/* No more data to transfer or device error.
1083				 * Device error will be tagged in HSM_ST_LAST.
1084				 */
1085				ap->hsm_task_state = HSM_ST_LAST;
1086				goto fsm_start;
1087			}
1088
1089			/* Device should not ask for data transfer (DRQ=1)
1090			 * when it finds something wrong.
1091			 * We ignore DRQ here and stop the HSM by
1092			 * changing hsm_task_state to HSM_ST_ERR and
1093			 * let the EH abort the command or reset the device.
1094			 */
1095			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1096				ata_ehi_push_desc(ehi, "ST-ATAPI: "
1097					"DRQ=1 with device error, "
1098					"dev_stat 0x%X", status);
1099				qc->err_mask |= AC_ERR_HSM;
1100				ap->hsm_task_state = HSM_ST_ERR;
1101				goto fsm_start;
1102			}
1103
1104			atapi_pio_bytes(qc);
1105
1106			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1107				/* bad ireason reported by device */
1108				goto fsm_start;
1109
1110		} else {
1111			/* ATA PIO protocol */
1112			if (unlikely((status & ATA_DRQ) == 0)) {
1113				/* handle BSY=0, DRQ=0 as error */
1114				if (likely(status & (ATA_ERR | ATA_DF))) {
1115					/* device stops HSM for abort/error */
1116					qc->err_mask |= AC_ERR_DEV;
1117
1118					/* If diagnostic failed and this is
1119					 * IDENTIFY, it's likely a phantom
1120					 * device.  Mark hint.
1121					 */
1122					if (qc->dev->horkage &
1123					    ATA_HORKAGE_DIAGNOSTIC)
1124						qc->err_mask |=
1125							AC_ERR_NODEV_HINT;
1126				} else {
1127					/* HSM violation. Let EH handle this.
1128					 * Phantom devices also trigger this
1129					 * condition.  Mark hint.
1130					 */
1131					ata_ehi_push_desc(ehi, "ST-ATA: "
1132						"DRQ=0 without device error, "
1133						"dev_stat 0x%X", status);
1134					qc->err_mask |= AC_ERR_HSM |
1135							AC_ERR_NODEV_HINT;
1136				}
1137
1138				ap->hsm_task_state = HSM_ST_ERR;
1139				goto fsm_start;
1140			}
1141
1142			/* For PIO reads, some devices may ask for
1143			 * data transfer (DRQ=1) alone with ERR=1.
1144			 * We respect DRQ here and transfer one
1145			 * block of junk data before changing the
1146			 * hsm_task_state to HSM_ST_ERR.
1147			 *
1148			 * For PIO writes, ERR=1 DRQ=1 doesn't make
1149			 * sense since the data block has been
1150			 * transferred to the device.
1151			 */
1152			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1153				/* data might be corrputed */
1154				qc->err_mask |= AC_ERR_DEV;
1155
1156				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1157					ata_pio_sectors(qc);
1158					status = ata_wait_idle(ap);
1159				}
1160
1161				if (status & (ATA_BUSY | ATA_DRQ)) {
1162					ata_ehi_push_desc(ehi, "ST-ATA: "
1163						"BUSY|DRQ persists on ERR|DF, "
1164						"dev_stat 0x%X", status);
1165					qc->err_mask |= AC_ERR_HSM;
1166				}
1167
1168				/* There are oddball controllers with
1169				 * status register stuck at 0x7f and
1170				 * lbal/m/h at zero which makes it
1171				 * pass all other presence detection
1172				 * mechanisms we have.  Set NODEV_HINT
1173				 * for it.  Kernel bz#7241.
1174				 */
1175				if (status == 0x7f)
1176					qc->err_mask |= AC_ERR_NODEV_HINT;
1177
1178				/* ata_pio_sectors() might change the
1179				 * state to HSM_ST_LAST. so, the state
1180				 * is changed after ata_pio_sectors().
1181				 */
1182				ap->hsm_task_state = HSM_ST_ERR;
1183				goto fsm_start;
1184			}
1185
1186			ata_pio_sectors(qc);
1187
1188			if (ap->hsm_task_state == HSM_ST_LAST &&
1189			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1190				/* all data read */
1191				status = ata_wait_idle(ap);
1192				goto fsm_start;
1193			}
1194		}
1195
1196		poll_next = 1;
1197		break;
1198
1199	case HSM_ST_LAST:
1200		if (unlikely(!ata_ok(status))) {
1201			qc->err_mask |= __ac_err_mask(status);
1202			ap->hsm_task_state = HSM_ST_ERR;
1203			goto fsm_start;
1204		}
1205
1206		/* no more data to transfer */
1207		DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1208			ap->print_id, qc->dev->devno, status);
1209
1210		WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1211
1212		ap->hsm_task_state = HSM_ST_IDLE;
1213
1214		/* complete taskfile transaction */
1215		ata_hsm_qc_complete(qc, in_wq);
1216
1217		poll_next = 0;
1218		break;
1219
1220	case HSM_ST_ERR:
1221		ap->hsm_task_state = HSM_ST_IDLE;
1222
1223		/* complete taskfile transaction */
1224		ata_hsm_qc_complete(qc, in_wq);
1225
1226		poll_next = 0;
1227		break;
1228	default:
1229		poll_next = 0;
1230		WARN(true, "ata%d: SFF host state machine in invalid state %d",
1231		     ap->print_id, ap->hsm_task_state);
1232	}
1233
1234	return poll_next;
1235}
1236EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1237
1238void ata_sff_queue_work(struct work_struct *work)
1239{
1240	queue_work(ata_sff_wq, work);
1241}
1242EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1243
1244void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1245{
1246	queue_delayed_work(ata_sff_wq, dwork, delay);
1247}
1248EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1249
1250void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1251{
1252	struct ata_port *ap = link->ap;
1253
1254	WARN_ON((ap->sff_pio_task_link != NULL) &&
1255		(ap->sff_pio_task_link != link));
1256	ap->sff_pio_task_link = link;
1257
1258	/* may fail if ata_sff_flush_pio_task() in progress */
1259	ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1260}
1261EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1262
1263void ata_sff_flush_pio_task(struct ata_port *ap)
1264{
1265	DPRINTK("ENTER\n");
1266
1267	cancel_delayed_work_sync(&ap->sff_pio_task);
1268
1269	/*
1270	 * We wanna reset the HSM state to IDLE.  If we do so without
1271	 * grabbing the port lock, critical sections protected by it which
1272	 * expect the HSM state to stay stable may get surprised.  For
1273	 * example, we may set IDLE in between the time
1274	 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1275	 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1276	 */
1277	spin_lock_irq(ap->lock);
1278	ap->hsm_task_state = HSM_ST_IDLE;
1279	spin_unlock_irq(ap->lock);
1280
1281	ap->sff_pio_task_link = NULL;
1282
1283	if (ata_msg_ctl(ap))
1284		ata_port_dbg(ap, "%s: EXIT\n", __func__);
1285}
1286
1287static void ata_sff_pio_task(struct work_struct *work)
1288{
1289	struct ata_port *ap =
1290		container_of(work, struct ata_port, sff_pio_task.work);
1291	struct ata_link *link = ap->sff_pio_task_link;
1292	struct ata_queued_cmd *qc;
1293	u8 status;
1294	int poll_next;
1295
1296	spin_lock_irq(ap->lock);
1297
1298	BUG_ON(ap->sff_pio_task_link == NULL);
1299	/* qc can be NULL if timeout occurred */
1300	qc = ata_qc_from_tag(ap, link->active_tag);
1301	if (!qc) {
1302		ap->sff_pio_task_link = NULL;
1303		goto out_unlock;
1304	}
1305
1306fsm_start:
1307	WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1308
1309	/*
1310	 * This is purely heuristic.  This is a fast path.
1311	 * Sometimes when we enter, BSY will be cleared in
1312	 * a chk-status or two.  If not, the drive is probably seeking
1313	 * or something.  Snooze for a couple msecs, then
1314	 * chk-status again.  If still busy, queue delayed work.
1315	 */
1316	status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1317	if (status & ATA_BUSY) {
1318		spin_unlock_irq(ap->lock);
1319		ata_msleep(ap, 2);
1320		spin_lock_irq(ap->lock);
1321
1322		status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1323		if (status & ATA_BUSY) {
1324			ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1325			goto out_unlock;
1326		}
1327	}
1328
1329	/*
1330	 * hsm_move() may trigger another command to be processed.
1331	 * clean the link beforehand.
1332	 */
1333	ap->sff_pio_task_link = NULL;
1334	/* move the HSM */
1335	poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1336
1337	/* another command or interrupt handler
1338	 * may be running at this point.
1339	 */
1340	if (poll_next)
1341		goto fsm_start;
1342out_unlock:
1343	spin_unlock_irq(ap->lock);
1344}
1345
1346/**
1347 *	ata_sff_qc_issue - issue taskfile to a SFF controller
1348 *	@qc: command to issue to device
1349 *
1350 *	This function issues a PIO or NODATA command to a SFF
1351 *	controller.
1352 *
1353 *	LOCKING:
1354 *	spin_lock_irqsave(host lock)
1355 *
1356 *	RETURNS:
1357 *	Zero on success, AC_ERR_* mask on failure
1358 */
1359unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1360{
1361	struct ata_port *ap = qc->ap;
1362	struct ata_link *link = qc->dev->link;
1363
1364	/* Use polling pio if the LLD doesn't handle
1365	 * interrupt driven pio and atapi CDB interrupt.
1366	 */
1367	if (ap->flags & ATA_FLAG_PIO_POLLING)
1368		qc->tf.flags |= ATA_TFLAG_POLLING;
1369
1370	/* select the device */
1371	ata_dev_select(ap, qc->dev->devno, 1, 0);
1372
1373	/* start the command */
1374	switch (qc->tf.protocol) {
1375	case ATA_PROT_NODATA:
1376		if (qc->tf.flags & ATA_TFLAG_POLLING)
1377			ata_qc_set_polling(qc);
1378
1379		ata_tf_to_host(ap, &qc->tf);
1380		ap->hsm_task_state = HSM_ST_LAST;
1381
1382		if (qc->tf.flags & ATA_TFLAG_POLLING)
1383			ata_sff_queue_pio_task(link, 0);
1384
1385		break;
1386
1387	case ATA_PROT_PIO:
1388		if (qc->tf.flags & ATA_TFLAG_POLLING)
1389			ata_qc_set_polling(qc);
1390
1391		ata_tf_to_host(ap, &qc->tf);
1392
1393		if (qc->tf.flags & ATA_TFLAG_WRITE) {
1394			/* PIO data out protocol */
1395			ap->hsm_task_state = HSM_ST_FIRST;
1396			ata_sff_queue_pio_task(link, 0);
1397
1398			/* always send first data block using the
1399			 * ata_sff_pio_task() codepath.
1400			 */
1401		} else {
1402			/* PIO data in protocol */
1403			ap->hsm_task_state = HSM_ST;
1404
1405			if (qc->tf.flags & ATA_TFLAG_POLLING)
1406				ata_sff_queue_pio_task(link, 0);
1407
1408			/* if polling, ata_sff_pio_task() handles the
1409			 * rest.  otherwise, interrupt handler takes
1410			 * over from here.
1411			 */
1412		}
1413
1414		break;
1415
1416	case ATAPI_PROT_PIO:
1417	case ATAPI_PROT_NODATA:
1418		if (qc->tf.flags & ATA_TFLAG_POLLING)
1419			ata_qc_set_polling(qc);
1420
1421		ata_tf_to_host(ap, &qc->tf);
1422
1423		ap->hsm_task_state = HSM_ST_FIRST;
1424
1425		/* send cdb by polling if no cdb interrupt */
1426		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1427		    (qc->tf.flags & ATA_TFLAG_POLLING))
1428			ata_sff_queue_pio_task(link, 0);
1429		break;
1430
1431	default:
1432		return AC_ERR_SYSTEM;
1433	}
1434
1435	return 0;
1436}
1437EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1438
1439/**
1440 *	ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1441 *	@qc: qc to fill result TF for
1442 *
1443 *	@qc is finished and result TF needs to be filled.  Fill it
1444 *	using ->sff_tf_read.
1445 *
1446 *	LOCKING:
1447 *	spin_lock_irqsave(host lock)
1448 *
1449 *	RETURNS:
1450 *	true indicating that result TF is successfully filled.
1451 */
1452bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1453{
1454	qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1455	return true;
1456}
1457EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1458
1459static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1460{
1461	ap->stats.idle_irq++;
1462
1463#ifdef ATA_IRQ_TRAP
1464	if ((ap->stats.idle_irq % 1000) == 0) {
1465		ap->ops->sff_check_status(ap);
1466		if (ap->ops->sff_irq_clear)
1467			ap->ops->sff_irq_clear(ap);
1468		ata_port_warn(ap, "irq trap\n");
1469		return 1;
1470	}
1471#endif
1472	return 0;	/* irq not handled */
1473}
1474
1475static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1476					struct ata_queued_cmd *qc,
1477					bool hsmv_on_idle)
1478{
1479	u8 status;
1480
1481	VPRINTK("ata%u: protocol %d task_state %d\n",
1482		ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1483
1484	/* Check whether we are expecting interrupt in this state */
1485	switch (ap->hsm_task_state) {
1486	case HSM_ST_FIRST:
1487		/* Some pre-ATAPI-4 devices assert INTRQ
1488		 * at this state when ready to receive CDB.
1489		 */
1490
1491		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1492		 * The flag was turned on only for atapi devices.  No
1493		 * need to check ata_is_atapi(qc->tf.protocol) again.
1494		 */
1495		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1496			return ata_sff_idle_irq(ap);
1497		break;
1498	case HSM_ST_IDLE:
1499		return ata_sff_idle_irq(ap);
1500	default:
1501		break;
1502	}
1503
1504	/* check main status, clearing INTRQ if needed */
1505	status = ata_sff_irq_status(ap);
1506	if (status & ATA_BUSY) {
1507		if (hsmv_on_idle) {
1508			/* BMDMA engine is already stopped, we're screwed */
1509			qc->err_mask |= AC_ERR_HSM;
1510			ap->hsm_task_state = HSM_ST_ERR;
1511		} else
1512			return ata_sff_idle_irq(ap);
1513	}
1514
1515	/* clear irq events */
1516	if (ap->ops->sff_irq_clear)
1517		ap->ops->sff_irq_clear(ap);
1518
1519	ata_sff_hsm_move(ap, qc, status, 0);
1520
1521	return 1;	/* irq handled */
1522}
1523
1524/**
1525 *	ata_sff_port_intr - Handle SFF port interrupt
1526 *	@ap: Port on which interrupt arrived (possibly...)
1527 *	@qc: Taskfile currently active in engine
1528 *
1529 *	Handle port interrupt for given queued command.
1530 *
1531 *	LOCKING:
1532 *	spin_lock_irqsave(host lock)
1533 *
1534 *	RETURNS:
1535 *	One if interrupt was handled, zero if not (shared irq).
1536 */
1537unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1538{
1539	return __ata_sff_port_intr(ap, qc, false);
1540}
1541EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1542
1543static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1544	unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1545{
1546	struct ata_host *host = dev_instance;
1547	bool retried = false;
1548	unsigned int i;
1549	unsigned int handled, idle, polling;
1550	unsigned long flags;
1551
1552	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1553	spin_lock_irqsave(&host->lock, flags);
1554
1555retry:
1556	handled = idle = polling = 0;
1557	for (i = 0; i < host->n_ports; i++) {
1558		struct ata_port *ap = host->ports[i];
1559		struct ata_queued_cmd *qc;
1560
1561		qc = ata_qc_from_tag(ap, ap->link.active_tag);
1562		if (qc) {
1563			if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1564				handled |= port_intr(ap, qc);
1565			else
1566				polling |= 1 << i;
1567		} else
1568			idle |= 1 << i;
1569	}
1570
1571	/*
1572	 * If no port was expecting IRQ but the controller is actually
1573	 * asserting IRQ line, nobody cared will ensue.  Check IRQ
1574	 * pending status if available and clear spurious IRQ.
1575	 */
1576	if (!handled && !retried) {
1577		bool retry = false;
1578
1579		for (i = 0; i < host->n_ports; i++) {
1580			struct ata_port *ap = host->ports[i];
1581
1582			if (polling & (1 << i))
1583				continue;
1584
1585			if (!ap->ops->sff_irq_check ||
1586			    !ap->ops->sff_irq_check(ap))
1587				continue;
1588
1589			if (idle & (1 << i)) {
1590				ap->ops->sff_check_status(ap);
1591				if (ap->ops->sff_irq_clear)
1592					ap->ops->sff_irq_clear(ap);
1593			} else {
1594				/* clear INTRQ and check if BUSY cleared */
1595				if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1596					retry |= true;
1597				/*
1598				 * With command in flight, we can't do
1599				 * sff_irq_clear() w/o racing with completion.
1600				 */
1601			}
1602		}
1603
1604		if (retry) {
1605			retried = true;
1606			goto retry;
1607		}
1608	}
1609
1610	spin_unlock_irqrestore(&host->lock, flags);
1611
1612	return IRQ_RETVAL(handled);
1613}
1614
1615/**
1616 *	ata_sff_interrupt - Default SFF ATA host interrupt handler
1617 *	@irq: irq line (unused)
1618 *	@dev_instance: pointer to our ata_host information structure
1619 *
1620 *	Default interrupt handler for PCI IDE devices.  Calls
1621 *	ata_sff_port_intr() for each port that is not disabled.
1622 *
1623 *	LOCKING:
1624 *	Obtains host lock during operation.
1625 *
1626 *	RETURNS:
1627 *	IRQ_NONE or IRQ_HANDLED.
1628 */
1629irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1630{
1631	return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1632}
1633EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1634
1635/**
1636 *	ata_sff_lost_interrupt	-	Check for an apparent lost interrupt
1637 *	@ap: port that appears to have timed out
1638 *
1639 *	Called from the libata error handlers when the core code suspects
1640 *	an interrupt has been lost. If it has complete anything we can and
1641 *	then return. Interface must support altstatus for this faster
1642 *	recovery to occur.
1643 *
1644 *	Locking:
1645 *	Caller holds host lock
1646 */
1647
1648void ata_sff_lost_interrupt(struct ata_port *ap)
1649{
1650	u8 status;
1651	struct ata_queued_cmd *qc;
1652
1653	/* Only one outstanding command per SFF channel */
1654	qc = ata_qc_from_tag(ap, ap->link.active_tag);
1655	/* We cannot lose an interrupt on a non-existent or polled command */
1656	if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1657		return;
1658	/* See if the controller thinks it is still busy - if so the command
1659	   isn't a lost IRQ but is still in progress */
1660	status = ata_sff_altstatus(ap);
1661	if (status & ATA_BUSY)
1662		return;
1663
1664	/* There was a command running, we are no longer busy and we have
1665	   no interrupt. */
1666	ata_port_warn(ap, "lost interrupt (Status 0x%x)\n",
1667								status);
1668	/* Run the host interrupt logic as if the interrupt had not been
1669	   lost */
1670	ata_sff_port_intr(ap, qc);
1671}
1672EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1673
1674/**
1675 *	ata_sff_freeze - Freeze SFF controller port
1676 *	@ap: port to freeze
1677 *
1678 *	Freeze SFF controller port.
1679 *
1680 *	LOCKING:
1681 *	Inherited from caller.
1682 */
1683void ata_sff_freeze(struct ata_port *ap)
1684{
1685	ap->ctl |= ATA_NIEN;
1686	ap->last_ctl = ap->ctl;
1687
1688	if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1689		ata_sff_set_devctl(ap, ap->ctl);
1690
1691	/* Under certain circumstances, some controllers raise IRQ on
1692	 * ATA_NIEN manipulation.  Also, many controllers fail to mask
1693	 * previously pending IRQ on ATA_NIEN assertion.  Clear it.
1694	 */
1695	ap->ops->sff_check_status(ap);
1696
1697	if (ap->ops->sff_irq_clear)
1698		ap->ops->sff_irq_clear(ap);
1699}
1700EXPORT_SYMBOL_GPL(ata_sff_freeze);
1701
1702/**
1703 *	ata_sff_thaw - Thaw SFF controller port
1704 *	@ap: port to thaw
1705 *
1706 *	Thaw SFF controller port.
1707 *
1708 *	LOCKING:
1709 *	Inherited from caller.
1710 */
1711void ata_sff_thaw(struct ata_port *ap)
1712{
1713	/* clear & re-enable interrupts */
1714	ap->ops->sff_check_status(ap);
1715	if (ap->ops->sff_irq_clear)
1716		ap->ops->sff_irq_clear(ap);
1717	ata_sff_irq_on(ap);
1718}
1719EXPORT_SYMBOL_GPL(ata_sff_thaw);
1720
1721/**
1722 *	ata_sff_prereset - prepare SFF link for reset
1723 *	@link: SFF link to be reset
1724 *	@deadline: deadline jiffies for the operation
1725 *
1726 *	SFF link @link is about to be reset.  Initialize it.  It first
1727 *	calls ata_std_prereset() and wait for !BSY if the port is
1728 *	being softreset.
1729 *
1730 *	LOCKING:
1731 *	Kernel thread context (may sleep)
1732 *
1733 *	RETURNS:
1734 *	0 on success, -errno otherwise.
1735 */
1736int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1737{
1738	struct ata_eh_context *ehc = &link->eh_context;
1739	int rc;
1740
1741	rc = ata_std_prereset(link, deadline);
1742	if (rc)
1743		return rc;
1744
1745	/* if we're about to do hardreset, nothing more to do */
1746	if (ehc->i.action & ATA_EH_HARDRESET)
1747		return 0;
1748
1749	/* wait for !BSY if we don't know that no device is attached */
1750	if (!ata_link_offline(link)) {
1751		rc = ata_sff_wait_ready(link, deadline);
1752		if (rc && rc != -ENODEV) {
1753			ata_link_warn(link,
1754				      "device not ready (errno=%d), forcing hardreset\n",
1755				      rc);
1756			ehc->i.action |= ATA_EH_HARDRESET;
1757		}
1758	}
1759
1760	return 0;
1761}
1762EXPORT_SYMBOL_GPL(ata_sff_prereset);
1763
1764/**
1765 *	ata_devchk - PATA device presence detection
1766 *	@ap: ATA channel to examine
1767 *	@device: Device to examine (starting at zero)
1768 *
1769 *	This technique was originally described in
1770 *	Hale Landis's ATADRVR (www.ata-atapi.com), and
1771 *	later found its way into the ATA/ATAPI spec.
1772 *
1773 *	Write a pattern to the ATA shadow registers,
1774 *	and if a device is present, it will respond by
1775 *	correctly storing and echoing back the
1776 *	ATA shadow register contents.
1777 *
1778 *	LOCKING:
1779 *	caller.
1780 */
1781static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1782{
1783	struct ata_ioports *ioaddr = &ap->ioaddr;
1784	u8 nsect, lbal;
1785
1786	ap->ops->sff_dev_select(ap, device);
1787
1788	iowrite8(0x55, ioaddr->nsect_addr);
1789	iowrite8(0xaa, ioaddr->lbal_addr);
1790
1791	iowrite8(0xaa, ioaddr->nsect_addr);
1792	iowrite8(0x55, ioaddr->lbal_addr);
1793
1794	iowrite8(0x55, ioaddr->nsect_addr);
1795	iowrite8(0xaa, ioaddr->lbal_addr);
1796
1797	nsect = ioread8(ioaddr->nsect_addr);
1798	lbal = ioread8(ioaddr->lbal_addr);
1799
1800	if ((nsect == 0x55) && (lbal == 0xaa))
1801		return 1;	/* we found a device */
1802
1803	return 0;		/* nothing found */
1804}
1805
1806/**
1807 *	ata_sff_dev_classify - Parse returned ATA device signature
1808 *	@dev: ATA device to classify (starting at zero)
1809 *	@present: device seems present
1810 *	@r_err: Value of error register on completion
1811 *
1812 *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1813 *	an ATA/ATAPI-defined set of values is placed in the ATA
1814 *	shadow registers, indicating the results of device detection
1815 *	and diagnostics.
1816 *
1817 *	Select the ATA device, and read the values from the ATA shadow
1818 *	registers.  Then parse according to the Error register value,
1819 *	and the spec-defined values examined by ata_dev_classify().
1820 *
1821 *	LOCKING:
1822 *	caller.
1823 *
1824 *	RETURNS:
1825 *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1826 */
1827unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1828				  u8 *r_err)
1829{
1830	struct ata_port *ap = dev->link->ap;
1831	struct ata_taskfile tf;
1832	unsigned int class;
1833	u8 err;
1834
1835	ap->ops->sff_dev_select(ap, dev->devno);
1836
1837	memset(&tf, 0, sizeof(tf));
1838
1839	ap->ops->sff_tf_read(ap, &tf);
1840	err = tf.feature;
1841	if (r_err)
1842		*r_err = err;
1843
1844	/* see if device passed diags: continue and warn later */
1845	if (err == 0)
1846		/* diagnostic fail : do nothing _YET_ */
1847		dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1848	else if (err == 1)
1849		/* do nothing */ ;
1850	else if ((dev->devno == 0) && (err == 0x81))
1851		/* do nothing */ ;
1852	else
1853		return ATA_DEV_NONE;
1854
1855	/* determine if device is ATA or ATAPI */
1856	class = ata_dev_classify(&tf);
1857
1858	if (class == ATA_DEV_UNKNOWN) {
1859		/* If the device failed diagnostic, it's likely to
1860		 * have reported incorrect device signature too.
1861		 * Assume ATA device if the device seems present but
1862		 * device signature is invalid with diagnostic
1863		 * failure.
1864		 */
1865		if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1866			class = ATA_DEV_ATA;
1867		else
1868			class = ATA_DEV_NONE;
1869	} else if ((class == ATA_DEV_ATA) &&
1870		   (ap->ops->sff_check_status(ap) == 0))
1871		class = ATA_DEV_NONE;
1872
1873	return class;
1874}
1875EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1876
1877/**
1878 *	ata_sff_wait_after_reset - wait for devices to become ready after reset
1879 *	@link: SFF link which is just reset
1880 *	@devmask: mask of present devices
1881 *	@deadline: deadline jiffies for the operation
1882 *
1883 *	Wait devices attached to SFF @link to become ready after
1884 *	reset.  It contains preceding 150ms wait to avoid accessing TF
1885 *	status register too early.
1886 *
1887 *	LOCKING:
1888 *	Kernel thread context (may sleep).
1889 *
1890 *	RETURNS:
1891 *	0 on success, -ENODEV if some or all of devices in @devmask
1892 *	don't seem to exist.  -errno on other errors.
1893 */
1894int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1895			     unsigned long deadline)
1896{
1897	struct ata_port *ap = link->ap;
1898	struct ata_ioports *ioaddr = &ap->ioaddr;
1899	unsigned int dev0 = devmask & (1 << 0);
1900	unsigned int dev1 = devmask & (1 << 1);
1901	int rc, ret = 0;
1902
1903	ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1904
1905	/* always check readiness of the master device */
1906	rc = ata_sff_wait_ready(link, deadline);
1907	/* -ENODEV means the odd clown forgot the D7 pulldown resistor
1908	 * and TF status is 0xff, bail out on it too.
1909	 */
1910	if (rc)
1911		return rc;
1912
1913	/* if device 1 was found in ata_devchk, wait for register
1914	 * access briefly, then wait for BSY to clear.
1915	 */
1916	if (dev1) {
1917		int i;
1918
1919		ap->ops->sff_dev_select(ap, 1);
1920
1921		/* Wait for register access.  Some ATAPI devices fail
1922		 * to set nsect/lbal after reset, so don't waste too
1923		 * much time on it.  We're gonna wait for !BSY anyway.
1924		 */
1925		for (i = 0; i < 2; i++) {
1926			u8 nsect, lbal;
1927
1928			nsect = ioread8(ioaddr->nsect_addr);
1929			lbal = ioread8(ioaddr->lbal_addr);
1930			if ((nsect == 1) && (lbal == 1))
1931				break;
1932			ata_msleep(ap, 50);	/* give drive a breather */
1933		}
1934
1935		rc = ata_sff_wait_ready(link, deadline);
1936		if (rc) {
1937			if (rc != -ENODEV)
1938				return rc;
1939			ret = rc;
1940		}
1941	}
1942
1943	/* is all this really necessary? */
1944	ap->ops->sff_dev_select(ap, 0);
1945	if (dev1)
1946		ap->ops->sff_dev_select(ap, 1);
1947	if (dev0)
1948		ap->ops->sff_dev_select(ap, 0);
1949
1950	return ret;
1951}
1952EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
1953
1954static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1955			     unsigned long deadline)
1956{
1957	struct ata_ioports *ioaddr = &ap->ioaddr;
1958
1959	DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1960
1961	if (ap->ioaddr.ctl_addr) {
1962		/* software reset.  causes dev0 to be selected */
1963		iowrite8(ap->ctl, ioaddr->ctl_addr);
1964		udelay(20);	/* FIXME: flush */
1965		iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1966		udelay(20);	/* FIXME: flush */
1967		iowrite8(ap->ctl, ioaddr->ctl_addr);
1968		ap->last_ctl = ap->ctl;
1969	}
1970
1971	/* wait the port to become ready */
1972	return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
1973}
1974
1975/**
1976 *	ata_sff_softreset - reset host port via ATA SRST
1977 *	@link: ATA link to reset
1978 *	@classes: resulting classes of attached devices
1979 *	@deadline: deadline jiffies for the operation
1980 *
1981 *	Reset host port using ATA SRST.
1982 *
1983 *	LOCKING:
1984 *	Kernel thread context (may sleep)
1985 *
1986 *	RETURNS:
1987 *	0 on success, -errno otherwise.
1988 */
1989int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
1990		      unsigned long deadline)
1991{
1992	struct ata_port *ap = link->ap;
1993	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1994	unsigned int devmask = 0;
1995	int rc;
1996	u8 err;
1997
1998	DPRINTK("ENTER\n");
1999
2000	/* determine if device 0/1 are present */
2001	if (ata_devchk(ap, 0))
2002		devmask |= (1 << 0);
2003	if (slave_possible && ata_devchk(ap, 1))
2004		devmask |= (1 << 1);
2005
2006	/* select device 0 again */
2007	ap->ops->sff_dev_select(ap, 0);
2008
2009	/* issue bus reset */
2010	DPRINTK("about to softreset, devmask=%x\n", devmask);
2011	rc = ata_bus_softreset(ap, devmask, deadline);
2012	/* if link is occupied, -ENODEV too is an error */
2013	if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2014		ata_link_err(link, "SRST failed (errno=%d)\n", rc);
2015		return rc;
2016	}
2017
2018	/* determine by signature whether we have ATA or ATAPI devices */
2019	classes[0] = ata_sff_dev_classify(&link->device[0],
2020					  devmask & (1 << 0), &err);
2021	if (slave_possible && err != 0x81)
2022		classes[1] = ata_sff_dev_classify(&link->device[1],
2023						  devmask & (1 << 1), &err);
2024
2025	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2026	return 0;
2027}
2028EXPORT_SYMBOL_GPL(ata_sff_softreset);
2029
2030/**
2031 *	sata_sff_hardreset - reset host port via SATA phy reset
2032 *	@link: link to reset
2033 *	@class: resulting class of attached device
2034 *	@deadline: deadline jiffies for the operation
2035 *
2036 *	SATA phy-reset host port using DET bits of SControl register,
2037 *	wait for !BSY and classify the attached device.
2038 *
2039 *	LOCKING:
2040 *	Kernel thread context (may sleep)
2041 *
2042 *	RETURNS:
2043 *	0 on success, -errno otherwise.
2044 */
2045int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2046		       unsigned long deadline)
2047{
2048	struct ata_eh_context *ehc = &link->eh_context;
2049	const unsigned long *timing = sata_ehc_deb_timing(ehc);
2050	bool online;
2051	int rc;
2052
2053	rc = sata_link_hardreset(link, timing, deadline, &online,
2054				 ata_sff_check_ready);
2055	if (online)
2056		*class = ata_sff_dev_classify(link->device, 1, NULL);
2057
2058	DPRINTK("EXIT, class=%u\n", *class);
2059	return rc;
2060}
2061EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2062
2063/**
2064 *	ata_sff_postreset - SFF postreset callback
2065 *	@link: the target SFF ata_link
2066 *	@classes: classes of attached devices
2067 *
2068 *	This function is invoked after a successful reset.  It first
2069 *	calls ata_std_postreset() and performs SFF specific postreset
2070 *	processing.
2071 *
2072 *	LOCKING:
2073 *	Kernel thread context (may sleep)
2074 */
2075void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2076{
2077	struct ata_port *ap = link->ap;
2078
2079	ata_std_postreset(link, classes);
2080
2081	/* is double-select really necessary? */
2082	if (classes[0] != ATA_DEV_NONE)
2083		ap->ops->sff_dev_select(ap, 1);
2084	if (classes[1] != ATA_DEV_NONE)
2085		ap->ops->sff_dev_select(ap, 0);
2086
2087	/* bail out if no device is present */
2088	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2089		DPRINTK("EXIT, no device\n");
2090		return;
2091	}
2092
2093	/* set up device control */
2094	if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2095		ata_sff_set_devctl(ap, ap->ctl);
2096		ap->last_ctl = ap->ctl;
2097	}
2098}
2099EXPORT_SYMBOL_GPL(ata_sff_postreset);
2100
2101/**
2102 *	ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2103 *	@qc: command
2104 *
2105 *	Drain the FIFO and device of any stuck data following a command
2106 *	failing to complete. In some cases this is necessary before a
2107 *	reset will recover the device.
2108 *
2109 */
2110
2111void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2112{
2113	int count;
2114	struct ata_port *ap;
2115
2116	/* We only need to flush incoming data when a command was running */
2117	if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2118		return;
2119
2120	ap = qc->ap;
2121	/* Drain up to 64K of data before we give up this recovery method */
2122	for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2123						&& count < 65536; count += 2)
2124		ioread16(ap->ioaddr.data_addr);
2125
2126	/* Can become DEBUG later */
2127	if (count)
2128		ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2129
2130}
2131EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2132
2133/**
2134 *	ata_sff_error_handler - Stock error handler for SFF controller
2135 *	@ap: port to handle error for
2136 *
2137 *	Stock error handler for SFF controller.  It can handle both
2138 *	PATA and SATA controllers.  Many controllers should be able to
2139 *	use this EH as-is or with some added handling before and
2140 *	after.
2141 *
2142 *	LOCKING:
2143 *	Kernel thread context (may sleep)
2144 */
2145void ata_sff_error_handler(struct ata_port *ap)
2146{
2147	ata_reset_fn_t softreset = ap->ops->softreset;
2148	ata_reset_fn_t hardreset = ap->ops->hardreset;
2149	struct ata_queued_cmd *qc;
2150	unsigned long flags;
2151
2152	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2153	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2154		qc = NULL;
2155
2156	spin_lock_irqsave(ap->lock, flags);
2157
2158	/*
2159	 * We *MUST* do FIFO draining before we issue a reset as
2160	 * several devices helpfully clear their internal state and
2161	 * will lock solid if we touch the data port post reset. Pass
2162	 * qc in case anyone wants to do different PIO/DMA recovery or
2163	 * has per command fixups
2164	 */
2165	if (ap->ops->sff_drain_fifo)
2166		ap->ops->sff_drain_fifo(qc);
2167
2168	spin_unlock_irqrestore(ap->lock, flags);
2169
2170	/* ignore built-in hardresets if SCR access is not available */
2171	if ((hardreset == sata_std_hardreset ||
2172	     hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2173		hardreset = NULL;
2174
2175	ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2176		  ap->ops->postreset);
2177}
2178EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2179
2180/**
2181 *	ata_sff_std_ports - initialize ioaddr with standard port offsets.
2182 *	@ioaddr: IO address structure to be initialized
2183 *
2184 *	Utility function which initializes data_addr, error_addr,
2185 *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2186 *	device_addr, status_addr, and command_addr to standard offsets
2187 *	relative to cmd_addr.
2188 *
2189 *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2190 */
2191void ata_sff_std_ports(struct ata_ioports *ioaddr)
2192{
2193	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2194	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2195	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2196	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2197	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2198	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2199	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2200	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2201	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2202	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2203}
2204EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2205
2206#ifdef CONFIG_PCI
2207
2208static int ata_resources_present(struct pci_dev *pdev, int port)
2209{
2210	int i;
2211
2212	/* Check the PCI resources for this channel are enabled */
2213	port = port * 2;
2214	for (i = 0; i < 2; i++) {
2215		if (pci_resource_start(pdev, port + i) == 0 ||
2216		    pci_resource_len(pdev, port + i) == 0)
2217			return 0;
2218	}
2219	return 1;
2220}
2221
2222/**
2223 *	ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2224 *	@host: target ATA host
2225 *
2226 *	Acquire native PCI ATA resources for @host and initialize the
2227 *	first two ports of @host accordingly.  Ports marked dummy are
2228 *	skipped and allocation failure makes the port dummy.
2229 *
2230 *	Note that native PCI resources are valid even for legacy hosts
2231 *	as we fix up pdev resources array early in boot, so this
2232 *	function can be used for both native and legacy SFF hosts.
2233 *
2234 *	LOCKING:
2235 *	Inherited from calling layer (may sleep).
2236 *
2237 *	RETURNS:
2238 *	0 if at least one port is initialized, -ENODEV if no port is
2239 *	available.
2240 */
2241int ata_pci_sff_init_host(struct ata_host *host)
2242{
2243	struct device *gdev = host->dev;
2244	struct pci_dev *pdev = to_pci_dev(gdev);
2245	unsigned int mask = 0;
2246	int i, rc;
2247
2248	/* request, iomap BARs and init port addresses accordingly */
2249	for (i = 0; i < 2; i++) {
2250		struct ata_port *ap = host->ports[i];
2251		int base = i * 2;
2252		void __iomem * const *iomap;
2253
2254		if (ata_port_is_dummy(ap))
2255			continue;
2256
2257		/* Discard disabled ports.  Some controllers show
2258		 * their unused channels this way.  Disabled ports are
2259		 * made dummy.
2260		 */
2261		if (!ata_resources_present(pdev, i)) {
2262			ap->ops = &ata_dummy_port_ops;
2263			continue;
2264		}
2265
2266		rc = pcim_iomap_regions(pdev, 0x3 << base,
2267					dev_driver_string(gdev));
2268		if (rc) {
2269			dev_warn(gdev,
2270				 "failed to request/iomap BARs for port %d (errno=%d)\n",
2271				 i, rc);
2272			if (rc == -EBUSY)
2273				pcim_pin_device(pdev);
2274			ap->ops = &ata_dummy_port_ops;
2275			continue;
2276		}
2277		host->iomap = iomap = pcim_iomap_table(pdev);
2278
2279		ap->ioaddr.cmd_addr = iomap[base];
2280		ap->ioaddr.altstatus_addr =
2281		ap->ioaddr.ctl_addr = (void __iomem *)
2282			((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2283		ata_sff_std_ports(&ap->ioaddr);
2284
2285		ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2286			(unsigned long long)pci_resource_start(pdev, base),
2287			(unsigned long long)pci_resource_start(pdev, base + 1));
2288
2289		mask |= 1 << i;
2290	}
2291
2292	if (!mask) {
2293		dev_err(gdev, "no available native port\n");
2294		return -ENODEV;
2295	}
2296
2297	return 0;
2298}
2299EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2300
2301/**
2302 *	ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2303 *	@pdev: target PCI device
2304 *	@ppi: array of port_info, must be enough for two ports
2305 *	@r_host: out argument for the initialized ATA host
2306 *
2307 *	Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2308 *	all PCI resources and initialize it accordingly in one go.
2309 *
2310 *	LOCKING:
2311 *	Inherited from calling layer (may sleep).
2312 *
2313 *	RETURNS:
2314 *	0 on success, -errno otherwise.
2315 */
2316int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2317			     const struct ata_port_info * const *ppi,
2318			     struct ata_host **r_host)
2319{
2320	struct ata_host *host;
2321	int rc;
2322
2323	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2324		return -ENOMEM;
2325
2326	host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2327	if (!host) {
2328		dev_err(&pdev->dev, "failed to allocate ATA host\n");
2329		rc = -ENOMEM;
2330		goto err_out;
2331	}
2332
2333	rc = ata_pci_sff_init_host(host);
2334	if (rc)
2335		goto err_out;
2336
2337	devres_remove_group(&pdev->dev, NULL);
2338	*r_host = host;
2339	return 0;
2340
2341err_out:
2342	devres_release_group(&pdev->dev, NULL);
2343	return rc;
2344}
2345EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2346
2347/**
2348 *	ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2349 *	@host: target SFF ATA host
2350 *	@irq_handler: irq_handler used when requesting IRQ(s)
2351 *	@sht: scsi_host_template to use when registering the host
2352 *
2353 *	This is the counterpart of ata_host_activate() for SFF ATA
2354 *	hosts.  This separate helper is necessary because SFF hosts
2355 *	use two separate interrupts in legacy mode.
2356 *
2357 *	LOCKING:
2358 *	Inherited from calling layer (may sleep).
2359 *
2360 *	RETURNS:
2361 *	0 on success, -errno otherwise.
2362 */
2363int ata_pci_sff_activate_host(struct ata_host *host,
2364			      irq_handler_t irq_handler,
2365			      struct scsi_host_template *sht)
2366{
2367	struct device *dev = host->dev;
2368	struct pci_dev *pdev = to_pci_dev(dev);
2369	const char *drv_name = dev_driver_string(host->dev);
2370	int legacy_mode = 0, rc;
2371
2372	rc = ata_host_start(host);
2373	if (rc)
2374		return rc;
2375
2376	if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2377		u8 tmp8, mask = 0;
2378
2379		/*
2380		 * ATA spec says we should use legacy mode when one
2381		 * port is in legacy mode, but disabled ports on some
2382		 * PCI hosts appear as fixed legacy ports, e.g SB600/700
2383		 * on which the secondary port is not wired, so
2384		 * ignore ports that are marked as 'dummy' during
2385		 * this check
2386		 */
2387		pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2388		if (!ata_port_is_dummy(host->ports[0]))
2389			mask |= (1 << 0);
2390		if (!ata_port_is_dummy(host->ports[1]))
2391			mask |= (1 << 2);
2392		if ((tmp8 & mask) != mask)
2393			legacy_mode = 1;
2394	}
2395
2396	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2397		return -ENOMEM;
2398
2399	if (!legacy_mode && pdev->irq) {
2400		int i;
2401
2402		rc = devm_request_irq(dev, pdev->irq, irq_handler,
2403				      IRQF_SHARED, drv_name, host);
2404		if (rc)
2405			goto out;
2406
2407		for (i = 0; i < 2; i++) {
2408			if (ata_port_is_dummy(host->ports[i]))
2409				continue;
2410			ata_port_desc(host->ports[i], "irq %d", pdev->irq);
2411		}
2412	} else if (legacy_mode) {
2413		if (!ata_port_is_dummy(host->ports[0])) {
2414			rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2415					      irq_handler, IRQF_SHARED,
2416					      drv_name, host);
2417			if (rc)
2418				goto out;
2419
2420			ata_port_desc(host->ports[0], "irq %d",
2421				      ATA_PRIMARY_IRQ(pdev));
2422		}
2423
2424		if (!ata_port_is_dummy(host->ports[1])) {
2425			rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2426					      irq_handler, IRQF_SHARED,
2427					      drv_name, host);
2428			if (rc)
2429				goto out;
2430
2431			ata_port_desc(host->ports[1], "irq %d",
2432				      ATA_SECONDARY_IRQ(pdev));
2433		}
2434	}
2435
2436	rc = ata_host_register(host, sht);
2437out:
2438	if (rc == 0)
2439		devres_remove_group(dev, NULL);
2440	else
2441		devres_release_group(dev, NULL);
2442
2443	return rc;
2444}
2445EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2446
2447static const struct ata_port_info *ata_sff_find_valid_pi(
2448					const struct ata_port_info * const *ppi)
2449{
2450	int i;
2451
2452	/* look up the first valid port_info */
2453	for (i = 0; i < 2 && ppi[i]; i++)
2454		if (ppi[i]->port_ops != &ata_dummy_port_ops)
2455			return ppi[i];
2456
2457	return NULL;
2458}
2459
2460static int ata_pci_init_one(struct pci_dev *pdev,
2461		const struct ata_port_info * const *ppi,
2462		struct scsi_host_template *sht, void *host_priv,
2463		int hflags, bool bmdma)
2464{
2465	struct device *dev = &pdev->dev;
2466	const struct ata_port_info *pi;
2467	struct ata_host *host = NULL;
2468	int rc;
2469
2470	DPRINTK("ENTER\n");
2471
2472	pi = ata_sff_find_valid_pi(ppi);
2473	if (!pi) {
2474		dev_err(&pdev->dev, "no valid port_info specified\n");
2475		return -EINVAL;
2476	}
2477
2478	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2479		return -ENOMEM;
2480
2481	rc = pcim_enable_device(pdev);
2482	if (rc)
2483		goto out;
2484
2485#ifdef CONFIG_ATA_BMDMA
2486	if (bmdma)
2487		/* prepare and activate BMDMA host */
2488		rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2489	else
2490#endif
2491		/* prepare and activate SFF host */
2492		rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2493	if (rc)
2494		goto out;
2495	host->private_data = host_priv;
2496	host->flags |= hflags;
2497
2498#ifdef CONFIG_ATA_BMDMA
2499	if (bmdma) {
2500		pci_set_master(pdev);
2501		rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2502	} else
2503#endif
2504		rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2505out:
2506	if (rc == 0)
2507		devres_remove_group(&pdev->dev, NULL);
2508	else
2509		devres_release_group(&pdev->dev, NULL);
2510
2511	return rc;
2512}
2513
2514/**
2515 *	ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2516 *	@pdev: Controller to be initialized
2517 *	@ppi: array of port_info, must be enough for two ports
2518 *	@sht: scsi_host_template to use when registering the host
2519 *	@host_priv: host private_data
2520 *	@hflag: host flags
2521 *
2522 *	This is a helper function which can be called from a driver's
2523 *	xxx_init_one() probe function if the hardware uses traditional
2524 *	IDE taskfile registers and is PIO only.
2525 *
2526 *	ASSUMPTION:
2527 *	Nobody makes a single channel controller that appears solely as
2528 *	the secondary legacy port on PCI.
2529 *
2530 *	LOCKING:
2531 *	Inherited from PCI layer (may sleep).
2532 *
2533 *	RETURNS:
2534 *	Zero on success, negative on errno-based value on error.
2535 */
2536int ata_pci_sff_init_one(struct pci_dev *pdev,
2537		 const struct ata_port_info * const *ppi,
2538		 struct scsi_host_template *sht, void *host_priv, int hflag)
2539{
2540	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2541}
2542EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2543
2544#endif /* CONFIG_PCI */
2545
2546/*
2547 *	BMDMA support
2548 */
2549
2550#ifdef CONFIG_ATA_BMDMA
2551
2552const struct ata_port_operations ata_bmdma_port_ops = {
2553	.inherits		= &ata_sff_port_ops,
2554
2555	.error_handler		= ata_bmdma_error_handler,
2556	.post_internal_cmd	= ata_bmdma_post_internal_cmd,
2557
2558	.qc_prep		= ata_bmdma_qc_prep,
2559	.qc_issue		= ata_bmdma_qc_issue,
2560
2561	.sff_irq_clear		= ata_bmdma_irq_clear,
2562	.bmdma_setup		= ata_bmdma_setup,
2563	.bmdma_start		= ata_bmdma_start,
2564	.bmdma_stop		= ata_bmdma_stop,
2565	.bmdma_status		= ata_bmdma_status,
2566
2567	.port_start		= ata_bmdma_port_start,
2568};
2569EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2570
2571const struct ata_port_operations ata_bmdma32_port_ops = {
2572	.inherits		= &ata_bmdma_port_ops,
2573
2574	.sff_data_xfer		= ata_sff_data_xfer32,
2575	.port_start		= ata_bmdma_port_start32,
2576};
2577EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2578
2579/**
2580 *	ata_bmdma_fill_sg - Fill PCI IDE PRD table
2581 *	@qc: Metadata associated with taskfile to be transferred
2582 *
2583 *	Fill PCI IDE PRD (scatter-gather) table with segments
2584 *	associated with the current disk command.
2585 *
2586 *	LOCKING:
2587 *	spin_lock_irqsave(host lock)
2588 *
2589 */
2590static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2591{
2592	struct ata_port *ap = qc->ap;
2593	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2594	struct scatterlist *sg;
2595	unsigned int si, pi;
2596
2597	pi = 0;
2598	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2599		u32 addr, offset;
2600		u32 sg_len, len;
2601
2602		/* determine if physical DMA addr spans 64K boundary.
2603		 * Note h/w doesn't support 64-bit, so we unconditionally
2604		 * truncate dma_addr_t to u32.
2605		 */
2606		addr = (u32) sg_dma_address(sg);
2607		sg_len = sg_dma_len(sg);
2608
2609		while (sg_len) {
2610			offset = addr & 0xffff;
2611			len = sg_len;
2612			if ((offset + sg_len) > 0x10000)
2613				len = 0x10000 - offset;
2614
2615			prd[pi].addr = cpu_to_le32(addr);
2616			prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2617			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2618
2619			pi++;
2620			sg_len -= len;
2621			addr += len;
2622		}
2623	}
2624
2625	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2626}
2627
2628/**
2629 *	ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2630 *	@qc: Metadata associated with taskfile to be transferred
2631 *
2632 *	Fill PCI IDE PRD (scatter-gather) table with segments
2633 *	associated with the current disk command. Perform the fill
2634 *	so that we avoid writing any length 64K records for
2635 *	controllers that don't follow the spec.
2636 *
2637 *	LOCKING:
2638 *	spin_lock_irqsave(host lock)
2639 *
2640 */
2641static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2642{
2643	struct ata_port *ap = qc->ap;
2644	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2645	struct scatterlist *sg;
2646	unsigned int si, pi;
2647
2648	pi = 0;
2649	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2650		u32 addr, offset;
2651		u32 sg_len, len, blen;
2652
2653		/* determine if physical DMA addr spans 64K boundary.
2654		 * Note h/w doesn't support 64-bit, so we unconditionally
2655		 * truncate dma_addr_t to u32.
2656		 */
2657		addr = (u32) sg_dma_address(sg);
2658		sg_len = sg_dma_len(sg);
2659
2660		while (sg_len) {
2661			offset = addr & 0xffff;
2662			len = sg_len;
2663			if ((offset + sg_len) > 0x10000)
2664				len = 0x10000 - offset;
2665
2666			blen = len & 0xffff;
2667			prd[pi].addr = cpu_to_le32(addr);
2668			if (blen == 0) {
2669				/* Some PATA chipsets like the CS5530 can't
2670				   cope with 0x0000 meaning 64K as the spec
2671				   says */
2672				prd[pi].flags_len = cpu_to_le32(0x8000);
2673				blen = 0x8000;
2674				prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2675			}
2676			prd[pi].flags_len = cpu_to_le32(blen);
2677			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2678
2679			pi++;
2680			sg_len -= len;
2681			addr += len;
2682		}
2683	}
2684
2685	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2686}
2687
2688/**
2689 *	ata_bmdma_qc_prep - Prepare taskfile for submission
2690 *	@qc: Metadata associated with taskfile to be prepared
2691 *
2692 *	Prepare ATA taskfile for submission.
2693 *
2694 *	LOCKING:
2695 *	spin_lock_irqsave(host lock)
2696 */
2697enum ata_completion_errors ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2698{
2699	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2700		return AC_ERR_OK;
2701
2702	ata_bmdma_fill_sg(qc);
2703
2704	return AC_ERR_OK;
2705}
2706EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2707
2708/**
2709 *	ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2710 *	@qc: Metadata associated with taskfile to be prepared
2711 *
2712 *	Prepare ATA taskfile for submission.
2713 *
2714 *	LOCKING:
2715 *	spin_lock_irqsave(host lock)
2716 */
2717enum ata_completion_errors ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2718{
2719	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2720		return AC_ERR_OK;
2721
2722	ata_bmdma_fill_sg_dumb(qc);
2723
2724	return AC_ERR_OK;
2725}
2726EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2727
2728/**
2729 *	ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2730 *	@qc: command to issue to device
2731 *
2732 *	This function issues a PIO, NODATA or DMA command to a
2733 *	SFF/BMDMA controller.  PIO and NODATA are handled by
2734 *	ata_sff_qc_issue().
2735 *
2736 *	LOCKING:
2737 *	spin_lock_irqsave(host lock)
2738 *
2739 *	RETURNS:
2740 *	Zero on success, AC_ERR_* mask on failure
2741 */
2742unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2743{
2744	struct ata_port *ap = qc->ap;
2745	struct ata_link *link = qc->dev->link;
2746
2747	/* defer PIO handling to sff_qc_issue */
2748	if (!ata_is_dma(qc->tf.protocol))
2749		return ata_sff_qc_issue(qc);
2750
2751	/* select the device */
2752	ata_dev_select(ap, qc->dev->devno, 1, 0);
2753
2754	/* start the command */
2755	switch (qc->tf.protocol) {
2756	case ATA_PROT_DMA:
2757		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2758
2759		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2760		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2761		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
2762		ap->hsm_task_state = HSM_ST_LAST;
2763		break;
2764
2765	case ATAPI_PROT_DMA:
2766		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2767
2768		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2769		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2770		ap->hsm_task_state = HSM_ST_FIRST;
2771
2772		/* send cdb by polling if no cdb interrupt */
2773		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2774			ata_sff_queue_pio_task(link, 0);
2775		break;
2776
2777	default:
2778		WARN_ON(1);
2779		return AC_ERR_SYSTEM;
2780	}
2781
2782	return 0;
2783}
2784EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2785
2786/**
2787 *	ata_bmdma_port_intr - Handle BMDMA port interrupt
2788 *	@ap: Port on which interrupt arrived (possibly...)
2789 *	@qc: Taskfile currently active in engine
2790 *
2791 *	Handle port interrupt for given queued command.
2792 *
2793 *	LOCKING:
2794 *	spin_lock_irqsave(host lock)
2795 *
2796 *	RETURNS:
2797 *	One if interrupt was handled, zero if not (shared irq).
2798 */
2799unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2800{
2801	struct ata_eh_info *ehi = &ap->link.eh_info;
2802	u8 host_stat = 0;
2803	bool bmdma_stopped = false;
2804	unsigned int handled;
2805
2806	if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2807		/* check status of DMA engine */
2808		host_stat = ap->ops->bmdma_status(ap);
2809		VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
2810
2811		/* if it's not our irq... */
2812		if (!(host_stat & ATA_DMA_INTR))
2813			return ata_sff_idle_irq(ap);
2814
2815		/* before we do anything else, clear DMA-Start bit */
2816		ap->ops->bmdma_stop(qc);
2817		bmdma_stopped = true;
2818
2819		if (unlikely(host_stat & ATA_DMA_ERR)) {
2820			/* error when transferring data to/from memory */
2821			qc->err_mask |= AC_ERR_HOST_BUS;
2822			ap->hsm_task_state = HSM_ST_ERR;
2823		}
2824	}
2825
2826	handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2827
2828	if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2829		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2830
2831	return handled;
2832}
2833EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2834
2835/**
2836 *	ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2837 *	@irq: irq line (unused)
2838 *	@dev_instance: pointer to our ata_host information structure
2839 *
2840 *	Default interrupt handler for PCI IDE devices.  Calls
2841 *	ata_bmdma_port_intr() for each port that is not disabled.
2842 *
2843 *	LOCKING:
2844 *	Obtains host lock during operation.
2845 *
2846 *	RETURNS:
2847 *	IRQ_NONE or IRQ_HANDLED.
2848 */
2849irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2850{
2851	return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2852}
2853EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2854
2855/**
2856 *	ata_bmdma_error_handler - Stock error handler for BMDMA controller
2857 *	@ap: port to handle error for
2858 *
2859 *	Stock error handler for BMDMA controller.  It can handle both
2860 *	PATA and SATA controllers.  Most BMDMA controllers should be
2861 *	able to use this EH as-is or with some added handling before
2862 *	and after.
2863 *
2864 *	LOCKING:
2865 *	Kernel thread context (may sleep)
2866 */
2867void ata_bmdma_error_handler(struct ata_port *ap)
2868{
2869	struct ata_queued_cmd *qc;
2870	unsigned long flags;
2871	bool thaw = false;
2872
2873	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2874	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2875		qc = NULL;
2876
2877	/* reset PIO HSM and stop DMA engine */
2878	spin_lock_irqsave(ap->lock, flags);
2879
2880	if (qc && ata_is_dma(qc->tf.protocol)) {
2881		u8 host_stat;
2882
2883		host_stat = ap->ops->bmdma_status(ap);
2884
2885		/* BMDMA controllers indicate host bus error by
2886		 * setting DMA_ERR bit and timing out.  As it wasn't
2887		 * really a timeout event, adjust error mask and
2888		 * cancel frozen state.
2889		 */
2890		if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2891			qc->err_mask = AC_ERR_HOST_BUS;
2892			thaw = true;
2893		}
2894
2895		ap->ops->bmdma_stop(qc);
2896
2897		/* if we're gonna thaw, make sure IRQ is clear */
2898		if (thaw) {
2899			ap->ops->sff_check_status(ap);
2900			if (ap->ops->sff_irq_clear)
2901				ap->ops->sff_irq_clear(ap);
2902		}
2903	}
2904
2905	spin_unlock_irqrestore(ap->lock, flags);
2906
2907	if (thaw)
2908		ata_eh_thaw_port(ap);
2909
2910	ata_sff_error_handler(ap);
2911}
2912EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2913
2914/**
2915 *	ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2916 *	@qc: internal command to clean up
2917 *
2918 *	LOCKING:
2919 *	Kernel thread context (may sleep)
2920 */
2921void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2922{
2923	struct ata_port *ap = qc->ap;
2924	unsigned long flags;
2925
2926	if (ata_is_dma(qc->tf.protocol)) {
2927		spin_lock_irqsave(ap->lock, flags);
2928		ap->ops->bmdma_stop(qc);
2929		spin_unlock_irqrestore(ap->lock, flags);
2930	}
2931}
2932EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2933
2934/**
2935 *	ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2936 *	@ap: Port associated with this ATA transaction.
2937 *
2938 *	Clear interrupt and error flags in DMA status register.
2939 *
2940 *	May be used as the irq_clear() entry in ata_port_operations.
2941 *
2942 *	LOCKING:
2943 *	spin_lock_irqsave(host lock)
2944 */
2945void ata_bmdma_irq_clear(struct ata_port *ap)
2946{
2947	void __iomem *mmio = ap->ioaddr.bmdma_addr;
2948
2949	if (!mmio)
2950		return;
2951
2952	iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2953}
2954EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2955
2956/**
2957 *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2958 *	@qc: Info associated with this ATA transaction.
2959 *
2960 *	LOCKING:
2961 *	spin_lock_irqsave(host lock)
2962 */
2963void ata_bmdma_setup(struct ata_queued_cmd *qc)
2964{
2965	struct ata_port *ap = qc->ap;
2966	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2967	u8 dmactl;
2968
2969	/* load PRD table addr. */
2970	mb();	/* make sure PRD table writes are visible to controller */
2971	iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2972
2973	/* specify data direction, triple-check start bit is clear */
2974	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2975	dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2976	if (!rw)
2977		dmactl |= ATA_DMA_WR;
2978	iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2979
2980	/* issue r/w command */
2981	ap->ops->sff_exec_command(ap, &qc->tf);
2982}
2983EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2984
2985/**
2986 *	ata_bmdma_start - Start a PCI IDE BMDMA transaction
2987 *	@qc: Info associated with this ATA transaction.
2988 *
2989 *	LOCKING:
2990 *	spin_lock_irqsave(host lock)
2991 */
2992void ata_bmdma_start(struct ata_queued_cmd *qc)
2993{
2994	struct ata_port *ap = qc->ap;
2995	u8 dmactl;
2996
2997	/* start host DMA transaction */
2998	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2999	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3000
3001	/* Strictly, one may wish to issue an ioread8() here, to
3002	 * flush the mmio write.  However, control also passes
3003	 * to the hardware at this point, and it will interrupt
3004	 * us when we are to resume control.  So, in effect,
3005	 * we don't care when the mmio write flushes.
3006	 * Further, a read of the DMA status register _immediately_
3007	 * following the write may not be what certain flaky hardware
3008	 * is expected, so I think it is best to not add a readb()
3009	 * without first all the MMIO ATA cards/mobos.
3010	 * Or maybe I'm just being paranoid.
3011	 *
3012	 * FIXME: The posting of this write means I/O starts are
3013	 * unnecessarily delayed for MMIO
3014	 */
3015}
3016EXPORT_SYMBOL_GPL(ata_bmdma_start);
3017
3018/**
3019 *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3020 *	@qc: Command we are ending DMA for
3021 *
3022 *	Clears the ATA_DMA_START flag in the dma control register
3023 *
3024 *	May be used as the bmdma_stop() entry in ata_port_operations.
3025 *
3026 *	LOCKING:
3027 *	spin_lock_irqsave(host lock)
3028 */
3029void ata_bmdma_stop(struct ata_queued_cmd *qc)
3030{
3031	struct ata_port *ap = qc->ap;
3032	void __iomem *mmio = ap->ioaddr.bmdma_addr;
3033
3034	/* clear start/stop bit */
3035	iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3036		 mmio + ATA_DMA_CMD);
3037
3038	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3039	ata_sff_dma_pause(ap);
3040}
3041EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3042
3043/**
3044 *	ata_bmdma_status - Read PCI IDE BMDMA status
3045 *	@ap: Port associated with this ATA transaction.
3046 *
3047 *	Read and return BMDMA status register.
3048 *
3049 *	May be used as the bmdma_status() entry in ata_port_operations.
3050 *
3051 *	LOCKING:
3052 *	spin_lock_irqsave(host lock)
3053 */
3054u8 ata_bmdma_status(struct ata_port *ap)
3055{
3056	return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3057}
3058EXPORT_SYMBOL_GPL(ata_bmdma_status);
3059
3060
3061/**
3062 *	ata_bmdma_port_start - Set port up for bmdma.
3063 *	@ap: Port to initialize
3064 *
3065 *	Called just after data structures for each port are
3066 *	initialized.  Allocates space for PRD table.
3067 *
3068 *	May be used as the port_start() entry in ata_port_operations.
3069 *
3070 *	LOCKING:
3071 *	Inherited from caller.
3072 */
3073int ata_bmdma_port_start(struct ata_port *ap)
3074{
3075	if (ap->mwdma_mask || ap->udma_mask) {
3076		ap->bmdma_prd =
3077			dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3078					    &ap->bmdma_prd_dma, GFP_KERNEL);
3079		if (!ap->bmdma_prd)
3080			return -ENOMEM;
3081	}
3082
3083	return 0;
3084}
3085EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3086
3087/**
3088 *	ata_bmdma_port_start32 - Set port up for dma.
3089 *	@ap: Port to initialize
3090 *
3091 *	Called just after data structures for each port are
3092 *	initialized.  Enables 32bit PIO and allocates space for PRD
3093 *	table.
3094 *
3095 *	May be used as the port_start() entry in ata_port_operations for
3096 *	devices that are capable of 32bit PIO.
3097 *
3098 *	LOCKING:
3099 *	Inherited from caller.
3100 */
3101int ata_bmdma_port_start32(struct ata_port *ap)
3102{
3103	ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3104	return ata_bmdma_port_start(ap);
3105}
3106EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3107
3108#ifdef CONFIG_PCI
3109
3110/**
3111 *	ata_pci_bmdma_clear_simplex -	attempt to kick device out of simplex
3112 *	@pdev: PCI device
3113 *
3114 *	Some PCI ATA devices report simplex mode but in fact can be told to
3115 *	enter non simplex mode. This implements the necessary logic to
3116 *	perform the task on such devices. Calling it on other devices will
3117 *	have -undefined- behaviour.
3118 */
3119int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3120{
3121	unsigned long bmdma = pci_resource_start(pdev, 4);
3122	u8 simplex;
3123
3124	if (bmdma == 0)
3125		return -ENOENT;
3126
3127	simplex = inb(bmdma + 0x02);
3128	outb(simplex & 0x60, bmdma + 0x02);
3129	simplex = inb(bmdma + 0x02);
3130	if (simplex & 0x80)
3131		return -EOPNOTSUPP;
3132	return 0;
3133}
3134EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3135
3136static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3137{
3138	int i;
3139
3140	dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3141
3142	for (i = 0; i < 2; i++) {
3143		host->ports[i]->mwdma_mask = 0;
3144		host->ports[i]->udma_mask = 0;
3145	}
3146}
3147
3148/**
3149 *	ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3150 *	@host: target ATA host
3151 *
3152 *	Acquire PCI BMDMA resources and initialize @host accordingly.
3153 *
3154 *	LOCKING:
3155 *	Inherited from calling layer (may sleep).
3156 */
3157void ata_pci_bmdma_init(struct ata_host *host)
3158{
3159	struct device *gdev = host->dev;
3160	struct pci_dev *pdev = to_pci_dev(gdev);
3161	int i, rc;
3162
3163	/* No BAR4 allocation: No DMA */
3164	if (pci_resource_start(pdev, 4) == 0) {
3165		ata_bmdma_nodma(host, "BAR4 is zero");
3166		return;
3167	}
3168
3169	/*
3170	 * Some controllers require BMDMA region to be initialized
3171	 * even if DMA is not in use to clear IRQ status via
3172	 * ->sff_irq_clear method.  Try to initialize bmdma_addr
3173	 * regardless of dma masks.
3174	 */
3175	rc = dma_set_mask_and_coherent(&pdev->dev, ATA_DMA_MASK);
3176	if (rc)
3177		ata_bmdma_nodma(host, "failed to set dma mask");
3178
3179	/* request and iomap DMA region */
3180	rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3181	if (rc) {
3182		ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3183		return;
3184	}
3185	host->iomap = pcim_iomap_table(pdev);
3186
3187	for (i = 0; i < 2; i++) {
3188		struct ata_port *ap = host->ports[i];
3189		void __iomem *bmdma = host->iomap[4] + 8 * i;
3190
3191		if (ata_port_is_dummy(ap))
3192			continue;
3193
3194		ap->ioaddr.bmdma_addr = bmdma;
3195		if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3196		    (ioread8(bmdma + 2) & 0x80))
3197			host->flags |= ATA_HOST_SIMPLEX;
3198
3199		ata_port_desc(ap, "bmdma 0x%llx",
3200		    (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3201	}
3202}
3203EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3204
3205/**
3206 *	ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3207 *	@pdev: target PCI device
3208 *	@ppi: array of port_info, must be enough for two ports
3209 *	@r_host: out argument for the initialized ATA host
3210 *
3211 *	Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3212 *	resources and initialize it accordingly in one go.
3213 *
3214 *	LOCKING:
3215 *	Inherited from calling layer (may sleep).
3216 *
3217 *	RETURNS:
3218 *	0 on success, -errno otherwise.
3219 */
3220int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3221			       const struct ata_port_info * const * ppi,
3222			       struct ata_host **r_host)
3223{
3224	int rc;
3225
3226	rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3227	if (rc)
3228		return rc;
3229
3230	ata_pci_bmdma_init(*r_host);
3231	return 0;
3232}
3233EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3234
3235/**
3236 *	ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3237 *	@pdev: Controller to be initialized
3238 *	@ppi: array of port_info, must be enough for two ports
3239 *	@sht: scsi_host_template to use when registering the host
3240 *	@host_priv: host private_data
3241 *	@hflags: host flags
3242 *
3243 *	This function is similar to ata_pci_sff_init_one() but also
3244 *	takes care of BMDMA initialization.
3245 *
3246 *	LOCKING:
3247 *	Inherited from PCI layer (may sleep).
3248 *
3249 *	RETURNS:
3250 *	Zero on success, negative on errno-based value on error.
3251 */
3252int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3253			   const struct ata_port_info * const * ppi,
3254			   struct scsi_host_template *sht, void *host_priv,
3255			   int hflags)
3256{
3257	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3258}
3259EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3260
3261#endif /* CONFIG_PCI */
3262#endif /* CONFIG_ATA_BMDMA */
3263
3264/**
3265 *	ata_sff_port_init - Initialize SFF/BMDMA ATA port
3266 *	@ap: Port to initialize
3267 *
3268 *	Called on port allocation to initialize SFF/BMDMA specific
3269 *	fields.
3270 *
3271 *	LOCKING:
3272 *	None.
3273 */
3274void ata_sff_port_init(struct ata_port *ap)
3275{
3276	INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3277	ap->ctl = ATA_DEVCTL_OBS;
3278	ap->last_ctl = 0xFF;
3279}
3280
3281int __init ata_sff_init(void)
3282{
3283	ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3284	if (!ata_sff_wq)
3285		return -ENOMEM;
3286
3287	return 0;
3288}
3289
3290void ata_sff_exit(void)
3291{
3292	destroy_workqueue(ata_sff_wq);
3293}
3294