1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *  libata-core.c - helper library for ATA
4 *
5 *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
6 *  Copyright 2003-2004 Jeff Garzik
7 *
8 *  libata documentation is available via 'make {ps|pdf}docs',
9 *  as Documentation/driver-api/libata.rst
10 *
11 *  Hardware documentation available from http://www.t13.org/ and
12 *  http://www.sata-io.org/
13 *
14 *  Standards documents from:
15 *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
16 *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
17 *	http://www.sata-io.org (SATA)
18 *	http://www.compactflash.org (CF)
19 *	http://www.qic.org (QIC157 - Tape and DSC)
20 *	http://www.ce-ata.org (CE-ATA: not supported)
21 *
22 * libata is essentially a library of internal helper functions for
23 * low-level ATA host controller drivers.  As such, the API/ABI is
24 * likely to change as new drivers are added and updated.
25 * Do not depend on ABI/API stability.
26 */
27
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/pci.h>
31#include <linux/init.h>
32#include <linux/list.h>
33#include <linux/mm.h>
34#include <linux/spinlock.h>
35#include <linux/blkdev.h>
36#include <linux/delay.h>
37#include <linux/timer.h>
38#include <linux/time.h>
39#include <linux/interrupt.h>
40#include <linux/completion.h>
41#include <linux/suspend.h>
42#include <linux/workqueue.h>
43#include <linux/scatterlist.h>
44#include <linux/io.h>
45#include <linux/log2.h>
46#include <linux/slab.h>
47#include <linux/glob.h>
48#include <scsi/scsi.h>
49#include <scsi/scsi_cmnd.h>
50#include <scsi/scsi_host.h>
51#include <linux/libata.h>
52#include <asm/byteorder.h>
53#include <asm/unaligned.h>
54#include <linux/cdrom.h>
55#include <linux/ratelimit.h>
56#include <linux/leds.h>
57#include <linux/pm_runtime.h>
58#include <linux/platform_device.h>
59#include <asm/setup.h>
60
61#define CREATE_TRACE_POINTS
62#include <trace/events/libata.h>
63
64#include "libata.h"
65#include "libata-transport.h"
66
67const struct ata_port_operations ata_base_port_ops = {
68	.prereset		= ata_std_prereset,
69	.postreset		= ata_std_postreset,
70	.error_handler		= ata_std_error_handler,
71	.sched_eh		= ata_std_sched_eh,
72	.end_eh			= ata_std_end_eh,
73};
74
75const struct ata_port_operations sata_port_ops = {
76	.inherits		= &ata_base_port_ops,
77
78	.qc_defer		= ata_std_qc_defer,
79	.hardreset		= sata_std_hardreset,
80};
81EXPORT_SYMBOL_GPL(sata_port_ops);
82
83static unsigned int ata_dev_init_params(struct ata_device *dev,
84					u16 heads, u16 sectors);
85static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
86static void ata_dev_xfermask(struct ata_device *dev);
87static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
88
89atomic_t ata_print_id = ATOMIC_INIT(0);
90
91#ifdef CONFIG_ATA_FORCE
92struct ata_force_param {
93	const char	*name;
94	u8		cbl;
95	u8		spd_limit;
96	unsigned long	xfer_mask;
97	unsigned int	horkage_on;
98	unsigned int	horkage_off;
99	u16		lflags;
100};
101
102struct ata_force_ent {
103	int			port;
104	int			device;
105	struct ata_force_param	param;
106};
107
108static struct ata_force_ent *ata_force_tbl;
109static int ata_force_tbl_size;
110
111static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
112/* param_buf is thrown away after initialization, disallow read */
113module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
114MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
115#endif
116
117static int atapi_enabled = 1;
118module_param(atapi_enabled, int, 0444);
119MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
120
121static int atapi_dmadir = 0;
122module_param(atapi_dmadir, int, 0444);
123MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
124
125int atapi_passthru16 = 1;
126module_param(atapi_passthru16, int, 0444);
127MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
128
129int libata_fua = 0;
130module_param_named(fua, libata_fua, int, 0444);
131MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
132
133static int ata_ignore_hpa;
134module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
135MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
136
137static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
138module_param_named(dma, libata_dma_mask, int, 0444);
139MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
140
141static int ata_probe_timeout;
142module_param(ata_probe_timeout, int, 0444);
143MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
144
145int libata_noacpi = 0;
146module_param_named(noacpi, libata_noacpi, int, 0444);
147MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
148
149int libata_allow_tpm = 0;
150module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
151MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
152
153static int atapi_an;
154module_param(atapi_an, int, 0444);
155MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
156
157MODULE_AUTHOR("Jeff Garzik");
158MODULE_DESCRIPTION("Library module for ATA devices");
159MODULE_LICENSE("GPL");
160MODULE_VERSION(DRV_VERSION);
161
162
163static bool ata_sstatus_online(u32 sstatus)
164{
165	return (sstatus & 0xf) == 0x3;
166}
167
168/**
169 *	ata_link_next - link iteration helper
170 *	@link: the previous link, NULL to start
171 *	@ap: ATA port containing links to iterate
172 *	@mode: iteration mode, one of ATA_LITER_*
173 *
174 *	LOCKING:
175 *	Host lock or EH context.
176 *
177 *	RETURNS:
178 *	Pointer to the next link.
179 */
180struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
181			       enum ata_link_iter_mode mode)
182{
183	BUG_ON(mode != ATA_LITER_EDGE &&
184	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
185
186	/* NULL link indicates start of iteration */
187	if (!link)
188		switch (mode) {
189		case ATA_LITER_EDGE:
190		case ATA_LITER_PMP_FIRST:
191			if (sata_pmp_attached(ap))
192				return ap->pmp_link;
193			fallthrough;
194		case ATA_LITER_HOST_FIRST:
195			return &ap->link;
196		}
197
198	/* we just iterated over the host link, what's next? */
199	if (link == &ap->link)
200		switch (mode) {
201		case ATA_LITER_HOST_FIRST:
202			if (sata_pmp_attached(ap))
203				return ap->pmp_link;
204			fallthrough;
205		case ATA_LITER_PMP_FIRST:
206			if (unlikely(ap->slave_link))
207				return ap->slave_link;
208			fallthrough;
209		case ATA_LITER_EDGE:
210			return NULL;
211		}
212
213	/* slave_link excludes PMP */
214	if (unlikely(link == ap->slave_link))
215		return NULL;
216
217	/* we were over a PMP link */
218	if (++link < ap->pmp_link + ap->nr_pmp_links)
219		return link;
220
221	if (mode == ATA_LITER_PMP_FIRST)
222		return &ap->link;
223
224	return NULL;
225}
226EXPORT_SYMBOL_GPL(ata_link_next);
227
228/**
229 *	ata_dev_next - device iteration helper
230 *	@dev: the previous device, NULL to start
231 *	@link: ATA link containing devices to iterate
232 *	@mode: iteration mode, one of ATA_DITER_*
233 *
234 *	LOCKING:
235 *	Host lock or EH context.
236 *
237 *	RETURNS:
238 *	Pointer to the next device.
239 */
240struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
241				enum ata_dev_iter_mode mode)
242{
243	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
244	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
245
246	/* NULL dev indicates start of iteration */
247	if (!dev)
248		switch (mode) {
249		case ATA_DITER_ENABLED:
250		case ATA_DITER_ALL:
251			dev = link->device;
252			goto check;
253		case ATA_DITER_ENABLED_REVERSE:
254		case ATA_DITER_ALL_REVERSE:
255			dev = link->device + ata_link_max_devices(link) - 1;
256			goto check;
257		}
258
259 next:
260	/* move to the next one */
261	switch (mode) {
262	case ATA_DITER_ENABLED:
263	case ATA_DITER_ALL:
264		if (++dev < link->device + ata_link_max_devices(link))
265			goto check;
266		return NULL;
267	case ATA_DITER_ENABLED_REVERSE:
268	case ATA_DITER_ALL_REVERSE:
269		if (--dev >= link->device)
270			goto check;
271		return NULL;
272	}
273
274 check:
275	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
276	    !ata_dev_enabled(dev))
277		goto next;
278	return dev;
279}
280EXPORT_SYMBOL_GPL(ata_dev_next);
281
282/**
283 *	ata_dev_phys_link - find physical link for a device
284 *	@dev: ATA device to look up physical link for
285 *
286 *	Look up physical link which @dev is attached to.  Note that
287 *	this is different from @dev->link only when @dev is on slave
288 *	link.  For all other cases, it's the same as @dev->link.
289 *
290 *	LOCKING:
291 *	Don't care.
292 *
293 *	RETURNS:
294 *	Pointer to the found physical link.
295 */
296struct ata_link *ata_dev_phys_link(struct ata_device *dev)
297{
298	struct ata_port *ap = dev->link->ap;
299
300	if (!ap->slave_link)
301		return dev->link;
302	if (!dev->devno)
303		return &ap->link;
304	return ap->slave_link;
305}
306
307#ifdef CONFIG_ATA_FORCE
308/**
309 *	ata_force_cbl - force cable type according to libata.force
310 *	@ap: ATA port of interest
311 *
312 *	Force cable type according to libata.force and whine about it.
313 *	The last entry which has matching port number is used, so it
314 *	can be specified as part of device force parameters.  For
315 *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
316 *	same effect.
317 *
318 *	LOCKING:
319 *	EH context.
320 */
321void ata_force_cbl(struct ata_port *ap)
322{
323	int i;
324
325	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
326		const struct ata_force_ent *fe = &ata_force_tbl[i];
327
328		if (fe->port != -1 && fe->port != ap->print_id)
329			continue;
330
331		if (fe->param.cbl == ATA_CBL_NONE)
332			continue;
333
334		ap->cbl = fe->param.cbl;
335		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
336		return;
337	}
338}
339
340/**
341 *	ata_force_link_limits - force link limits according to libata.force
342 *	@link: ATA link of interest
343 *
344 *	Force link flags and SATA spd limit according to libata.force
345 *	and whine about it.  When only the port part is specified
346 *	(e.g. 1:), the limit applies to all links connected to both
347 *	the host link and all fan-out ports connected via PMP.  If the
348 *	device part is specified as 0 (e.g. 1.00:), it specifies the
349 *	first fan-out link not the host link.  Device number 15 always
350 *	points to the host link whether PMP is attached or not.  If the
351 *	controller has slave link, device number 16 points to it.
352 *
353 *	LOCKING:
354 *	EH context.
355 */
356static void ata_force_link_limits(struct ata_link *link)
357{
358	bool did_spd = false;
359	int linkno = link->pmp;
360	int i;
361
362	if (ata_is_host_link(link))
363		linkno += 15;
364
365	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
366		const struct ata_force_ent *fe = &ata_force_tbl[i];
367
368		if (fe->port != -1 && fe->port != link->ap->print_id)
369			continue;
370
371		if (fe->device != -1 && fe->device != linkno)
372			continue;
373
374		/* only honor the first spd limit */
375		if (!did_spd && fe->param.spd_limit) {
376			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
377			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
378					fe->param.name);
379			did_spd = true;
380		}
381
382		/* let lflags stack */
383		if (fe->param.lflags) {
384			link->flags |= fe->param.lflags;
385			ata_link_notice(link,
386					"FORCE: link flag 0x%x forced -> 0x%x\n",
387					fe->param.lflags, link->flags);
388		}
389	}
390}
391
392/**
393 *	ata_force_xfermask - force xfermask according to libata.force
394 *	@dev: ATA device of interest
395 *
396 *	Force xfer_mask according to libata.force and whine about it.
397 *	For consistency with link selection, device number 15 selects
398 *	the first device connected to the host link.
399 *
400 *	LOCKING:
401 *	EH context.
402 */
403static void ata_force_xfermask(struct ata_device *dev)
404{
405	int devno = dev->link->pmp + dev->devno;
406	int alt_devno = devno;
407	int i;
408
409	/* allow n.15/16 for devices attached to host port */
410	if (ata_is_host_link(dev->link))
411		alt_devno += 15;
412
413	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
414		const struct ata_force_ent *fe = &ata_force_tbl[i];
415		unsigned long pio_mask, mwdma_mask, udma_mask;
416
417		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
418			continue;
419
420		if (fe->device != -1 && fe->device != devno &&
421		    fe->device != alt_devno)
422			continue;
423
424		if (!fe->param.xfer_mask)
425			continue;
426
427		ata_unpack_xfermask(fe->param.xfer_mask,
428				    &pio_mask, &mwdma_mask, &udma_mask);
429		if (udma_mask)
430			dev->udma_mask = udma_mask;
431		else if (mwdma_mask) {
432			dev->udma_mask = 0;
433			dev->mwdma_mask = mwdma_mask;
434		} else {
435			dev->udma_mask = 0;
436			dev->mwdma_mask = 0;
437			dev->pio_mask = pio_mask;
438		}
439
440		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
441			       fe->param.name);
442		return;
443	}
444}
445
446/**
447 *	ata_force_horkage - force horkage according to libata.force
448 *	@dev: ATA device of interest
449 *
450 *	Force horkage according to libata.force and whine about it.
451 *	For consistency with link selection, device number 15 selects
452 *	the first device connected to the host link.
453 *
454 *	LOCKING:
455 *	EH context.
456 */
457static void ata_force_horkage(struct ata_device *dev)
458{
459	int devno = dev->link->pmp + dev->devno;
460	int alt_devno = devno;
461	int i;
462
463	/* allow n.15/16 for devices attached to host port */
464	if (ata_is_host_link(dev->link))
465		alt_devno += 15;
466
467	for (i = 0; i < ata_force_tbl_size; i++) {
468		const struct ata_force_ent *fe = &ata_force_tbl[i];
469
470		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
471			continue;
472
473		if (fe->device != -1 && fe->device != devno &&
474		    fe->device != alt_devno)
475			continue;
476
477		if (!(~dev->horkage & fe->param.horkage_on) &&
478		    !(dev->horkage & fe->param.horkage_off))
479			continue;
480
481		dev->horkage |= fe->param.horkage_on;
482		dev->horkage &= ~fe->param.horkage_off;
483
484		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
485			       fe->param.name);
486	}
487}
488#else
489static inline void ata_force_link_limits(struct ata_link *link) { }
490static inline void ata_force_xfermask(struct ata_device *dev) { }
491static inline void ata_force_horkage(struct ata_device *dev) { }
492#endif
493
494/**
495 *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
496 *	@opcode: SCSI opcode
497 *
498 *	Determine ATAPI command type from @opcode.
499 *
500 *	LOCKING:
501 *	None.
502 *
503 *	RETURNS:
504 *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
505 */
506int atapi_cmd_type(u8 opcode)
507{
508	switch (opcode) {
509	case GPCMD_READ_10:
510	case GPCMD_READ_12:
511		return ATAPI_READ;
512
513	case GPCMD_WRITE_10:
514	case GPCMD_WRITE_12:
515	case GPCMD_WRITE_AND_VERIFY_10:
516		return ATAPI_WRITE;
517
518	case GPCMD_READ_CD:
519	case GPCMD_READ_CD_MSF:
520		return ATAPI_READ_CD;
521
522	case ATA_16:
523	case ATA_12:
524		if (atapi_passthru16)
525			return ATAPI_PASS_THRU;
526		fallthrough;
527	default:
528		return ATAPI_MISC;
529	}
530}
531EXPORT_SYMBOL_GPL(atapi_cmd_type);
532
533static const u8 ata_rw_cmds[] = {
534	/* pio multi */
535	ATA_CMD_READ_MULTI,
536	ATA_CMD_WRITE_MULTI,
537	ATA_CMD_READ_MULTI_EXT,
538	ATA_CMD_WRITE_MULTI_EXT,
539	0,
540	0,
541	0,
542	ATA_CMD_WRITE_MULTI_FUA_EXT,
543	/* pio */
544	ATA_CMD_PIO_READ,
545	ATA_CMD_PIO_WRITE,
546	ATA_CMD_PIO_READ_EXT,
547	ATA_CMD_PIO_WRITE_EXT,
548	0,
549	0,
550	0,
551	0,
552	/* dma */
553	ATA_CMD_READ,
554	ATA_CMD_WRITE,
555	ATA_CMD_READ_EXT,
556	ATA_CMD_WRITE_EXT,
557	0,
558	0,
559	0,
560	ATA_CMD_WRITE_FUA_EXT
561};
562
563/**
564 *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
565 *	@tf: command to examine and configure
566 *	@dev: device tf belongs to
567 *
568 *	Examine the device configuration and tf->flags to calculate
569 *	the proper read/write commands and protocol to use.
570 *
571 *	LOCKING:
572 *	caller.
573 */
574static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
575{
576	u8 cmd;
577
578	int index, fua, lba48, write;
579
580	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
581	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
582	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
583
584	if (dev->flags & ATA_DFLAG_PIO) {
585		tf->protocol = ATA_PROT_PIO;
586		index = dev->multi_count ? 0 : 8;
587	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
588		/* Unable to use DMA due to host limitation */
589		tf->protocol = ATA_PROT_PIO;
590		index = dev->multi_count ? 0 : 8;
591	} else {
592		tf->protocol = ATA_PROT_DMA;
593		index = 16;
594	}
595
596	cmd = ata_rw_cmds[index + fua + lba48 + write];
597	if (cmd) {
598		tf->command = cmd;
599		return 0;
600	}
601	return -1;
602}
603
604/**
605 *	ata_tf_read_block - Read block address from ATA taskfile
606 *	@tf: ATA taskfile of interest
607 *	@dev: ATA device @tf belongs to
608 *
609 *	LOCKING:
610 *	None.
611 *
612 *	Read block address from @tf.  This function can handle all
613 *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
614 *	flags select the address format to use.
615 *
616 *	RETURNS:
617 *	Block address read from @tf.
618 */
619u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
620{
621	u64 block = 0;
622
623	if (tf->flags & ATA_TFLAG_LBA) {
624		if (tf->flags & ATA_TFLAG_LBA48) {
625			block |= (u64)tf->hob_lbah << 40;
626			block |= (u64)tf->hob_lbam << 32;
627			block |= (u64)tf->hob_lbal << 24;
628		} else
629			block |= (tf->device & 0xf) << 24;
630
631		block |= tf->lbah << 16;
632		block |= tf->lbam << 8;
633		block |= tf->lbal;
634	} else {
635		u32 cyl, head, sect;
636
637		cyl = tf->lbam | (tf->lbah << 8);
638		head = tf->device & 0xf;
639		sect = tf->lbal;
640
641		if (!sect) {
642			ata_dev_warn(dev,
643				     "device reported invalid CHS sector 0\n");
644			return U64_MAX;
645		}
646
647		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
648	}
649
650	return block;
651}
652
653/**
654 *	ata_build_rw_tf - Build ATA taskfile for given read/write request
655 *	@tf: Target ATA taskfile
656 *	@dev: ATA device @tf belongs to
657 *	@block: Block address
658 *	@n_block: Number of blocks
659 *	@tf_flags: RW/FUA etc...
660 *	@tag: tag
661 *	@class: IO priority class
662 *
663 *	LOCKING:
664 *	None.
665 *
666 *	Build ATA taskfile @tf for read/write request described by
667 *	@block, @n_block, @tf_flags and @tag on @dev.
668 *
669 *	RETURNS:
670 *
671 *	0 on success, -ERANGE if the request is too large for @dev,
672 *	-EINVAL if the request is invalid.
673 */
674int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
675		    u64 block, u32 n_block, unsigned int tf_flags,
676		    unsigned int tag, int class)
677{
678	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
679	tf->flags |= tf_flags;
680
681	if (ata_ncq_enabled(dev) && !ata_tag_internal(tag)) {
682		/* yay, NCQ */
683		if (!lba_48_ok(block, n_block))
684			return -ERANGE;
685
686		tf->protocol = ATA_PROT_NCQ;
687		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
688
689		if (tf->flags & ATA_TFLAG_WRITE)
690			tf->command = ATA_CMD_FPDMA_WRITE;
691		else
692			tf->command = ATA_CMD_FPDMA_READ;
693
694		tf->nsect = tag << 3;
695		tf->hob_feature = (n_block >> 8) & 0xff;
696		tf->feature = n_block & 0xff;
697
698		tf->hob_lbah = (block >> 40) & 0xff;
699		tf->hob_lbam = (block >> 32) & 0xff;
700		tf->hob_lbal = (block >> 24) & 0xff;
701		tf->lbah = (block >> 16) & 0xff;
702		tf->lbam = (block >> 8) & 0xff;
703		tf->lbal = block & 0xff;
704
705		tf->device = ATA_LBA;
706		if (tf->flags & ATA_TFLAG_FUA)
707			tf->device |= 1 << 7;
708
709		if (dev->flags & ATA_DFLAG_NCQ_PRIO) {
710			if (class == IOPRIO_CLASS_RT)
711				tf->hob_nsect |= ATA_PRIO_HIGH <<
712						 ATA_SHIFT_PRIO;
713		}
714	} else if (dev->flags & ATA_DFLAG_LBA) {
715		tf->flags |= ATA_TFLAG_LBA;
716
717		if (lba_28_ok(block, n_block)) {
718			/* use LBA28 */
719			tf->device |= (block >> 24) & 0xf;
720		} else if (lba_48_ok(block, n_block)) {
721			if (!(dev->flags & ATA_DFLAG_LBA48))
722				return -ERANGE;
723
724			/* use LBA48 */
725			tf->flags |= ATA_TFLAG_LBA48;
726
727			tf->hob_nsect = (n_block >> 8) & 0xff;
728
729			tf->hob_lbah = (block >> 40) & 0xff;
730			tf->hob_lbam = (block >> 32) & 0xff;
731			tf->hob_lbal = (block >> 24) & 0xff;
732		} else
733			/* request too large even for LBA48 */
734			return -ERANGE;
735
736		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
737			return -EINVAL;
738
739		tf->nsect = n_block & 0xff;
740
741		tf->lbah = (block >> 16) & 0xff;
742		tf->lbam = (block >> 8) & 0xff;
743		tf->lbal = block & 0xff;
744
745		tf->device |= ATA_LBA;
746	} else {
747		/* CHS */
748		u32 sect, head, cyl, track;
749
750		/* The request -may- be too large for CHS addressing. */
751		if (!lba_28_ok(block, n_block))
752			return -ERANGE;
753
754		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
755			return -EINVAL;
756
757		/* Convert LBA to CHS */
758		track = (u32)block / dev->sectors;
759		cyl   = track / dev->heads;
760		head  = track % dev->heads;
761		sect  = (u32)block % dev->sectors + 1;
762
763		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
764			(u32)block, track, cyl, head, sect);
765
766		/* Check whether the converted CHS can fit.
767		   Cylinder: 0-65535
768		   Head: 0-15
769		   Sector: 1-255*/
770		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
771			return -ERANGE;
772
773		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
774		tf->lbal = sect;
775		tf->lbam = cyl;
776		tf->lbah = cyl >> 8;
777		tf->device |= head;
778	}
779
780	return 0;
781}
782
783/**
784 *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
785 *	@pio_mask: pio_mask
786 *	@mwdma_mask: mwdma_mask
787 *	@udma_mask: udma_mask
788 *
789 *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
790 *	unsigned int xfer_mask.
791 *
792 *	LOCKING:
793 *	None.
794 *
795 *	RETURNS:
796 *	Packed xfer_mask.
797 */
798unsigned long ata_pack_xfermask(unsigned long pio_mask,
799				unsigned long mwdma_mask,
800				unsigned long udma_mask)
801{
802	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
803		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
804		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
805}
806EXPORT_SYMBOL_GPL(ata_pack_xfermask);
807
808/**
809 *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
810 *	@xfer_mask: xfer_mask to unpack
811 *	@pio_mask: resulting pio_mask
812 *	@mwdma_mask: resulting mwdma_mask
813 *	@udma_mask: resulting udma_mask
814 *
815 *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
816 *	Any NULL destination masks will be ignored.
817 */
818void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
819			 unsigned long *mwdma_mask, unsigned long *udma_mask)
820{
821	if (pio_mask)
822		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
823	if (mwdma_mask)
824		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
825	if (udma_mask)
826		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
827}
828
829static const struct ata_xfer_ent {
830	int shift, bits;
831	u8 base;
832} ata_xfer_tbl[] = {
833	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
834	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
835	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
836	{ -1, },
837};
838
839/**
840 *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
841 *	@xfer_mask: xfer_mask of interest
842 *
843 *	Return matching XFER_* value for @xfer_mask.  Only the highest
844 *	bit of @xfer_mask is considered.
845 *
846 *	LOCKING:
847 *	None.
848 *
849 *	RETURNS:
850 *	Matching XFER_* value, 0xff if no match found.
851 */
852u8 ata_xfer_mask2mode(unsigned long xfer_mask)
853{
854	int highbit = fls(xfer_mask) - 1;
855	const struct ata_xfer_ent *ent;
856
857	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
858		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
859			return ent->base + highbit - ent->shift;
860	return 0xff;
861}
862EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
863
864/**
865 *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
866 *	@xfer_mode: XFER_* of interest
867 *
868 *	Return matching xfer_mask for @xfer_mode.
869 *
870 *	LOCKING:
871 *	None.
872 *
873 *	RETURNS:
874 *	Matching xfer_mask, 0 if no match found.
875 */
876unsigned long ata_xfer_mode2mask(u8 xfer_mode)
877{
878	const struct ata_xfer_ent *ent;
879
880	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
881		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
882			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
883				& ~((1 << ent->shift) - 1);
884	return 0;
885}
886EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
887
888/**
889 *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
890 *	@xfer_mode: XFER_* of interest
891 *
892 *	Return matching xfer_shift for @xfer_mode.
893 *
894 *	LOCKING:
895 *	None.
896 *
897 *	RETURNS:
898 *	Matching xfer_shift, -1 if no match found.
899 */
900int ata_xfer_mode2shift(unsigned long xfer_mode)
901{
902	const struct ata_xfer_ent *ent;
903
904	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
905		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
906			return ent->shift;
907	return -1;
908}
909EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
910
911/**
912 *	ata_mode_string - convert xfer_mask to string
913 *	@xfer_mask: mask of bits supported; only highest bit counts.
914 *
915 *	Determine string which represents the highest speed
916 *	(highest bit in @modemask).
917 *
918 *	LOCKING:
919 *	None.
920 *
921 *	RETURNS:
922 *	Constant C string representing highest speed listed in
923 *	@mode_mask, or the constant C string "<n/a>".
924 */
925const char *ata_mode_string(unsigned long xfer_mask)
926{
927	static const char * const xfer_mode_str[] = {
928		"PIO0",
929		"PIO1",
930		"PIO2",
931		"PIO3",
932		"PIO4",
933		"PIO5",
934		"PIO6",
935		"MWDMA0",
936		"MWDMA1",
937		"MWDMA2",
938		"MWDMA3",
939		"MWDMA4",
940		"UDMA/16",
941		"UDMA/25",
942		"UDMA/33",
943		"UDMA/44",
944		"UDMA/66",
945		"UDMA/100",
946		"UDMA/133",
947		"UDMA7",
948	};
949	int highbit;
950
951	highbit = fls(xfer_mask) - 1;
952	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
953		return xfer_mode_str[highbit];
954	return "<n/a>";
955}
956EXPORT_SYMBOL_GPL(ata_mode_string);
957
958const char *sata_spd_string(unsigned int spd)
959{
960	static const char * const spd_str[] = {
961		"1.5 Gbps",
962		"3.0 Gbps",
963		"6.0 Gbps",
964	};
965
966	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
967		return "<unknown>";
968	return spd_str[spd - 1];
969}
970
971/**
972 *	ata_dev_classify - determine device type based on ATA-spec signature
973 *	@tf: ATA taskfile register set for device to be identified
974 *
975 *	Determine from taskfile register contents whether a device is
976 *	ATA or ATAPI, as per "Signature and persistence" section
977 *	of ATA/PI spec (volume 1, sect 5.14).
978 *
979 *	LOCKING:
980 *	None.
981 *
982 *	RETURNS:
983 *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
984 *	%ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
985 */
986unsigned int ata_dev_classify(const struct ata_taskfile *tf)
987{
988	/* Apple's open source Darwin code hints that some devices only
989	 * put a proper signature into the LBA mid/high registers,
990	 * So, we only check those.  It's sufficient for uniqueness.
991	 *
992	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
993	 * signatures for ATA and ATAPI devices attached on SerialATA,
994	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
995	 * spec has never mentioned about using different signatures
996	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
997	 * Multiplier specification began to use 0x69/0x96 to identify
998	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
999	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1000	 * 0x69/0x96 shortly and described them as reserved for
1001	 * SerialATA.
1002	 *
1003	 * We follow the current spec and consider that 0x69/0x96
1004	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1005	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1006	 * SEMB signature.  This is worked around in
1007	 * ata_dev_read_id().
1008	 */
1009	if ((tf->lbam == 0) && (tf->lbah == 0)) {
1010		DPRINTK("found ATA device by sig\n");
1011		return ATA_DEV_ATA;
1012	}
1013
1014	if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1015		DPRINTK("found ATAPI device by sig\n");
1016		return ATA_DEV_ATAPI;
1017	}
1018
1019	if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1020		DPRINTK("found PMP device by sig\n");
1021		return ATA_DEV_PMP;
1022	}
1023
1024	if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1025		DPRINTK("found SEMB device by sig (could be ATA device)\n");
1026		return ATA_DEV_SEMB;
1027	}
1028
1029	if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1030		DPRINTK("found ZAC device by sig\n");
1031		return ATA_DEV_ZAC;
1032	}
1033
1034	DPRINTK("unknown device\n");
1035	return ATA_DEV_UNKNOWN;
1036}
1037EXPORT_SYMBOL_GPL(ata_dev_classify);
1038
1039/**
1040 *	ata_id_string - Convert IDENTIFY DEVICE page into string
1041 *	@id: IDENTIFY DEVICE results we will examine
1042 *	@s: string into which data is output
1043 *	@ofs: offset into identify device page
1044 *	@len: length of string to return. must be an even number.
1045 *
1046 *	The strings in the IDENTIFY DEVICE page are broken up into
1047 *	16-bit chunks.  Run through the string, and output each
1048 *	8-bit chunk linearly, regardless of platform.
1049 *
1050 *	LOCKING:
1051 *	caller.
1052 */
1053
1054void ata_id_string(const u16 *id, unsigned char *s,
1055		   unsigned int ofs, unsigned int len)
1056{
1057	unsigned int c;
1058
1059	BUG_ON(len & 1);
1060
1061	while (len > 0) {
1062		c = id[ofs] >> 8;
1063		*s = c;
1064		s++;
1065
1066		c = id[ofs] & 0xff;
1067		*s = c;
1068		s++;
1069
1070		ofs++;
1071		len -= 2;
1072	}
1073}
1074EXPORT_SYMBOL_GPL(ata_id_string);
1075
1076/**
1077 *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1078 *	@id: IDENTIFY DEVICE results we will examine
1079 *	@s: string into which data is output
1080 *	@ofs: offset into identify device page
1081 *	@len: length of string to return. must be an odd number.
1082 *
1083 *	This function is identical to ata_id_string except that it
1084 *	trims trailing spaces and terminates the resulting string with
1085 *	null.  @len must be actual maximum length (even number) + 1.
1086 *
1087 *	LOCKING:
1088 *	caller.
1089 */
1090void ata_id_c_string(const u16 *id, unsigned char *s,
1091		     unsigned int ofs, unsigned int len)
1092{
1093	unsigned char *p;
1094
1095	ata_id_string(id, s, ofs, len - 1);
1096
1097	p = s + strnlen(s, len - 1);
1098	while (p > s && p[-1] == ' ')
1099		p--;
1100	*p = '\0';
1101}
1102EXPORT_SYMBOL_GPL(ata_id_c_string);
1103
1104static u64 ata_id_n_sectors(const u16 *id)
1105{
1106	if (ata_id_has_lba(id)) {
1107		if (ata_id_has_lba48(id))
1108			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1109		else
1110			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1111	} else {
1112		if (ata_id_current_chs_valid(id))
1113			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1114			       id[ATA_ID_CUR_SECTORS];
1115		else
1116			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1117			       id[ATA_ID_SECTORS];
1118	}
1119}
1120
1121u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1122{
1123	u64 sectors = 0;
1124
1125	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1126	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1127	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1128	sectors |= (tf->lbah & 0xff) << 16;
1129	sectors |= (tf->lbam & 0xff) << 8;
1130	sectors |= (tf->lbal & 0xff);
1131
1132	return sectors;
1133}
1134
1135u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1136{
1137	u64 sectors = 0;
1138
1139	sectors |= (tf->device & 0x0f) << 24;
1140	sectors |= (tf->lbah & 0xff) << 16;
1141	sectors |= (tf->lbam & 0xff) << 8;
1142	sectors |= (tf->lbal & 0xff);
1143
1144	return sectors;
1145}
1146
1147/**
1148 *	ata_read_native_max_address - Read native max address
1149 *	@dev: target device
1150 *	@max_sectors: out parameter for the result native max address
1151 *
1152 *	Perform an LBA48 or LBA28 native size query upon the device in
1153 *	question.
1154 *
1155 *	RETURNS:
1156 *	0 on success, -EACCES if command is aborted by the drive.
1157 *	-EIO on other errors.
1158 */
1159static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1160{
1161	unsigned int err_mask;
1162	struct ata_taskfile tf;
1163	int lba48 = ata_id_has_lba48(dev->id);
1164
1165	ata_tf_init(dev, &tf);
1166
1167	/* always clear all address registers */
1168	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1169
1170	if (lba48) {
1171		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1172		tf.flags |= ATA_TFLAG_LBA48;
1173	} else
1174		tf.command = ATA_CMD_READ_NATIVE_MAX;
1175
1176	tf.protocol = ATA_PROT_NODATA;
1177	tf.device |= ATA_LBA;
1178
1179	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1180	if (err_mask) {
1181		ata_dev_warn(dev,
1182			     "failed to read native max address (err_mask=0x%x)\n",
1183			     err_mask);
1184		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1185			return -EACCES;
1186		return -EIO;
1187	}
1188
1189	if (lba48)
1190		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1191	else
1192		*max_sectors = ata_tf_to_lba(&tf) + 1;
1193	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1194		(*max_sectors)--;
1195	return 0;
1196}
1197
1198/**
1199 *	ata_set_max_sectors - Set max sectors
1200 *	@dev: target device
1201 *	@new_sectors: new max sectors value to set for the device
1202 *
1203 *	Set max sectors of @dev to @new_sectors.
1204 *
1205 *	RETURNS:
1206 *	0 on success, -EACCES if command is aborted or denied (due to
1207 *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1208 *	errors.
1209 */
1210static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1211{
1212	unsigned int err_mask;
1213	struct ata_taskfile tf;
1214	int lba48 = ata_id_has_lba48(dev->id);
1215
1216	new_sectors--;
1217
1218	ata_tf_init(dev, &tf);
1219
1220	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1221
1222	if (lba48) {
1223		tf.command = ATA_CMD_SET_MAX_EXT;
1224		tf.flags |= ATA_TFLAG_LBA48;
1225
1226		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1227		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1228		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1229	} else {
1230		tf.command = ATA_CMD_SET_MAX;
1231
1232		tf.device |= (new_sectors >> 24) & 0xf;
1233	}
1234
1235	tf.protocol = ATA_PROT_NODATA;
1236	tf.device |= ATA_LBA;
1237
1238	tf.lbal = (new_sectors >> 0) & 0xff;
1239	tf.lbam = (new_sectors >> 8) & 0xff;
1240	tf.lbah = (new_sectors >> 16) & 0xff;
1241
1242	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1243	if (err_mask) {
1244		ata_dev_warn(dev,
1245			     "failed to set max address (err_mask=0x%x)\n",
1246			     err_mask);
1247		if (err_mask == AC_ERR_DEV &&
1248		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1249			return -EACCES;
1250		return -EIO;
1251	}
1252
1253	return 0;
1254}
1255
1256/**
1257 *	ata_hpa_resize		-	Resize a device with an HPA set
1258 *	@dev: Device to resize
1259 *
1260 *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1261 *	it if required to the full size of the media. The caller must check
1262 *	the drive has the HPA feature set enabled.
1263 *
1264 *	RETURNS:
1265 *	0 on success, -errno on failure.
1266 */
1267static int ata_hpa_resize(struct ata_device *dev)
1268{
1269	struct ata_eh_context *ehc = &dev->link->eh_context;
1270	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1271	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1272	u64 sectors = ata_id_n_sectors(dev->id);
1273	u64 native_sectors;
1274	int rc;
1275
1276	/* do we need to do it? */
1277	if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1278	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1279	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1280		return 0;
1281
1282	/* read native max address */
1283	rc = ata_read_native_max_address(dev, &native_sectors);
1284	if (rc) {
1285		/* If device aborted the command or HPA isn't going to
1286		 * be unlocked, skip HPA resizing.
1287		 */
1288		if (rc == -EACCES || !unlock_hpa) {
1289			ata_dev_warn(dev,
1290				     "HPA support seems broken, skipping HPA handling\n");
1291			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1292
1293			/* we can continue if device aborted the command */
1294			if (rc == -EACCES)
1295				rc = 0;
1296		}
1297
1298		return rc;
1299	}
1300	dev->n_native_sectors = native_sectors;
1301
1302	/* nothing to do? */
1303	if (native_sectors <= sectors || !unlock_hpa) {
1304		if (!print_info || native_sectors == sectors)
1305			return 0;
1306
1307		if (native_sectors > sectors)
1308			ata_dev_info(dev,
1309				"HPA detected: current %llu, native %llu\n",
1310				(unsigned long long)sectors,
1311				(unsigned long long)native_sectors);
1312		else if (native_sectors < sectors)
1313			ata_dev_warn(dev,
1314				"native sectors (%llu) is smaller than sectors (%llu)\n",
1315				(unsigned long long)native_sectors,
1316				(unsigned long long)sectors);
1317		return 0;
1318	}
1319
1320	/* let's unlock HPA */
1321	rc = ata_set_max_sectors(dev, native_sectors);
1322	if (rc == -EACCES) {
1323		/* if device aborted the command, skip HPA resizing */
1324		ata_dev_warn(dev,
1325			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1326			     (unsigned long long)sectors,
1327			     (unsigned long long)native_sectors);
1328		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1329		return 0;
1330	} else if (rc)
1331		return rc;
1332
1333	/* re-read IDENTIFY data */
1334	rc = ata_dev_reread_id(dev, 0);
1335	if (rc) {
1336		ata_dev_err(dev,
1337			    "failed to re-read IDENTIFY data after HPA resizing\n");
1338		return rc;
1339	}
1340
1341	if (print_info) {
1342		u64 new_sectors = ata_id_n_sectors(dev->id);
1343		ata_dev_info(dev,
1344			"HPA unlocked: %llu -> %llu, native %llu\n",
1345			(unsigned long long)sectors,
1346			(unsigned long long)new_sectors,
1347			(unsigned long long)native_sectors);
1348	}
1349
1350	return 0;
1351}
1352
1353/**
1354 *	ata_dump_id - IDENTIFY DEVICE info debugging output
1355 *	@id: IDENTIFY DEVICE page to dump
1356 *
1357 *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1358 *	page.
1359 *
1360 *	LOCKING:
1361 *	caller.
1362 */
1363
1364static inline void ata_dump_id(const u16 *id)
1365{
1366	DPRINTK("49==0x%04x  "
1367		"53==0x%04x  "
1368		"63==0x%04x  "
1369		"64==0x%04x  "
1370		"75==0x%04x  \n",
1371		id[49],
1372		id[53],
1373		id[63],
1374		id[64],
1375		id[75]);
1376	DPRINTK("80==0x%04x  "
1377		"81==0x%04x  "
1378		"82==0x%04x  "
1379		"83==0x%04x  "
1380		"84==0x%04x  \n",
1381		id[80],
1382		id[81],
1383		id[82],
1384		id[83],
1385		id[84]);
1386	DPRINTK("88==0x%04x  "
1387		"93==0x%04x\n",
1388		id[88],
1389		id[93]);
1390}
1391
1392/**
1393 *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1394 *	@id: IDENTIFY data to compute xfer mask from
1395 *
1396 *	Compute the xfermask for this device. This is not as trivial
1397 *	as it seems if we must consider early devices correctly.
1398 *
1399 *	FIXME: pre IDE drive timing (do we care ?).
1400 *
1401 *	LOCKING:
1402 *	None.
1403 *
1404 *	RETURNS:
1405 *	Computed xfermask
1406 */
1407unsigned long ata_id_xfermask(const u16 *id)
1408{
1409	unsigned long pio_mask, mwdma_mask, udma_mask;
1410
1411	/* Usual case. Word 53 indicates word 64 is valid */
1412	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1413		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1414		pio_mask <<= 3;
1415		pio_mask |= 0x7;
1416	} else {
1417		/* If word 64 isn't valid then Word 51 high byte holds
1418		 * the PIO timing number for the maximum. Turn it into
1419		 * a mask.
1420		 */
1421		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1422		if (mode < 5)	/* Valid PIO range */
1423			pio_mask = (2 << mode) - 1;
1424		else
1425			pio_mask = 1;
1426
1427		/* But wait.. there's more. Design your standards by
1428		 * committee and you too can get a free iordy field to
1429		 * process. However its the speeds not the modes that
1430		 * are supported... Note drivers using the timing API
1431		 * will get this right anyway
1432		 */
1433	}
1434
1435	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1436
1437	if (ata_id_is_cfa(id)) {
1438		/*
1439		 *	Process compact flash extended modes
1440		 */
1441		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1442		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1443
1444		if (pio)
1445			pio_mask |= (1 << 5);
1446		if (pio > 1)
1447			pio_mask |= (1 << 6);
1448		if (dma)
1449			mwdma_mask |= (1 << 3);
1450		if (dma > 1)
1451			mwdma_mask |= (1 << 4);
1452	}
1453
1454	udma_mask = 0;
1455	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1456		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1457
1458	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1459}
1460EXPORT_SYMBOL_GPL(ata_id_xfermask);
1461
1462static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1463{
1464	struct completion *waiting = qc->private_data;
1465
1466	complete(waiting);
1467}
1468
1469/**
1470 *	ata_exec_internal_sg - execute libata internal command
1471 *	@dev: Device to which the command is sent
1472 *	@tf: Taskfile registers for the command and the result
1473 *	@cdb: CDB for packet command
1474 *	@dma_dir: Data transfer direction of the command
1475 *	@sgl: sg list for the data buffer of the command
1476 *	@n_elem: Number of sg entries
1477 *	@timeout: Timeout in msecs (0 for default)
1478 *
1479 *	Executes libata internal command with timeout.  @tf contains
1480 *	command on entry and result on return.  Timeout and error
1481 *	conditions are reported via return value.  No recovery action
1482 *	is taken after a command times out.  It's caller's duty to
1483 *	clean up after timeout.
1484 *
1485 *	LOCKING:
1486 *	None.  Should be called with kernel context, might sleep.
1487 *
1488 *	RETURNS:
1489 *	Zero on success, AC_ERR_* mask on failure
1490 */
1491unsigned ata_exec_internal_sg(struct ata_device *dev,
1492			      struct ata_taskfile *tf, const u8 *cdb,
1493			      int dma_dir, struct scatterlist *sgl,
1494			      unsigned int n_elem, unsigned long timeout)
1495{
1496	struct ata_link *link = dev->link;
1497	struct ata_port *ap = link->ap;
1498	u8 command = tf->command;
1499	int auto_timeout = 0;
1500	struct ata_queued_cmd *qc;
1501	unsigned int preempted_tag;
1502	u32 preempted_sactive;
1503	u64 preempted_qc_active;
1504	int preempted_nr_active_links;
1505	DECLARE_COMPLETION_ONSTACK(wait);
1506	unsigned long flags;
1507	unsigned int err_mask;
1508	int rc;
1509
1510	spin_lock_irqsave(ap->lock, flags);
1511
1512	/* no internal command while frozen */
1513	if (ap->pflags & ATA_PFLAG_FROZEN) {
1514		spin_unlock_irqrestore(ap->lock, flags);
1515		return AC_ERR_SYSTEM;
1516	}
1517
1518	/* initialize internal qc */
1519	qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1520
1521	qc->tag = ATA_TAG_INTERNAL;
1522	qc->hw_tag = 0;
1523	qc->scsicmd = NULL;
1524	qc->ap = ap;
1525	qc->dev = dev;
1526	ata_qc_reinit(qc);
1527
1528	preempted_tag = link->active_tag;
1529	preempted_sactive = link->sactive;
1530	preempted_qc_active = ap->qc_active;
1531	preempted_nr_active_links = ap->nr_active_links;
1532	link->active_tag = ATA_TAG_POISON;
1533	link->sactive = 0;
1534	ap->qc_active = 0;
1535	ap->nr_active_links = 0;
1536
1537	/* prepare & issue qc */
1538	qc->tf = *tf;
1539	if (cdb)
1540		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1541
1542	/* some SATA bridges need us to indicate data xfer direction */
1543	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1544	    dma_dir == DMA_FROM_DEVICE)
1545		qc->tf.feature |= ATAPI_DMADIR;
1546
1547	qc->flags |= ATA_QCFLAG_RESULT_TF;
1548	qc->dma_dir = dma_dir;
1549	if (dma_dir != DMA_NONE) {
1550		unsigned int i, buflen = 0;
1551		struct scatterlist *sg;
1552
1553		for_each_sg(sgl, sg, n_elem, i)
1554			buflen += sg->length;
1555
1556		ata_sg_init(qc, sgl, n_elem);
1557		qc->nbytes = buflen;
1558	}
1559
1560	qc->private_data = &wait;
1561	qc->complete_fn = ata_qc_complete_internal;
1562
1563	ata_qc_issue(qc);
1564
1565	spin_unlock_irqrestore(ap->lock, flags);
1566
1567	if (!timeout) {
1568		if (ata_probe_timeout)
1569			timeout = ata_probe_timeout * 1000;
1570		else {
1571			timeout = ata_internal_cmd_timeout(dev, command);
1572			auto_timeout = 1;
1573		}
1574	}
1575
1576	if (ap->ops->error_handler)
1577		ata_eh_release(ap);
1578
1579	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1580
1581	if (ap->ops->error_handler)
1582		ata_eh_acquire(ap);
1583
1584	ata_sff_flush_pio_task(ap);
1585
1586	if (!rc) {
1587		spin_lock_irqsave(ap->lock, flags);
1588
1589		/* We're racing with irq here.  If we lose, the
1590		 * following test prevents us from completing the qc
1591		 * twice.  If we win, the port is frozen and will be
1592		 * cleaned up by ->post_internal_cmd().
1593		 */
1594		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1595			qc->err_mask |= AC_ERR_TIMEOUT;
1596
1597			if (ap->ops->error_handler)
1598				ata_port_freeze(ap);
1599			else
1600				ata_qc_complete(qc);
1601
1602			if (ata_msg_warn(ap))
1603				ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1604					     command);
1605		}
1606
1607		spin_unlock_irqrestore(ap->lock, flags);
1608	}
1609
1610	/* do post_internal_cmd */
1611	if (ap->ops->post_internal_cmd)
1612		ap->ops->post_internal_cmd(qc);
1613
1614	/* perform minimal error analysis */
1615	if (qc->flags & ATA_QCFLAG_FAILED) {
1616		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1617			qc->err_mask |= AC_ERR_DEV;
1618
1619		if (!qc->err_mask)
1620			qc->err_mask |= AC_ERR_OTHER;
1621
1622		if (qc->err_mask & ~AC_ERR_OTHER)
1623			qc->err_mask &= ~AC_ERR_OTHER;
1624	} else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1625		qc->result_tf.command |= ATA_SENSE;
1626	}
1627
1628	/* finish up */
1629	spin_lock_irqsave(ap->lock, flags);
1630
1631	*tf = qc->result_tf;
1632	err_mask = qc->err_mask;
1633
1634	ata_qc_free(qc);
1635	link->active_tag = preempted_tag;
1636	link->sactive = preempted_sactive;
1637	ap->qc_active = preempted_qc_active;
1638	ap->nr_active_links = preempted_nr_active_links;
1639
1640	spin_unlock_irqrestore(ap->lock, flags);
1641
1642	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1643		ata_internal_cmd_timed_out(dev, command);
1644
1645	return err_mask;
1646}
1647
1648/**
1649 *	ata_exec_internal - execute libata internal command
1650 *	@dev: Device to which the command is sent
1651 *	@tf: Taskfile registers for the command and the result
1652 *	@cdb: CDB for packet command
1653 *	@dma_dir: Data transfer direction of the command
1654 *	@buf: Data buffer of the command
1655 *	@buflen: Length of data buffer
1656 *	@timeout: Timeout in msecs (0 for default)
1657 *
1658 *	Wrapper around ata_exec_internal_sg() which takes simple
1659 *	buffer instead of sg list.
1660 *
1661 *	LOCKING:
1662 *	None.  Should be called with kernel context, might sleep.
1663 *
1664 *	RETURNS:
1665 *	Zero on success, AC_ERR_* mask on failure
1666 */
1667unsigned ata_exec_internal(struct ata_device *dev,
1668			   struct ata_taskfile *tf, const u8 *cdb,
1669			   int dma_dir, void *buf, unsigned int buflen,
1670			   unsigned long timeout)
1671{
1672	struct scatterlist *psg = NULL, sg;
1673	unsigned int n_elem = 0;
1674
1675	if (dma_dir != DMA_NONE) {
1676		WARN_ON(!buf);
1677		sg_init_one(&sg, buf, buflen);
1678		psg = &sg;
1679		n_elem++;
1680	}
1681
1682	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1683				    timeout);
1684}
1685
1686/**
1687 *	ata_pio_need_iordy	-	check if iordy needed
1688 *	@adev: ATA device
1689 *
1690 *	Check if the current speed of the device requires IORDY. Used
1691 *	by various controllers for chip configuration.
1692 */
1693unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1694{
1695	/* Don't set IORDY if we're preparing for reset.  IORDY may
1696	 * lead to controller lock up on certain controllers if the
1697	 * port is not occupied.  See bko#11703 for details.
1698	 */
1699	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1700		return 0;
1701	/* Controller doesn't support IORDY.  Probably a pointless
1702	 * check as the caller should know this.
1703	 */
1704	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1705		return 0;
1706	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1707	if (ata_id_is_cfa(adev->id)
1708	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1709		return 0;
1710	/* PIO3 and higher it is mandatory */
1711	if (adev->pio_mode > XFER_PIO_2)
1712		return 1;
1713	/* We turn it on when possible */
1714	if (ata_id_has_iordy(adev->id))
1715		return 1;
1716	return 0;
1717}
1718EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1719
1720/**
1721 *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1722 *	@adev: ATA device
1723 *
1724 *	Compute the highest mode possible if we are not using iordy. Return
1725 *	-1 if no iordy mode is available.
1726 */
1727static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1728{
1729	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1730	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1731		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1732		/* Is the speed faster than the drive allows non IORDY ? */
1733		if (pio) {
1734			/* This is cycle times not frequency - watch the logic! */
1735			if (pio > 240)	/* PIO2 is 240nS per cycle */
1736				return 3 << ATA_SHIFT_PIO;
1737			return 7 << ATA_SHIFT_PIO;
1738		}
1739	}
1740	return 3 << ATA_SHIFT_PIO;
1741}
1742
1743/**
1744 *	ata_do_dev_read_id		-	default ID read method
1745 *	@dev: device
1746 *	@tf: proposed taskfile
1747 *	@id: data buffer
1748 *
1749 *	Issue the identify taskfile and hand back the buffer containing
1750 *	identify data. For some RAID controllers and for pre ATA devices
1751 *	this function is wrapped or replaced by the driver
1752 */
1753unsigned int ata_do_dev_read_id(struct ata_device *dev,
1754					struct ata_taskfile *tf, u16 *id)
1755{
1756	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1757				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1758}
1759EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1760
1761/**
1762 *	ata_dev_read_id - Read ID data from the specified device
1763 *	@dev: target device
1764 *	@p_class: pointer to class of the target device (may be changed)
1765 *	@flags: ATA_READID_* flags
1766 *	@id: buffer to read IDENTIFY data into
1767 *
1768 *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1769 *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1770 *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1771 *	for pre-ATA4 drives.
1772 *
1773 *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1774 *	now we abort if we hit that case.
1775 *
1776 *	LOCKING:
1777 *	Kernel thread context (may sleep)
1778 *
1779 *	RETURNS:
1780 *	0 on success, -errno otherwise.
1781 */
1782int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1783		    unsigned int flags, u16 *id)
1784{
1785	struct ata_port *ap = dev->link->ap;
1786	unsigned int class = *p_class;
1787	struct ata_taskfile tf;
1788	unsigned int err_mask = 0;
1789	const char *reason;
1790	bool is_semb = class == ATA_DEV_SEMB;
1791	int may_fallback = 1, tried_spinup = 0;
1792	int rc;
1793
1794	if (ata_msg_ctl(ap))
1795		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1796
1797retry:
1798	ata_tf_init(dev, &tf);
1799
1800	switch (class) {
1801	case ATA_DEV_SEMB:
1802		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1803		fallthrough;
1804	case ATA_DEV_ATA:
1805	case ATA_DEV_ZAC:
1806		tf.command = ATA_CMD_ID_ATA;
1807		break;
1808	case ATA_DEV_ATAPI:
1809		tf.command = ATA_CMD_ID_ATAPI;
1810		break;
1811	default:
1812		rc = -ENODEV;
1813		reason = "unsupported class";
1814		goto err_out;
1815	}
1816
1817	tf.protocol = ATA_PROT_PIO;
1818
1819	/* Some devices choke if TF registers contain garbage.  Make
1820	 * sure those are properly initialized.
1821	 */
1822	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1823
1824	/* Device presence detection is unreliable on some
1825	 * controllers.  Always poll IDENTIFY if available.
1826	 */
1827	tf.flags |= ATA_TFLAG_POLLING;
1828
1829	if (ap->ops->read_id)
1830		err_mask = ap->ops->read_id(dev, &tf, id);
1831	else
1832		err_mask = ata_do_dev_read_id(dev, &tf, id);
1833
1834	if (err_mask) {
1835		if (err_mask & AC_ERR_NODEV_HINT) {
1836			ata_dev_dbg(dev, "NODEV after polling detection\n");
1837			return -ENOENT;
1838		}
1839
1840		if (is_semb) {
1841			ata_dev_info(dev,
1842		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1843			/* SEMB is not supported yet */
1844			*p_class = ATA_DEV_SEMB_UNSUP;
1845			return 0;
1846		}
1847
1848		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1849			/* Device or controller might have reported
1850			 * the wrong device class.  Give a shot at the
1851			 * other IDENTIFY if the current one is
1852			 * aborted by the device.
1853			 */
1854			if (may_fallback) {
1855				may_fallback = 0;
1856
1857				if (class == ATA_DEV_ATA)
1858					class = ATA_DEV_ATAPI;
1859				else
1860					class = ATA_DEV_ATA;
1861				goto retry;
1862			}
1863
1864			/* Control reaches here iff the device aborted
1865			 * both flavors of IDENTIFYs which happens
1866			 * sometimes with phantom devices.
1867			 */
1868			ata_dev_dbg(dev,
1869				    "both IDENTIFYs aborted, assuming NODEV\n");
1870			return -ENOENT;
1871		}
1872
1873		rc = -EIO;
1874		reason = "I/O error";
1875		goto err_out;
1876	}
1877
1878	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1879		ata_dev_dbg(dev, "dumping IDENTIFY data, "
1880			    "class=%d may_fallback=%d tried_spinup=%d\n",
1881			    class, may_fallback, tried_spinup);
1882		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1883			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1884	}
1885
1886	/* Falling back doesn't make sense if ID data was read
1887	 * successfully at least once.
1888	 */
1889	may_fallback = 0;
1890
1891	swap_buf_le16(id, ATA_ID_WORDS);
1892
1893	/* sanity check */
1894	rc = -EINVAL;
1895	reason = "device reports invalid type";
1896
1897	if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1898		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1899			goto err_out;
1900		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1901							ata_id_is_ata(id)) {
1902			ata_dev_dbg(dev,
1903				"host indicates ignore ATA devices, ignored\n");
1904			return -ENOENT;
1905		}
1906	} else {
1907		if (ata_id_is_ata(id))
1908			goto err_out;
1909	}
1910
1911	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1912		tried_spinup = 1;
1913		/*
1914		 * Drive powered-up in standby mode, and requires a specific
1915		 * SET_FEATURES spin-up subcommand before it will accept
1916		 * anything other than the original IDENTIFY command.
1917		 */
1918		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1919		if (err_mask && id[2] != 0x738c) {
1920			rc = -EIO;
1921			reason = "SPINUP failed";
1922			goto err_out;
1923		}
1924		/*
1925		 * If the drive initially returned incomplete IDENTIFY info,
1926		 * we now must reissue the IDENTIFY command.
1927		 */
1928		if (id[2] == 0x37c8)
1929			goto retry;
1930	}
1931
1932	if ((flags & ATA_READID_POSTRESET) &&
1933	    (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1934		/*
1935		 * The exact sequence expected by certain pre-ATA4 drives is:
1936		 * SRST RESET
1937		 * IDENTIFY (optional in early ATA)
1938		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1939		 * anything else..
1940		 * Some drives were very specific about that exact sequence.
1941		 *
1942		 * Note that ATA4 says lba is mandatory so the second check
1943		 * should never trigger.
1944		 */
1945		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1946			err_mask = ata_dev_init_params(dev, id[3], id[6]);
1947			if (err_mask) {
1948				rc = -EIO;
1949				reason = "INIT_DEV_PARAMS failed";
1950				goto err_out;
1951			}
1952
1953			/* current CHS translation info (id[53-58]) might be
1954			 * changed. reread the identify device info.
1955			 */
1956			flags &= ~ATA_READID_POSTRESET;
1957			goto retry;
1958		}
1959	}
1960
1961	*p_class = class;
1962
1963	return 0;
1964
1965 err_out:
1966	if (ata_msg_warn(ap))
1967		ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1968			     reason, err_mask);
1969	return rc;
1970}
1971
1972/**
1973 *	ata_read_log_page - read a specific log page
1974 *	@dev: target device
1975 *	@log: log to read
1976 *	@page: page to read
1977 *	@buf: buffer to store read page
1978 *	@sectors: number of sectors to read
1979 *
1980 *	Read log page using READ_LOG_EXT command.
1981 *
1982 *	LOCKING:
1983 *	Kernel thread context (may sleep).
1984 *
1985 *	RETURNS:
1986 *	0 on success, AC_ERR_* mask otherwise.
1987 */
1988unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
1989			       u8 page, void *buf, unsigned int sectors)
1990{
1991	unsigned long ap_flags = dev->link->ap->flags;
1992	struct ata_taskfile tf;
1993	unsigned int err_mask;
1994	bool dma = false;
1995
1996	DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page);
1997
1998	/*
1999	 * Return error without actually issuing the command on controllers
2000	 * which e.g. lockup on a read log page.
2001	 */
2002	if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2003		return AC_ERR_DEV;
2004
2005retry:
2006	ata_tf_init(dev, &tf);
2007	if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) &&
2008	    !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2009		tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2010		tf.protocol = ATA_PROT_DMA;
2011		dma = true;
2012	} else {
2013		tf.command = ATA_CMD_READ_LOG_EXT;
2014		tf.protocol = ATA_PROT_PIO;
2015		dma = false;
2016	}
2017	tf.lbal = log;
2018	tf.lbam = page;
2019	tf.nsect = sectors;
2020	tf.hob_nsect = sectors >> 8;
2021	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2022
2023	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2024				     buf, sectors * ATA_SECT_SIZE, 0);
2025
2026	if (err_mask && dma) {
2027		dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2028		ata_dev_warn(dev, "READ LOG DMA EXT failed, trying PIO\n");
2029		goto retry;
2030	}
2031
2032	DPRINTK("EXIT, err_mask=%x\n", err_mask);
2033	return err_mask;
2034}
2035
2036static bool ata_log_supported(struct ata_device *dev, u8 log)
2037{
2038	struct ata_port *ap = dev->link->ap;
2039
2040	if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2041		return false;
2042	return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2043}
2044
2045static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2046{
2047	struct ata_port *ap = dev->link->ap;
2048	unsigned int err, i;
2049
2050	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2051		ata_dev_warn(dev, "ATA Identify Device Log not supported\n");
2052		return false;
2053	}
2054
2055	/*
2056	 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2057	 * supported.
2058	 */
2059	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2060				1);
2061	if (err) {
2062		ata_dev_info(dev,
2063			     "failed to get Device Identify Log Emask 0x%x\n",
2064			     err);
2065		return false;
2066	}
2067
2068	for (i = 0; i < ap->sector_buf[8]; i++) {
2069		if (ap->sector_buf[9 + i] == page)
2070			return true;
2071	}
2072
2073	return false;
2074}
2075
2076static int ata_do_link_spd_horkage(struct ata_device *dev)
2077{
2078	struct ata_link *plink = ata_dev_phys_link(dev);
2079	u32 target, target_limit;
2080
2081	if (!sata_scr_valid(plink))
2082		return 0;
2083
2084	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2085		target = 1;
2086	else
2087		return 0;
2088
2089	target_limit = (1 << target) - 1;
2090
2091	/* if already on stricter limit, no need to push further */
2092	if (plink->sata_spd_limit <= target_limit)
2093		return 0;
2094
2095	plink->sata_spd_limit = target_limit;
2096
2097	/* Request another EH round by returning -EAGAIN if link is
2098	 * going faster than the target speed.  Forward progress is
2099	 * guaranteed by setting sata_spd_limit to target_limit above.
2100	 */
2101	if (plink->sata_spd > target) {
2102		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2103			     sata_spd_string(target));
2104		return -EAGAIN;
2105	}
2106	return 0;
2107}
2108
2109static inline u8 ata_dev_knobble(struct ata_device *dev)
2110{
2111	struct ata_port *ap = dev->link->ap;
2112
2113	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2114		return 0;
2115
2116	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2117}
2118
2119static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2120{
2121	struct ata_port *ap = dev->link->ap;
2122	unsigned int err_mask;
2123
2124	if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2125		ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2126		return;
2127	}
2128	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2129				     0, ap->sector_buf, 1);
2130	if (err_mask) {
2131		ata_dev_dbg(dev,
2132			    "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2133			    err_mask);
2134	} else {
2135		u8 *cmds = dev->ncq_send_recv_cmds;
2136
2137		dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2138		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2139
2140		if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2141			ata_dev_dbg(dev, "disabling queued TRIM support\n");
2142			cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2143				~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2144		}
2145	}
2146}
2147
2148static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2149{
2150	struct ata_port *ap = dev->link->ap;
2151	unsigned int err_mask;
2152
2153	if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2154		ata_dev_warn(dev,
2155			     "NCQ Send/Recv Log not supported\n");
2156		return;
2157	}
2158	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2159				     0, ap->sector_buf, 1);
2160	if (err_mask) {
2161		ata_dev_dbg(dev,
2162			    "failed to get NCQ Non-Data Log Emask 0x%x\n",
2163			    err_mask);
2164	} else {
2165		u8 *cmds = dev->ncq_non_data_cmds;
2166
2167		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2168	}
2169}
2170
2171static void ata_dev_config_ncq_prio(struct ata_device *dev)
2172{
2173	struct ata_port *ap = dev->link->ap;
2174	unsigned int err_mask;
2175
2176	if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) {
2177		dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2178		return;
2179	}
2180
2181	err_mask = ata_read_log_page(dev,
2182				     ATA_LOG_IDENTIFY_DEVICE,
2183				     ATA_LOG_SATA_SETTINGS,
2184				     ap->sector_buf,
2185				     1);
2186	if (err_mask) {
2187		ata_dev_dbg(dev,
2188			    "failed to get Identify Device data, Emask 0x%x\n",
2189			    err_mask);
2190		return;
2191	}
2192
2193	if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) {
2194		dev->flags |= ATA_DFLAG_NCQ_PRIO;
2195	} else {
2196		dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2197		ata_dev_dbg(dev, "SATA page does not support priority\n");
2198	}
2199
2200}
2201
2202static bool ata_dev_check_adapter(struct ata_device *dev,
2203				  unsigned short vendor_id)
2204{
2205	struct pci_dev *pcidev = NULL;
2206	struct device *parent_dev = NULL;
2207
2208	for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2209	     parent_dev = parent_dev->parent) {
2210		if (dev_is_pci(parent_dev)) {
2211			pcidev = to_pci_dev(parent_dev);
2212			if (pcidev->vendor == vendor_id)
2213				return true;
2214			break;
2215		}
2216	}
2217
2218	return false;
2219}
2220
2221static int ata_dev_config_ncq(struct ata_device *dev,
2222			       char *desc, size_t desc_sz)
2223{
2224	struct ata_port *ap = dev->link->ap;
2225	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2226	unsigned int err_mask;
2227	char *aa_desc = "";
2228
2229	if (!ata_id_has_ncq(dev->id)) {
2230		desc[0] = '\0';
2231		return 0;
2232	}
2233	if (!IS_ENABLED(CONFIG_SATA_HOST))
2234		return 0;
2235	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2236		snprintf(desc, desc_sz, "NCQ (not used)");
2237		return 0;
2238	}
2239
2240	if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI &&
2241	    ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2242		snprintf(desc, desc_sz, "NCQ (not used)");
2243		return 0;
2244	}
2245
2246	if (ap->flags & ATA_FLAG_NCQ) {
2247		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2248		dev->flags |= ATA_DFLAG_NCQ;
2249	}
2250
2251	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2252		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2253		ata_id_has_fpdma_aa(dev->id)) {
2254		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2255			SATA_FPDMA_AA);
2256		if (err_mask) {
2257			ata_dev_err(dev,
2258				    "failed to enable AA (error_mask=0x%x)\n",
2259				    err_mask);
2260			if (err_mask != AC_ERR_DEV) {
2261				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2262				return -EIO;
2263			}
2264		} else
2265			aa_desc = ", AA";
2266	}
2267
2268	if (hdepth >= ddepth)
2269		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2270	else
2271		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2272			ddepth, aa_desc);
2273
2274	if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2275		if (ata_id_has_ncq_send_and_recv(dev->id))
2276			ata_dev_config_ncq_send_recv(dev);
2277		if (ata_id_has_ncq_non_data(dev->id))
2278			ata_dev_config_ncq_non_data(dev);
2279		if (ata_id_has_ncq_prio(dev->id))
2280			ata_dev_config_ncq_prio(dev);
2281	}
2282
2283	return 0;
2284}
2285
2286static void ata_dev_config_sense_reporting(struct ata_device *dev)
2287{
2288	unsigned int err_mask;
2289
2290	if (!ata_id_has_sense_reporting(dev->id))
2291		return;
2292
2293	if (ata_id_sense_reporting_enabled(dev->id))
2294		return;
2295
2296	err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2297	if (err_mask) {
2298		ata_dev_dbg(dev,
2299			    "failed to enable Sense Data Reporting, Emask 0x%x\n",
2300			    err_mask);
2301	}
2302}
2303
2304static void ata_dev_config_zac(struct ata_device *dev)
2305{
2306	struct ata_port *ap = dev->link->ap;
2307	unsigned int err_mask;
2308	u8 *identify_buf = ap->sector_buf;
2309
2310	dev->zac_zones_optimal_open = U32_MAX;
2311	dev->zac_zones_optimal_nonseq = U32_MAX;
2312	dev->zac_zones_max_open = U32_MAX;
2313
2314	/*
2315	 * Always set the 'ZAC' flag for Host-managed devices.
2316	 */
2317	if (dev->class == ATA_DEV_ZAC)
2318		dev->flags |= ATA_DFLAG_ZAC;
2319	else if (ata_id_zoned_cap(dev->id) == 0x01)
2320		/*
2321		 * Check for host-aware devices.
2322		 */
2323		dev->flags |= ATA_DFLAG_ZAC;
2324
2325	if (!(dev->flags & ATA_DFLAG_ZAC))
2326		return;
2327
2328	if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2329		ata_dev_warn(dev,
2330			     "ATA Zoned Information Log not supported\n");
2331		return;
2332	}
2333
2334	/*
2335	 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2336	 */
2337	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2338				     ATA_LOG_ZONED_INFORMATION,
2339				     identify_buf, 1);
2340	if (!err_mask) {
2341		u64 zoned_cap, opt_open, opt_nonseq, max_open;
2342
2343		zoned_cap = get_unaligned_le64(&identify_buf[8]);
2344		if ((zoned_cap >> 63))
2345			dev->zac_zoned_cap = (zoned_cap & 1);
2346		opt_open = get_unaligned_le64(&identify_buf[24]);
2347		if ((opt_open >> 63))
2348			dev->zac_zones_optimal_open = (u32)opt_open;
2349		opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2350		if ((opt_nonseq >> 63))
2351			dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2352		max_open = get_unaligned_le64(&identify_buf[40]);
2353		if ((max_open >> 63))
2354			dev->zac_zones_max_open = (u32)max_open;
2355	}
2356}
2357
2358static void ata_dev_config_trusted(struct ata_device *dev)
2359{
2360	struct ata_port *ap = dev->link->ap;
2361	u64 trusted_cap;
2362	unsigned int err;
2363
2364	if (!ata_id_has_trusted(dev->id))
2365		return;
2366
2367	if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2368		ata_dev_warn(dev,
2369			     "Security Log not supported\n");
2370		return;
2371	}
2372
2373	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2374			ap->sector_buf, 1);
2375	if (err) {
2376		ata_dev_dbg(dev,
2377			    "failed to read Security Log, Emask 0x%x\n", err);
2378		return;
2379	}
2380
2381	trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2382	if (!(trusted_cap & (1ULL << 63))) {
2383		ata_dev_dbg(dev,
2384			    "Trusted Computing capability qword not valid!\n");
2385		return;
2386	}
2387
2388	if (trusted_cap & (1 << 0))
2389		dev->flags |= ATA_DFLAG_TRUSTED;
2390}
2391
2392/**
2393 *	ata_dev_configure - Configure the specified ATA/ATAPI device
2394 *	@dev: Target device to configure
2395 *
2396 *	Configure @dev according to @dev->id.  Generic and low-level
2397 *	driver specific fixups are also applied.
2398 *
2399 *	LOCKING:
2400 *	Kernel thread context (may sleep)
2401 *
2402 *	RETURNS:
2403 *	0 on success, -errno otherwise
2404 */
2405int ata_dev_configure(struct ata_device *dev)
2406{
2407	struct ata_port *ap = dev->link->ap;
2408	struct ata_eh_context *ehc = &dev->link->eh_context;
2409	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2410	const u16 *id = dev->id;
2411	unsigned long xfer_mask;
2412	unsigned int err_mask;
2413	char revbuf[7];		/* XYZ-99\0 */
2414	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2415	char modelbuf[ATA_ID_PROD_LEN+1];
2416	int rc;
2417
2418	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2419		ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2420		return 0;
2421	}
2422
2423	if (ata_msg_probe(ap))
2424		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2425
2426	/* set horkage */
2427	dev->horkage |= ata_dev_blacklisted(dev);
2428	ata_force_horkage(dev);
2429
2430	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2431		ata_dev_info(dev, "unsupported device, disabling\n");
2432		ata_dev_disable(dev);
2433		return 0;
2434	}
2435
2436	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2437	    dev->class == ATA_DEV_ATAPI) {
2438		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2439			     atapi_enabled ? "not supported with this driver"
2440			     : "disabled");
2441		ata_dev_disable(dev);
2442		return 0;
2443	}
2444
2445	rc = ata_do_link_spd_horkage(dev);
2446	if (rc)
2447		return rc;
2448
2449	/* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2450	if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2451	    (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2452		dev->horkage |= ATA_HORKAGE_NOLPM;
2453
2454	if (ap->flags & ATA_FLAG_NO_LPM)
2455		dev->horkage |= ATA_HORKAGE_NOLPM;
2456
2457	if (dev->horkage & ATA_HORKAGE_NOLPM) {
2458		ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2459		dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2460	}
2461
2462	/* let ACPI work its magic */
2463	rc = ata_acpi_on_devcfg(dev);
2464	if (rc)
2465		return rc;
2466
2467	/* massage HPA, do it early as it might change IDENTIFY data */
2468	rc = ata_hpa_resize(dev);
2469	if (rc)
2470		return rc;
2471
2472	/* print device capabilities */
2473	if (ata_msg_probe(ap))
2474		ata_dev_dbg(dev,
2475			    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2476			    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2477			    __func__,
2478			    id[49], id[82], id[83], id[84],
2479			    id[85], id[86], id[87], id[88]);
2480
2481	/* initialize to-be-configured parameters */
2482	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2483	dev->max_sectors = 0;
2484	dev->cdb_len = 0;
2485	dev->n_sectors = 0;
2486	dev->cylinders = 0;
2487	dev->heads = 0;
2488	dev->sectors = 0;
2489	dev->multi_count = 0;
2490
2491	/*
2492	 * common ATA, ATAPI feature tests
2493	 */
2494
2495	/* find max transfer mode; for printk only */
2496	xfer_mask = ata_id_xfermask(id);
2497
2498	if (ata_msg_probe(ap))
2499		ata_dump_id(id);
2500
2501	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2502	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2503			sizeof(fwrevbuf));
2504
2505	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2506			sizeof(modelbuf));
2507
2508	/* ATA-specific feature tests */
2509	if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2510		if (ata_id_is_cfa(id)) {
2511			/* CPRM may make this media unusable */
2512			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2513				ata_dev_warn(dev,
2514	"supports DRM functions and may not be fully accessible\n");
2515			snprintf(revbuf, 7, "CFA");
2516		} else {
2517			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2518			/* Warn the user if the device has TPM extensions */
2519			if (ata_id_has_tpm(id))
2520				ata_dev_warn(dev,
2521	"supports DRM functions and may not be fully accessible\n");
2522		}
2523
2524		dev->n_sectors = ata_id_n_sectors(id);
2525
2526		/* get current R/W Multiple count setting */
2527		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2528			unsigned int max = dev->id[47] & 0xff;
2529			unsigned int cnt = dev->id[59] & 0xff;
2530			/* only recognize/allow powers of two here */
2531			if (is_power_of_2(max) && is_power_of_2(cnt))
2532				if (cnt <= max)
2533					dev->multi_count = cnt;
2534		}
2535
2536		if (ata_id_has_lba(id)) {
2537			const char *lba_desc;
2538			char ncq_desc[24];
2539
2540			lba_desc = "LBA";
2541			dev->flags |= ATA_DFLAG_LBA;
2542			if (ata_id_has_lba48(id)) {
2543				dev->flags |= ATA_DFLAG_LBA48;
2544				lba_desc = "LBA48";
2545
2546				if (dev->n_sectors >= (1UL << 28) &&
2547				    ata_id_has_flush_ext(id))
2548					dev->flags |= ATA_DFLAG_FLUSH_EXT;
2549			}
2550
2551			/* config NCQ */
2552			rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2553			if (rc)
2554				return rc;
2555
2556			/* print device info to dmesg */
2557			if (ata_msg_drv(ap) && print_info) {
2558				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2559					     revbuf, modelbuf, fwrevbuf,
2560					     ata_mode_string(xfer_mask));
2561				ata_dev_info(dev,
2562					     "%llu sectors, multi %u: %s %s\n",
2563					(unsigned long long)dev->n_sectors,
2564					dev->multi_count, lba_desc, ncq_desc);
2565			}
2566		} else {
2567			/* CHS */
2568
2569			/* Default translation */
2570			dev->cylinders	= id[1];
2571			dev->heads	= id[3];
2572			dev->sectors	= id[6];
2573
2574			if (ata_id_current_chs_valid(id)) {
2575				/* Current CHS translation is valid. */
2576				dev->cylinders = id[54];
2577				dev->heads     = id[55];
2578				dev->sectors   = id[56];
2579			}
2580
2581			/* print device info to dmesg */
2582			if (ata_msg_drv(ap) && print_info) {
2583				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2584					     revbuf,	modelbuf, fwrevbuf,
2585					     ata_mode_string(xfer_mask));
2586				ata_dev_info(dev,
2587					     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2588					     (unsigned long long)dev->n_sectors,
2589					     dev->multi_count, dev->cylinders,
2590					     dev->heads, dev->sectors);
2591			}
2592		}
2593
2594		/* Check and mark DevSlp capability. Get DevSlp timing variables
2595		 * from SATA Settings page of Identify Device Data Log.
2596		 */
2597		if (ata_id_has_devslp(dev->id)) {
2598			u8 *sata_setting = ap->sector_buf;
2599			int i, j;
2600
2601			dev->flags |= ATA_DFLAG_DEVSLP;
2602			err_mask = ata_read_log_page(dev,
2603						     ATA_LOG_IDENTIFY_DEVICE,
2604						     ATA_LOG_SATA_SETTINGS,
2605						     sata_setting,
2606						     1);
2607			if (err_mask)
2608				ata_dev_dbg(dev,
2609					    "failed to get Identify Device Data, Emask 0x%x\n",
2610					    err_mask);
2611			else
2612				for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2613					j = ATA_LOG_DEVSLP_OFFSET + i;
2614					dev->devslp_timing[i] = sata_setting[j];
2615				}
2616		}
2617		ata_dev_config_sense_reporting(dev);
2618		ata_dev_config_zac(dev);
2619		ata_dev_config_trusted(dev);
2620		dev->cdb_len = 32;
2621	}
2622
2623	/* ATAPI-specific feature tests */
2624	else if (dev->class == ATA_DEV_ATAPI) {
2625		const char *cdb_intr_string = "";
2626		const char *atapi_an_string = "";
2627		const char *dma_dir_string = "";
2628		u32 sntf;
2629
2630		rc = atapi_cdb_len(id);
2631		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2632			if (ata_msg_warn(ap))
2633				ata_dev_warn(dev, "unsupported CDB len\n");
2634			rc = -EINVAL;
2635			goto err_out_nosup;
2636		}
2637		dev->cdb_len = (unsigned int) rc;
2638
2639		/* Enable ATAPI AN if both the host and device have
2640		 * the support.  If PMP is attached, SNTF is required
2641		 * to enable ATAPI AN to discern between PHY status
2642		 * changed notifications and ATAPI ANs.
2643		 */
2644		if (atapi_an &&
2645		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2646		    (!sata_pmp_attached(ap) ||
2647		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2648			/* issue SET feature command to turn this on */
2649			err_mask = ata_dev_set_feature(dev,
2650					SETFEATURES_SATA_ENABLE, SATA_AN);
2651			if (err_mask)
2652				ata_dev_err(dev,
2653					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2654					    err_mask);
2655			else {
2656				dev->flags |= ATA_DFLAG_AN;
2657				atapi_an_string = ", ATAPI AN";
2658			}
2659		}
2660
2661		if (ata_id_cdb_intr(dev->id)) {
2662			dev->flags |= ATA_DFLAG_CDB_INTR;
2663			cdb_intr_string = ", CDB intr";
2664		}
2665
2666		if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2667			dev->flags |= ATA_DFLAG_DMADIR;
2668			dma_dir_string = ", DMADIR";
2669		}
2670
2671		if (ata_id_has_da(dev->id)) {
2672			dev->flags |= ATA_DFLAG_DA;
2673			zpodd_init(dev);
2674		}
2675
2676		/* print device info to dmesg */
2677		if (ata_msg_drv(ap) && print_info)
2678			ata_dev_info(dev,
2679				     "ATAPI: %s, %s, max %s%s%s%s\n",
2680				     modelbuf, fwrevbuf,
2681				     ata_mode_string(xfer_mask),
2682				     cdb_intr_string, atapi_an_string,
2683				     dma_dir_string);
2684	}
2685
2686	/* determine max_sectors */
2687	dev->max_sectors = ATA_MAX_SECTORS;
2688	if (dev->flags & ATA_DFLAG_LBA48)
2689		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2690
2691	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2692	   200 sectors */
2693	if (ata_dev_knobble(dev)) {
2694		if (ata_msg_drv(ap) && print_info)
2695			ata_dev_info(dev, "applying bridge limits\n");
2696		dev->udma_mask &= ATA_UDMA5;
2697		dev->max_sectors = ATA_MAX_SECTORS;
2698	}
2699
2700	if ((dev->class == ATA_DEV_ATAPI) &&
2701	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2702		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2703		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2704	}
2705
2706	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2707		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2708					 dev->max_sectors);
2709
2710	if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2711		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2712					 dev->max_sectors);
2713
2714	if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2715		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2716
2717	if (ap->ops->dev_config)
2718		ap->ops->dev_config(dev);
2719
2720	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2721		/* Let the user know. We don't want to disallow opens for
2722		   rescue purposes, or in case the vendor is just a blithering
2723		   idiot. Do this after the dev_config call as some controllers
2724		   with buggy firmware may want to avoid reporting false device
2725		   bugs */
2726
2727		if (print_info) {
2728			ata_dev_warn(dev,
2729"Drive reports diagnostics failure. This may indicate a drive\n");
2730			ata_dev_warn(dev,
2731"fault or invalid emulation. Contact drive vendor for information.\n");
2732		}
2733	}
2734
2735	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2736		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2737		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2738	}
2739
2740	return 0;
2741
2742err_out_nosup:
2743	if (ata_msg_probe(ap))
2744		ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2745	return rc;
2746}
2747
2748/**
2749 *	ata_cable_40wire	-	return 40 wire cable type
2750 *	@ap: port
2751 *
2752 *	Helper method for drivers which want to hardwire 40 wire cable
2753 *	detection.
2754 */
2755
2756int ata_cable_40wire(struct ata_port *ap)
2757{
2758	return ATA_CBL_PATA40;
2759}
2760EXPORT_SYMBOL_GPL(ata_cable_40wire);
2761
2762/**
2763 *	ata_cable_80wire	-	return 80 wire cable type
2764 *	@ap: port
2765 *
2766 *	Helper method for drivers which want to hardwire 80 wire cable
2767 *	detection.
2768 */
2769
2770int ata_cable_80wire(struct ata_port *ap)
2771{
2772	return ATA_CBL_PATA80;
2773}
2774EXPORT_SYMBOL_GPL(ata_cable_80wire);
2775
2776/**
2777 *	ata_cable_unknown	-	return unknown PATA cable.
2778 *	@ap: port
2779 *
2780 *	Helper method for drivers which have no PATA cable detection.
2781 */
2782
2783int ata_cable_unknown(struct ata_port *ap)
2784{
2785	return ATA_CBL_PATA_UNK;
2786}
2787EXPORT_SYMBOL_GPL(ata_cable_unknown);
2788
2789/**
2790 *	ata_cable_ignore	-	return ignored PATA cable.
2791 *	@ap: port
2792 *
2793 *	Helper method for drivers which don't use cable type to limit
2794 *	transfer mode.
2795 */
2796int ata_cable_ignore(struct ata_port *ap)
2797{
2798	return ATA_CBL_PATA_IGN;
2799}
2800EXPORT_SYMBOL_GPL(ata_cable_ignore);
2801
2802/**
2803 *	ata_cable_sata	-	return SATA cable type
2804 *	@ap: port
2805 *
2806 *	Helper method for drivers which have SATA cables
2807 */
2808
2809int ata_cable_sata(struct ata_port *ap)
2810{
2811	return ATA_CBL_SATA;
2812}
2813EXPORT_SYMBOL_GPL(ata_cable_sata);
2814
2815/**
2816 *	ata_bus_probe - Reset and probe ATA bus
2817 *	@ap: Bus to probe
2818 *
2819 *	Master ATA bus probing function.  Initiates a hardware-dependent
2820 *	bus reset, then attempts to identify any devices found on
2821 *	the bus.
2822 *
2823 *	LOCKING:
2824 *	PCI/etc. bus probe sem.
2825 *
2826 *	RETURNS:
2827 *	Zero on success, negative errno otherwise.
2828 */
2829
2830int ata_bus_probe(struct ata_port *ap)
2831{
2832	unsigned int classes[ATA_MAX_DEVICES];
2833	int tries[ATA_MAX_DEVICES];
2834	int rc;
2835	struct ata_device *dev;
2836
2837	ata_for_each_dev(dev, &ap->link, ALL)
2838		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2839
2840 retry:
2841	ata_for_each_dev(dev, &ap->link, ALL) {
2842		/* If we issue an SRST then an ATA drive (not ATAPI)
2843		 * may change configuration and be in PIO0 timing. If
2844		 * we do a hard reset (or are coming from power on)
2845		 * this is true for ATA or ATAPI. Until we've set a
2846		 * suitable controller mode we should not touch the
2847		 * bus as we may be talking too fast.
2848		 */
2849		dev->pio_mode = XFER_PIO_0;
2850		dev->dma_mode = 0xff;
2851
2852		/* If the controller has a pio mode setup function
2853		 * then use it to set the chipset to rights. Don't
2854		 * touch the DMA setup as that will be dealt with when
2855		 * configuring devices.
2856		 */
2857		if (ap->ops->set_piomode)
2858			ap->ops->set_piomode(ap, dev);
2859	}
2860
2861	/* reset and determine device classes */
2862	ap->ops->phy_reset(ap);
2863
2864	ata_for_each_dev(dev, &ap->link, ALL) {
2865		if (dev->class != ATA_DEV_UNKNOWN)
2866			classes[dev->devno] = dev->class;
2867		else
2868			classes[dev->devno] = ATA_DEV_NONE;
2869
2870		dev->class = ATA_DEV_UNKNOWN;
2871	}
2872
2873	/* read IDENTIFY page and configure devices. We have to do the identify
2874	   specific sequence bass-ackwards so that PDIAG- is released by
2875	   the slave device */
2876
2877	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2878		if (tries[dev->devno])
2879			dev->class = classes[dev->devno];
2880
2881		if (!ata_dev_enabled(dev))
2882			continue;
2883
2884		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2885				     dev->id);
2886		if (rc)
2887			goto fail;
2888	}
2889
2890	/* Now ask for the cable type as PDIAG- should have been released */
2891	if (ap->ops->cable_detect)
2892		ap->cbl = ap->ops->cable_detect(ap);
2893
2894	/* We may have SATA bridge glue hiding here irrespective of
2895	 * the reported cable types and sensed types.  When SATA
2896	 * drives indicate we have a bridge, we don't know which end
2897	 * of the link the bridge is which is a problem.
2898	 */
2899	ata_for_each_dev(dev, &ap->link, ENABLED)
2900		if (ata_id_is_sata(dev->id))
2901			ap->cbl = ATA_CBL_SATA;
2902
2903	/* After the identify sequence we can now set up the devices. We do
2904	   this in the normal order so that the user doesn't get confused */
2905
2906	ata_for_each_dev(dev, &ap->link, ENABLED) {
2907		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2908		rc = ata_dev_configure(dev);
2909		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2910		if (rc)
2911			goto fail;
2912	}
2913
2914	/* configure transfer mode */
2915	rc = ata_set_mode(&ap->link, &dev);
2916	if (rc)
2917		goto fail;
2918
2919	ata_for_each_dev(dev, &ap->link, ENABLED)
2920		return 0;
2921
2922	return -ENODEV;
2923
2924 fail:
2925	tries[dev->devno]--;
2926
2927	switch (rc) {
2928	case -EINVAL:
2929		/* eeek, something went very wrong, give up */
2930		tries[dev->devno] = 0;
2931		break;
2932
2933	case -ENODEV:
2934		/* give it just one more chance */
2935		tries[dev->devno] = min(tries[dev->devno], 1);
2936		fallthrough;
2937	case -EIO:
2938		if (tries[dev->devno] == 1) {
2939			/* This is the last chance, better to slow
2940			 * down than lose it.
2941			 */
2942			sata_down_spd_limit(&ap->link, 0);
2943			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2944		}
2945	}
2946
2947	if (!tries[dev->devno])
2948		ata_dev_disable(dev);
2949
2950	goto retry;
2951}
2952
2953/**
2954 *	sata_print_link_status - Print SATA link status
2955 *	@link: SATA link to printk link status about
2956 *
2957 *	This function prints link speed and status of a SATA link.
2958 *
2959 *	LOCKING:
2960 *	None.
2961 */
2962static void sata_print_link_status(struct ata_link *link)
2963{
2964	u32 sstatus, scontrol, tmp;
2965
2966	if (sata_scr_read(link, SCR_STATUS, &sstatus))
2967		return;
2968	sata_scr_read(link, SCR_CONTROL, &scontrol);
2969
2970	if (ata_phys_link_online(link)) {
2971		tmp = (sstatus >> 4) & 0xf;
2972		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2973			      sata_spd_string(tmp), sstatus, scontrol);
2974	} else {
2975		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2976			      sstatus, scontrol);
2977	}
2978}
2979
2980/**
2981 *	ata_dev_pair		-	return other device on cable
2982 *	@adev: device
2983 *
2984 *	Obtain the other device on the same cable, or if none is
2985 *	present NULL is returned
2986 */
2987
2988struct ata_device *ata_dev_pair(struct ata_device *adev)
2989{
2990	struct ata_link *link = adev->link;
2991	struct ata_device *pair = &link->device[1 - adev->devno];
2992	if (!ata_dev_enabled(pair))
2993		return NULL;
2994	return pair;
2995}
2996EXPORT_SYMBOL_GPL(ata_dev_pair);
2997
2998/**
2999 *	sata_down_spd_limit - adjust SATA spd limit downward
3000 *	@link: Link to adjust SATA spd limit for
3001 *	@spd_limit: Additional limit
3002 *
3003 *	Adjust SATA spd limit of @link downward.  Note that this
3004 *	function only adjusts the limit.  The change must be applied
3005 *	using sata_set_spd().
3006 *
3007 *	If @spd_limit is non-zero, the speed is limited to equal to or
3008 *	lower than @spd_limit if such speed is supported.  If
3009 *	@spd_limit is slower than any supported speed, only the lowest
3010 *	supported speed is allowed.
3011 *
3012 *	LOCKING:
3013 *	Inherited from caller.
3014 *
3015 *	RETURNS:
3016 *	0 on success, negative errno on failure
3017 */
3018int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3019{
3020	u32 sstatus, spd, mask;
3021	int rc, bit;
3022
3023	if (!sata_scr_valid(link))
3024		return -EOPNOTSUPP;
3025
3026	/* If SCR can be read, use it to determine the current SPD.
3027	 * If not, use cached value in link->sata_spd.
3028	 */
3029	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3030	if (rc == 0 && ata_sstatus_online(sstatus))
3031		spd = (sstatus >> 4) & 0xf;
3032	else
3033		spd = link->sata_spd;
3034
3035	mask = link->sata_spd_limit;
3036	if (mask <= 1)
3037		return -EINVAL;
3038
3039	/* unconditionally mask off the highest bit */
3040	bit = fls(mask) - 1;
3041	mask &= ~(1 << bit);
3042
3043	/*
3044	 * Mask off all speeds higher than or equal to the current one.  At
3045	 * this point, if current SPD is not available and we previously
3046	 * recorded the link speed from SStatus, the driver has already
3047	 * masked off the highest bit so mask should already be 1 or 0.
3048	 * Otherwise, we should not force 1.5Gbps on a link where we have
3049	 * not previously recorded speed from SStatus.  Just return in this
3050	 * case.
3051	 */
3052	if (spd > 1)
3053		mask &= (1 << (spd - 1)) - 1;
3054	else if (link->sata_spd)
3055		return -EINVAL;
3056
3057	/* were we already at the bottom? */
3058	if (!mask)
3059		return -EINVAL;
3060
3061	if (spd_limit) {
3062		if (mask & ((1 << spd_limit) - 1))
3063			mask &= (1 << spd_limit) - 1;
3064		else {
3065			bit = ffs(mask) - 1;
3066			mask = 1 << bit;
3067		}
3068	}
3069
3070	link->sata_spd_limit = mask;
3071
3072	ata_link_warn(link, "limiting SATA link speed to %s\n",
3073		      sata_spd_string(fls(mask)));
3074
3075	return 0;
3076}
3077
3078#ifdef CONFIG_ATA_ACPI
3079/**
3080 *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3081 *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3082 *	@cycle: cycle duration in ns
3083 *
3084 *	Return matching xfer mode for @cycle.  The returned mode is of
3085 *	the transfer type specified by @xfer_shift.  If @cycle is too
3086 *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3087 *	than the fastest known mode, the fasted mode is returned.
3088 *
3089 *	LOCKING:
3090 *	None.
3091 *
3092 *	RETURNS:
3093 *	Matching xfer_mode, 0xff if no match found.
3094 */
3095u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3096{
3097	u8 base_mode = 0xff, last_mode = 0xff;
3098	const struct ata_xfer_ent *ent;
3099	const struct ata_timing *t;
3100
3101	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3102		if (ent->shift == xfer_shift)
3103			base_mode = ent->base;
3104
3105	for (t = ata_timing_find_mode(base_mode);
3106	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3107		unsigned short this_cycle;
3108
3109		switch (xfer_shift) {
3110		case ATA_SHIFT_PIO:
3111		case ATA_SHIFT_MWDMA:
3112			this_cycle = t->cycle;
3113			break;
3114		case ATA_SHIFT_UDMA:
3115			this_cycle = t->udma;
3116			break;
3117		default:
3118			return 0xff;
3119		}
3120
3121		if (cycle > this_cycle)
3122			break;
3123
3124		last_mode = t->mode;
3125	}
3126
3127	return last_mode;
3128}
3129#endif
3130
3131/**
3132 *	ata_down_xfermask_limit - adjust dev xfer masks downward
3133 *	@dev: Device to adjust xfer masks
3134 *	@sel: ATA_DNXFER_* selector
3135 *
3136 *	Adjust xfer masks of @dev downward.  Note that this function
3137 *	does not apply the change.  Invoking ata_set_mode() afterwards
3138 *	will apply the limit.
3139 *
3140 *	LOCKING:
3141 *	Inherited from caller.
3142 *
3143 *	RETURNS:
3144 *	0 on success, negative errno on failure
3145 */
3146int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3147{
3148	char buf[32];
3149	unsigned long orig_mask, xfer_mask;
3150	unsigned long pio_mask, mwdma_mask, udma_mask;
3151	int quiet, highbit;
3152
3153	quiet = !!(sel & ATA_DNXFER_QUIET);
3154	sel &= ~ATA_DNXFER_QUIET;
3155
3156	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3157						  dev->mwdma_mask,
3158						  dev->udma_mask);
3159	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3160
3161	switch (sel) {
3162	case ATA_DNXFER_PIO:
3163		highbit = fls(pio_mask) - 1;
3164		pio_mask &= ~(1 << highbit);
3165		break;
3166
3167	case ATA_DNXFER_DMA:
3168		if (udma_mask) {
3169			highbit = fls(udma_mask) - 1;
3170			udma_mask &= ~(1 << highbit);
3171			if (!udma_mask)
3172				return -ENOENT;
3173		} else if (mwdma_mask) {
3174			highbit = fls(mwdma_mask) - 1;
3175			mwdma_mask &= ~(1 << highbit);
3176			if (!mwdma_mask)
3177				return -ENOENT;
3178		}
3179		break;
3180
3181	case ATA_DNXFER_40C:
3182		udma_mask &= ATA_UDMA_MASK_40C;
3183		break;
3184
3185	case ATA_DNXFER_FORCE_PIO0:
3186		pio_mask &= 1;
3187		fallthrough;
3188	case ATA_DNXFER_FORCE_PIO:
3189		mwdma_mask = 0;
3190		udma_mask = 0;
3191		break;
3192
3193	default:
3194		BUG();
3195	}
3196
3197	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3198
3199	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3200		return -ENOENT;
3201
3202	if (!quiet) {
3203		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3204			snprintf(buf, sizeof(buf), "%s:%s",
3205				 ata_mode_string(xfer_mask),
3206				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3207		else
3208			snprintf(buf, sizeof(buf), "%s",
3209				 ata_mode_string(xfer_mask));
3210
3211		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3212	}
3213
3214	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3215			    &dev->udma_mask);
3216
3217	return 0;
3218}
3219
3220static int ata_dev_set_mode(struct ata_device *dev)
3221{
3222	struct ata_port *ap = dev->link->ap;
3223	struct ata_eh_context *ehc = &dev->link->eh_context;
3224	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3225	const char *dev_err_whine = "";
3226	int ign_dev_err = 0;
3227	unsigned int err_mask = 0;
3228	int rc;
3229
3230	dev->flags &= ~ATA_DFLAG_PIO;
3231	if (dev->xfer_shift == ATA_SHIFT_PIO)
3232		dev->flags |= ATA_DFLAG_PIO;
3233
3234	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3235		dev_err_whine = " (SET_XFERMODE skipped)";
3236	else {
3237		if (nosetxfer)
3238			ata_dev_warn(dev,
3239				     "NOSETXFER but PATA detected - can't "
3240				     "skip SETXFER, might malfunction\n");
3241		err_mask = ata_dev_set_xfermode(dev);
3242	}
3243
3244	if (err_mask & ~AC_ERR_DEV)
3245		goto fail;
3246
3247	/* revalidate */
3248	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3249	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3250	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3251	if (rc)
3252		return rc;
3253
3254	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3255		/* Old CFA may refuse this command, which is just fine */
3256		if (ata_id_is_cfa(dev->id))
3257			ign_dev_err = 1;
3258		/* Catch several broken garbage emulations plus some pre
3259		   ATA devices */
3260		if (ata_id_major_version(dev->id) == 0 &&
3261					dev->pio_mode <= XFER_PIO_2)
3262			ign_dev_err = 1;
3263		/* Some very old devices and some bad newer ones fail
3264		   any kind of SET_XFERMODE request but support PIO0-2
3265		   timings and no IORDY */
3266		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3267			ign_dev_err = 1;
3268	}
3269	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3270	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3271	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3272	    dev->dma_mode == XFER_MW_DMA_0 &&
3273	    (dev->id[63] >> 8) & 1)
3274		ign_dev_err = 1;
3275
3276	/* if the device is actually configured correctly, ignore dev err */
3277	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3278		ign_dev_err = 1;
3279
3280	if (err_mask & AC_ERR_DEV) {
3281		if (!ign_dev_err)
3282			goto fail;
3283		else
3284			dev_err_whine = " (device error ignored)";
3285	}
3286
3287	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3288		dev->xfer_shift, (int)dev->xfer_mode);
3289
3290	if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3291	    ehc->i.flags & ATA_EHI_DID_HARDRESET)
3292		ata_dev_info(dev, "configured for %s%s\n",
3293			     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3294			     dev_err_whine);
3295
3296	return 0;
3297
3298 fail:
3299	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3300	return -EIO;
3301}
3302
3303/**
3304 *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3305 *	@link: link on which timings will be programmed
3306 *	@r_failed_dev: out parameter for failed device
3307 *
3308 *	Standard implementation of the function used to tune and set
3309 *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3310 *	ata_dev_set_mode() fails, pointer to the failing device is
3311 *	returned in @r_failed_dev.
3312 *
3313 *	LOCKING:
3314 *	PCI/etc. bus probe sem.
3315 *
3316 *	RETURNS:
3317 *	0 on success, negative errno otherwise
3318 */
3319
3320int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3321{
3322	struct ata_port *ap = link->ap;
3323	struct ata_device *dev;
3324	int rc = 0, used_dma = 0, found = 0;
3325
3326	/* step 1: calculate xfer_mask */
3327	ata_for_each_dev(dev, link, ENABLED) {
3328		unsigned long pio_mask, dma_mask;
3329		unsigned int mode_mask;
3330
3331		mode_mask = ATA_DMA_MASK_ATA;
3332		if (dev->class == ATA_DEV_ATAPI)
3333			mode_mask = ATA_DMA_MASK_ATAPI;
3334		else if (ata_id_is_cfa(dev->id))
3335			mode_mask = ATA_DMA_MASK_CFA;
3336
3337		ata_dev_xfermask(dev);
3338		ata_force_xfermask(dev);
3339
3340		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3341
3342		if (libata_dma_mask & mode_mask)
3343			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3344						     dev->udma_mask);
3345		else
3346			dma_mask = 0;
3347
3348		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3349		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3350
3351		found = 1;
3352		if (ata_dma_enabled(dev))
3353			used_dma = 1;
3354	}
3355	if (!found)
3356		goto out;
3357
3358	/* step 2: always set host PIO timings */
3359	ata_for_each_dev(dev, link, ENABLED) {
3360		if (dev->pio_mode == 0xff) {
3361			ata_dev_warn(dev, "no PIO support\n");
3362			rc = -EINVAL;
3363			goto out;
3364		}
3365
3366		dev->xfer_mode = dev->pio_mode;
3367		dev->xfer_shift = ATA_SHIFT_PIO;
3368		if (ap->ops->set_piomode)
3369			ap->ops->set_piomode(ap, dev);
3370	}
3371
3372	/* step 3: set host DMA timings */
3373	ata_for_each_dev(dev, link, ENABLED) {
3374		if (!ata_dma_enabled(dev))
3375			continue;
3376
3377		dev->xfer_mode = dev->dma_mode;
3378		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3379		if (ap->ops->set_dmamode)
3380			ap->ops->set_dmamode(ap, dev);
3381	}
3382
3383	/* step 4: update devices' xfer mode */
3384	ata_for_each_dev(dev, link, ENABLED) {
3385		rc = ata_dev_set_mode(dev);
3386		if (rc)
3387			goto out;
3388	}
3389
3390	/* Record simplex status. If we selected DMA then the other
3391	 * host channels are not permitted to do so.
3392	 */
3393	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3394		ap->host->simplex_claimed = ap;
3395
3396 out:
3397	if (rc)
3398		*r_failed_dev = dev;
3399	return rc;
3400}
3401EXPORT_SYMBOL_GPL(ata_do_set_mode);
3402
3403/**
3404 *	ata_wait_ready - wait for link to become ready
3405 *	@link: link to be waited on
3406 *	@deadline: deadline jiffies for the operation
3407 *	@check_ready: callback to check link readiness
3408 *
3409 *	Wait for @link to become ready.  @check_ready should return
3410 *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3411 *	link doesn't seem to be occupied, other errno for other error
3412 *	conditions.
3413 *
3414 *	Transient -ENODEV conditions are allowed for
3415 *	ATA_TMOUT_FF_WAIT.
3416 *
3417 *	LOCKING:
3418 *	EH context.
3419 *
3420 *	RETURNS:
3421 *	0 if @link is ready before @deadline; otherwise, -errno.
3422 */
3423int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3424		   int (*check_ready)(struct ata_link *link))
3425{
3426	unsigned long start = jiffies;
3427	unsigned long nodev_deadline;
3428	int warned = 0;
3429
3430	/* choose which 0xff timeout to use, read comment in libata.h */
3431	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3432		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3433	else
3434		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3435
3436	/* Slave readiness can't be tested separately from master.  On
3437	 * M/S emulation configuration, this function should be called
3438	 * only on the master and it will handle both master and slave.
3439	 */
3440	WARN_ON(link == link->ap->slave_link);
3441
3442	if (time_after(nodev_deadline, deadline))
3443		nodev_deadline = deadline;
3444
3445	while (1) {
3446		unsigned long now = jiffies;
3447		int ready, tmp;
3448
3449		ready = tmp = check_ready(link);
3450		if (ready > 0)
3451			return 0;
3452
3453		/*
3454		 * -ENODEV could be transient.  Ignore -ENODEV if link
3455		 * is online.  Also, some SATA devices take a long
3456		 * time to clear 0xff after reset.  Wait for
3457		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3458		 * offline.
3459		 *
3460		 * Note that some PATA controllers (pata_ali) explode
3461		 * if status register is read more than once when
3462		 * there's no device attached.
3463		 */
3464		if (ready == -ENODEV) {
3465			if (ata_link_online(link))
3466				ready = 0;
3467			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3468				 !ata_link_offline(link) &&
3469				 time_before(now, nodev_deadline))
3470				ready = 0;
3471		}
3472
3473		if (ready)
3474			return ready;
3475		if (time_after(now, deadline))
3476			return -EBUSY;
3477
3478		if (!warned && time_after(now, start + 5 * HZ) &&
3479		    (deadline - now > 3 * HZ)) {
3480			ata_link_warn(link,
3481				"link is slow to respond, please be patient "
3482				"(ready=%d)\n", tmp);
3483			warned = 1;
3484		}
3485
3486		ata_msleep(link->ap, 50);
3487	}
3488}
3489
3490/**
3491 *	ata_wait_after_reset - wait for link to become ready after reset
3492 *	@link: link to be waited on
3493 *	@deadline: deadline jiffies for the operation
3494 *	@check_ready: callback to check link readiness
3495 *
3496 *	Wait for @link to become ready after reset.
3497 *
3498 *	LOCKING:
3499 *	EH context.
3500 *
3501 *	RETURNS:
3502 *	0 if @link is ready before @deadline; otherwise, -errno.
3503 */
3504int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3505				int (*check_ready)(struct ata_link *link))
3506{
3507	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3508
3509	return ata_wait_ready(link, deadline, check_ready);
3510}
3511EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3512
3513/**
3514 *	ata_std_prereset - prepare for reset
3515 *	@link: ATA link to be reset
3516 *	@deadline: deadline jiffies for the operation
3517 *
3518 *	@link is about to be reset.  Initialize it.  Failure from
3519 *	prereset makes libata abort whole reset sequence and give up
3520 *	that port, so prereset should be best-effort.  It does its
3521 *	best to prepare for reset sequence but if things go wrong, it
3522 *	should just whine, not fail.
3523 *
3524 *	LOCKING:
3525 *	Kernel thread context (may sleep)
3526 *
3527 *	RETURNS:
3528 *	0 on success, -errno otherwise.
3529 */
3530int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3531{
3532	struct ata_port *ap = link->ap;
3533	struct ata_eh_context *ehc = &link->eh_context;
3534	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3535	int rc;
3536
3537	/* if we're about to do hardreset, nothing more to do */
3538	if (ehc->i.action & ATA_EH_HARDRESET)
3539		return 0;
3540
3541	/* if SATA, resume link */
3542	if (ap->flags & ATA_FLAG_SATA) {
3543		rc = sata_link_resume(link, timing, deadline);
3544		/* whine about phy resume failure but proceed */
3545		if (rc && rc != -EOPNOTSUPP)
3546			ata_link_warn(link,
3547				      "failed to resume link for reset (errno=%d)\n",
3548				      rc);
3549	}
3550
3551	/* no point in trying softreset on offline link */
3552	if (ata_phys_link_offline(link))
3553		ehc->i.action &= ~ATA_EH_SOFTRESET;
3554
3555	return 0;
3556}
3557EXPORT_SYMBOL_GPL(ata_std_prereset);
3558
3559/**
3560 *	sata_std_hardreset - COMRESET w/o waiting or classification
3561 *	@link: link to reset
3562 *	@class: resulting class of attached device
3563 *	@deadline: deadline jiffies for the operation
3564 *
3565 *	Standard SATA COMRESET w/o waiting or classification.
3566 *
3567 *	LOCKING:
3568 *	Kernel thread context (may sleep)
3569 *
3570 *	RETURNS:
3571 *	0 if link offline, -EAGAIN if link online, -errno on errors.
3572 */
3573int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3574		       unsigned long deadline)
3575{
3576	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3577	bool online;
3578	int rc;
3579
3580	/* do hardreset */
3581	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3582	return online ? -EAGAIN : rc;
3583}
3584EXPORT_SYMBOL_GPL(sata_std_hardreset);
3585
3586/**
3587 *	ata_std_postreset - standard postreset callback
3588 *	@link: the target ata_link
3589 *	@classes: classes of attached devices
3590 *
3591 *	This function is invoked after a successful reset.  Note that
3592 *	the device might have been reset more than once using
3593 *	different reset methods before postreset is invoked.
3594 *
3595 *	LOCKING:
3596 *	Kernel thread context (may sleep)
3597 */
3598void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3599{
3600	u32 serror;
3601
3602	DPRINTK("ENTER\n");
3603
3604	/* reset complete, clear SError */
3605	if (!sata_scr_read(link, SCR_ERROR, &serror))
3606		sata_scr_write(link, SCR_ERROR, serror);
3607
3608	/* print link status */
3609	sata_print_link_status(link);
3610
3611	DPRINTK("EXIT\n");
3612}
3613EXPORT_SYMBOL_GPL(ata_std_postreset);
3614
3615/**
3616 *	ata_dev_same_device - Determine whether new ID matches configured device
3617 *	@dev: device to compare against
3618 *	@new_class: class of the new device
3619 *	@new_id: IDENTIFY page of the new device
3620 *
3621 *	Compare @new_class and @new_id against @dev and determine
3622 *	whether @dev is the device indicated by @new_class and
3623 *	@new_id.
3624 *
3625 *	LOCKING:
3626 *	None.
3627 *
3628 *	RETURNS:
3629 *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3630 */
3631static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3632			       const u16 *new_id)
3633{
3634	const u16 *old_id = dev->id;
3635	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3636	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3637
3638	if (dev->class != new_class) {
3639		ata_dev_info(dev, "class mismatch %d != %d\n",
3640			     dev->class, new_class);
3641		return 0;
3642	}
3643
3644	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3645	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3646	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3647	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3648
3649	if (strcmp(model[0], model[1])) {
3650		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3651			     model[0], model[1]);
3652		return 0;
3653	}
3654
3655	if (strcmp(serial[0], serial[1])) {
3656		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3657			     serial[0], serial[1]);
3658		return 0;
3659	}
3660
3661	return 1;
3662}
3663
3664/**
3665 *	ata_dev_reread_id - Re-read IDENTIFY data
3666 *	@dev: target ATA device
3667 *	@readid_flags: read ID flags
3668 *
3669 *	Re-read IDENTIFY page and make sure @dev is still attached to
3670 *	the port.
3671 *
3672 *	LOCKING:
3673 *	Kernel thread context (may sleep)
3674 *
3675 *	RETURNS:
3676 *	0 on success, negative errno otherwise
3677 */
3678int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3679{
3680	unsigned int class = dev->class;
3681	u16 *id = (void *)dev->link->ap->sector_buf;
3682	int rc;
3683
3684	/* read ID data */
3685	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3686	if (rc)
3687		return rc;
3688
3689	/* is the device still there? */
3690	if (!ata_dev_same_device(dev, class, id))
3691		return -ENODEV;
3692
3693	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3694	return 0;
3695}
3696
3697/**
3698 *	ata_dev_revalidate - Revalidate ATA device
3699 *	@dev: device to revalidate
3700 *	@new_class: new class code
3701 *	@readid_flags: read ID flags
3702 *
3703 *	Re-read IDENTIFY page, make sure @dev is still attached to the
3704 *	port and reconfigure it according to the new IDENTIFY page.
3705 *
3706 *	LOCKING:
3707 *	Kernel thread context (may sleep)
3708 *
3709 *	RETURNS:
3710 *	0 on success, negative errno otherwise
3711 */
3712int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3713		       unsigned int readid_flags)
3714{
3715	u64 n_sectors = dev->n_sectors;
3716	u64 n_native_sectors = dev->n_native_sectors;
3717	int rc;
3718
3719	if (!ata_dev_enabled(dev))
3720		return -ENODEV;
3721
3722	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3723	if (ata_class_enabled(new_class) &&
3724	    new_class != ATA_DEV_ATA &&
3725	    new_class != ATA_DEV_ATAPI &&
3726	    new_class != ATA_DEV_ZAC &&
3727	    new_class != ATA_DEV_SEMB) {
3728		ata_dev_info(dev, "class mismatch %u != %u\n",
3729			     dev->class, new_class);
3730		rc = -ENODEV;
3731		goto fail;
3732	}
3733
3734	/* re-read ID */
3735	rc = ata_dev_reread_id(dev, readid_flags);
3736	if (rc)
3737		goto fail;
3738
3739	/* configure device according to the new ID */
3740	rc = ata_dev_configure(dev);
3741	if (rc)
3742		goto fail;
3743
3744	/* verify n_sectors hasn't changed */
3745	if (dev->class != ATA_DEV_ATA || !n_sectors ||
3746	    dev->n_sectors == n_sectors)
3747		return 0;
3748
3749	/* n_sectors has changed */
3750	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3751		     (unsigned long long)n_sectors,
3752		     (unsigned long long)dev->n_sectors);
3753
3754	/*
3755	 * Something could have caused HPA to be unlocked
3756	 * involuntarily.  If n_native_sectors hasn't changed and the
3757	 * new size matches it, keep the device.
3758	 */
3759	if (dev->n_native_sectors == n_native_sectors &&
3760	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3761		ata_dev_warn(dev,
3762			     "new n_sectors matches native, probably "
3763			     "late HPA unlock, n_sectors updated\n");
3764		/* use the larger n_sectors */
3765		return 0;
3766	}
3767
3768	/*
3769	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
3770	 * unlocking HPA in those cases.
3771	 *
3772	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3773	 */
3774	if (dev->n_native_sectors == n_native_sectors &&
3775	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3776	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
3777		ata_dev_warn(dev,
3778			     "old n_sectors matches native, probably "
3779			     "late HPA lock, will try to unlock HPA\n");
3780		/* try unlocking HPA */
3781		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3782		rc = -EIO;
3783	} else
3784		rc = -ENODEV;
3785
3786	/* restore original n_[native_]sectors and fail */
3787	dev->n_native_sectors = n_native_sectors;
3788	dev->n_sectors = n_sectors;
3789 fail:
3790	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3791	return rc;
3792}
3793
3794struct ata_blacklist_entry {
3795	const char *model_num;
3796	const char *model_rev;
3797	unsigned long horkage;
3798};
3799
3800static const struct ata_blacklist_entry ata_device_blacklist [] = {
3801	/* Devices with DMA related problems under Linux */
3802	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
3803	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
3804	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
3805	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
3806	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
3807	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
3808	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
3809	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
3810	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
3811	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
3812	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
3813	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
3814	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
3815	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
3816	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
3817	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
3818	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
3819	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
3820	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
3821	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
3822	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
3823	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
3824	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
3825	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
3826	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3827	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
3828	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
3829	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
3830	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
3831	{ "VRFDFC22048UCHC-TE*", NULL,		ATA_HORKAGE_NODMA },
3832	/* Odd clown on sil3726/4726 PMPs */
3833	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
3834	/* Similar story with ASMedia 1092 */
3835	{ "ASMT109x- Config",	NULL,		ATA_HORKAGE_DISABLE },
3836
3837	/* Weird ATAPI devices */
3838	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
3839	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
3840	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
3841	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
3842
3843	/*
3844	 * Causes silent data corruption with higher max sects.
3845	 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
3846	 */
3847	{ "ST380013AS",		"3.20",		ATA_HORKAGE_MAX_SEC_1024 },
3848
3849	/*
3850	 * These devices time out with higher max sects.
3851	 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
3852	 */
3853	{ "LITEON CX1-JB*-HP",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
3854	{ "LITEON EP1-*",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
3855
3856	/* Devices we expect to fail diagnostics */
3857
3858	/* Devices where NCQ should be avoided */
3859	/* NCQ is slow */
3860	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
3861	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
3862	/* http://thread.gmane.org/gmane.linux.ide/14907 */
3863	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
3864	/* NCQ is broken */
3865	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
3866	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
3867	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
3868	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
3869	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
3870
3871	/* Seagate NCQ + FLUSH CACHE firmware bug */
3872	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3873						ATA_HORKAGE_FIRMWARE_WARN },
3874
3875	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3876						ATA_HORKAGE_FIRMWARE_WARN },
3877
3878	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3879						ATA_HORKAGE_FIRMWARE_WARN },
3880
3881	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3882						ATA_HORKAGE_FIRMWARE_WARN },
3883
3884	/* drives which fail FPDMA_AA activation (some may freeze afterwards)
3885	   the ST disks also have LPM issues */
3886	{ "ST1000LM024 HN-M101MBB", NULL,	ATA_HORKAGE_BROKEN_FPDMA_AA |
3887						ATA_HORKAGE_NOLPM, },
3888	{ "VB0250EAVER",	"HPG7",		ATA_HORKAGE_BROKEN_FPDMA_AA },
3889
3890	/* Blacklist entries taken from Silicon Image 3124/3132
3891	   Windows driver .inf file - also several Linux problem reports */
3892	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
3893	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
3894	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
3895
3896	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
3897	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ, },
3898
3899	/* Sandisk SD7/8/9s lock up hard on large trims */
3900	{ "SanDisk SD[789]*",	NULL,		ATA_HORKAGE_MAX_TRIM_128M, },
3901
3902	/* devices which puke on READ_NATIVE_MAX */
3903	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
3904	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3905	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3906	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
3907
3908	/* this one allows HPA unlocking but fails IOs on the area */
3909	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
3910
3911	/* Devices which report 1 sector over size HPA */
3912	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
3913	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
3914	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
3915
3916	/* Devices which get the IVB wrong */
3917	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
3918	/* Maybe we should just blacklist TSSTcorp... */
3919	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
3920
3921	/* Devices that do not need bridging limits applied */
3922	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
3923	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
3924
3925	/* Devices which aren't very happy with higher link speeds */
3926	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
3927	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS, },
3928
3929	/*
3930	 * Devices which choke on SETXFER.  Applies only if both the
3931	 * device and controller are SATA.
3932	 */
3933	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
3934	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
3935	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
3936	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
3937	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
3938
3939	/* These specific Pioneer models have LPM issues */
3940	{ "PIONEER BD-RW   BDR-207M",	NULL,	ATA_HORKAGE_NOLPM },
3941	{ "PIONEER BD-RW   BDR-205",	NULL,	ATA_HORKAGE_NOLPM },
3942
3943	/* Crucial BX100 SSD 500GB has broken LPM support */
3944	{ "CT500BX100SSD1",		NULL,	ATA_HORKAGE_NOLPM },
3945
3946	/* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
3947	{ "Crucial_CT512MX100*",	"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
3948						ATA_HORKAGE_ZERO_AFTER_TRIM |
3949						ATA_HORKAGE_NOLPM, },
3950	/* 512GB MX100 with newer firmware has only LPM issues */
3951	{ "Crucial_CT512MX100*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM |
3952						ATA_HORKAGE_NOLPM, },
3953
3954	/* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
3955	{ "Crucial_CT480M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3956						ATA_HORKAGE_ZERO_AFTER_TRIM |
3957						ATA_HORKAGE_NOLPM, },
3958	{ "Crucial_CT960M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3959						ATA_HORKAGE_ZERO_AFTER_TRIM |
3960						ATA_HORKAGE_NOLPM, },
3961
3962	/* These specific Samsung models/firmware-revs do not handle LPM well */
3963	{ "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM, },
3964	{ "SAMSUNG SSD PM830 mSATA *",  "CXM13D1Q", ATA_HORKAGE_NOLPM, },
3965	{ "SAMSUNG MZ7TD256HAFV-000L9", NULL,       ATA_HORKAGE_NOLPM, },
3966	{ "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM, },
3967
3968	/* devices that don't properly handle queued TRIM commands */
3969	{ "Micron_M500IT_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
3970						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3971	{ "Micron_M500_*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3972						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3973	{ "Crucial_CT*M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3974						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3975	{ "Micron_M5[15]0_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
3976						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3977	{ "Crucial_CT*M550*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
3978						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3979	{ "Crucial_CT*MX100*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
3980						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3981	{ "Samsung SSD 840 EVO*",	NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3982						ATA_HORKAGE_NO_DMA_LOG |
3983						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3984	{ "Samsung SSD 840*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3985						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3986	{ "Samsung SSD 850*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3987						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3988	{ "Samsung SSD 860*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3989						ATA_HORKAGE_ZERO_AFTER_TRIM |
3990						ATA_HORKAGE_NO_NCQ_ON_ATI, },
3991	{ "Samsung SSD 870*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3992						ATA_HORKAGE_ZERO_AFTER_TRIM |
3993						ATA_HORKAGE_NO_NCQ_ON_ATI, },
3994	{ "FCCT*M500*",			NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3995						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3996
3997	/* devices that don't properly handle TRIM commands */
3998	{ "SuperSSpeed S238*",		NULL,	ATA_HORKAGE_NOTRIM, },
3999	{ "M88V29*",			NULL,	ATA_HORKAGE_NOTRIM, },
4000
4001	/*
4002	 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4003	 * (Return Zero After Trim) flags in the ATA Command Set are
4004	 * unreliable in the sense that they only define what happens if
4005	 * the device successfully executed the DSM TRIM command. TRIM
4006	 * is only advisory, however, and the device is free to silently
4007	 * ignore all or parts of the request.
4008	 *
4009	 * Whitelist drives that are known to reliably return zeroes
4010	 * after TRIM.
4011	 */
4012
4013	/*
4014	 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4015	 * that model before whitelisting all other intel SSDs.
4016	 */
4017	{ "INTEL*SSDSC2MH*",		NULL,	0, },
4018
4019	{ "Micron*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4020	{ "Crucial*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4021	{ "INTEL*SSD*", 		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4022	{ "SSD*INTEL*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4023	{ "Samsung*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4024	{ "SAMSUNG*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4025	{ "SAMSUNG*MZ7KM*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4026	{ "ST[1248][0248]0[FH]*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4027
4028	/*
4029	 * Some WD SATA-I drives spin up and down erratically when the link
4030	 * is put into the slumber mode.  We don't have full list of the
4031	 * affected devices.  Disable LPM if the device matches one of the
4032	 * known prefixes and is SATA-1.  As a side effect LPM partial is
4033	 * lost too.
4034	 *
4035	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4036	 */
4037	{ "WDC WD800JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4038	{ "WDC WD1200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4039	{ "WDC WD1600JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4040	{ "WDC WD2000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4041	{ "WDC WD2500JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4042	{ "WDC WD3000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4043	{ "WDC WD3200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4044
4045	/* End Marker */
4046	{ }
4047};
4048
4049static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4050{
4051	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4052	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4053	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4054
4055	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4056	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4057
4058	while (ad->model_num) {
4059		if (glob_match(ad->model_num, model_num)) {
4060			if (ad->model_rev == NULL)
4061				return ad->horkage;
4062			if (glob_match(ad->model_rev, model_rev))
4063				return ad->horkage;
4064		}
4065		ad++;
4066	}
4067	return 0;
4068}
4069
4070static int ata_dma_blacklisted(const struct ata_device *dev)
4071{
4072	/* We don't support polling DMA.
4073	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4074	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4075	 */
4076	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4077	    (dev->flags & ATA_DFLAG_CDB_INTR))
4078		return 1;
4079	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4080}
4081
4082/**
4083 *	ata_is_40wire		-	check drive side detection
4084 *	@dev: device
4085 *
4086 *	Perform drive side detection decoding, allowing for device vendors
4087 *	who can't follow the documentation.
4088 */
4089
4090static int ata_is_40wire(struct ata_device *dev)
4091{
4092	if (dev->horkage & ATA_HORKAGE_IVB)
4093		return ata_drive_40wire_relaxed(dev->id);
4094	return ata_drive_40wire(dev->id);
4095}
4096
4097/**
4098 *	cable_is_40wire		-	40/80/SATA decider
4099 *	@ap: port to consider
4100 *
4101 *	This function encapsulates the policy for speed management
4102 *	in one place. At the moment we don't cache the result but
4103 *	there is a good case for setting ap->cbl to the result when
4104 *	we are called with unknown cables (and figuring out if it
4105 *	impacts hotplug at all).
4106 *
4107 *	Return 1 if the cable appears to be 40 wire.
4108 */
4109
4110static int cable_is_40wire(struct ata_port *ap)
4111{
4112	struct ata_link *link;
4113	struct ata_device *dev;
4114
4115	/* If the controller thinks we are 40 wire, we are. */
4116	if (ap->cbl == ATA_CBL_PATA40)
4117		return 1;
4118
4119	/* If the controller thinks we are 80 wire, we are. */
4120	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4121		return 0;
4122
4123	/* If the system is known to be 40 wire short cable (eg
4124	 * laptop), then we allow 80 wire modes even if the drive
4125	 * isn't sure.
4126	 */
4127	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4128		return 0;
4129
4130	/* If the controller doesn't know, we scan.
4131	 *
4132	 * Note: We look for all 40 wire detects at this point.  Any
4133	 *       80 wire detect is taken to be 80 wire cable because
4134	 * - in many setups only the one drive (slave if present) will
4135	 *   give a valid detect
4136	 * - if you have a non detect capable drive you don't want it
4137	 *   to colour the choice
4138	 */
4139	ata_for_each_link(link, ap, EDGE) {
4140		ata_for_each_dev(dev, link, ENABLED) {
4141			if (!ata_is_40wire(dev))
4142				return 0;
4143		}
4144	}
4145	return 1;
4146}
4147
4148/**
4149 *	ata_dev_xfermask - Compute supported xfermask of the given device
4150 *	@dev: Device to compute xfermask for
4151 *
4152 *	Compute supported xfermask of @dev and store it in
4153 *	dev->*_mask.  This function is responsible for applying all
4154 *	known limits including host controller limits, device
4155 *	blacklist, etc...
4156 *
4157 *	LOCKING:
4158 *	None.
4159 */
4160static void ata_dev_xfermask(struct ata_device *dev)
4161{
4162	struct ata_link *link = dev->link;
4163	struct ata_port *ap = link->ap;
4164	struct ata_host *host = ap->host;
4165	unsigned long xfer_mask;
4166
4167	/* controller modes available */
4168	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4169				      ap->mwdma_mask, ap->udma_mask);
4170
4171	/* drive modes available */
4172	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4173				       dev->mwdma_mask, dev->udma_mask);
4174	xfer_mask &= ata_id_xfermask(dev->id);
4175
4176	/*
4177	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4178	 *	cable
4179	 */
4180	if (ata_dev_pair(dev)) {
4181		/* No PIO5 or PIO6 */
4182		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4183		/* No MWDMA3 or MWDMA 4 */
4184		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4185	}
4186
4187	if (ata_dma_blacklisted(dev)) {
4188		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4189		ata_dev_warn(dev,
4190			     "device is on DMA blacklist, disabling DMA\n");
4191	}
4192
4193	if ((host->flags & ATA_HOST_SIMPLEX) &&
4194	    host->simplex_claimed && host->simplex_claimed != ap) {
4195		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4196		ata_dev_warn(dev,
4197			     "simplex DMA is claimed by other device, disabling DMA\n");
4198	}
4199
4200	if (ap->flags & ATA_FLAG_NO_IORDY)
4201		xfer_mask &= ata_pio_mask_no_iordy(dev);
4202
4203	if (ap->ops->mode_filter)
4204		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4205
4206	/* Apply cable rule here.  Don't apply it early because when
4207	 * we handle hot plug the cable type can itself change.
4208	 * Check this last so that we know if the transfer rate was
4209	 * solely limited by the cable.
4210	 * Unknown or 80 wire cables reported host side are checked
4211	 * drive side as well. Cases where we know a 40wire cable
4212	 * is used safely for 80 are not checked here.
4213	 */
4214	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4215		/* UDMA/44 or higher would be available */
4216		if (cable_is_40wire(ap)) {
4217			ata_dev_warn(dev,
4218				     "limited to UDMA/33 due to 40-wire cable\n");
4219			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4220		}
4221
4222	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4223			    &dev->mwdma_mask, &dev->udma_mask);
4224}
4225
4226/**
4227 *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4228 *	@dev: Device to which command will be sent
4229 *
4230 *	Issue SET FEATURES - XFER MODE command to device @dev
4231 *	on port @ap.
4232 *
4233 *	LOCKING:
4234 *	PCI/etc. bus probe sem.
4235 *
4236 *	RETURNS:
4237 *	0 on success, AC_ERR_* mask otherwise.
4238 */
4239
4240static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4241{
4242	struct ata_taskfile tf;
4243	unsigned int err_mask;
4244
4245	/* set up set-features taskfile */
4246	DPRINTK("set features - xfer mode\n");
4247
4248	/* Some controllers and ATAPI devices show flaky interrupt
4249	 * behavior after setting xfer mode.  Use polling instead.
4250	 */
4251	ata_tf_init(dev, &tf);
4252	tf.command = ATA_CMD_SET_FEATURES;
4253	tf.feature = SETFEATURES_XFER;
4254	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4255	tf.protocol = ATA_PROT_NODATA;
4256	/* If we are using IORDY we must send the mode setting command */
4257	if (ata_pio_need_iordy(dev))
4258		tf.nsect = dev->xfer_mode;
4259	/* If the device has IORDY and the controller does not - turn it off */
4260 	else if (ata_id_has_iordy(dev->id))
4261		tf.nsect = 0x01;
4262	else /* In the ancient relic department - skip all of this */
4263		return 0;
4264
4265	/* On some disks, this command causes spin-up, so we need longer timeout */
4266	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4267
4268	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4269	return err_mask;
4270}
4271
4272/**
4273 *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4274 *	@dev: Device to which command will be sent
4275 *	@enable: Whether to enable or disable the feature
4276 *	@feature: The sector count represents the feature to set
4277 *
4278 *	Issue SET FEATURES - SATA FEATURES command to device @dev
4279 *	on port @ap with sector count
4280 *
4281 *	LOCKING:
4282 *	PCI/etc. bus probe sem.
4283 *
4284 *	RETURNS:
4285 *	0 on success, AC_ERR_* mask otherwise.
4286 */
4287unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4288{
4289	struct ata_taskfile tf;
4290	unsigned int err_mask;
4291	unsigned long timeout = 0;
4292
4293	/* set up set-features taskfile */
4294	DPRINTK("set features - SATA features\n");
4295
4296	ata_tf_init(dev, &tf);
4297	tf.command = ATA_CMD_SET_FEATURES;
4298	tf.feature = enable;
4299	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4300	tf.protocol = ATA_PROT_NODATA;
4301	tf.nsect = feature;
4302
4303	if (enable == SETFEATURES_SPINUP)
4304		timeout = ata_probe_timeout ?
4305			  ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4306	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4307
4308	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4309	return err_mask;
4310}
4311EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4312
4313/**
4314 *	ata_dev_init_params - Issue INIT DEV PARAMS command
4315 *	@dev: Device to which command will be sent
4316 *	@heads: Number of heads (taskfile parameter)
4317 *	@sectors: Number of sectors (taskfile parameter)
4318 *
4319 *	LOCKING:
4320 *	Kernel thread context (may sleep)
4321 *
4322 *	RETURNS:
4323 *	0 on success, AC_ERR_* mask otherwise.
4324 */
4325static unsigned int ata_dev_init_params(struct ata_device *dev,
4326					u16 heads, u16 sectors)
4327{
4328	struct ata_taskfile tf;
4329	unsigned int err_mask;
4330
4331	/* Number of sectors per track 1-255. Number of heads 1-16 */
4332	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4333		return AC_ERR_INVALID;
4334
4335	/* set up init dev params taskfile */
4336	DPRINTK("init dev params \n");
4337
4338	ata_tf_init(dev, &tf);
4339	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4340	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4341	tf.protocol = ATA_PROT_NODATA;
4342	tf.nsect = sectors;
4343	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4344
4345	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4346	/* A clean abort indicates an original or just out of spec drive
4347	   and we should continue as we issue the setup based on the
4348	   drive reported working geometry */
4349	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4350		err_mask = 0;
4351
4352	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4353	return err_mask;
4354}
4355
4356/**
4357 *	atapi_check_dma - Check whether ATAPI DMA can be supported
4358 *	@qc: Metadata associated with taskfile to check
4359 *
4360 *	Allow low-level driver to filter ATA PACKET commands, returning
4361 *	a status indicating whether or not it is OK to use DMA for the
4362 *	supplied PACKET command.
4363 *
4364 *	LOCKING:
4365 *	spin_lock_irqsave(host lock)
4366 *
4367 *	RETURNS: 0 when ATAPI DMA can be used
4368 *               nonzero otherwise
4369 */
4370int atapi_check_dma(struct ata_queued_cmd *qc)
4371{
4372	struct ata_port *ap = qc->ap;
4373
4374	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4375	 * few ATAPI devices choke on such DMA requests.
4376	 */
4377	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4378	    unlikely(qc->nbytes & 15))
4379		return 1;
4380
4381	if (ap->ops->check_atapi_dma)
4382		return ap->ops->check_atapi_dma(qc);
4383
4384	return 0;
4385}
4386
4387/**
4388 *	ata_std_qc_defer - Check whether a qc needs to be deferred
4389 *	@qc: ATA command in question
4390 *
4391 *	Non-NCQ commands cannot run with any other command, NCQ or
4392 *	not.  As upper layer only knows the queue depth, we are
4393 *	responsible for maintaining exclusion.  This function checks
4394 *	whether a new command @qc can be issued.
4395 *
4396 *	LOCKING:
4397 *	spin_lock_irqsave(host lock)
4398 *
4399 *	RETURNS:
4400 *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4401 */
4402int ata_std_qc_defer(struct ata_queued_cmd *qc)
4403{
4404	struct ata_link *link = qc->dev->link;
4405
4406	if (ata_is_ncq(qc->tf.protocol)) {
4407		if (!ata_tag_valid(link->active_tag))
4408			return 0;
4409	} else {
4410		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4411			return 0;
4412	}
4413
4414	return ATA_DEFER_LINK;
4415}
4416EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4417
4418enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc)
4419{
4420	return AC_ERR_OK;
4421}
4422EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
4423
4424/**
4425 *	ata_sg_init - Associate command with scatter-gather table.
4426 *	@qc: Command to be associated
4427 *	@sg: Scatter-gather table.
4428 *	@n_elem: Number of elements in s/g table.
4429 *
4430 *	Initialize the data-related elements of queued_cmd @qc
4431 *	to point to a scatter-gather table @sg, containing @n_elem
4432 *	elements.
4433 *
4434 *	LOCKING:
4435 *	spin_lock_irqsave(host lock)
4436 */
4437void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4438		 unsigned int n_elem)
4439{
4440	qc->sg = sg;
4441	qc->n_elem = n_elem;
4442	qc->cursg = qc->sg;
4443}
4444
4445#ifdef CONFIG_HAS_DMA
4446
4447/**
4448 *	ata_sg_clean - Unmap DMA memory associated with command
4449 *	@qc: Command containing DMA memory to be released
4450 *
4451 *	Unmap all mapped DMA memory associated with this command.
4452 *
4453 *	LOCKING:
4454 *	spin_lock_irqsave(host lock)
4455 */
4456static void ata_sg_clean(struct ata_queued_cmd *qc)
4457{
4458	struct ata_port *ap = qc->ap;
4459	struct scatterlist *sg = qc->sg;
4460	int dir = qc->dma_dir;
4461
4462	WARN_ON_ONCE(sg == NULL);
4463
4464	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4465
4466	if (qc->n_elem)
4467		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4468
4469	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4470	qc->sg = NULL;
4471}
4472
4473/**
4474 *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4475 *	@qc: Command with scatter-gather table to be mapped.
4476 *
4477 *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4478 *
4479 *	LOCKING:
4480 *	spin_lock_irqsave(host lock)
4481 *
4482 *	RETURNS:
4483 *	Zero on success, negative on error.
4484 *
4485 */
4486static int ata_sg_setup(struct ata_queued_cmd *qc)
4487{
4488	struct ata_port *ap = qc->ap;
4489	unsigned int n_elem;
4490
4491	VPRINTK("ENTER, ata%u\n", ap->print_id);
4492
4493	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4494	if (n_elem < 1)
4495		return -1;
4496
4497	VPRINTK("%d sg elements mapped\n", n_elem);
4498	qc->orig_n_elem = qc->n_elem;
4499	qc->n_elem = n_elem;
4500	qc->flags |= ATA_QCFLAG_DMAMAP;
4501
4502	return 0;
4503}
4504
4505#else /* !CONFIG_HAS_DMA */
4506
4507static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
4508static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4509
4510#endif /* !CONFIG_HAS_DMA */
4511
4512/**
4513 *	swap_buf_le16 - swap halves of 16-bit words in place
4514 *	@buf:  Buffer to swap
4515 *	@buf_words:  Number of 16-bit words in buffer.
4516 *
4517 *	Swap halves of 16-bit words if needed to convert from
4518 *	little-endian byte order to native cpu byte order, or
4519 *	vice-versa.
4520 *
4521 *	LOCKING:
4522 *	Inherited from caller.
4523 */
4524void swap_buf_le16(u16 *buf, unsigned int buf_words)
4525{
4526#ifdef __BIG_ENDIAN
4527	unsigned int i;
4528
4529	for (i = 0; i < buf_words; i++)
4530		buf[i] = le16_to_cpu(buf[i]);
4531#endif /* __BIG_ENDIAN */
4532}
4533
4534/**
4535 *	ata_qc_new_init - Request an available ATA command, and initialize it
4536 *	@dev: Device from whom we request an available command structure
4537 *	@tag: tag
4538 *
4539 *	LOCKING:
4540 *	None.
4541 */
4542
4543struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
4544{
4545	struct ata_port *ap = dev->link->ap;
4546	struct ata_queued_cmd *qc;
4547
4548	/* no command while frozen */
4549	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4550		return NULL;
4551
4552	/* libsas case */
4553	if (ap->flags & ATA_FLAG_SAS_HOST) {
4554		tag = ata_sas_allocate_tag(ap);
4555		if (tag < 0)
4556			return NULL;
4557	}
4558
4559	qc = __ata_qc_from_tag(ap, tag);
4560	qc->tag = qc->hw_tag = tag;
4561	qc->scsicmd = NULL;
4562	qc->ap = ap;
4563	qc->dev = dev;
4564
4565	ata_qc_reinit(qc);
4566
4567	return qc;
4568}
4569
4570/**
4571 *	ata_qc_free - free unused ata_queued_cmd
4572 *	@qc: Command to complete
4573 *
4574 *	Designed to free unused ata_queued_cmd object
4575 *	in case something prevents using it.
4576 *
4577 *	LOCKING:
4578 *	spin_lock_irqsave(host lock)
4579 */
4580void ata_qc_free(struct ata_queued_cmd *qc)
4581{
4582	struct ata_port *ap;
4583	unsigned int tag;
4584
4585	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4586	ap = qc->ap;
4587
4588	qc->flags = 0;
4589	tag = qc->tag;
4590	if (ata_tag_valid(tag)) {
4591		qc->tag = ATA_TAG_POISON;
4592		if (ap->flags & ATA_FLAG_SAS_HOST)
4593			ata_sas_free_tag(tag, ap);
4594	}
4595}
4596
4597void __ata_qc_complete(struct ata_queued_cmd *qc)
4598{
4599	struct ata_port *ap;
4600	struct ata_link *link;
4601
4602	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4603	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4604	ap = qc->ap;
4605	link = qc->dev->link;
4606
4607	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4608		ata_sg_clean(qc);
4609
4610	/* command should be marked inactive atomically with qc completion */
4611	if (ata_is_ncq(qc->tf.protocol)) {
4612		link->sactive &= ~(1 << qc->hw_tag);
4613		if (!link->sactive)
4614			ap->nr_active_links--;
4615	} else {
4616		link->active_tag = ATA_TAG_POISON;
4617		ap->nr_active_links--;
4618	}
4619
4620	/* clear exclusive status */
4621	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4622		     ap->excl_link == link))
4623		ap->excl_link = NULL;
4624
4625	/* atapi: mark qc as inactive to prevent the interrupt handler
4626	 * from completing the command twice later, before the error handler
4627	 * is called. (when rc != 0 and atapi request sense is needed)
4628	 */
4629	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4630	ap->qc_active &= ~(1ULL << qc->tag);
4631
4632	/* call completion callback */
4633	qc->complete_fn(qc);
4634}
4635
4636static void fill_result_tf(struct ata_queued_cmd *qc)
4637{
4638	struct ata_port *ap = qc->ap;
4639
4640	qc->result_tf.flags = qc->tf.flags;
4641	ap->ops->qc_fill_rtf(qc);
4642}
4643
4644static void ata_verify_xfer(struct ata_queued_cmd *qc)
4645{
4646	struct ata_device *dev = qc->dev;
4647
4648	if (!ata_is_data(qc->tf.protocol))
4649		return;
4650
4651	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4652		return;
4653
4654	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4655}
4656
4657/**
4658 *	ata_qc_complete - Complete an active ATA command
4659 *	@qc: Command to complete
4660 *
4661 *	Indicate to the mid and upper layers that an ATA command has
4662 *	completed, with either an ok or not-ok status.
4663 *
4664 *	Refrain from calling this function multiple times when
4665 *	successfully completing multiple NCQ commands.
4666 *	ata_qc_complete_multiple() should be used instead, which will
4667 *	properly update IRQ expect state.
4668 *
4669 *	LOCKING:
4670 *	spin_lock_irqsave(host lock)
4671 */
4672void ata_qc_complete(struct ata_queued_cmd *qc)
4673{
4674	struct ata_port *ap = qc->ap;
4675
4676	/* Trigger the LED (if available) */
4677	ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4678
4679	/* XXX: New EH and old EH use different mechanisms to
4680	 * synchronize EH with regular execution path.
4681	 *
4682	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4683	 * Normal execution path is responsible for not accessing a
4684	 * failed qc.  libata core enforces the rule by returning NULL
4685	 * from ata_qc_from_tag() for failed qcs.
4686	 *
4687	 * Old EH depends on ata_qc_complete() nullifying completion
4688	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4689	 * not synchronize with interrupt handler.  Only PIO task is
4690	 * taken care of.
4691	 */
4692	if (ap->ops->error_handler) {
4693		struct ata_device *dev = qc->dev;
4694		struct ata_eh_info *ehi = &dev->link->eh_info;
4695
4696		if (unlikely(qc->err_mask))
4697			qc->flags |= ATA_QCFLAG_FAILED;
4698
4699		/*
4700		 * Finish internal commands without any further processing
4701		 * and always with the result TF filled.
4702		 */
4703		if (unlikely(ata_tag_internal(qc->tag))) {
4704			fill_result_tf(qc);
4705			trace_ata_qc_complete_internal(qc);
4706			__ata_qc_complete(qc);
4707			return;
4708		}
4709
4710		/*
4711		 * Non-internal qc has failed.  Fill the result TF and
4712		 * summon EH.
4713		 */
4714		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4715			fill_result_tf(qc);
4716			trace_ata_qc_complete_failed(qc);
4717			ata_qc_schedule_eh(qc);
4718			return;
4719		}
4720
4721		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4722
4723		/* read result TF if requested */
4724		if (qc->flags & ATA_QCFLAG_RESULT_TF)
4725			fill_result_tf(qc);
4726
4727		trace_ata_qc_complete_done(qc);
4728		/* Some commands need post-processing after successful
4729		 * completion.
4730		 */
4731		switch (qc->tf.command) {
4732		case ATA_CMD_SET_FEATURES:
4733			if (qc->tf.feature != SETFEATURES_WC_ON &&
4734			    qc->tf.feature != SETFEATURES_WC_OFF &&
4735			    qc->tf.feature != SETFEATURES_RA_ON &&
4736			    qc->tf.feature != SETFEATURES_RA_OFF)
4737				break;
4738			fallthrough;
4739		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4740		case ATA_CMD_SET_MULTI: /* multi_count changed */
4741			/* revalidate device */
4742			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4743			ata_port_schedule_eh(ap);
4744			break;
4745
4746		case ATA_CMD_SLEEP:
4747			dev->flags |= ATA_DFLAG_SLEEPING;
4748			break;
4749		}
4750
4751		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4752			ata_verify_xfer(qc);
4753
4754		__ata_qc_complete(qc);
4755	} else {
4756		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4757			return;
4758
4759		/* read result TF if failed or requested */
4760		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4761			fill_result_tf(qc);
4762
4763		__ata_qc_complete(qc);
4764	}
4765}
4766EXPORT_SYMBOL_GPL(ata_qc_complete);
4767
4768/**
4769 *	ata_qc_get_active - get bitmask of active qcs
4770 *	@ap: port in question
4771 *
4772 *	LOCKING:
4773 *	spin_lock_irqsave(host lock)
4774 *
4775 *	RETURNS:
4776 *	Bitmask of active qcs
4777 */
4778u64 ata_qc_get_active(struct ata_port *ap)
4779{
4780	u64 qc_active = ap->qc_active;
4781
4782	/* ATA_TAG_INTERNAL is sent to hw as tag 0 */
4783	if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
4784		qc_active |= (1 << 0);
4785		qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
4786	}
4787
4788	return qc_active;
4789}
4790EXPORT_SYMBOL_GPL(ata_qc_get_active);
4791
4792/**
4793 *	ata_qc_issue - issue taskfile to device
4794 *	@qc: command to issue to device
4795 *
4796 *	Prepare an ATA command to submission to device.
4797 *	This includes mapping the data into a DMA-able
4798 *	area, filling in the S/G table, and finally
4799 *	writing the taskfile to hardware, starting the command.
4800 *
4801 *	LOCKING:
4802 *	spin_lock_irqsave(host lock)
4803 */
4804void ata_qc_issue(struct ata_queued_cmd *qc)
4805{
4806	struct ata_port *ap = qc->ap;
4807	struct ata_link *link = qc->dev->link;
4808	u8 prot = qc->tf.protocol;
4809
4810	/* Make sure only one non-NCQ command is outstanding.  The
4811	 * check is skipped for old EH because it reuses active qc to
4812	 * request ATAPI sense.
4813	 */
4814	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4815
4816	if (ata_is_ncq(prot)) {
4817		WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
4818
4819		if (!link->sactive)
4820			ap->nr_active_links++;
4821		link->sactive |= 1 << qc->hw_tag;
4822	} else {
4823		WARN_ON_ONCE(link->sactive);
4824
4825		ap->nr_active_links++;
4826		link->active_tag = qc->tag;
4827	}
4828
4829	qc->flags |= ATA_QCFLAG_ACTIVE;
4830	ap->qc_active |= 1ULL << qc->tag;
4831
4832	/*
4833	 * We guarantee to LLDs that they will have at least one
4834	 * non-zero sg if the command is a data command.
4835	 */
4836	if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
4837		goto sys_err;
4838
4839	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4840				 (ap->flags & ATA_FLAG_PIO_DMA)))
4841		if (ata_sg_setup(qc))
4842			goto sys_err;
4843
4844	/* if device is sleeping, schedule reset and abort the link */
4845	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4846		link->eh_info.action |= ATA_EH_RESET;
4847		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4848		ata_link_abort(link);
4849		return;
4850	}
4851
4852	qc->err_mask |= ap->ops->qc_prep(qc);
4853	if (unlikely(qc->err_mask))
4854		goto err;
4855	trace_ata_qc_issue(qc);
4856	qc->err_mask |= ap->ops->qc_issue(qc);
4857	if (unlikely(qc->err_mask))
4858		goto err;
4859	return;
4860
4861sys_err:
4862	qc->err_mask |= AC_ERR_SYSTEM;
4863err:
4864	ata_qc_complete(qc);
4865}
4866
4867/**
4868 *	ata_phys_link_online - test whether the given link is online
4869 *	@link: ATA link to test
4870 *
4871 *	Test whether @link is online.  Note that this function returns
4872 *	0 if online status of @link cannot be obtained, so
4873 *	ata_link_online(link) != !ata_link_offline(link).
4874 *
4875 *	LOCKING:
4876 *	None.
4877 *
4878 *	RETURNS:
4879 *	True if the port online status is available and online.
4880 */
4881bool ata_phys_link_online(struct ata_link *link)
4882{
4883	u32 sstatus;
4884
4885	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4886	    ata_sstatus_online(sstatus))
4887		return true;
4888	return false;
4889}
4890
4891/**
4892 *	ata_phys_link_offline - test whether the given link is offline
4893 *	@link: ATA link to test
4894 *
4895 *	Test whether @link is offline.  Note that this function
4896 *	returns 0 if offline status of @link cannot be obtained, so
4897 *	ata_link_online(link) != !ata_link_offline(link).
4898 *
4899 *	LOCKING:
4900 *	None.
4901 *
4902 *	RETURNS:
4903 *	True if the port offline status is available and offline.
4904 */
4905bool ata_phys_link_offline(struct ata_link *link)
4906{
4907	u32 sstatus;
4908
4909	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4910	    !ata_sstatus_online(sstatus))
4911		return true;
4912	return false;
4913}
4914
4915/**
4916 *	ata_link_online - test whether the given link is online
4917 *	@link: ATA link to test
4918 *
4919 *	Test whether @link is online.  This is identical to
4920 *	ata_phys_link_online() when there's no slave link.  When
4921 *	there's a slave link, this function should only be called on
4922 *	the master link and will return true if any of M/S links is
4923 *	online.
4924 *
4925 *	LOCKING:
4926 *	None.
4927 *
4928 *	RETURNS:
4929 *	True if the port online status is available and online.
4930 */
4931bool ata_link_online(struct ata_link *link)
4932{
4933	struct ata_link *slave = link->ap->slave_link;
4934
4935	WARN_ON(link == slave);	/* shouldn't be called on slave link */
4936
4937	return ata_phys_link_online(link) ||
4938		(slave && ata_phys_link_online(slave));
4939}
4940EXPORT_SYMBOL_GPL(ata_link_online);
4941
4942/**
4943 *	ata_link_offline - test whether the given link is offline
4944 *	@link: ATA link to test
4945 *
4946 *	Test whether @link is offline.  This is identical to
4947 *	ata_phys_link_offline() when there's no slave link.  When
4948 *	there's a slave link, this function should only be called on
4949 *	the master link and will return true if both M/S links are
4950 *	offline.
4951 *
4952 *	LOCKING:
4953 *	None.
4954 *
4955 *	RETURNS:
4956 *	True if the port offline status is available and offline.
4957 */
4958bool ata_link_offline(struct ata_link *link)
4959{
4960	struct ata_link *slave = link->ap->slave_link;
4961
4962	WARN_ON(link == slave);	/* shouldn't be called on slave link */
4963
4964	return ata_phys_link_offline(link) &&
4965		(!slave || ata_phys_link_offline(slave));
4966}
4967EXPORT_SYMBOL_GPL(ata_link_offline);
4968
4969#ifdef CONFIG_PM
4970static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
4971				unsigned int action, unsigned int ehi_flags,
4972				bool async)
4973{
4974	struct ata_link *link;
4975	unsigned long flags;
4976
4977	spin_lock_irqsave(ap->lock, flags);
4978
4979	/*
4980	 * A previous PM operation might still be in progress. Wait for
4981	 * ATA_PFLAG_PM_PENDING to clear.
4982	 */
4983	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
4984		spin_unlock_irqrestore(ap->lock, flags);
4985		ata_port_wait_eh(ap);
4986		spin_lock_irqsave(ap->lock, flags);
4987	}
4988
4989	/* Request PM operation to EH */
4990	ap->pm_mesg = mesg;
4991	ap->pflags |= ATA_PFLAG_PM_PENDING;
4992	ata_for_each_link(link, ap, HOST_FIRST) {
4993		link->eh_info.action |= action;
4994		link->eh_info.flags |= ehi_flags;
4995	}
4996
4997	ata_port_schedule_eh(ap);
4998
4999	spin_unlock_irqrestore(ap->lock, flags);
5000
5001	if (!async)
5002		ata_port_wait_eh(ap);
5003}
5004
5005/*
5006 * On some hardware, device fails to respond after spun down for suspend.  As
5007 * the device won't be used before being resumed, we don't need to touch the
5008 * device.  Ask EH to skip the usual stuff and proceed directly to suspend.
5009 *
5010 * http://thread.gmane.org/gmane.linux.ide/46764
5011 */
5012static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5013						 | ATA_EHI_NO_AUTOPSY
5014						 | ATA_EHI_NO_RECOVERY;
5015
5016static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5017{
5018	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5019}
5020
5021static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5022{
5023	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5024}
5025
5026static int ata_port_pm_suspend(struct device *dev)
5027{
5028	struct ata_port *ap = to_ata_port(dev);
5029
5030	if (pm_runtime_suspended(dev))
5031		return 0;
5032
5033	ata_port_suspend(ap, PMSG_SUSPEND);
5034	return 0;
5035}
5036
5037static int ata_port_pm_freeze(struct device *dev)
5038{
5039	struct ata_port *ap = to_ata_port(dev);
5040
5041	if (pm_runtime_suspended(dev))
5042		return 0;
5043
5044	ata_port_suspend(ap, PMSG_FREEZE);
5045	return 0;
5046}
5047
5048static int ata_port_pm_poweroff(struct device *dev)
5049{
5050	ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5051	return 0;
5052}
5053
5054static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5055						| ATA_EHI_QUIET;
5056
5057static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5058{
5059	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5060}
5061
5062static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5063{
5064	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5065}
5066
5067static int ata_port_pm_resume(struct device *dev)
5068{
5069	ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5070	pm_runtime_disable(dev);
5071	pm_runtime_set_active(dev);
5072	pm_runtime_enable(dev);
5073	return 0;
5074}
5075
5076/*
5077 * For ODDs, the upper layer will poll for media change every few seconds,
5078 * which will make it enter and leave suspend state every few seconds. And
5079 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5080 * is very little and the ODD may malfunction after constantly being reset.
5081 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5082 * ODD is attached to the port.
5083 */
5084static int ata_port_runtime_idle(struct device *dev)
5085{
5086	struct ata_port *ap = to_ata_port(dev);
5087	struct ata_link *link;
5088	struct ata_device *adev;
5089
5090	ata_for_each_link(link, ap, HOST_FIRST) {
5091		ata_for_each_dev(adev, link, ENABLED)
5092			if (adev->class == ATA_DEV_ATAPI &&
5093			    !zpodd_dev_enabled(adev))
5094				return -EBUSY;
5095	}
5096
5097	return 0;
5098}
5099
5100static int ata_port_runtime_suspend(struct device *dev)
5101{
5102	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5103	return 0;
5104}
5105
5106static int ata_port_runtime_resume(struct device *dev)
5107{
5108	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5109	return 0;
5110}
5111
5112static const struct dev_pm_ops ata_port_pm_ops = {
5113	.suspend = ata_port_pm_suspend,
5114	.resume = ata_port_pm_resume,
5115	.freeze = ata_port_pm_freeze,
5116	.thaw = ata_port_pm_resume,
5117	.poweroff = ata_port_pm_poweroff,
5118	.restore = ata_port_pm_resume,
5119
5120	.runtime_suspend = ata_port_runtime_suspend,
5121	.runtime_resume = ata_port_runtime_resume,
5122	.runtime_idle = ata_port_runtime_idle,
5123};
5124
5125/* sas ports don't participate in pm runtime management of ata_ports,
5126 * and need to resume ata devices at the domain level, not the per-port
5127 * level. sas suspend/resume is async to allow parallel port recovery
5128 * since sas has multiple ata_port instances per Scsi_Host.
5129 */
5130void ata_sas_port_suspend(struct ata_port *ap)
5131{
5132	ata_port_suspend_async(ap, PMSG_SUSPEND);
5133}
5134EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5135
5136void ata_sas_port_resume(struct ata_port *ap)
5137{
5138	ata_port_resume_async(ap, PMSG_RESUME);
5139}
5140EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5141
5142/**
5143 *	ata_host_suspend - suspend host
5144 *	@host: host to suspend
5145 *	@mesg: PM message
5146 *
5147 *	Suspend @host.  Actual operation is performed by port suspend.
5148 */
5149int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5150{
5151	host->dev->power.power_state = mesg;
5152	return 0;
5153}
5154EXPORT_SYMBOL_GPL(ata_host_suspend);
5155
5156/**
5157 *	ata_host_resume - resume host
5158 *	@host: host to resume
5159 *
5160 *	Resume @host.  Actual operation is performed by port resume.
5161 */
5162void ata_host_resume(struct ata_host *host)
5163{
5164	host->dev->power.power_state = PMSG_ON;
5165}
5166EXPORT_SYMBOL_GPL(ata_host_resume);
5167#endif
5168
5169const struct device_type ata_port_type = {
5170	.name = ATA_PORT_TYPE_NAME,
5171#ifdef CONFIG_PM
5172	.pm = &ata_port_pm_ops,
5173#endif
5174};
5175
5176/**
5177 *	ata_dev_init - Initialize an ata_device structure
5178 *	@dev: Device structure to initialize
5179 *
5180 *	Initialize @dev in preparation for probing.
5181 *
5182 *	LOCKING:
5183 *	Inherited from caller.
5184 */
5185void ata_dev_init(struct ata_device *dev)
5186{
5187	struct ata_link *link = ata_dev_phys_link(dev);
5188	struct ata_port *ap = link->ap;
5189	unsigned long flags;
5190
5191	/* SATA spd limit is bound to the attached device, reset together */
5192	link->sata_spd_limit = link->hw_sata_spd_limit;
5193	link->sata_spd = 0;
5194
5195	/* High bits of dev->flags are used to record warm plug
5196	 * requests which occur asynchronously.  Synchronize using
5197	 * host lock.
5198	 */
5199	spin_lock_irqsave(ap->lock, flags);
5200	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5201	dev->horkage = 0;
5202	spin_unlock_irqrestore(ap->lock, flags);
5203
5204	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5205	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5206	dev->pio_mask = UINT_MAX;
5207	dev->mwdma_mask = UINT_MAX;
5208	dev->udma_mask = UINT_MAX;
5209}
5210
5211/**
5212 *	ata_link_init - Initialize an ata_link structure
5213 *	@ap: ATA port link is attached to
5214 *	@link: Link structure to initialize
5215 *	@pmp: Port multiplier port number
5216 *
5217 *	Initialize @link.
5218 *
5219 *	LOCKING:
5220 *	Kernel thread context (may sleep)
5221 */
5222void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5223{
5224	int i;
5225
5226	/* clear everything except for devices */
5227	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5228	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5229
5230	link->ap = ap;
5231	link->pmp = pmp;
5232	link->active_tag = ATA_TAG_POISON;
5233	link->hw_sata_spd_limit = UINT_MAX;
5234
5235	/* can't use iterator, ap isn't initialized yet */
5236	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5237		struct ata_device *dev = &link->device[i];
5238
5239		dev->link = link;
5240		dev->devno = dev - link->device;
5241#ifdef CONFIG_ATA_ACPI
5242		dev->gtf_filter = ata_acpi_gtf_filter;
5243#endif
5244		ata_dev_init(dev);
5245	}
5246}
5247
5248/**
5249 *	sata_link_init_spd - Initialize link->sata_spd_limit
5250 *	@link: Link to configure sata_spd_limit for
5251 *
5252 *	Initialize ``link->[hw_]sata_spd_limit`` to the currently
5253 *	configured value.
5254 *
5255 *	LOCKING:
5256 *	Kernel thread context (may sleep).
5257 *
5258 *	RETURNS:
5259 *	0 on success, -errno on failure.
5260 */
5261int sata_link_init_spd(struct ata_link *link)
5262{
5263	u8 spd;
5264	int rc;
5265
5266	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5267	if (rc)
5268		return rc;
5269
5270	spd = (link->saved_scontrol >> 4) & 0xf;
5271	if (spd)
5272		link->hw_sata_spd_limit &= (1 << spd) - 1;
5273
5274	ata_force_link_limits(link);
5275
5276	link->sata_spd_limit = link->hw_sata_spd_limit;
5277
5278	return 0;
5279}
5280
5281/**
5282 *	ata_port_alloc - allocate and initialize basic ATA port resources
5283 *	@host: ATA host this allocated port belongs to
5284 *
5285 *	Allocate and initialize basic ATA port resources.
5286 *
5287 *	RETURNS:
5288 *	Allocate ATA port on success, NULL on failure.
5289 *
5290 *	LOCKING:
5291 *	Inherited from calling layer (may sleep).
5292 */
5293struct ata_port *ata_port_alloc(struct ata_host *host)
5294{
5295	struct ata_port *ap;
5296
5297	DPRINTK("ENTER\n");
5298
5299	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5300	if (!ap)
5301		return NULL;
5302
5303	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5304	ap->lock = &host->lock;
5305	ap->print_id = -1;
5306	ap->local_port_no = -1;
5307	ap->host = host;
5308	ap->dev = host->dev;
5309
5310#if defined(ATA_VERBOSE_DEBUG)
5311	/* turn on all debugging levels */
5312	ap->msg_enable = 0x00FF;
5313#elif defined(ATA_DEBUG)
5314	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5315#else
5316	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5317#endif
5318
5319	mutex_init(&ap->scsi_scan_mutex);
5320	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5321	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5322	INIT_LIST_HEAD(&ap->eh_done_q);
5323	init_waitqueue_head(&ap->eh_wait_q);
5324	init_completion(&ap->park_req_pending);
5325	timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5326		    TIMER_DEFERRABLE);
5327
5328	ap->cbl = ATA_CBL_NONE;
5329
5330	ata_link_init(ap, &ap->link, 0);
5331
5332#ifdef ATA_IRQ_TRAP
5333	ap->stats.unhandled_irq = 1;
5334	ap->stats.idle_irq = 1;
5335#endif
5336	ata_sff_port_init(ap);
5337
5338	return ap;
5339}
5340
5341static void ata_devres_release(struct device *gendev, void *res)
5342{
5343	struct ata_host *host = dev_get_drvdata(gendev);
5344	int i;
5345
5346	for (i = 0; i < host->n_ports; i++) {
5347		struct ata_port *ap = host->ports[i];
5348
5349		if (!ap)
5350			continue;
5351
5352		if (ap->scsi_host)
5353			scsi_host_put(ap->scsi_host);
5354
5355	}
5356
5357	dev_set_drvdata(gendev, NULL);
5358	ata_host_put(host);
5359}
5360
5361static void ata_host_release(struct kref *kref)
5362{
5363	struct ata_host *host = container_of(kref, struct ata_host, kref);
5364	int i;
5365
5366	for (i = 0; i < host->n_ports; i++) {
5367		struct ata_port *ap = host->ports[i];
5368
5369		if (!ap)
5370			continue;
5371
5372		kfree(ap->pmp_link);
5373		kfree(ap->slave_link);
5374		kfree(ap);
5375		host->ports[i] = NULL;
5376	}
5377	kfree(host);
5378}
5379
5380void ata_host_get(struct ata_host *host)
5381{
5382	kref_get(&host->kref);
5383}
5384
5385void ata_host_put(struct ata_host *host)
5386{
5387	kref_put(&host->kref, ata_host_release);
5388}
5389EXPORT_SYMBOL_GPL(ata_host_put);
5390
5391/**
5392 *	ata_host_alloc - allocate and init basic ATA host resources
5393 *	@dev: generic device this host is associated with
5394 *	@max_ports: maximum number of ATA ports associated with this host
5395 *
5396 *	Allocate and initialize basic ATA host resources.  LLD calls
5397 *	this function to allocate a host, initializes it fully and
5398 *	attaches it using ata_host_register().
5399 *
5400 *	@max_ports ports are allocated and host->n_ports is
5401 *	initialized to @max_ports.  The caller is allowed to decrease
5402 *	host->n_ports before calling ata_host_register().  The unused
5403 *	ports will be automatically freed on registration.
5404 *
5405 *	RETURNS:
5406 *	Allocate ATA host on success, NULL on failure.
5407 *
5408 *	LOCKING:
5409 *	Inherited from calling layer (may sleep).
5410 */
5411struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5412{
5413	struct ata_host *host;
5414	size_t sz;
5415	int i;
5416	void *dr;
5417
5418	DPRINTK("ENTER\n");
5419
5420	/* alloc a container for our list of ATA ports (buses) */
5421	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5422	host = kzalloc(sz, GFP_KERNEL);
5423	if (!host)
5424		return NULL;
5425
5426	if (!devres_open_group(dev, NULL, GFP_KERNEL)) {
5427		kfree(host);
5428		return NULL;
5429	}
5430
5431	dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5432	if (!dr)
5433		goto err_out;
5434
5435	devres_add(dev, dr);
5436	dev_set_drvdata(dev, host);
5437
5438	spin_lock_init(&host->lock);
5439	mutex_init(&host->eh_mutex);
5440	host->dev = dev;
5441	host->n_ports = max_ports;
5442	kref_init(&host->kref);
5443
5444	/* allocate ports bound to this host */
5445	for (i = 0; i < max_ports; i++) {
5446		struct ata_port *ap;
5447
5448		ap = ata_port_alloc(host);
5449		if (!ap)
5450			goto err_out;
5451
5452		ap->port_no = i;
5453		host->ports[i] = ap;
5454	}
5455
5456	devres_remove_group(dev, NULL);
5457	return host;
5458
5459 err_out:
5460	devres_release_group(dev, NULL);
5461	return NULL;
5462}
5463EXPORT_SYMBOL_GPL(ata_host_alloc);
5464
5465/**
5466 *	ata_host_alloc_pinfo - alloc host and init with port_info array
5467 *	@dev: generic device this host is associated with
5468 *	@ppi: array of ATA port_info to initialize host with
5469 *	@n_ports: number of ATA ports attached to this host
5470 *
5471 *	Allocate ATA host and initialize with info from @ppi.  If NULL
5472 *	terminated, @ppi may contain fewer entries than @n_ports.  The
5473 *	last entry will be used for the remaining ports.
5474 *
5475 *	RETURNS:
5476 *	Allocate ATA host on success, NULL on failure.
5477 *
5478 *	LOCKING:
5479 *	Inherited from calling layer (may sleep).
5480 */
5481struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5482				      const struct ata_port_info * const * ppi,
5483				      int n_ports)
5484{
5485	const struct ata_port_info *pi = &ata_dummy_port_info;
5486	struct ata_host *host;
5487	int i, j;
5488
5489	host = ata_host_alloc(dev, n_ports);
5490	if (!host)
5491		return NULL;
5492
5493	for (i = 0, j = 0; i < host->n_ports; i++) {
5494		struct ata_port *ap = host->ports[i];
5495
5496		if (ppi[j])
5497			pi = ppi[j++];
5498
5499		ap->pio_mask = pi->pio_mask;
5500		ap->mwdma_mask = pi->mwdma_mask;
5501		ap->udma_mask = pi->udma_mask;
5502		ap->flags |= pi->flags;
5503		ap->link.flags |= pi->link_flags;
5504		ap->ops = pi->port_ops;
5505
5506		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5507			host->ops = pi->port_ops;
5508	}
5509
5510	return host;
5511}
5512EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5513
5514static void ata_host_stop(struct device *gendev, void *res)
5515{
5516	struct ata_host *host = dev_get_drvdata(gendev);
5517	int i;
5518
5519	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5520
5521	for (i = 0; i < host->n_ports; i++) {
5522		struct ata_port *ap = host->ports[i];
5523
5524		if (ap->ops->port_stop)
5525			ap->ops->port_stop(ap);
5526	}
5527
5528	if (host->ops->host_stop)
5529		host->ops->host_stop(host);
5530}
5531
5532/**
5533 *	ata_finalize_port_ops - finalize ata_port_operations
5534 *	@ops: ata_port_operations to finalize
5535 *
5536 *	An ata_port_operations can inherit from another ops and that
5537 *	ops can again inherit from another.  This can go on as many
5538 *	times as necessary as long as there is no loop in the
5539 *	inheritance chain.
5540 *
5541 *	Ops tables are finalized when the host is started.  NULL or
5542 *	unspecified entries are inherited from the closet ancestor
5543 *	which has the method and the entry is populated with it.
5544 *	After finalization, the ops table directly points to all the
5545 *	methods and ->inherits is no longer necessary and cleared.
5546 *
5547 *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5548 *
5549 *	LOCKING:
5550 *	None.
5551 */
5552static void ata_finalize_port_ops(struct ata_port_operations *ops)
5553{
5554	static DEFINE_SPINLOCK(lock);
5555	const struct ata_port_operations *cur;
5556	void **begin = (void **)ops;
5557	void **end = (void **)&ops->inherits;
5558	void **pp;
5559
5560	if (!ops || !ops->inherits)
5561		return;
5562
5563	spin_lock(&lock);
5564
5565	for (cur = ops->inherits; cur; cur = cur->inherits) {
5566		void **inherit = (void **)cur;
5567
5568		for (pp = begin; pp < end; pp++, inherit++)
5569			if (!*pp)
5570				*pp = *inherit;
5571	}
5572
5573	for (pp = begin; pp < end; pp++)
5574		if (IS_ERR(*pp))
5575			*pp = NULL;
5576
5577	ops->inherits = NULL;
5578
5579	spin_unlock(&lock);
5580}
5581
5582/**
5583 *	ata_host_start - start and freeze ports of an ATA host
5584 *	@host: ATA host to start ports for
5585 *
5586 *	Start and then freeze ports of @host.  Started status is
5587 *	recorded in host->flags, so this function can be called
5588 *	multiple times.  Ports are guaranteed to get started only
5589 *	once.  If host->ops isn't initialized yet, its set to the
5590 *	first non-dummy port ops.
5591 *
5592 *	LOCKING:
5593 *	Inherited from calling layer (may sleep).
5594 *
5595 *	RETURNS:
5596 *	0 if all ports are started successfully, -errno otherwise.
5597 */
5598int ata_host_start(struct ata_host *host)
5599{
5600	int have_stop = 0;
5601	void *start_dr = NULL;
5602	int i, rc;
5603
5604	if (host->flags & ATA_HOST_STARTED)
5605		return 0;
5606
5607	ata_finalize_port_ops(host->ops);
5608
5609	for (i = 0; i < host->n_ports; i++) {
5610		struct ata_port *ap = host->ports[i];
5611
5612		ata_finalize_port_ops(ap->ops);
5613
5614		if (!host->ops && !ata_port_is_dummy(ap))
5615			host->ops = ap->ops;
5616
5617		if (ap->ops->port_stop)
5618			have_stop = 1;
5619	}
5620
5621	if (host->ops && host->ops->host_stop)
5622		have_stop = 1;
5623
5624	if (have_stop) {
5625		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5626		if (!start_dr)
5627			return -ENOMEM;
5628	}
5629
5630	for (i = 0; i < host->n_ports; i++) {
5631		struct ata_port *ap = host->ports[i];
5632
5633		if (ap->ops->port_start) {
5634			rc = ap->ops->port_start(ap);
5635			if (rc) {
5636				if (rc != -ENODEV)
5637					dev_err(host->dev,
5638						"failed to start port %d (errno=%d)\n",
5639						i, rc);
5640				goto err_out;
5641			}
5642		}
5643		ata_eh_freeze_port(ap);
5644	}
5645
5646	if (start_dr)
5647		devres_add(host->dev, start_dr);
5648	host->flags |= ATA_HOST_STARTED;
5649	return 0;
5650
5651 err_out:
5652	while (--i >= 0) {
5653		struct ata_port *ap = host->ports[i];
5654
5655		if (ap->ops->port_stop)
5656			ap->ops->port_stop(ap);
5657	}
5658	devres_free(start_dr);
5659	return rc;
5660}
5661EXPORT_SYMBOL_GPL(ata_host_start);
5662
5663/**
5664 *	ata_host_init - Initialize a host struct for sas (ipr, libsas)
5665 *	@host:	host to initialize
5666 *	@dev:	device host is attached to
5667 *	@ops:	port_ops
5668 *
5669 */
5670void ata_host_init(struct ata_host *host, struct device *dev,
5671		   struct ata_port_operations *ops)
5672{
5673	spin_lock_init(&host->lock);
5674	mutex_init(&host->eh_mutex);
5675	host->n_tags = ATA_MAX_QUEUE;
5676	host->dev = dev;
5677	host->ops = ops;
5678	kref_init(&host->kref);
5679}
5680EXPORT_SYMBOL_GPL(ata_host_init);
5681
5682void __ata_port_probe(struct ata_port *ap)
5683{
5684	struct ata_eh_info *ehi = &ap->link.eh_info;
5685	unsigned long flags;
5686
5687	/* kick EH for boot probing */
5688	spin_lock_irqsave(ap->lock, flags);
5689
5690	ehi->probe_mask |= ATA_ALL_DEVICES;
5691	ehi->action |= ATA_EH_RESET;
5692	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5693
5694	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5695	ap->pflags |= ATA_PFLAG_LOADING;
5696	ata_port_schedule_eh(ap);
5697
5698	spin_unlock_irqrestore(ap->lock, flags);
5699}
5700
5701int ata_port_probe(struct ata_port *ap)
5702{
5703	int rc = 0;
5704
5705	if (ap->ops->error_handler) {
5706		__ata_port_probe(ap);
5707		ata_port_wait_eh(ap);
5708	} else {
5709		DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5710		rc = ata_bus_probe(ap);
5711		DPRINTK("ata%u: bus probe end\n", ap->print_id);
5712	}
5713	return rc;
5714}
5715
5716
5717static void async_port_probe(void *data, async_cookie_t cookie)
5718{
5719	struct ata_port *ap = data;
5720
5721	/*
5722	 * If we're not allowed to scan this host in parallel,
5723	 * we need to wait until all previous scans have completed
5724	 * before going further.
5725	 * Jeff Garzik says this is only within a controller, so we
5726	 * don't need to wait for port 0, only for later ports.
5727	 */
5728	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5729		async_synchronize_cookie(cookie);
5730
5731	(void)ata_port_probe(ap);
5732
5733	/* in order to keep device order, we need to synchronize at this point */
5734	async_synchronize_cookie(cookie);
5735
5736	ata_scsi_scan_host(ap, 1);
5737}
5738
5739/**
5740 *	ata_host_register - register initialized ATA host
5741 *	@host: ATA host to register
5742 *	@sht: template for SCSI host
5743 *
5744 *	Register initialized ATA host.  @host is allocated using
5745 *	ata_host_alloc() and fully initialized by LLD.  This function
5746 *	starts ports, registers @host with ATA and SCSI layers and
5747 *	probe registered devices.
5748 *
5749 *	LOCKING:
5750 *	Inherited from calling layer (may sleep).
5751 *
5752 *	RETURNS:
5753 *	0 on success, -errno otherwise.
5754 */
5755int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5756{
5757	int i, rc;
5758
5759	host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5760
5761	/* host must have been started */
5762	if (!(host->flags & ATA_HOST_STARTED)) {
5763		dev_err(host->dev, "BUG: trying to register unstarted host\n");
5764		WARN_ON(1);
5765		return -EINVAL;
5766	}
5767
5768	/* Blow away unused ports.  This happens when LLD can't
5769	 * determine the exact number of ports to allocate at
5770	 * allocation time.
5771	 */
5772	for (i = host->n_ports; host->ports[i]; i++)
5773		kfree(host->ports[i]);
5774
5775	/* give ports names and add SCSI hosts */
5776	for (i = 0; i < host->n_ports; i++) {
5777		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
5778		host->ports[i]->local_port_no = i + 1;
5779	}
5780
5781	/* Create associated sysfs transport objects  */
5782	for (i = 0; i < host->n_ports; i++) {
5783		rc = ata_tport_add(host->dev,host->ports[i]);
5784		if (rc) {
5785			goto err_tadd;
5786		}
5787	}
5788
5789	rc = ata_scsi_add_hosts(host, sht);
5790	if (rc)
5791		goto err_tadd;
5792
5793	/* set cable, sata_spd_limit and report */
5794	for (i = 0; i < host->n_ports; i++) {
5795		struct ata_port *ap = host->ports[i];
5796		unsigned long xfer_mask;
5797
5798		/* set SATA cable type if still unset */
5799		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5800			ap->cbl = ATA_CBL_SATA;
5801
5802		/* init sata_spd_limit to the current value */
5803		sata_link_init_spd(&ap->link);
5804		if (ap->slave_link)
5805			sata_link_init_spd(ap->slave_link);
5806
5807		/* print per-port info to dmesg */
5808		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5809					      ap->udma_mask);
5810
5811		if (!ata_port_is_dummy(ap)) {
5812			ata_port_info(ap, "%cATA max %s %s\n",
5813				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5814				      ata_mode_string(xfer_mask),
5815				      ap->link.eh_info.desc);
5816			ata_ehi_clear_desc(&ap->link.eh_info);
5817		} else
5818			ata_port_info(ap, "DUMMY\n");
5819	}
5820
5821	/* perform each probe asynchronously */
5822	for (i = 0; i < host->n_ports; i++) {
5823		struct ata_port *ap = host->ports[i];
5824		ap->cookie = async_schedule(async_port_probe, ap);
5825	}
5826
5827	return 0;
5828
5829 err_tadd:
5830	while (--i >= 0) {
5831		ata_tport_delete(host->ports[i]);
5832	}
5833	return rc;
5834
5835}
5836EXPORT_SYMBOL_GPL(ata_host_register);
5837
5838/**
5839 *	ata_host_activate - start host, request IRQ and register it
5840 *	@host: target ATA host
5841 *	@irq: IRQ to request
5842 *	@irq_handler: irq_handler used when requesting IRQ
5843 *	@irq_flags: irq_flags used when requesting IRQ
5844 *	@sht: scsi_host_template to use when registering the host
5845 *
5846 *	After allocating an ATA host and initializing it, most libata
5847 *	LLDs perform three steps to activate the host - start host,
5848 *	request IRQ and register it.  This helper takes necessary
5849 *	arguments and performs the three steps in one go.
5850 *
5851 *	An invalid IRQ skips the IRQ registration and expects the host to
5852 *	have set polling mode on the port. In this case, @irq_handler
5853 *	should be NULL.
5854 *
5855 *	LOCKING:
5856 *	Inherited from calling layer (may sleep).
5857 *
5858 *	RETURNS:
5859 *	0 on success, -errno otherwise.
5860 */
5861int ata_host_activate(struct ata_host *host, int irq,
5862		      irq_handler_t irq_handler, unsigned long irq_flags,
5863		      struct scsi_host_template *sht)
5864{
5865	int i, rc;
5866	char *irq_desc;
5867
5868	rc = ata_host_start(host);
5869	if (rc)
5870		return rc;
5871
5872	/* Special case for polling mode */
5873	if (!irq) {
5874		WARN_ON(irq_handler);
5875		return ata_host_register(host, sht);
5876	}
5877
5878	irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
5879				  dev_driver_string(host->dev),
5880				  dev_name(host->dev));
5881	if (!irq_desc)
5882		return -ENOMEM;
5883
5884	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5885			      irq_desc, host);
5886	if (rc)
5887		return rc;
5888
5889	for (i = 0; i < host->n_ports; i++)
5890		ata_port_desc(host->ports[i], "irq %d", irq);
5891
5892	rc = ata_host_register(host, sht);
5893	/* if failed, just free the IRQ and leave ports alone */
5894	if (rc)
5895		devm_free_irq(host->dev, irq, host);
5896
5897	return rc;
5898}
5899EXPORT_SYMBOL_GPL(ata_host_activate);
5900
5901/**
5902 *	ata_port_detach - Detach ATA port in preparation of device removal
5903 *	@ap: ATA port to be detached
5904 *
5905 *	Detach all ATA devices and the associated SCSI devices of @ap;
5906 *	then, remove the associated SCSI host.  @ap is guaranteed to
5907 *	be quiescent on return from this function.
5908 *
5909 *	LOCKING:
5910 *	Kernel thread context (may sleep).
5911 */
5912static void ata_port_detach(struct ata_port *ap)
5913{
5914	unsigned long flags;
5915	struct ata_link *link;
5916	struct ata_device *dev;
5917
5918	if (!ap->ops->error_handler)
5919		goto skip_eh;
5920
5921	/* Wait for any ongoing EH */
5922	ata_port_wait_eh(ap);
5923
5924	mutex_lock(&ap->scsi_scan_mutex);
5925	spin_lock_irqsave(ap->lock, flags);
5926
5927	/* Remove scsi devices */
5928	ata_for_each_link(link, ap, HOST_FIRST) {
5929		ata_for_each_dev(dev, link, ALL) {
5930			if (dev->sdev) {
5931				spin_unlock_irqrestore(ap->lock, flags);
5932				scsi_remove_device(dev->sdev);
5933				spin_lock_irqsave(ap->lock, flags);
5934				dev->sdev = NULL;
5935			}
5936		}
5937	}
5938
5939	/* Tell EH to disable all devices */
5940	ap->pflags |= ATA_PFLAG_UNLOADING;
5941	ata_port_schedule_eh(ap);
5942
5943	spin_unlock_irqrestore(ap->lock, flags);
5944	mutex_unlock(&ap->scsi_scan_mutex);
5945
5946	/* wait till EH commits suicide */
5947	ata_port_wait_eh(ap);
5948
5949	/* it better be dead now */
5950	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
5951
5952	cancel_delayed_work_sync(&ap->hotplug_task);
5953
5954 skip_eh:
5955	/* clean up zpodd on port removal */
5956	ata_for_each_link(link, ap, HOST_FIRST) {
5957		ata_for_each_dev(dev, link, ALL) {
5958			if (zpodd_dev_enabled(dev))
5959				zpodd_exit(dev);
5960		}
5961	}
5962	if (ap->pmp_link) {
5963		int i;
5964		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
5965			ata_tlink_delete(&ap->pmp_link[i]);
5966	}
5967	/* remove the associated SCSI host */
5968	scsi_remove_host(ap->scsi_host);
5969	ata_tport_delete(ap);
5970}
5971
5972/**
5973 *	ata_host_detach - Detach all ports of an ATA host
5974 *	@host: Host to detach
5975 *
5976 *	Detach all ports of @host.
5977 *
5978 *	LOCKING:
5979 *	Kernel thread context (may sleep).
5980 */
5981void ata_host_detach(struct ata_host *host)
5982{
5983	int i;
5984
5985	for (i = 0; i < host->n_ports; i++) {
5986		/* Ensure ata_port probe has completed */
5987		async_synchronize_cookie(host->ports[i]->cookie + 1);
5988		ata_port_detach(host->ports[i]);
5989	}
5990
5991	/* the host is dead now, dissociate ACPI */
5992	ata_acpi_dissociate(host);
5993}
5994EXPORT_SYMBOL_GPL(ata_host_detach);
5995
5996#ifdef CONFIG_PCI
5997
5998/**
5999 *	ata_pci_remove_one - PCI layer callback for device removal
6000 *	@pdev: PCI device that was removed
6001 *
6002 *	PCI layer indicates to libata via this hook that hot-unplug or
6003 *	module unload event has occurred.  Detach all ports.  Resource
6004 *	release is handled via devres.
6005 *
6006 *	LOCKING:
6007 *	Inherited from PCI layer (may sleep).
6008 */
6009void ata_pci_remove_one(struct pci_dev *pdev)
6010{
6011	struct ata_host *host = pci_get_drvdata(pdev);
6012
6013	ata_host_detach(host);
6014}
6015EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6016
6017void ata_pci_shutdown_one(struct pci_dev *pdev)
6018{
6019	struct ata_host *host = pci_get_drvdata(pdev);
6020	int i;
6021
6022	for (i = 0; i < host->n_ports; i++) {
6023		struct ata_port *ap = host->ports[i];
6024
6025		ap->pflags |= ATA_PFLAG_FROZEN;
6026
6027		/* Disable port interrupts */
6028		if (ap->ops->freeze)
6029			ap->ops->freeze(ap);
6030
6031		/* Stop the port DMA engines */
6032		if (ap->ops->port_stop)
6033			ap->ops->port_stop(ap);
6034	}
6035}
6036EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6037
6038/* move to PCI subsystem */
6039int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6040{
6041	unsigned long tmp = 0;
6042
6043	switch (bits->width) {
6044	case 1: {
6045		u8 tmp8 = 0;
6046		pci_read_config_byte(pdev, bits->reg, &tmp8);
6047		tmp = tmp8;
6048		break;
6049	}
6050	case 2: {
6051		u16 tmp16 = 0;
6052		pci_read_config_word(pdev, bits->reg, &tmp16);
6053		tmp = tmp16;
6054		break;
6055	}
6056	case 4: {
6057		u32 tmp32 = 0;
6058		pci_read_config_dword(pdev, bits->reg, &tmp32);
6059		tmp = tmp32;
6060		break;
6061	}
6062
6063	default:
6064		return -EINVAL;
6065	}
6066
6067	tmp &= bits->mask;
6068
6069	return (tmp == bits->val) ? 1 : 0;
6070}
6071EXPORT_SYMBOL_GPL(pci_test_config_bits);
6072
6073#ifdef CONFIG_PM
6074void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6075{
6076	pci_save_state(pdev);
6077	pci_disable_device(pdev);
6078
6079	if (mesg.event & PM_EVENT_SLEEP)
6080		pci_set_power_state(pdev, PCI_D3hot);
6081}
6082EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6083
6084int ata_pci_device_do_resume(struct pci_dev *pdev)
6085{
6086	int rc;
6087
6088	pci_set_power_state(pdev, PCI_D0);
6089	pci_restore_state(pdev);
6090
6091	rc = pcim_enable_device(pdev);
6092	if (rc) {
6093		dev_err(&pdev->dev,
6094			"failed to enable device after resume (%d)\n", rc);
6095		return rc;
6096	}
6097
6098	pci_set_master(pdev);
6099	return 0;
6100}
6101EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6102
6103int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6104{
6105	struct ata_host *host = pci_get_drvdata(pdev);
6106	int rc = 0;
6107
6108	rc = ata_host_suspend(host, mesg);
6109	if (rc)
6110		return rc;
6111
6112	ata_pci_device_do_suspend(pdev, mesg);
6113
6114	return 0;
6115}
6116EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6117
6118int ata_pci_device_resume(struct pci_dev *pdev)
6119{
6120	struct ata_host *host = pci_get_drvdata(pdev);
6121	int rc;
6122
6123	rc = ata_pci_device_do_resume(pdev);
6124	if (rc == 0)
6125		ata_host_resume(host);
6126	return rc;
6127}
6128EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6129#endif /* CONFIG_PM */
6130#endif /* CONFIG_PCI */
6131
6132/**
6133 *	ata_platform_remove_one - Platform layer callback for device removal
6134 *	@pdev: Platform device that was removed
6135 *
6136 *	Platform layer indicates to libata via this hook that hot-unplug or
6137 *	module unload event has occurred.  Detach all ports.  Resource
6138 *	release is handled via devres.
6139 *
6140 *	LOCKING:
6141 *	Inherited from platform layer (may sleep).
6142 */
6143int ata_platform_remove_one(struct platform_device *pdev)
6144{
6145	struct ata_host *host = platform_get_drvdata(pdev);
6146
6147	ata_host_detach(host);
6148
6149	return 0;
6150}
6151EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6152
6153#ifdef CONFIG_ATA_FORCE
6154static int __init ata_parse_force_one(char **cur,
6155				      struct ata_force_ent *force_ent,
6156				      const char **reason)
6157{
6158	static const struct ata_force_param force_tbl[] __initconst = {
6159		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6160		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6161		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6162		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6163		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6164		{ "sata",	.cbl		= ATA_CBL_SATA },
6165		{ "1.5Gbps",	.spd_limit	= 1 },
6166		{ "3.0Gbps",	.spd_limit	= 2 },
6167		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6168		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
6169		{ "noncqtrim",	.horkage_on	= ATA_HORKAGE_NO_NCQ_TRIM },
6170		{ "ncqtrim",	.horkage_off	= ATA_HORKAGE_NO_NCQ_TRIM },
6171		{ "noncqati",	.horkage_on	= ATA_HORKAGE_NO_NCQ_ON_ATI },
6172		{ "ncqati",	.horkage_off	= ATA_HORKAGE_NO_NCQ_ON_ATI },
6173		{ "dump_id",	.horkage_on	= ATA_HORKAGE_DUMP_ID },
6174		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6175		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6176		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6177		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6178		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6179		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6180		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6181		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6182		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6183		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6184		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6185		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6186		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6187		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6188		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6189		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6190		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6191		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6192		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6193		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6194		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6195		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6196		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6197		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6198		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6199		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6200		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6201		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6202		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6203		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6204		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6205		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6206		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6207		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6208		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6209		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6210		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6211		{ "rstonce",	.lflags		= ATA_LFLAG_RST_ONCE },
6212		{ "atapi_dmadir", .horkage_on	= ATA_HORKAGE_ATAPI_DMADIR },
6213		{ "disable",	.horkage_on	= ATA_HORKAGE_DISABLE },
6214	};
6215	char *start = *cur, *p = *cur;
6216	char *id, *val, *endp;
6217	const struct ata_force_param *match_fp = NULL;
6218	int nr_matches = 0, i;
6219
6220	/* find where this param ends and update *cur */
6221	while (*p != '\0' && *p != ',')
6222		p++;
6223
6224	if (*p == '\0')
6225		*cur = p;
6226	else
6227		*cur = p + 1;
6228
6229	*p = '\0';
6230
6231	/* parse */
6232	p = strchr(start, ':');
6233	if (!p) {
6234		val = strstrip(start);
6235		goto parse_val;
6236	}
6237	*p = '\0';
6238
6239	id = strstrip(start);
6240	val = strstrip(p + 1);
6241
6242	/* parse id */
6243	p = strchr(id, '.');
6244	if (p) {
6245		*p++ = '\0';
6246		force_ent->device = simple_strtoul(p, &endp, 10);
6247		if (p == endp || *endp != '\0') {
6248			*reason = "invalid device";
6249			return -EINVAL;
6250		}
6251	}
6252
6253	force_ent->port = simple_strtoul(id, &endp, 10);
6254	if (id == endp || *endp != '\0') {
6255		*reason = "invalid port/link";
6256		return -EINVAL;
6257	}
6258
6259 parse_val:
6260	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6261	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6262		const struct ata_force_param *fp = &force_tbl[i];
6263
6264		if (strncasecmp(val, fp->name, strlen(val)))
6265			continue;
6266
6267		nr_matches++;
6268		match_fp = fp;
6269
6270		if (strcasecmp(val, fp->name) == 0) {
6271			nr_matches = 1;
6272			break;
6273		}
6274	}
6275
6276	if (!nr_matches) {
6277		*reason = "unknown value";
6278		return -EINVAL;
6279	}
6280	if (nr_matches > 1) {
6281		*reason = "ambiguous value";
6282		return -EINVAL;
6283	}
6284
6285	force_ent->param = *match_fp;
6286
6287	return 0;
6288}
6289
6290static void __init ata_parse_force_param(void)
6291{
6292	int idx = 0, size = 1;
6293	int last_port = -1, last_device = -1;
6294	char *p, *cur, *next;
6295
6296	/* calculate maximum number of params and allocate force_tbl */
6297	for (p = ata_force_param_buf; *p; p++)
6298		if (*p == ',')
6299			size++;
6300
6301	ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6302	if (!ata_force_tbl) {
6303		printk(KERN_WARNING "ata: failed to extend force table, "
6304		       "libata.force ignored\n");
6305		return;
6306	}
6307
6308	/* parse and populate the table */
6309	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6310		const char *reason = "";
6311		struct ata_force_ent te = { .port = -1, .device = -1 };
6312
6313		next = cur;
6314		if (ata_parse_force_one(&next, &te, &reason)) {
6315			printk(KERN_WARNING "ata: failed to parse force "
6316			       "parameter \"%s\" (%s)\n",
6317			       cur, reason);
6318			continue;
6319		}
6320
6321		if (te.port == -1) {
6322			te.port = last_port;
6323			te.device = last_device;
6324		}
6325
6326		ata_force_tbl[idx++] = te;
6327
6328		last_port = te.port;
6329		last_device = te.device;
6330	}
6331
6332	ata_force_tbl_size = idx;
6333}
6334
6335static void ata_free_force_param(void)
6336{
6337	kfree(ata_force_tbl);
6338}
6339#else
6340static inline void ata_parse_force_param(void) { }
6341static inline void ata_free_force_param(void) { }
6342#endif
6343
6344static int __init ata_init(void)
6345{
6346	int rc;
6347
6348	ata_parse_force_param();
6349
6350	rc = ata_sff_init();
6351	if (rc) {
6352		ata_free_force_param();
6353		return rc;
6354	}
6355
6356	libata_transport_init();
6357	ata_scsi_transport_template = ata_attach_transport();
6358	if (!ata_scsi_transport_template) {
6359		ata_sff_exit();
6360		rc = -ENOMEM;
6361		goto err_out;
6362	}
6363
6364	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6365	return 0;
6366
6367err_out:
6368	return rc;
6369}
6370
6371static void __exit ata_exit(void)
6372{
6373	ata_release_transport(ata_scsi_transport_template);
6374	libata_transport_exit();
6375	ata_sff_exit();
6376	ata_free_force_param();
6377}
6378
6379subsys_initcall(ata_init);
6380module_exit(ata_exit);
6381
6382static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6383
6384int ata_ratelimit(void)
6385{
6386	return __ratelimit(&ratelimit);
6387}
6388EXPORT_SYMBOL_GPL(ata_ratelimit);
6389
6390/**
6391 *	ata_msleep - ATA EH owner aware msleep
6392 *	@ap: ATA port to attribute the sleep to
6393 *	@msecs: duration to sleep in milliseconds
6394 *
6395 *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6396 *	ownership is released before going to sleep and reacquired
6397 *	after the sleep is complete.  IOW, other ports sharing the
6398 *	@ap->host will be allowed to own the EH while this task is
6399 *	sleeping.
6400 *
6401 *	LOCKING:
6402 *	Might sleep.
6403 */
6404void ata_msleep(struct ata_port *ap, unsigned int msecs)
6405{
6406	bool owns_eh = ap && ap->host->eh_owner == current;
6407
6408	if (owns_eh)
6409		ata_eh_release(ap);
6410
6411	if (msecs < 20) {
6412		unsigned long usecs = msecs * USEC_PER_MSEC;
6413		usleep_range(usecs, usecs + 50);
6414	} else {
6415		msleep(msecs);
6416	}
6417
6418	if (owns_eh)
6419		ata_eh_acquire(ap);
6420}
6421EXPORT_SYMBOL_GPL(ata_msleep);
6422
6423/**
6424 *	ata_wait_register - wait until register value changes
6425 *	@ap: ATA port to wait register for, can be NULL
6426 *	@reg: IO-mapped register
6427 *	@mask: Mask to apply to read register value
6428 *	@val: Wait condition
6429 *	@interval: polling interval in milliseconds
6430 *	@timeout: timeout in milliseconds
6431 *
6432 *	Waiting for some bits of register to change is a common
6433 *	operation for ATA controllers.  This function reads 32bit LE
6434 *	IO-mapped register @reg and tests for the following condition.
6435 *
6436 *	(*@reg & mask) != val
6437 *
6438 *	If the condition is met, it returns; otherwise, the process is
6439 *	repeated after @interval_msec until timeout.
6440 *
6441 *	LOCKING:
6442 *	Kernel thread context (may sleep)
6443 *
6444 *	RETURNS:
6445 *	The final register value.
6446 */
6447u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6448		      unsigned long interval, unsigned long timeout)
6449{
6450	unsigned long deadline;
6451	u32 tmp;
6452
6453	tmp = ioread32(reg);
6454
6455	/* Calculate timeout _after_ the first read to make sure
6456	 * preceding writes reach the controller before starting to
6457	 * eat away the timeout.
6458	 */
6459	deadline = ata_deadline(jiffies, timeout);
6460
6461	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6462		ata_msleep(ap, interval);
6463		tmp = ioread32(reg);
6464	}
6465
6466	return tmp;
6467}
6468EXPORT_SYMBOL_GPL(ata_wait_register);
6469
6470/*
6471 * Dummy port_ops
6472 */
6473static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6474{
6475	return AC_ERR_SYSTEM;
6476}
6477
6478static void ata_dummy_error_handler(struct ata_port *ap)
6479{
6480	/* truly dummy */
6481}
6482
6483struct ata_port_operations ata_dummy_port_ops = {
6484	.qc_prep		= ata_noop_qc_prep,
6485	.qc_issue		= ata_dummy_qc_issue,
6486	.error_handler		= ata_dummy_error_handler,
6487	.sched_eh		= ata_std_sched_eh,
6488	.end_eh			= ata_std_end_eh,
6489};
6490EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6491
6492const struct ata_port_info ata_dummy_port_info = {
6493	.port_ops		= &ata_dummy_port_ops,
6494};
6495EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6496
6497/*
6498 * Utility print functions
6499 */
6500void ata_port_printk(const struct ata_port *ap, const char *level,
6501		     const char *fmt, ...)
6502{
6503	struct va_format vaf;
6504	va_list args;
6505
6506	va_start(args, fmt);
6507
6508	vaf.fmt = fmt;
6509	vaf.va = &args;
6510
6511	printk("%sata%u: %pV", level, ap->print_id, &vaf);
6512
6513	va_end(args);
6514}
6515EXPORT_SYMBOL(ata_port_printk);
6516
6517void ata_link_printk(const struct ata_link *link, const char *level,
6518		     const char *fmt, ...)
6519{
6520	struct va_format vaf;
6521	va_list args;
6522
6523	va_start(args, fmt);
6524
6525	vaf.fmt = fmt;
6526	vaf.va = &args;
6527
6528	if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6529		printk("%sata%u.%02u: %pV",
6530		       level, link->ap->print_id, link->pmp, &vaf);
6531	else
6532		printk("%sata%u: %pV",
6533		       level, link->ap->print_id, &vaf);
6534
6535	va_end(args);
6536}
6537EXPORT_SYMBOL(ata_link_printk);
6538
6539void ata_dev_printk(const struct ata_device *dev, const char *level,
6540		    const char *fmt, ...)
6541{
6542	struct va_format vaf;
6543	va_list args;
6544
6545	va_start(args, fmt);
6546
6547	vaf.fmt = fmt;
6548	vaf.va = &args;
6549
6550	printk("%sata%u.%02u: %pV",
6551	       level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6552	       &vaf);
6553
6554	va_end(args);
6555}
6556EXPORT_SYMBOL(ata_dev_printk);
6557
6558void ata_print_version(const struct device *dev, const char *version)
6559{
6560	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6561}
6562EXPORT_SYMBOL(ata_print_version);
6563