1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * libata-core.c - helper library for ATA 4 * 5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 6 * Copyright 2003-2004 Jeff Garzik 7 * 8 * libata documentation is available via 'make {ps|pdf}docs', 9 * as Documentation/driver-api/libata.rst 10 * 11 * Hardware documentation available from http://www.t13.org/ and 12 * http://www.sata-io.org/ 13 * 14 * Standards documents from: 15 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 16 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 17 * http://www.sata-io.org (SATA) 18 * http://www.compactflash.org (CF) 19 * http://www.qic.org (QIC157 - Tape and DSC) 20 * http://www.ce-ata.org (CE-ATA: not supported) 21 * 22 * libata is essentially a library of internal helper functions for 23 * low-level ATA host controller drivers. As such, the API/ABI is 24 * likely to change as new drivers are added and updated. 25 * Do not depend on ABI/API stability. 26 */ 27 28#include <linux/kernel.h> 29#include <linux/module.h> 30#include <linux/pci.h> 31#include <linux/init.h> 32#include <linux/list.h> 33#include <linux/mm.h> 34#include <linux/spinlock.h> 35#include <linux/blkdev.h> 36#include <linux/delay.h> 37#include <linux/timer.h> 38#include <linux/time.h> 39#include <linux/interrupt.h> 40#include <linux/completion.h> 41#include <linux/suspend.h> 42#include <linux/workqueue.h> 43#include <linux/scatterlist.h> 44#include <linux/io.h> 45#include <linux/log2.h> 46#include <linux/slab.h> 47#include <linux/glob.h> 48#include <scsi/scsi.h> 49#include <scsi/scsi_cmnd.h> 50#include <scsi/scsi_host.h> 51#include <linux/libata.h> 52#include <asm/byteorder.h> 53#include <asm/unaligned.h> 54#include <linux/cdrom.h> 55#include <linux/ratelimit.h> 56#include <linux/leds.h> 57#include <linux/pm_runtime.h> 58#include <linux/platform_device.h> 59#include <asm/setup.h> 60 61#define CREATE_TRACE_POINTS 62#include <trace/events/libata.h> 63 64#include "libata.h" 65#include "libata-transport.h" 66 67const struct ata_port_operations ata_base_port_ops = { 68 .prereset = ata_std_prereset, 69 .postreset = ata_std_postreset, 70 .error_handler = ata_std_error_handler, 71 .sched_eh = ata_std_sched_eh, 72 .end_eh = ata_std_end_eh, 73}; 74 75const struct ata_port_operations sata_port_ops = { 76 .inherits = &ata_base_port_ops, 77 78 .qc_defer = ata_std_qc_defer, 79 .hardreset = sata_std_hardreset, 80}; 81EXPORT_SYMBOL_GPL(sata_port_ops); 82 83static unsigned int ata_dev_init_params(struct ata_device *dev, 84 u16 heads, u16 sectors); 85static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 86static void ata_dev_xfermask(struct ata_device *dev); 87static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 88 89atomic_t ata_print_id = ATOMIC_INIT(0); 90 91#ifdef CONFIG_ATA_FORCE 92struct ata_force_param { 93 const char *name; 94 u8 cbl; 95 u8 spd_limit; 96 unsigned long xfer_mask; 97 unsigned int horkage_on; 98 unsigned int horkage_off; 99 u16 lflags; 100}; 101 102struct ata_force_ent { 103 int port; 104 int device; 105 struct ata_force_param param; 106}; 107 108static struct ata_force_ent *ata_force_tbl; 109static int ata_force_tbl_size; 110 111static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata; 112/* param_buf is thrown away after initialization, disallow read */ 113module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 114MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)"); 115#endif 116 117static int atapi_enabled = 1; 118module_param(atapi_enabled, int, 0444); 119MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 120 121static int atapi_dmadir = 0; 122module_param(atapi_dmadir, int, 0444); 123MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 124 125int atapi_passthru16 = 1; 126module_param(atapi_passthru16, int, 0444); 127MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 128 129int libata_fua = 0; 130module_param_named(fua, libata_fua, int, 0444); 131MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 132 133static int ata_ignore_hpa; 134module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 135MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 136 137static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 138module_param_named(dma, libata_dma_mask, int, 0444); 139MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 140 141static int ata_probe_timeout; 142module_param(ata_probe_timeout, int, 0444); 143MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 144 145int libata_noacpi = 0; 146module_param_named(noacpi, libata_noacpi, int, 0444); 147MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 148 149int libata_allow_tpm = 0; 150module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 151MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 152 153static int atapi_an; 154module_param(atapi_an, int, 0444); 155MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 156 157MODULE_AUTHOR("Jeff Garzik"); 158MODULE_DESCRIPTION("Library module for ATA devices"); 159MODULE_LICENSE("GPL"); 160MODULE_VERSION(DRV_VERSION); 161 162 163static bool ata_sstatus_online(u32 sstatus) 164{ 165 return (sstatus & 0xf) == 0x3; 166} 167 168/** 169 * ata_link_next - link iteration helper 170 * @link: the previous link, NULL to start 171 * @ap: ATA port containing links to iterate 172 * @mode: iteration mode, one of ATA_LITER_* 173 * 174 * LOCKING: 175 * Host lock or EH context. 176 * 177 * RETURNS: 178 * Pointer to the next link. 179 */ 180struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 181 enum ata_link_iter_mode mode) 182{ 183 BUG_ON(mode != ATA_LITER_EDGE && 184 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 185 186 /* NULL link indicates start of iteration */ 187 if (!link) 188 switch (mode) { 189 case ATA_LITER_EDGE: 190 case ATA_LITER_PMP_FIRST: 191 if (sata_pmp_attached(ap)) 192 return ap->pmp_link; 193 fallthrough; 194 case ATA_LITER_HOST_FIRST: 195 return &ap->link; 196 } 197 198 /* we just iterated over the host link, what's next? */ 199 if (link == &ap->link) 200 switch (mode) { 201 case ATA_LITER_HOST_FIRST: 202 if (sata_pmp_attached(ap)) 203 return ap->pmp_link; 204 fallthrough; 205 case ATA_LITER_PMP_FIRST: 206 if (unlikely(ap->slave_link)) 207 return ap->slave_link; 208 fallthrough; 209 case ATA_LITER_EDGE: 210 return NULL; 211 } 212 213 /* slave_link excludes PMP */ 214 if (unlikely(link == ap->slave_link)) 215 return NULL; 216 217 /* we were over a PMP link */ 218 if (++link < ap->pmp_link + ap->nr_pmp_links) 219 return link; 220 221 if (mode == ATA_LITER_PMP_FIRST) 222 return &ap->link; 223 224 return NULL; 225} 226EXPORT_SYMBOL_GPL(ata_link_next); 227 228/** 229 * ata_dev_next - device iteration helper 230 * @dev: the previous device, NULL to start 231 * @link: ATA link containing devices to iterate 232 * @mode: iteration mode, one of ATA_DITER_* 233 * 234 * LOCKING: 235 * Host lock or EH context. 236 * 237 * RETURNS: 238 * Pointer to the next device. 239 */ 240struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 241 enum ata_dev_iter_mode mode) 242{ 243 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 244 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 245 246 /* NULL dev indicates start of iteration */ 247 if (!dev) 248 switch (mode) { 249 case ATA_DITER_ENABLED: 250 case ATA_DITER_ALL: 251 dev = link->device; 252 goto check; 253 case ATA_DITER_ENABLED_REVERSE: 254 case ATA_DITER_ALL_REVERSE: 255 dev = link->device + ata_link_max_devices(link) - 1; 256 goto check; 257 } 258 259 next: 260 /* move to the next one */ 261 switch (mode) { 262 case ATA_DITER_ENABLED: 263 case ATA_DITER_ALL: 264 if (++dev < link->device + ata_link_max_devices(link)) 265 goto check; 266 return NULL; 267 case ATA_DITER_ENABLED_REVERSE: 268 case ATA_DITER_ALL_REVERSE: 269 if (--dev >= link->device) 270 goto check; 271 return NULL; 272 } 273 274 check: 275 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 276 !ata_dev_enabled(dev)) 277 goto next; 278 return dev; 279} 280EXPORT_SYMBOL_GPL(ata_dev_next); 281 282/** 283 * ata_dev_phys_link - find physical link for a device 284 * @dev: ATA device to look up physical link for 285 * 286 * Look up physical link which @dev is attached to. Note that 287 * this is different from @dev->link only when @dev is on slave 288 * link. For all other cases, it's the same as @dev->link. 289 * 290 * LOCKING: 291 * Don't care. 292 * 293 * RETURNS: 294 * Pointer to the found physical link. 295 */ 296struct ata_link *ata_dev_phys_link(struct ata_device *dev) 297{ 298 struct ata_port *ap = dev->link->ap; 299 300 if (!ap->slave_link) 301 return dev->link; 302 if (!dev->devno) 303 return &ap->link; 304 return ap->slave_link; 305} 306 307#ifdef CONFIG_ATA_FORCE 308/** 309 * ata_force_cbl - force cable type according to libata.force 310 * @ap: ATA port of interest 311 * 312 * Force cable type according to libata.force and whine about it. 313 * The last entry which has matching port number is used, so it 314 * can be specified as part of device force parameters. For 315 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 316 * same effect. 317 * 318 * LOCKING: 319 * EH context. 320 */ 321void ata_force_cbl(struct ata_port *ap) 322{ 323 int i; 324 325 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 326 const struct ata_force_ent *fe = &ata_force_tbl[i]; 327 328 if (fe->port != -1 && fe->port != ap->print_id) 329 continue; 330 331 if (fe->param.cbl == ATA_CBL_NONE) 332 continue; 333 334 ap->cbl = fe->param.cbl; 335 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 336 return; 337 } 338} 339 340/** 341 * ata_force_link_limits - force link limits according to libata.force 342 * @link: ATA link of interest 343 * 344 * Force link flags and SATA spd limit according to libata.force 345 * and whine about it. When only the port part is specified 346 * (e.g. 1:), the limit applies to all links connected to both 347 * the host link and all fan-out ports connected via PMP. If the 348 * device part is specified as 0 (e.g. 1.00:), it specifies the 349 * first fan-out link not the host link. Device number 15 always 350 * points to the host link whether PMP is attached or not. If the 351 * controller has slave link, device number 16 points to it. 352 * 353 * LOCKING: 354 * EH context. 355 */ 356static void ata_force_link_limits(struct ata_link *link) 357{ 358 bool did_spd = false; 359 int linkno = link->pmp; 360 int i; 361 362 if (ata_is_host_link(link)) 363 linkno += 15; 364 365 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 366 const struct ata_force_ent *fe = &ata_force_tbl[i]; 367 368 if (fe->port != -1 && fe->port != link->ap->print_id) 369 continue; 370 371 if (fe->device != -1 && fe->device != linkno) 372 continue; 373 374 /* only honor the first spd limit */ 375 if (!did_spd && fe->param.spd_limit) { 376 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 377 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 378 fe->param.name); 379 did_spd = true; 380 } 381 382 /* let lflags stack */ 383 if (fe->param.lflags) { 384 link->flags |= fe->param.lflags; 385 ata_link_notice(link, 386 "FORCE: link flag 0x%x forced -> 0x%x\n", 387 fe->param.lflags, link->flags); 388 } 389 } 390} 391 392/** 393 * ata_force_xfermask - force xfermask according to libata.force 394 * @dev: ATA device of interest 395 * 396 * Force xfer_mask according to libata.force and whine about it. 397 * For consistency with link selection, device number 15 selects 398 * the first device connected to the host link. 399 * 400 * LOCKING: 401 * EH context. 402 */ 403static void ata_force_xfermask(struct ata_device *dev) 404{ 405 int devno = dev->link->pmp + dev->devno; 406 int alt_devno = devno; 407 int i; 408 409 /* allow n.15/16 for devices attached to host port */ 410 if (ata_is_host_link(dev->link)) 411 alt_devno += 15; 412 413 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 414 const struct ata_force_ent *fe = &ata_force_tbl[i]; 415 unsigned long pio_mask, mwdma_mask, udma_mask; 416 417 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 418 continue; 419 420 if (fe->device != -1 && fe->device != devno && 421 fe->device != alt_devno) 422 continue; 423 424 if (!fe->param.xfer_mask) 425 continue; 426 427 ata_unpack_xfermask(fe->param.xfer_mask, 428 &pio_mask, &mwdma_mask, &udma_mask); 429 if (udma_mask) 430 dev->udma_mask = udma_mask; 431 else if (mwdma_mask) { 432 dev->udma_mask = 0; 433 dev->mwdma_mask = mwdma_mask; 434 } else { 435 dev->udma_mask = 0; 436 dev->mwdma_mask = 0; 437 dev->pio_mask = pio_mask; 438 } 439 440 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 441 fe->param.name); 442 return; 443 } 444} 445 446/** 447 * ata_force_horkage - force horkage according to libata.force 448 * @dev: ATA device of interest 449 * 450 * Force horkage according to libata.force and whine about it. 451 * For consistency with link selection, device number 15 selects 452 * the first device connected to the host link. 453 * 454 * LOCKING: 455 * EH context. 456 */ 457static void ata_force_horkage(struct ata_device *dev) 458{ 459 int devno = dev->link->pmp + dev->devno; 460 int alt_devno = devno; 461 int i; 462 463 /* allow n.15/16 for devices attached to host port */ 464 if (ata_is_host_link(dev->link)) 465 alt_devno += 15; 466 467 for (i = 0; i < ata_force_tbl_size; i++) { 468 const struct ata_force_ent *fe = &ata_force_tbl[i]; 469 470 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 471 continue; 472 473 if (fe->device != -1 && fe->device != devno && 474 fe->device != alt_devno) 475 continue; 476 477 if (!(~dev->horkage & fe->param.horkage_on) && 478 !(dev->horkage & fe->param.horkage_off)) 479 continue; 480 481 dev->horkage |= fe->param.horkage_on; 482 dev->horkage &= ~fe->param.horkage_off; 483 484 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n", 485 fe->param.name); 486 } 487} 488#else 489static inline void ata_force_link_limits(struct ata_link *link) { } 490static inline void ata_force_xfermask(struct ata_device *dev) { } 491static inline void ata_force_horkage(struct ata_device *dev) { } 492#endif 493 494/** 495 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 496 * @opcode: SCSI opcode 497 * 498 * Determine ATAPI command type from @opcode. 499 * 500 * LOCKING: 501 * None. 502 * 503 * RETURNS: 504 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 505 */ 506int atapi_cmd_type(u8 opcode) 507{ 508 switch (opcode) { 509 case GPCMD_READ_10: 510 case GPCMD_READ_12: 511 return ATAPI_READ; 512 513 case GPCMD_WRITE_10: 514 case GPCMD_WRITE_12: 515 case GPCMD_WRITE_AND_VERIFY_10: 516 return ATAPI_WRITE; 517 518 case GPCMD_READ_CD: 519 case GPCMD_READ_CD_MSF: 520 return ATAPI_READ_CD; 521 522 case ATA_16: 523 case ATA_12: 524 if (atapi_passthru16) 525 return ATAPI_PASS_THRU; 526 fallthrough; 527 default: 528 return ATAPI_MISC; 529 } 530} 531EXPORT_SYMBOL_GPL(atapi_cmd_type); 532 533static const u8 ata_rw_cmds[] = { 534 /* pio multi */ 535 ATA_CMD_READ_MULTI, 536 ATA_CMD_WRITE_MULTI, 537 ATA_CMD_READ_MULTI_EXT, 538 ATA_CMD_WRITE_MULTI_EXT, 539 0, 540 0, 541 0, 542 ATA_CMD_WRITE_MULTI_FUA_EXT, 543 /* pio */ 544 ATA_CMD_PIO_READ, 545 ATA_CMD_PIO_WRITE, 546 ATA_CMD_PIO_READ_EXT, 547 ATA_CMD_PIO_WRITE_EXT, 548 0, 549 0, 550 0, 551 0, 552 /* dma */ 553 ATA_CMD_READ, 554 ATA_CMD_WRITE, 555 ATA_CMD_READ_EXT, 556 ATA_CMD_WRITE_EXT, 557 0, 558 0, 559 0, 560 ATA_CMD_WRITE_FUA_EXT 561}; 562 563/** 564 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 565 * @tf: command to examine and configure 566 * @dev: device tf belongs to 567 * 568 * Examine the device configuration and tf->flags to calculate 569 * the proper read/write commands and protocol to use. 570 * 571 * LOCKING: 572 * caller. 573 */ 574static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 575{ 576 u8 cmd; 577 578 int index, fua, lba48, write; 579 580 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 581 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 582 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 583 584 if (dev->flags & ATA_DFLAG_PIO) { 585 tf->protocol = ATA_PROT_PIO; 586 index = dev->multi_count ? 0 : 8; 587 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 588 /* Unable to use DMA due to host limitation */ 589 tf->protocol = ATA_PROT_PIO; 590 index = dev->multi_count ? 0 : 8; 591 } else { 592 tf->protocol = ATA_PROT_DMA; 593 index = 16; 594 } 595 596 cmd = ata_rw_cmds[index + fua + lba48 + write]; 597 if (cmd) { 598 tf->command = cmd; 599 return 0; 600 } 601 return -1; 602} 603 604/** 605 * ata_tf_read_block - Read block address from ATA taskfile 606 * @tf: ATA taskfile of interest 607 * @dev: ATA device @tf belongs to 608 * 609 * LOCKING: 610 * None. 611 * 612 * Read block address from @tf. This function can handle all 613 * three address formats - LBA, LBA48 and CHS. tf->protocol and 614 * flags select the address format to use. 615 * 616 * RETURNS: 617 * Block address read from @tf. 618 */ 619u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev) 620{ 621 u64 block = 0; 622 623 if (tf->flags & ATA_TFLAG_LBA) { 624 if (tf->flags & ATA_TFLAG_LBA48) { 625 block |= (u64)tf->hob_lbah << 40; 626 block |= (u64)tf->hob_lbam << 32; 627 block |= (u64)tf->hob_lbal << 24; 628 } else 629 block |= (tf->device & 0xf) << 24; 630 631 block |= tf->lbah << 16; 632 block |= tf->lbam << 8; 633 block |= tf->lbal; 634 } else { 635 u32 cyl, head, sect; 636 637 cyl = tf->lbam | (tf->lbah << 8); 638 head = tf->device & 0xf; 639 sect = tf->lbal; 640 641 if (!sect) { 642 ata_dev_warn(dev, 643 "device reported invalid CHS sector 0\n"); 644 return U64_MAX; 645 } 646 647 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 648 } 649 650 return block; 651} 652 653/** 654 * ata_build_rw_tf - Build ATA taskfile for given read/write request 655 * @tf: Target ATA taskfile 656 * @dev: ATA device @tf belongs to 657 * @block: Block address 658 * @n_block: Number of blocks 659 * @tf_flags: RW/FUA etc... 660 * @tag: tag 661 * @class: IO priority class 662 * 663 * LOCKING: 664 * None. 665 * 666 * Build ATA taskfile @tf for read/write request described by 667 * @block, @n_block, @tf_flags and @tag on @dev. 668 * 669 * RETURNS: 670 * 671 * 0 on success, -ERANGE if the request is too large for @dev, 672 * -EINVAL if the request is invalid. 673 */ 674int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 675 u64 block, u32 n_block, unsigned int tf_flags, 676 unsigned int tag, int class) 677{ 678 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 679 tf->flags |= tf_flags; 680 681 if (ata_ncq_enabled(dev) && !ata_tag_internal(tag)) { 682 /* yay, NCQ */ 683 if (!lba_48_ok(block, n_block)) 684 return -ERANGE; 685 686 tf->protocol = ATA_PROT_NCQ; 687 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 688 689 if (tf->flags & ATA_TFLAG_WRITE) 690 tf->command = ATA_CMD_FPDMA_WRITE; 691 else 692 tf->command = ATA_CMD_FPDMA_READ; 693 694 tf->nsect = tag << 3; 695 tf->hob_feature = (n_block >> 8) & 0xff; 696 tf->feature = n_block & 0xff; 697 698 tf->hob_lbah = (block >> 40) & 0xff; 699 tf->hob_lbam = (block >> 32) & 0xff; 700 tf->hob_lbal = (block >> 24) & 0xff; 701 tf->lbah = (block >> 16) & 0xff; 702 tf->lbam = (block >> 8) & 0xff; 703 tf->lbal = block & 0xff; 704 705 tf->device = ATA_LBA; 706 if (tf->flags & ATA_TFLAG_FUA) 707 tf->device |= 1 << 7; 708 709 if (dev->flags & ATA_DFLAG_NCQ_PRIO) { 710 if (class == IOPRIO_CLASS_RT) 711 tf->hob_nsect |= ATA_PRIO_HIGH << 712 ATA_SHIFT_PRIO; 713 } 714 } else if (dev->flags & ATA_DFLAG_LBA) { 715 tf->flags |= ATA_TFLAG_LBA; 716 717 if (lba_28_ok(block, n_block)) { 718 /* use LBA28 */ 719 tf->device |= (block >> 24) & 0xf; 720 } else if (lba_48_ok(block, n_block)) { 721 if (!(dev->flags & ATA_DFLAG_LBA48)) 722 return -ERANGE; 723 724 /* use LBA48 */ 725 tf->flags |= ATA_TFLAG_LBA48; 726 727 tf->hob_nsect = (n_block >> 8) & 0xff; 728 729 tf->hob_lbah = (block >> 40) & 0xff; 730 tf->hob_lbam = (block >> 32) & 0xff; 731 tf->hob_lbal = (block >> 24) & 0xff; 732 } else 733 /* request too large even for LBA48 */ 734 return -ERANGE; 735 736 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 737 return -EINVAL; 738 739 tf->nsect = n_block & 0xff; 740 741 tf->lbah = (block >> 16) & 0xff; 742 tf->lbam = (block >> 8) & 0xff; 743 tf->lbal = block & 0xff; 744 745 tf->device |= ATA_LBA; 746 } else { 747 /* CHS */ 748 u32 sect, head, cyl, track; 749 750 /* The request -may- be too large for CHS addressing. */ 751 if (!lba_28_ok(block, n_block)) 752 return -ERANGE; 753 754 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 755 return -EINVAL; 756 757 /* Convert LBA to CHS */ 758 track = (u32)block / dev->sectors; 759 cyl = track / dev->heads; 760 head = track % dev->heads; 761 sect = (u32)block % dev->sectors + 1; 762 763 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 764 (u32)block, track, cyl, head, sect); 765 766 /* Check whether the converted CHS can fit. 767 Cylinder: 0-65535 768 Head: 0-15 769 Sector: 1-255*/ 770 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 771 return -ERANGE; 772 773 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 774 tf->lbal = sect; 775 tf->lbam = cyl; 776 tf->lbah = cyl >> 8; 777 tf->device |= head; 778 } 779 780 return 0; 781} 782 783/** 784 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 785 * @pio_mask: pio_mask 786 * @mwdma_mask: mwdma_mask 787 * @udma_mask: udma_mask 788 * 789 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 790 * unsigned int xfer_mask. 791 * 792 * LOCKING: 793 * None. 794 * 795 * RETURNS: 796 * Packed xfer_mask. 797 */ 798unsigned long ata_pack_xfermask(unsigned long pio_mask, 799 unsigned long mwdma_mask, 800 unsigned long udma_mask) 801{ 802 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 803 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 804 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 805} 806EXPORT_SYMBOL_GPL(ata_pack_xfermask); 807 808/** 809 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 810 * @xfer_mask: xfer_mask to unpack 811 * @pio_mask: resulting pio_mask 812 * @mwdma_mask: resulting mwdma_mask 813 * @udma_mask: resulting udma_mask 814 * 815 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 816 * Any NULL destination masks will be ignored. 817 */ 818void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 819 unsigned long *mwdma_mask, unsigned long *udma_mask) 820{ 821 if (pio_mask) 822 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 823 if (mwdma_mask) 824 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 825 if (udma_mask) 826 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 827} 828 829static const struct ata_xfer_ent { 830 int shift, bits; 831 u8 base; 832} ata_xfer_tbl[] = { 833 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 834 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 835 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 836 { -1, }, 837}; 838 839/** 840 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 841 * @xfer_mask: xfer_mask of interest 842 * 843 * Return matching XFER_* value for @xfer_mask. Only the highest 844 * bit of @xfer_mask is considered. 845 * 846 * LOCKING: 847 * None. 848 * 849 * RETURNS: 850 * Matching XFER_* value, 0xff if no match found. 851 */ 852u8 ata_xfer_mask2mode(unsigned long xfer_mask) 853{ 854 int highbit = fls(xfer_mask) - 1; 855 const struct ata_xfer_ent *ent; 856 857 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 858 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 859 return ent->base + highbit - ent->shift; 860 return 0xff; 861} 862EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 863 864/** 865 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 866 * @xfer_mode: XFER_* of interest 867 * 868 * Return matching xfer_mask for @xfer_mode. 869 * 870 * LOCKING: 871 * None. 872 * 873 * RETURNS: 874 * Matching xfer_mask, 0 if no match found. 875 */ 876unsigned long ata_xfer_mode2mask(u8 xfer_mode) 877{ 878 const struct ata_xfer_ent *ent; 879 880 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 881 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 882 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 883 & ~((1 << ent->shift) - 1); 884 return 0; 885} 886EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 887 888/** 889 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 890 * @xfer_mode: XFER_* of interest 891 * 892 * Return matching xfer_shift for @xfer_mode. 893 * 894 * LOCKING: 895 * None. 896 * 897 * RETURNS: 898 * Matching xfer_shift, -1 if no match found. 899 */ 900int ata_xfer_mode2shift(unsigned long xfer_mode) 901{ 902 const struct ata_xfer_ent *ent; 903 904 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 905 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 906 return ent->shift; 907 return -1; 908} 909EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 910 911/** 912 * ata_mode_string - convert xfer_mask to string 913 * @xfer_mask: mask of bits supported; only highest bit counts. 914 * 915 * Determine string which represents the highest speed 916 * (highest bit in @modemask). 917 * 918 * LOCKING: 919 * None. 920 * 921 * RETURNS: 922 * Constant C string representing highest speed listed in 923 * @mode_mask, or the constant C string "<n/a>". 924 */ 925const char *ata_mode_string(unsigned long xfer_mask) 926{ 927 static const char * const xfer_mode_str[] = { 928 "PIO0", 929 "PIO1", 930 "PIO2", 931 "PIO3", 932 "PIO4", 933 "PIO5", 934 "PIO6", 935 "MWDMA0", 936 "MWDMA1", 937 "MWDMA2", 938 "MWDMA3", 939 "MWDMA4", 940 "UDMA/16", 941 "UDMA/25", 942 "UDMA/33", 943 "UDMA/44", 944 "UDMA/66", 945 "UDMA/100", 946 "UDMA/133", 947 "UDMA7", 948 }; 949 int highbit; 950 951 highbit = fls(xfer_mask) - 1; 952 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 953 return xfer_mode_str[highbit]; 954 return "<n/a>"; 955} 956EXPORT_SYMBOL_GPL(ata_mode_string); 957 958const char *sata_spd_string(unsigned int spd) 959{ 960 static const char * const spd_str[] = { 961 "1.5 Gbps", 962 "3.0 Gbps", 963 "6.0 Gbps", 964 }; 965 966 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 967 return "<unknown>"; 968 return spd_str[spd - 1]; 969} 970 971/** 972 * ata_dev_classify - determine device type based on ATA-spec signature 973 * @tf: ATA taskfile register set for device to be identified 974 * 975 * Determine from taskfile register contents whether a device is 976 * ATA or ATAPI, as per "Signature and persistence" section 977 * of ATA/PI spec (volume 1, sect 5.14). 978 * 979 * LOCKING: 980 * None. 981 * 982 * RETURNS: 983 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP, 984 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure. 985 */ 986unsigned int ata_dev_classify(const struct ata_taskfile *tf) 987{ 988 /* Apple's open source Darwin code hints that some devices only 989 * put a proper signature into the LBA mid/high registers, 990 * So, we only check those. It's sufficient for uniqueness. 991 * 992 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 993 * signatures for ATA and ATAPI devices attached on SerialATA, 994 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 995 * spec has never mentioned about using different signatures 996 * for ATA/ATAPI devices. Then, Serial ATA II: Port 997 * Multiplier specification began to use 0x69/0x96 to identify 998 * port multpliers and 0x3c/0xc3 to identify SEMB device. 999 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1000 * 0x69/0x96 shortly and described them as reserved for 1001 * SerialATA. 1002 * 1003 * We follow the current spec and consider that 0x69/0x96 1004 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1005 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1006 * SEMB signature. This is worked around in 1007 * ata_dev_read_id(). 1008 */ 1009 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1010 DPRINTK("found ATA device by sig\n"); 1011 return ATA_DEV_ATA; 1012 } 1013 1014 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1015 DPRINTK("found ATAPI device by sig\n"); 1016 return ATA_DEV_ATAPI; 1017 } 1018 1019 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1020 DPRINTK("found PMP device by sig\n"); 1021 return ATA_DEV_PMP; 1022 } 1023 1024 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1025 DPRINTK("found SEMB device by sig (could be ATA device)\n"); 1026 return ATA_DEV_SEMB; 1027 } 1028 1029 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) { 1030 DPRINTK("found ZAC device by sig\n"); 1031 return ATA_DEV_ZAC; 1032 } 1033 1034 DPRINTK("unknown device\n"); 1035 return ATA_DEV_UNKNOWN; 1036} 1037EXPORT_SYMBOL_GPL(ata_dev_classify); 1038 1039/** 1040 * ata_id_string - Convert IDENTIFY DEVICE page into string 1041 * @id: IDENTIFY DEVICE results we will examine 1042 * @s: string into which data is output 1043 * @ofs: offset into identify device page 1044 * @len: length of string to return. must be an even number. 1045 * 1046 * The strings in the IDENTIFY DEVICE page are broken up into 1047 * 16-bit chunks. Run through the string, and output each 1048 * 8-bit chunk linearly, regardless of platform. 1049 * 1050 * LOCKING: 1051 * caller. 1052 */ 1053 1054void ata_id_string(const u16 *id, unsigned char *s, 1055 unsigned int ofs, unsigned int len) 1056{ 1057 unsigned int c; 1058 1059 BUG_ON(len & 1); 1060 1061 while (len > 0) { 1062 c = id[ofs] >> 8; 1063 *s = c; 1064 s++; 1065 1066 c = id[ofs] & 0xff; 1067 *s = c; 1068 s++; 1069 1070 ofs++; 1071 len -= 2; 1072 } 1073} 1074EXPORT_SYMBOL_GPL(ata_id_string); 1075 1076/** 1077 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1078 * @id: IDENTIFY DEVICE results we will examine 1079 * @s: string into which data is output 1080 * @ofs: offset into identify device page 1081 * @len: length of string to return. must be an odd number. 1082 * 1083 * This function is identical to ata_id_string except that it 1084 * trims trailing spaces and terminates the resulting string with 1085 * null. @len must be actual maximum length (even number) + 1. 1086 * 1087 * LOCKING: 1088 * caller. 1089 */ 1090void ata_id_c_string(const u16 *id, unsigned char *s, 1091 unsigned int ofs, unsigned int len) 1092{ 1093 unsigned char *p; 1094 1095 ata_id_string(id, s, ofs, len - 1); 1096 1097 p = s + strnlen(s, len - 1); 1098 while (p > s && p[-1] == ' ') 1099 p--; 1100 *p = '\0'; 1101} 1102EXPORT_SYMBOL_GPL(ata_id_c_string); 1103 1104static u64 ata_id_n_sectors(const u16 *id) 1105{ 1106 if (ata_id_has_lba(id)) { 1107 if (ata_id_has_lba48(id)) 1108 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1109 else 1110 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1111 } else { 1112 if (ata_id_current_chs_valid(id)) 1113 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] * 1114 id[ATA_ID_CUR_SECTORS]; 1115 else 1116 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] * 1117 id[ATA_ID_SECTORS]; 1118 } 1119} 1120 1121u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1122{ 1123 u64 sectors = 0; 1124 1125 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1126 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1127 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1128 sectors |= (tf->lbah & 0xff) << 16; 1129 sectors |= (tf->lbam & 0xff) << 8; 1130 sectors |= (tf->lbal & 0xff); 1131 1132 return sectors; 1133} 1134 1135u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1136{ 1137 u64 sectors = 0; 1138 1139 sectors |= (tf->device & 0x0f) << 24; 1140 sectors |= (tf->lbah & 0xff) << 16; 1141 sectors |= (tf->lbam & 0xff) << 8; 1142 sectors |= (tf->lbal & 0xff); 1143 1144 return sectors; 1145} 1146 1147/** 1148 * ata_read_native_max_address - Read native max address 1149 * @dev: target device 1150 * @max_sectors: out parameter for the result native max address 1151 * 1152 * Perform an LBA48 or LBA28 native size query upon the device in 1153 * question. 1154 * 1155 * RETURNS: 1156 * 0 on success, -EACCES if command is aborted by the drive. 1157 * -EIO on other errors. 1158 */ 1159static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1160{ 1161 unsigned int err_mask; 1162 struct ata_taskfile tf; 1163 int lba48 = ata_id_has_lba48(dev->id); 1164 1165 ata_tf_init(dev, &tf); 1166 1167 /* always clear all address registers */ 1168 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1169 1170 if (lba48) { 1171 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1172 tf.flags |= ATA_TFLAG_LBA48; 1173 } else 1174 tf.command = ATA_CMD_READ_NATIVE_MAX; 1175 1176 tf.protocol = ATA_PROT_NODATA; 1177 tf.device |= ATA_LBA; 1178 1179 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1180 if (err_mask) { 1181 ata_dev_warn(dev, 1182 "failed to read native max address (err_mask=0x%x)\n", 1183 err_mask); 1184 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1185 return -EACCES; 1186 return -EIO; 1187 } 1188 1189 if (lba48) 1190 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1191 else 1192 *max_sectors = ata_tf_to_lba(&tf) + 1; 1193 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1194 (*max_sectors)--; 1195 return 0; 1196} 1197 1198/** 1199 * ata_set_max_sectors - Set max sectors 1200 * @dev: target device 1201 * @new_sectors: new max sectors value to set for the device 1202 * 1203 * Set max sectors of @dev to @new_sectors. 1204 * 1205 * RETURNS: 1206 * 0 on success, -EACCES if command is aborted or denied (due to 1207 * previous non-volatile SET_MAX) by the drive. -EIO on other 1208 * errors. 1209 */ 1210static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1211{ 1212 unsigned int err_mask; 1213 struct ata_taskfile tf; 1214 int lba48 = ata_id_has_lba48(dev->id); 1215 1216 new_sectors--; 1217 1218 ata_tf_init(dev, &tf); 1219 1220 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1221 1222 if (lba48) { 1223 tf.command = ATA_CMD_SET_MAX_EXT; 1224 tf.flags |= ATA_TFLAG_LBA48; 1225 1226 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1227 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1228 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1229 } else { 1230 tf.command = ATA_CMD_SET_MAX; 1231 1232 tf.device |= (new_sectors >> 24) & 0xf; 1233 } 1234 1235 tf.protocol = ATA_PROT_NODATA; 1236 tf.device |= ATA_LBA; 1237 1238 tf.lbal = (new_sectors >> 0) & 0xff; 1239 tf.lbam = (new_sectors >> 8) & 0xff; 1240 tf.lbah = (new_sectors >> 16) & 0xff; 1241 1242 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1243 if (err_mask) { 1244 ata_dev_warn(dev, 1245 "failed to set max address (err_mask=0x%x)\n", 1246 err_mask); 1247 if (err_mask == AC_ERR_DEV && 1248 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1249 return -EACCES; 1250 return -EIO; 1251 } 1252 1253 return 0; 1254} 1255 1256/** 1257 * ata_hpa_resize - Resize a device with an HPA set 1258 * @dev: Device to resize 1259 * 1260 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1261 * it if required to the full size of the media. The caller must check 1262 * the drive has the HPA feature set enabled. 1263 * 1264 * RETURNS: 1265 * 0 on success, -errno on failure. 1266 */ 1267static int ata_hpa_resize(struct ata_device *dev) 1268{ 1269 struct ata_eh_context *ehc = &dev->link->eh_context; 1270 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1271 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1272 u64 sectors = ata_id_n_sectors(dev->id); 1273 u64 native_sectors; 1274 int rc; 1275 1276 /* do we need to do it? */ 1277 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) || 1278 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1279 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1280 return 0; 1281 1282 /* read native max address */ 1283 rc = ata_read_native_max_address(dev, &native_sectors); 1284 if (rc) { 1285 /* If device aborted the command or HPA isn't going to 1286 * be unlocked, skip HPA resizing. 1287 */ 1288 if (rc == -EACCES || !unlock_hpa) { 1289 ata_dev_warn(dev, 1290 "HPA support seems broken, skipping HPA handling\n"); 1291 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1292 1293 /* we can continue if device aborted the command */ 1294 if (rc == -EACCES) 1295 rc = 0; 1296 } 1297 1298 return rc; 1299 } 1300 dev->n_native_sectors = native_sectors; 1301 1302 /* nothing to do? */ 1303 if (native_sectors <= sectors || !unlock_hpa) { 1304 if (!print_info || native_sectors == sectors) 1305 return 0; 1306 1307 if (native_sectors > sectors) 1308 ata_dev_info(dev, 1309 "HPA detected: current %llu, native %llu\n", 1310 (unsigned long long)sectors, 1311 (unsigned long long)native_sectors); 1312 else if (native_sectors < sectors) 1313 ata_dev_warn(dev, 1314 "native sectors (%llu) is smaller than sectors (%llu)\n", 1315 (unsigned long long)native_sectors, 1316 (unsigned long long)sectors); 1317 return 0; 1318 } 1319 1320 /* let's unlock HPA */ 1321 rc = ata_set_max_sectors(dev, native_sectors); 1322 if (rc == -EACCES) { 1323 /* if device aborted the command, skip HPA resizing */ 1324 ata_dev_warn(dev, 1325 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1326 (unsigned long long)sectors, 1327 (unsigned long long)native_sectors); 1328 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1329 return 0; 1330 } else if (rc) 1331 return rc; 1332 1333 /* re-read IDENTIFY data */ 1334 rc = ata_dev_reread_id(dev, 0); 1335 if (rc) { 1336 ata_dev_err(dev, 1337 "failed to re-read IDENTIFY data after HPA resizing\n"); 1338 return rc; 1339 } 1340 1341 if (print_info) { 1342 u64 new_sectors = ata_id_n_sectors(dev->id); 1343 ata_dev_info(dev, 1344 "HPA unlocked: %llu -> %llu, native %llu\n", 1345 (unsigned long long)sectors, 1346 (unsigned long long)new_sectors, 1347 (unsigned long long)native_sectors); 1348 } 1349 1350 return 0; 1351} 1352 1353/** 1354 * ata_dump_id - IDENTIFY DEVICE info debugging output 1355 * @id: IDENTIFY DEVICE page to dump 1356 * 1357 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1358 * page. 1359 * 1360 * LOCKING: 1361 * caller. 1362 */ 1363 1364static inline void ata_dump_id(const u16 *id) 1365{ 1366 DPRINTK("49==0x%04x " 1367 "53==0x%04x " 1368 "63==0x%04x " 1369 "64==0x%04x " 1370 "75==0x%04x \n", 1371 id[49], 1372 id[53], 1373 id[63], 1374 id[64], 1375 id[75]); 1376 DPRINTK("80==0x%04x " 1377 "81==0x%04x " 1378 "82==0x%04x " 1379 "83==0x%04x " 1380 "84==0x%04x \n", 1381 id[80], 1382 id[81], 1383 id[82], 1384 id[83], 1385 id[84]); 1386 DPRINTK("88==0x%04x " 1387 "93==0x%04x\n", 1388 id[88], 1389 id[93]); 1390} 1391 1392/** 1393 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1394 * @id: IDENTIFY data to compute xfer mask from 1395 * 1396 * Compute the xfermask for this device. This is not as trivial 1397 * as it seems if we must consider early devices correctly. 1398 * 1399 * FIXME: pre IDE drive timing (do we care ?). 1400 * 1401 * LOCKING: 1402 * None. 1403 * 1404 * RETURNS: 1405 * Computed xfermask 1406 */ 1407unsigned long ata_id_xfermask(const u16 *id) 1408{ 1409 unsigned long pio_mask, mwdma_mask, udma_mask; 1410 1411 /* Usual case. Word 53 indicates word 64 is valid */ 1412 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1413 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1414 pio_mask <<= 3; 1415 pio_mask |= 0x7; 1416 } else { 1417 /* If word 64 isn't valid then Word 51 high byte holds 1418 * the PIO timing number for the maximum. Turn it into 1419 * a mask. 1420 */ 1421 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1422 if (mode < 5) /* Valid PIO range */ 1423 pio_mask = (2 << mode) - 1; 1424 else 1425 pio_mask = 1; 1426 1427 /* But wait.. there's more. Design your standards by 1428 * committee and you too can get a free iordy field to 1429 * process. However its the speeds not the modes that 1430 * are supported... Note drivers using the timing API 1431 * will get this right anyway 1432 */ 1433 } 1434 1435 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1436 1437 if (ata_id_is_cfa(id)) { 1438 /* 1439 * Process compact flash extended modes 1440 */ 1441 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1442 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1443 1444 if (pio) 1445 pio_mask |= (1 << 5); 1446 if (pio > 1) 1447 pio_mask |= (1 << 6); 1448 if (dma) 1449 mwdma_mask |= (1 << 3); 1450 if (dma > 1) 1451 mwdma_mask |= (1 << 4); 1452 } 1453 1454 udma_mask = 0; 1455 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1456 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1457 1458 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1459} 1460EXPORT_SYMBOL_GPL(ata_id_xfermask); 1461 1462static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1463{ 1464 struct completion *waiting = qc->private_data; 1465 1466 complete(waiting); 1467} 1468 1469/** 1470 * ata_exec_internal_sg - execute libata internal command 1471 * @dev: Device to which the command is sent 1472 * @tf: Taskfile registers for the command and the result 1473 * @cdb: CDB for packet command 1474 * @dma_dir: Data transfer direction of the command 1475 * @sgl: sg list for the data buffer of the command 1476 * @n_elem: Number of sg entries 1477 * @timeout: Timeout in msecs (0 for default) 1478 * 1479 * Executes libata internal command with timeout. @tf contains 1480 * command on entry and result on return. Timeout and error 1481 * conditions are reported via return value. No recovery action 1482 * is taken after a command times out. It's caller's duty to 1483 * clean up after timeout. 1484 * 1485 * LOCKING: 1486 * None. Should be called with kernel context, might sleep. 1487 * 1488 * RETURNS: 1489 * Zero on success, AC_ERR_* mask on failure 1490 */ 1491unsigned ata_exec_internal_sg(struct ata_device *dev, 1492 struct ata_taskfile *tf, const u8 *cdb, 1493 int dma_dir, struct scatterlist *sgl, 1494 unsigned int n_elem, unsigned long timeout) 1495{ 1496 struct ata_link *link = dev->link; 1497 struct ata_port *ap = link->ap; 1498 u8 command = tf->command; 1499 int auto_timeout = 0; 1500 struct ata_queued_cmd *qc; 1501 unsigned int preempted_tag; 1502 u32 preempted_sactive; 1503 u64 preempted_qc_active; 1504 int preempted_nr_active_links; 1505 DECLARE_COMPLETION_ONSTACK(wait); 1506 unsigned long flags; 1507 unsigned int err_mask; 1508 int rc; 1509 1510 spin_lock_irqsave(ap->lock, flags); 1511 1512 /* no internal command while frozen */ 1513 if (ap->pflags & ATA_PFLAG_FROZEN) { 1514 spin_unlock_irqrestore(ap->lock, flags); 1515 return AC_ERR_SYSTEM; 1516 } 1517 1518 /* initialize internal qc */ 1519 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL); 1520 1521 qc->tag = ATA_TAG_INTERNAL; 1522 qc->hw_tag = 0; 1523 qc->scsicmd = NULL; 1524 qc->ap = ap; 1525 qc->dev = dev; 1526 ata_qc_reinit(qc); 1527 1528 preempted_tag = link->active_tag; 1529 preempted_sactive = link->sactive; 1530 preempted_qc_active = ap->qc_active; 1531 preempted_nr_active_links = ap->nr_active_links; 1532 link->active_tag = ATA_TAG_POISON; 1533 link->sactive = 0; 1534 ap->qc_active = 0; 1535 ap->nr_active_links = 0; 1536 1537 /* prepare & issue qc */ 1538 qc->tf = *tf; 1539 if (cdb) 1540 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1541 1542 /* some SATA bridges need us to indicate data xfer direction */ 1543 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) && 1544 dma_dir == DMA_FROM_DEVICE) 1545 qc->tf.feature |= ATAPI_DMADIR; 1546 1547 qc->flags |= ATA_QCFLAG_RESULT_TF; 1548 qc->dma_dir = dma_dir; 1549 if (dma_dir != DMA_NONE) { 1550 unsigned int i, buflen = 0; 1551 struct scatterlist *sg; 1552 1553 for_each_sg(sgl, sg, n_elem, i) 1554 buflen += sg->length; 1555 1556 ata_sg_init(qc, sgl, n_elem); 1557 qc->nbytes = buflen; 1558 } 1559 1560 qc->private_data = &wait; 1561 qc->complete_fn = ata_qc_complete_internal; 1562 1563 ata_qc_issue(qc); 1564 1565 spin_unlock_irqrestore(ap->lock, flags); 1566 1567 if (!timeout) { 1568 if (ata_probe_timeout) 1569 timeout = ata_probe_timeout * 1000; 1570 else { 1571 timeout = ata_internal_cmd_timeout(dev, command); 1572 auto_timeout = 1; 1573 } 1574 } 1575 1576 if (ap->ops->error_handler) 1577 ata_eh_release(ap); 1578 1579 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1580 1581 if (ap->ops->error_handler) 1582 ata_eh_acquire(ap); 1583 1584 ata_sff_flush_pio_task(ap); 1585 1586 if (!rc) { 1587 spin_lock_irqsave(ap->lock, flags); 1588 1589 /* We're racing with irq here. If we lose, the 1590 * following test prevents us from completing the qc 1591 * twice. If we win, the port is frozen and will be 1592 * cleaned up by ->post_internal_cmd(). 1593 */ 1594 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1595 qc->err_mask |= AC_ERR_TIMEOUT; 1596 1597 if (ap->ops->error_handler) 1598 ata_port_freeze(ap); 1599 else 1600 ata_qc_complete(qc); 1601 1602 if (ata_msg_warn(ap)) 1603 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n", 1604 command); 1605 } 1606 1607 spin_unlock_irqrestore(ap->lock, flags); 1608 } 1609 1610 /* do post_internal_cmd */ 1611 if (ap->ops->post_internal_cmd) 1612 ap->ops->post_internal_cmd(qc); 1613 1614 /* perform minimal error analysis */ 1615 if (qc->flags & ATA_QCFLAG_FAILED) { 1616 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1617 qc->err_mask |= AC_ERR_DEV; 1618 1619 if (!qc->err_mask) 1620 qc->err_mask |= AC_ERR_OTHER; 1621 1622 if (qc->err_mask & ~AC_ERR_OTHER) 1623 qc->err_mask &= ~AC_ERR_OTHER; 1624 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) { 1625 qc->result_tf.command |= ATA_SENSE; 1626 } 1627 1628 /* finish up */ 1629 spin_lock_irqsave(ap->lock, flags); 1630 1631 *tf = qc->result_tf; 1632 err_mask = qc->err_mask; 1633 1634 ata_qc_free(qc); 1635 link->active_tag = preempted_tag; 1636 link->sactive = preempted_sactive; 1637 ap->qc_active = preempted_qc_active; 1638 ap->nr_active_links = preempted_nr_active_links; 1639 1640 spin_unlock_irqrestore(ap->lock, flags); 1641 1642 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1643 ata_internal_cmd_timed_out(dev, command); 1644 1645 return err_mask; 1646} 1647 1648/** 1649 * ata_exec_internal - execute libata internal command 1650 * @dev: Device to which the command is sent 1651 * @tf: Taskfile registers for the command and the result 1652 * @cdb: CDB for packet command 1653 * @dma_dir: Data transfer direction of the command 1654 * @buf: Data buffer of the command 1655 * @buflen: Length of data buffer 1656 * @timeout: Timeout in msecs (0 for default) 1657 * 1658 * Wrapper around ata_exec_internal_sg() which takes simple 1659 * buffer instead of sg list. 1660 * 1661 * LOCKING: 1662 * None. Should be called with kernel context, might sleep. 1663 * 1664 * RETURNS: 1665 * Zero on success, AC_ERR_* mask on failure 1666 */ 1667unsigned ata_exec_internal(struct ata_device *dev, 1668 struct ata_taskfile *tf, const u8 *cdb, 1669 int dma_dir, void *buf, unsigned int buflen, 1670 unsigned long timeout) 1671{ 1672 struct scatterlist *psg = NULL, sg; 1673 unsigned int n_elem = 0; 1674 1675 if (dma_dir != DMA_NONE) { 1676 WARN_ON(!buf); 1677 sg_init_one(&sg, buf, buflen); 1678 psg = &sg; 1679 n_elem++; 1680 } 1681 1682 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1683 timeout); 1684} 1685 1686/** 1687 * ata_pio_need_iordy - check if iordy needed 1688 * @adev: ATA device 1689 * 1690 * Check if the current speed of the device requires IORDY. Used 1691 * by various controllers for chip configuration. 1692 */ 1693unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1694{ 1695 /* Don't set IORDY if we're preparing for reset. IORDY may 1696 * lead to controller lock up on certain controllers if the 1697 * port is not occupied. See bko#11703 for details. 1698 */ 1699 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1700 return 0; 1701 /* Controller doesn't support IORDY. Probably a pointless 1702 * check as the caller should know this. 1703 */ 1704 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1705 return 0; 1706 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1707 if (ata_id_is_cfa(adev->id) 1708 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1709 return 0; 1710 /* PIO3 and higher it is mandatory */ 1711 if (adev->pio_mode > XFER_PIO_2) 1712 return 1; 1713 /* We turn it on when possible */ 1714 if (ata_id_has_iordy(adev->id)) 1715 return 1; 1716 return 0; 1717} 1718EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 1719 1720/** 1721 * ata_pio_mask_no_iordy - Return the non IORDY mask 1722 * @adev: ATA device 1723 * 1724 * Compute the highest mode possible if we are not using iordy. Return 1725 * -1 if no iordy mode is available. 1726 */ 1727static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1728{ 1729 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1730 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1731 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1732 /* Is the speed faster than the drive allows non IORDY ? */ 1733 if (pio) { 1734 /* This is cycle times not frequency - watch the logic! */ 1735 if (pio > 240) /* PIO2 is 240nS per cycle */ 1736 return 3 << ATA_SHIFT_PIO; 1737 return 7 << ATA_SHIFT_PIO; 1738 } 1739 } 1740 return 3 << ATA_SHIFT_PIO; 1741} 1742 1743/** 1744 * ata_do_dev_read_id - default ID read method 1745 * @dev: device 1746 * @tf: proposed taskfile 1747 * @id: data buffer 1748 * 1749 * Issue the identify taskfile and hand back the buffer containing 1750 * identify data. For some RAID controllers and for pre ATA devices 1751 * this function is wrapped or replaced by the driver 1752 */ 1753unsigned int ata_do_dev_read_id(struct ata_device *dev, 1754 struct ata_taskfile *tf, u16 *id) 1755{ 1756 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1757 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1758} 1759EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 1760 1761/** 1762 * ata_dev_read_id - Read ID data from the specified device 1763 * @dev: target device 1764 * @p_class: pointer to class of the target device (may be changed) 1765 * @flags: ATA_READID_* flags 1766 * @id: buffer to read IDENTIFY data into 1767 * 1768 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1769 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1770 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1771 * for pre-ATA4 drives. 1772 * 1773 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1774 * now we abort if we hit that case. 1775 * 1776 * LOCKING: 1777 * Kernel thread context (may sleep) 1778 * 1779 * RETURNS: 1780 * 0 on success, -errno otherwise. 1781 */ 1782int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1783 unsigned int flags, u16 *id) 1784{ 1785 struct ata_port *ap = dev->link->ap; 1786 unsigned int class = *p_class; 1787 struct ata_taskfile tf; 1788 unsigned int err_mask = 0; 1789 const char *reason; 1790 bool is_semb = class == ATA_DEV_SEMB; 1791 int may_fallback = 1, tried_spinup = 0; 1792 int rc; 1793 1794 if (ata_msg_ctl(ap)) 1795 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 1796 1797retry: 1798 ata_tf_init(dev, &tf); 1799 1800 switch (class) { 1801 case ATA_DEV_SEMB: 1802 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1803 fallthrough; 1804 case ATA_DEV_ATA: 1805 case ATA_DEV_ZAC: 1806 tf.command = ATA_CMD_ID_ATA; 1807 break; 1808 case ATA_DEV_ATAPI: 1809 tf.command = ATA_CMD_ID_ATAPI; 1810 break; 1811 default: 1812 rc = -ENODEV; 1813 reason = "unsupported class"; 1814 goto err_out; 1815 } 1816 1817 tf.protocol = ATA_PROT_PIO; 1818 1819 /* Some devices choke if TF registers contain garbage. Make 1820 * sure those are properly initialized. 1821 */ 1822 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1823 1824 /* Device presence detection is unreliable on some 1825 * controllers. Always poll IDENTIFY if available. 1826 */ 1827 tf.flags |= ATA_TFLAG_POLLING; 1828 1829 if (ap->ops->read_id) 1830 err_mask = ap->ops->read_id(dev, &tf, id); 1831 else 1832 err_mask = ata_do_dev_read_id(dev, &tf, id); 1833 1834 if (err_mask) { 1835 if (err_mask & AC_ERR_NODEV_HINT) { 1836 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1837 return -ENOENT; 1838 } 1839 1840 if (is_semb) { 1841 ata_dev_info(dev, 1842 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1843 /* SEMB is not supported yet */ 1844 *p_class = ATA_DEV_SEMB_UNSUP; 1845 return 0; 1846 } 1847 1848 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 1849 /* Device or controller might have reported 1850 * the wrong device class. Give a shot at the 1851 * other IDENTIFY if the current one is 1852 * aborted by the device. 1853 */ 1854 if (may_fallback) { 1855 may_fallback = 0; 1856 1857 if (class == ATA_DEV_ATA) 1858 class = ATA_DEV_ATAPI; 1859 else 1860 class = ATA_DEV_ATA; 1861 goto retry; 1862 } 1863 1864 /* Control reaches here iff the device aborted 1865 * both flavors of IDENTIFYs which happens 1866 * sometimes with phantom devices. 1867 */ 1868 ata_dev_dbg(dev, 1869 "both IDENTIFYs aborted, assuming NODEV\n"); 1870 return -ENOENT; 1871 } 1872 1873 rc = -EIO; 1874 reason = "I/O error"; 1875 goto err_out; 1876 } 1877 1878 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 1879 ata_dev_dbg(dev, "dumping IDENTIFY data, " 1880 "class=%d may_fallback=%d tried_spinup=%d\n", 1881 class, may_fallback, tried_spinup); 1882 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 1883 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1884 } 1885 1886 /* Falling back doesn't make sense if ID data was read 1887 * successfully at least once. 1888 */ 1889 may_fallback = 0; 1890 1891 swap_buf_le16(id, ATA_ID_WORDS); 1892 1893 /* sanity check */ 1894 rc = -EINVAL; 1895 reason = "device reports invalid type"; 1896 1897 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) { 1898 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1899 goto err_out; 1900 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1901 ata_id_is_ata(id)) { 1902 ata_dev_dbg(dev, 1903 "host indicates ignore ATA devices, ignored\n"); 1904 return -ENOENT; 1905 } 1906 } else { 1907 if (ata_id_is_ata(id)) 1908 goto err_out; 1909 } 1910 1911 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1912 tried_spinup = 1; 1913 /* 1914 * Drive powered-up in standby mode, and requires a specific 1915 * SET_FEATURES spin-up subcommand before it will accept 1916 * anything other than the original IDENTIFY command. 1917 */ 1918 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 1919 if (err_mask && id[2] != 0x738c) { 1920 rc = -EIO; 1921 reason = "SPINUP failed"; 1922 goto err_out; 1923 } 1924 /* 1925 * If the drive initially returned incomplete IDENTIFY info, 1926 * we now must reissue the IDENTIFY command. 1927 */ 1928 if (id[2] == 0x37c8) 1929 goto retry; 1930 } 1931 1932 if ((flags & ATA_READID_POSTRESET) && 1933 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) { 1934 /* 1935 * The exact sequence expected by certain pre-ATA4 drives is: 1936 * SRST RESET 1937 * IDENTIFY (optional in early ATA) 1938 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 1939 * anything else.. 1940 * Some drives were very specific about that exact sequence. 1941 * 1942 * Note that ATA4 says lba is mandatory so the second check 1943 * should never trigger. 1944 */ 1945 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 1946 err_mask = ata_dev_init_params(dev, id[3], id[6]); 1947 if (err_mask) { 1948 rc = -EIO; 1949 reason = "INIT_DEV_PARAMS failed"; 1950 goto err_out; 1951 } 1952 1953 /* current CHS translation info (id[53-58]) might be 1954 * changed. reread the identify device info. 1955 */ 1956 flags &= ~ATA_READID_POSTRESET; 1957 goto retry; 1958 } 1959 } 1960 1961 *p_class = class; 1962 1963 return 0; 1964 1965 err_out: 1966 if (ata_msg_warn(ap)) 1967 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 1968 reason, err_mask); 1969 return rc; 1970} 1971 1972/** 1973 * ata_read_log_page - read a specific log page 1974 * @dev: target device 1975 * @log: log to read 1976 * @page: page to read 1977 * @buf: buffer to store read page 1978 * @sectors: number of sectors to read 1979 * 1980 * Read log page using READ_LOG_EXT command. 1981 * 1982 * LOCKING: 1983 * Kernel thread context (may sleep). 1984 * 1985 * RETURNS: 1986 * 0 on success, AC_ERR_* mask otherwise. 1987 */ 1988unsigned int ata_read_log_page(struct ata_device *dev, u8 log, 1989 u8 page, void *buf, unsigned int sectors) 1990{ 1991 unsigned long ap_flags = dev->link->ap->flags; 1992 struct ata_taskfile tf; 1993 unsigned int err_mask; 1994 bool dma = false; 1995 1996 DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page); 1997 1998 /* 1999 * Return error without actually issuing the command on controllers 2000 * which e.g. lockup on a read log page. 2001 */ 2002 if (ap_flags & ATA_FLAG_NO_LOG_PAGE) 2003 return AC_ERR_DEV; 2004 2005retry: 2006 ata_tf_init(dev, &tf); 2007 if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) && 2008 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) { 2009 tf.command = ATA_CMD_READ_LOG_DMA_EXT; 2010 tf.protocol = ATA_PROT_DMA; 2011 dma = true; 2012 } else { 2013 tf.command = ATA_CMD_READ_LOG_EXT; 2014 tf.protocol = ATA_PROT_PIO; 2015 dma = false; 2016 } 2017 tf.lbal = log; 2018 tf.lbam = page; 2019 tf.nsect = sectors; 2020 tf.hob_nsect = sectors >> 8; 2021 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE; 2022 2023 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, 2024 buf, sectors * ATA_SECT_SIZE, 0); 2025 2026 if (err_mask && dma) { 2027 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG; 2028 ata_dev_warn(dev, "READ LOG DMA EXT failed, trying PIO\n"); 2029 goto retry; 2030 } 2031 2032 DPRINTK("EXIT, err_mask=%x\n", err_mask); 2033 return err_mask; 2034} 2035 2036static bool ata_log_supported(struct ata_device *dev, u8 log) 2037{ 2038 struct ata_port *ap = dev->link->ap; 2039 2040 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1)) 2041 return false; 2042 return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false; 2043} 2044 2045static bool ata_identify_page_supported(struct ata_device *dev, u8 page) 2046{ 2047 struct ata_port *ap = dev->link->ap; 2048 unsigned int err, i; 2049 2050 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) { 2051 ata_dev_warn(dev, "ATA Identify Device Log not supported\n"); 2052 return false; 2053 } 2054 2055 /* 2056 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is 2057 * supported. 2058 */ 2059 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf, 2060 1); 2061 if (err) { 2062 ata_dev_info(dev, 2063 "failed to get Device Identify Log Emask 0x%x\n", 2064 err); 2065 return false; 2066 } 2067 2068 for (i = 0; i < ap->sector_buf[8]; i++) { 2069 if (ap->sector_buf[9 + i] == page) 2070 return true; 2071 } 2072 2073 return false; 2074} 2075 2076static int ata_do_link_spd_horkage(struct ata_device *dev) 2077{ 2078 struct ata_link *plink = ata_dev_phys_link(dev); 2079 u32 target, target_limit; 2080 2081 if (!sata_scr_valid(plink)) 2082 return 0; 2083 2084 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2085 target = 1; 2086 else 2087 return 0; 2088 2089 target_limit = (1 << target) - 1; 2090 2091 /* if already on stricter limit, no need to push further */ 2092 if (plink->sata_spd_limit <= target_limit) 2093 return 0; 2094 2095 plink->sata_spd_limit = target_limit; 2096 2097 /* Request another EH round by returning -EAGAIN if link is 2098 * going faster than the target speed. Forward progress is 2099 * guaranteed by setting sata_spd_limit to target_limit above. 2100 */ 2101 if (plink->sata_spd > target) { 2102 ata_dev_info(dev, "applying link speed limit horkage to %s\n", 2103 sata_spd_string(target)); 2104 return -EAGAIN; 2105 } 2106 return 0; 2107} 2108 2109static inline u8 ata_dev_knobble(struct ata_device *dev) 2110{ 2111 struct ata_port *ap = dev->link->ap; 2112 2113 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2114 return 0; 2115 2116 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2117} 2118 2119static void ata_dev_config_ncq_send_recv(struct ata_device *dev) 2120{ 2121 struct ata_port *ap = dev->link->ap; 2122 unsigned int err_mask; 2123 2124 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) { 2125 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n"); 2126 return; 2127 } 2128 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV, 2129 0, ap->sector_buf, 1); 2130 if (err_mask) { 2131 ata_dev_dbg(dev, 2132 "failed to get NCQ Send/Recv Log Emask 0x%x\n", 2133 err_mask); 2134 } else { 2135 u8 *cmds = dev->ncq_send_recv_cmds; 2136 2137 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV; 2138 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE); 2139 2140 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) { 2141 ata_dev_dbg(dev, "disabling queued TRIM support\n"); 2142 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &= 2143 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM; 2144 } 2145 } 2146} 2147 2148static void ata_dev_config_ncq_non_data(struct ata_device *dev) 2149{ 2150 struct ata_port *ap = dev->link->ap; 2151 unsigned int err_mask; 2152 2153 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) { 2154 ata_dev_warn(dev, 2155 "NCQ Send/Recv Log not supported\n"); 2156 return; 2157 } 2158 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA, 2159 0, ap->sector_buf, 1); 2160 if (err_mask) { 2161 ata_dev_dbg(dev, 2162 "failed to get NCQ Non-Data Log Emask 0x%x\n", 2163 err_mask); 2164 } else { 2165 u8 *cmds = dev->ncq_non_data_cmds; 2166 2167 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE); 2168 } 2169} 2170 2171static void ata_dev_config_ncq_prio(struct ata_device *dev) 2172{ 2173 struct ata_port *ap = dev->link->ap; 2174 unsigned int err_mask; 2175 2176 if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) { 2177 dev->flags &= ~ATA_DFLAG_NCQ_PRIO; 2178 return; 2179 } 2180 2181 err_mask = ata_read_log_page(dev, 2182 ATA_LOG_IDENTIFY_DEVICE, 2183 ATA_LOG_SATA_SETTINGS, 2184 ap->sector_buf, 2185 1); 2186 if (err_mask) { 2187 ata_dev_dbg(dev, 2188 "failed to get Identify Device data, Emask 0x%x\n", 2189 err_mask); 2190 return; 2191 } 2192 2193 if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) { 2194 dev->flags |= ATA_DFLAG_NCQ_PRIO; 2195 } else { 2196 dev->flags &= ~ATA_DFLAG_NCQ_PRIO; 2197 ata_dev_dbg(dev, "SATA page does not support priority\n"); 2198 } 2199 2200} 2201 2202static bool ata_dev_check_adapter(struct ata_device *dev, 2203 unsigned short vendor_id) 2204{ 2205 struct pci_dev *pcidev = NULL; 2206 struct device *parent_dev = NULL; 2207 2208 for (parent_dev = dev->tdev.parent; parent_dev != NULL; 2209 parent_dev = parent_dev->parent) { 2210 if (dev_is_pci(parent_dev)) { 2211 pcidev = to_pci_dev(parent_dev); 2212 if (pcidev->vendor == vendor_id) 2213 return true; 2214 break; 2215 } 2216 } 2217 2218 return false; 2219} 2220 2221static int ata_dev_config_ncq(struct ata_device *dev, 2222 char *desc, size_t desc_sz) 2223{ 2224 struct ata_port *ap = dev->link->ap; 2225 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2226 unsigned int err_mask; 2227 char *aa_desc = ""; 2228 2229 if (!ata_id_has_ncq(dev->id)) { 2230 desc[0] = '\0'; 2231 return 0; 2232 } 2233 if (!IS_ENABLED(CONFIG_SATA_HOST)) 2234 return 0; 2235 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2236 snprintf(desc, desc_sz, "NCQ (not used)"); 2237 return 0; 2238 } 2239 2240 if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI && 2241 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) { 2242 snprintf(desc, desc_sz, "NCQ (not used)"); 2243 return 0; 2244 } 2245 2246 if (ap->flags & ATA_FLAG_NCQ) { 2247 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE); 2248 dev->flags |= ATA_DFLAG_NCQ; 2249 } 2250 2251 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2252 (ap->flags & ATA_FLAG_FPDMA_AA) && 2253 ata_id_has_fpdma_aa(dev->id)) { 2254 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2255 SATA_FPDMA_AA); 2256 if (err_mask) { 2257 ata_dev_err(dev, 2258 "failed to enable AA (error_mask=0x%x)\n", 2259 err_mask); 2260 if (err_mask != AC_ERR_DEV) { 2261 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2262 return -EIO; 2263 } 2264 } else 2265 aa_desc = ", AA"; 2266 } 2267 2268 if (hdepth >= ddepth) 2269 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2270 else 2271 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2272 ddepth, aa_desc); 2273 2274 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) { 2275 if (ata_id_has_ncq_send_and_recv(dev->id)) 2276 ata_dev_config_ncq_send_recv(dev); 2277 if (ata_id_has_ncq_non_data(dev->id)) 2278 ata_dev_config_ncq_non_data(dev); 2279 if (ata_id_has_ncq_prio(dev->id)) 2280 ata_dev_config_ncq_prio(dev); 2281 } 2282 2283 return 0; 2284} 2285 2286static void ata_dev_config_sense_reporting(struct ata_device *dev) 2287{ 2288 unsigned int err_mask; 2289 2290 if (!ata_id_has_sense_reporting(dev->id)) 2291 return; 2292 2293 if (ata_id_sense_reporting_enabled(dev->id)) 2294 return; 2295 2296 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1); 2297 if (err_mask) { 2298 ata_dev_dbg(dev, 2299 "failed to enable Sense Data Reporting, Emask 0x%x\n", 2300 err_mask); 2301 } 2302} 2303 2304static void ata_dev_config_zac(struct ata_device *dev) 2305{ 2306 struct ata_port *ap = dev->link->ap; 2307 unsigned int err_mask; 2308 u8 *identify_buf = ap->sector_buf; 2309 2310 dev->zac_zones_optimal_open = U32_MAX; 2311 dev->zac_zones_optimal_nonseq = U32_MAX; 2312 dev->zac_zones_max_open = U32_MAX; 2313 2314 /* 2315 * Always set the 'ZAC' flag for Host-managed devices. 2316 */ 2317 if (dev->class == ATA_DEV_ZAC) 2318 dev->flags |= ATA_DFLAG_ZAC; 2319 else if (ata_id_zoned_cap(dev->id) == 0x01) 2320 /* 2321 * Check for host-aware devices. 2322 */ 2323 dev->flags |= ATA_DFLAG_ZAC; 2324 2325 if (!(dev->flags & ATA_DFLAG_ZAC)) 2326 return; 2327 2328 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) { 2329 ata_dev_warn(dev, 2330 "ATA Zoned Information Log not supported\n"); 2331 return; 2332 } 2333 2334 /* 2335 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information) 2336 */ 2337 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2338 ATA_LOG_ZONED_INFORMATION, 2339 identify_buf, 1); 2340 if (!err_mask) { 2341 u64 zoned_cap, opt_open, opt_nonseq, max_open; 2342 2343 zoned_cap = get_unaligned_le64(&identify_buf[8]); 2344 if ((zoned_cap >> 63)) 2345 dev->zac_zoned_cap = (zoned_cap & 1); 2346 opt_open = get_unaligned_le64(&identify_buf[24]); 2347 if ((opt_open >> 63)) 2348 dev->zac_zones_optimal_open = (u32)opt_open; 2349 opt_nonseq = get_unaligned_le64(&identify_buf[32]); 2350 if ((opt_nonseq >> 63)) 2351 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq; 2352 max_open = get_unaligned_le64(&identify_buf[40]); 2353 if ((max_open >> 63)) 2354 dev->zac_zones_max_open = (u32)max_open; 2355 } 2356} 2357 2358static void ata_dev_config_trusted(struct ata_device *dev) 2359{ 2360 struct ata_port *ap = dev->link->ap; 2361 u64 trusted_cap; 2362 unsigned int err; 2363 2364 if (!ata_id_has_trusted(dev->id)) 2365 return; 2366 2367 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) { 2368 ata_dev_warn(dev, 2369 "Security Log not supported\n"); 2370 return; 2371 } 2372 2373 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY, 2374 ap->sector_buf, 1); 2375 if (err) { 2376 ata_dev_dbg(dev, 2377 "failed to read Security Log, Emask 0x%x\n", err); 2378 return; 2379 } 2380 2381 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]); 2382 if (!(trusted_cap & (1ULL << 63))) { 2383 ata_dev_dbg(dev, 2384 "Trusted Computing capability qword not valid!\n"); 2385 return; 2386 } 2387 2388 if (trusted_cap & (1 << 0)) 2389 dev->flags |= ATA_DFLAG_TRUSTED; 2390} 2391 2392/** 2393 * ata_dev_configure - Configure the specified ATA/ATAPI device 2394 * @dev: Target device to configure 2395 * 2396 * Configure @dev according to @dev->id. Generic and low-level 2397 * driver specific fixups are also applied. 2398 * 2399 * LOCKING: 2400 * Kernel thread context (may sleep) 2401 * 2402 * RETURNS: 2403 * 0 on success, -errno otherwise 2404 */ 2405int ata_dev_configure(struct ata_device *dev) 2406{ 2407 struct ata_port *ap = dev->link->ap; 2408 struct ata_eh_context *ehc = &dev->link->eh_context; 2409 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 2410 const u16 *id = dev->id; 2411 unsigned long xfer_mask; 2412 unsigned int err_mask; 2413 char revbuf[7]; /* XYZ-99\0 */ 2414 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2415 char modelbuf[ATA_ID_PROD_LEN+1]; 2416 int rc; 2417 2418 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2419 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__); 2420 return 0; 2421 } 2422 2423 if (ata_msg_probe(ap)) 2424 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 2425 2426 /* set horkage */ 2427 dev->horkage |= ata_dev_blacklisted(dev); 2428 ata_force_horkage(dev); 2429 2430 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2431 ata_dev_info(dev, "unsupported device, disabling\n"); 2432 ata_dev_disable(dev); 2433 return 0; 2434 } 2435 2436 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2437 dev->class == ATA_DEV_ATAPI) { 2438 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2439 atapi_enabled ? "not supported with this driver" 2440 : "disabled"); 2441 ata_dev_disable(dev); 2442 return 0; 2443 } 2444 2445 rc = ata_do_link_spd_horkage(dev); 2446 if (rc) 2447 return rc; 2448 2449 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */ 2450 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) && 2451 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2) 2452 dev->horkage |= ATA_HORKAGE_NOLPM; 2453 2454 if (ap->flags & ATA_FLAG_NO_LPM) 2455 dev->horkage |= ATA_HORKAGE_NOLPM; 2456 2457 if (dev->horkage & ATA_HORKAGE_NOLPM) { 2458 ata_dev_warn(dev, "LPM support broken, forcing max_power\n"); 2459 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER; 2460 } 2461 2462 /* let ACPI work its magic */ 2463 rc = ata_acpi_on_devcfg(dev); 2464 if (rc) 2465 return rc; 2466 2467 /* massage HPA, do it early as it might change IDENTIFY data */ 2468 rc = ata_hpa_resize(dev); 2469 if (rc) 2470 return rc; 2471 2472 /* print device capabilities */ 2473 if (ata_msg_probe(ap)) 2474 ata_dev_dbg(dev, 2475 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2476 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2477 __func__, 2478 id[49], id[82], id[83], id[84], 2479 id[85], id[86], id[87], id[88]); 2480 2481 /* initialize to-be-configured parameters */ 2482 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2483 dev->max_sectors = 0; 2484 dev->cdb_len = 0; 2485 dev->n_sectors = 0; 2486 dev->cylinders = 0; 2487 dev->heads = 0; 2488 dev->sectors = 0; 2489 dev->multi_count = 0; 2490 2491 /* 2492 * common ATA, ATAPI feature tests 2493 */ 2494 2495 /* find max transfer mode; for printk only */ 2496 xfer_mask = ata_id_xfermask(id); 2497 2498 if (ata_msg_probe(ap)) 2499 ata_dump_id(id); 2500 2501 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2502 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2503 sizeof(fwrevbuf)); 2504 2505 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2506 sizeof(modelbuf)); 2507 2508 /* ATA-specific feature tests */ 2509 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) { 2510 if (ata_id_is_cfa(id)) { 2511 /* CPRM may make this media unusable */ 2512 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2513 ata_dev_warn(dev, 2514 "supports DRM functions and may not be fully accessible\n"); 2515 snprintf(revbuf, 7, "CFA"); 2516 } else { 2517 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2518 /* Warn the user if the device has TPM extensions */ 2519 if (ata_id_has_tpm(id)) 2520 ata_dev_warn(dev, 2521 "supports DRM functions and may not be fully accessible\n"); 2522 } 2523 2524 dev->n_sectors = ata_id_n_sectors(id); 2525 2526 /* get current R/W Multiple count setting */ 2527 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2528 unsigned int max = dev->id[47] & 0xff; 2529 unsigned int cnt = dev->id[59] & 0xff; 2530 /* only recognize/allow powers of two here */ 2531 if (is_power_of_2(max) && is_power_of_2(cnt)) 2532 if (cnt <= max) 2533 dev->multi_count = cnt; 2534 } 2535 2536 if (ata_id_has_lba(id)) { 2537 const char *lba_desc; 2538 char ncq_desc[24]; 2539 2540 lba_desc = "LBA"; 2541 dev->flags |= ATA_DFLAG_LBA; 2542 if (ata_id_has_lba48(id)) { 2543 dev->flags |= ATA_DFLAG_LBA48; 2544 lba_desc = "LBA48"; 2545 2546 if (dev->n_sectors >= (1UL << 28) && 2547 ata_id_has_flush_ext(id)) 2548 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2549 } 2550 2551 /* config NCQ */ 2552 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2553 if (rc) 2554 return rc; 2555 2556 /* print device info to dmesg */ 2557 if (ata_msg_drv(ap) && print_info) { 2558 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2559 revbuf, modelbuf, fwrevbuf, 2560 ata_mode_string(xfer_mask)); 2561 ata_dev_info(dev, 2562 "%llu sectors, multi %u: %s %s\n", 2563 (unsigned long long)dev->n_sectors, 2564 dev->multi_count, lba_desc, ncq_desc); 2565 } 2566 } else { 2567 /* CHS */ 2568 2569 /* Default translation */ 2570 dev->cylinders = id[1]; 2571 dev->heads = id[3]; 2572 dev->sectors = id[6]; 2573 2574 if (ata_id_current_chs_valid(id)) { 2575 /* Current CHS translation is valid. */ 2576 dev->cylinders = id[54]; 2577 dev->heads = id[55]; 2578 dev->sectors = id[56]; 2579 } 2580 2581 /* print device info to dmesg */ 2582 if (ata_msg_drv(ap) && print_info) { 2583 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2584 revbuf, modelbuf, fwrevbuf, 2585 ata_mode_string(xfer_mask)); 2586 ata_dev_info(dev, 2587 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2588 (unsigned long long)dev->n_sectors, 2589 dev->multi_count, dev->cylinders, 2590 dev->heads, dev->sectors); 2591 } 2592 } 2593 2594 /* Check and mark DevSlp capability. Get DevSlp timing variables 2595 * from SATA Settings page of Identify Device Data Log. 2596 */ 2597 if (ata_id_has_devslp(dev->id)) { 2598 u8 *sata_setting = ap->sector_buf; 2599 int i, j; 2600 2601 dev->flags |= ATA_DFLAG_DEVSLP; 2602 err_mask = ata_read_log_page(dev, 2603 ATA_LOG_IDENTIFY_DEVICE, 2604 ATA_LOG_SATA_SETTINGS, 2605 sata_setting, 2606 1); 2607 if (err_mask) 2608 ata_dev_dbg(dev, 2609 "failed to get Identify Device Data, Emask 0x%x\n", 2610 err_mask); 2611 else 2612 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) { 2613 j = ATA_LOG_DEVSLP_OFFSET + i; 2614 dev->devslp_timing[i] = sata_setting[j]; 2615 } 2616 } 2617 ata_dev_config_sense_reporting(dev); 2618 ata_dev_config_zac(dev); 2619 ata_dev_config_trusted(dev); 2620 dev->cdb_len = 32; 2621 } 2622 2623 /* ATAPI-specific feature tests */ 2624 else if (dev->class == ATA_DEV_ATAPI) { 2625 const char *cdb_intr_string = ""; 2626 const char *atapi_an_string = ""; 2627 const char *dma_dir_string = ""; 2628 u32 sntf; 2629 2630 rc = atapi_cdb_len(id); 2631 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2632 if (ata_msg_warn(ap)) 2633 ata_dev_warn(dev, "unsupported CDB len\n"); 2634 rc = -EINVAL; 2635 goto err_out_nosup; 2636 } 2637 dev->cdb_len = (unsigned int) rc; 2638 2639 /* Enable ATAPI AN if both the host and device have 2640 * the support. If PMP is attached, SNTF is required 2641 * to enable ATAPI AN to discern between PHY status 2642 * changed notifications and ATAPI ANs. 2643 */ 2644 if (atapi_an && 2645 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2646 (!sata_pmp_attached(ap) || 2647 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2648 /* issue SET feature command to turn this on */ 2649 err_mask = ata_dev_set_feature(dev, 2650 SETFEATURES_SATA_ENABLE, SATA_AN); 2651 if (err_mask) 2652 ata_dev_err(dev, 2653 "failed to enable ATAPI AN (err_mask=0x%x)\n", 2654 err_mask); 2655 else { 2656 dev->flags |= ATA_DFLAG_AN; 2657 atapi_an_string = ", ATAPI AN"; 2658 } 2659 } 2660 2661 if (ata_id_cdb_intr(dev->id)) { 2662 dev->flags |= ATA_DFLAG_CDB_INTR; 2663 cdb_intr_string = ", CDB intr"; 2664 } 2665 2666 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) { 2667 dev->flags |= ATA_DFLAG_DMADIR; 2668 dma_dir_string = ", DMADIR"; 2669 } 2670 2671 if (ata_id_has_da(dev->id)) { 2672 dev->flags |= ATA_DFLAG_DA; 2673 zpodd_init(dev); 2674 } 2675 2676 /* print device info to dmesg */ 2677 if (ata_msg_drv(ap) && print_info) 2678 ata_dev_info(dev, 2679 "ATAPI: %s, %s, max %s%s%s%s\n", 2680 modelbuf, fwrevbuf, 2681 ata_mode_string(xfer_mask), 2682 cdb_intr_string, atapi_an_string, 2683 dma_dir_string); 2684 } 2685 2686 /* determine max_sectors */ 2687 dev->max_sectors = ATA_MAX_SECTORS; 2688 if (dev->flags & ATA_DFLAG_LBA48) 2689 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2690 2691 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2692 200 sectors */ 2693 if (ata_dev_knobble(dev)) { 2694 if (ata_msg_drv(ap) && print_info) 2695 ata_dev_info(dev, "applying bridge limits\n"); 2696 dev->udma_mask &= ATA_UDMA5; 2697 dev->max_sectors = ATA_MAX_SECTORS; 2698 } 2699 2700 if ((dev->class == ATA_DEV_ATAPI) && 2701 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2702 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2703 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2704 } 2705 2706 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2707 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2708 dev->max_sectors); 2709 2710 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024) 2711 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024, 2712 dev->max_sectors); 2713 2714 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48) 2715 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2716 2717 if (ap->ops->dev_config) 2718 ap->ops->dev_config(dev); 2719 2720 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2721 /* Let the user know. We don't want to disallow opens for 2722 rescue purposes, or in case the vendor is just a blithering 2723 idiot. Do this after the dev_config call as some controllers 2724 with buggy firmware may want to avoid reporting false device 2725 bugs */ 2726 2727 if (print_info) { 2728 ata_dev_warn(dev, 2729"Drive reports diagnostics failure. This may indicate a drive\n"); 2730 ata_dev_warn(dev, 2731"fault or invalid emulation. Contact drive vendor for information.\n"); 2732 } 2733 } 2734 2735 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2736 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 2737 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 2738 } 2739 2740 return 0; 2741 2742err_out_nosup: 2743 if (ata_msg_probe(ap)) 2744 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__); 2745 return rc; 2746} 2747 2748/** 2749 * ata_cable_40wire - return 40 wire cable type 2750 * @ap: port 2751 * 2752 * Helper method for drivers which want to hardwire 40 wire cable 2753 * detection. 2754 */ 2755 2756int ata_cable_40wire(struct ata_port *ap) 2757{ 2758 return ATA_CBL_PATA40; 2759} 2760EXPORT_SYMBOL_GPL(ata_cable_40wire); 2761 2762/** 2763 * ata_cable_80wire - return 80 wire cable type 2764 * @ap: port 2765 * 2766 * Helper method for drivers which want to hardwire 80 wire cable 2767 * detection. 2768 */ 2769 2770int ata_cable_80wire(struct ata_port *ap) 2771{ 2772 return ATA_CBL_PATA80; 2773} 2774EXPORT_SYMBOL_GPL(ata_cable_80wire); 2775 2776/** 2777 * ata_cable_unknown - return unknown PATA cable. 2778 * @ap: port 2779 * 2780 * Helper method for drivers which have no PATA cable detection. 2781 */ 2782 2783int ata_cable_unknown(struct ata_port *ap) 2784{ 2785 return ATA_CBL_PATA_UNK; 2786} 2787EXPORT_SYMBOL_GPL(ata_cable_unknown); 2788 2789/** 2790 * ata_cable_ignore - return ignored PATA cable. 2791 * @ap: port 2792 * 2793 * Helper method for drivers which don't use cable type to limit 2794 * transfer mode. 2795 */ 2796int ata_cable_ignore(struct ata_port *ap) 2797{ 2798 return ATA_CBL_PATA_IGN; 2799} 2800EXPORT_SYMBOL_GPL(ata_cable_ignore); 2801 2802/** 2803 * ata_cable_sata - return SATA cable type 2804 * @ap: port 2805 * 2806 * Helper method for drivers which have SATA cables 2807 */ 2808 2809int ata_cable_sata(struct ata_port *ap) 2810{ 2811 return ATA_CBL_SATA; 2812} 2813EXPORT_SYMBOL_GPL(ata_cable_sata); 2814 2815/** 2816 * ata_bus_probe - Reset and probe ATA bus 2817 * @ap: Bus to probe 2818 * 2819 * Master ATA bus probing function. Initiates a hardware-dependent 2820 * bus reset, then attempts to identify any devices found on 2821 * the bus. 2822 * 2823 * LOCKING: 2824 * PCI/etc. bus probe sem. 2825 * 2826 * RETURNS: 2827 * Zero on success, negative errno otherwise. 2828 */ 2829 2830int ata_bus_probe(struct ata_port *ap) 2831{ 2832 unsigned int classes[ATA_MAX_DEVICES]; 2833 int tries[ATA_MAX_DEVICES]; 2834 int rc; 2835 struct ata_device *dev; 2836 2837 ata_for_each_dev(dev, &ap->link, ALL) 2838 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2839 2840 retry: 2841 ata_for_each_dev(dev, &ap->link, ALL) { 2842 /* If we issue an SRST then an ATA drive (not ATAPI) 2843 * may change configuration and be in PIO0 timing. If 2844 * we do a hard reset (or are coming from power on) 2845 * this is true for ATA or ATAPI. Until we've set a 2846 * suitable controller mode we should not touch the 2847 * bus as we may be talking too fast. 2848 */ 2849 dev->pio_mode = XFER_PIO_0; 2850 dev->dma_mode = 0xff; 2851 2852 /* If the controller has a pio mode setup function 2853 * then use it to set the chipset to rights. Don't 2854 * touch the DMA setup as that will be dealt with when 2855 * configuring devices. 2856 */ 2857 if (ap->ops->set_piomode) 2858 ap->ops->set_piomode(ap, dev); 2859 } 2860 2861 /* reset and determine device classes */ 2862 ap->ops->phy_reset(ap); 2863 2864 ata_for_each_dev(dev, &ap->link, ALL) { 2865 if (dev->class != ATA_DEV_UNKNOWN) 2866 classes[dev->devno] = dev->class; 2867 else 2868 classes[dev->devno] = ATA_DEV_NONE; 2869 2870 dev->class = ATA_DEV_UNKNOWN; 2871 } 2872 2873 /* read IDENTIFY page and configure devices. We have to do the identify 2874 specific sequence bass-ackwards so that PDIAG- is released by 2875 the slave device */ 2876 2877 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2878 if (tries[dev->devno]) 2879 dev->class = classes[dev->devno]; 2880 2881 if (!ata_dev_enabled(dev)) 2882 continue; 2883 2884 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2885 dev->id); 2886 if (rc) 2887 goto fail; 2888 } 2889 2890 /* Now ask for the cable type as PDIAG- should have been released */ 2891 if (ap->ops->cable_detect) 2892 ap->cbl = ap->ops->cable_detect(ap); 2893 2894 /* We may have SATA bridge glue hiding here irrespective of 2895 * the reported cable types and sensed types. When SATA 2896 * drives indicate we have a bridge, we don't know which end 2897 * of the link the bridge is which is a problem. 2898 */ 2899 ata_for_each_dev(dev, &ap->link, ENABLED) 2900 if (ata_id_is_sata(dev->id)) 2901 ap->cbl = ATA_CBL_SATA; 2902 2903 /* After the identify sequence we can now set up the devices. We do 2904 this in the normal order so that the user doesn't get confused */ 2905 2906 ata_for_each_dev(dev, &ap->link, ENABLED) { 2907 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2908 rc = ata_dev_configure(dev); 2909 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2910 if (rc) 2911 goto fail; 2912 } 2913 2914 /* configure transfer mode */ 2915 rc = ata_set_mode(&ap->link, &dev); 2916 if (rc) 2917 goto fail; 2918 2919 ata_for_each_dev(dev, &ap->link, ENABLED) 2920 return 0; 2921 2922 return -ENODEV; 2923 2924 fail: 2925 tries[dev->devno]--; 2926 2927 switch (rc) { 2928 case -EINVAL: 2929 /* eeek, something went very wrong, give up */ 2930 tries[dev->devno] = 0; 2931 break; 2932 2933 case -ENODEV: 2934 /* give it just one more chance */ 2935 tries[dev->devno] = min(tries[dev->devno], 1); 2936 fallthrough; 2937 case -EIO: 2938 if (tries[dev->devno] == 1) { 2939 /* This is the last chance, better to slow 2940 * down than lose it. 2941 */ 2942 sata_down_spd_limit(&ap->link, 0); 2943 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2944 } 2945 } 2946 2947 if (!tries[dev->devno]) 2948 ata_dev_disable(dev); 2949 2950 goto retry; 2951} 2952 2953/** 2954 * sata_print_link_status - Print SATA link status 2955 * @link: SATA link to printk link status about 2956 * 2957 * This function prints link speed and status of a SATA link. 2958 * 2959 * LOCKING: 2960 * None. 2961 */ 2962static void sata_print_link_status(struct ata_link *link) 2963{ 2964 u32 sstatus, scontrol, tmp; 2965 2966 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 2967 return; 2968 sata_scr_read(link, SCR_CONTROL, &scontrol); 2969 2970 if (ata_phys_link_online(link)) { 2971 tmp = (sstatus >> 4) & 0xf; 2972 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 2973 sata_spd_string(tmp), sstatus, scontrol); 2974 } else { 2975 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 2976 sstatus, scontrol); 2977 } 2978} 2979 2980/** 2981 * ata_dev_pair - return other device on cable 2982 * @adev: device 2983 * 2984 * Obtain the other device on the same cable, or if none is 2985 * present NULL is returned 2986 */ 2987 2988struct ata_device *ata_dev_pair(struct ata_device *adev) 2989{ 2990 struct ata_link *link = adev->link; 2991 struct ata_device *pair = &link->device[1 - adev->devno]; 2992 if (!ata_dev_enabled(pair)) 2993 return NULL; 2994 return pair; 2995} 2996EXPORT_SYMBOL_GPL(ata_dev_pair); 2997 2998/** 2999 * sata_down_spd_limit - adjust SATA spd limit downward 3000 * @link: Link to adjust SATA spd limit for 3001 * @spd_limit: Additional limit 3002 * 3003 * Adjust SATA spd limit of @link downward. Note that this 3004 * function only adjusts the limit. The change must be applied 3005 * using sata_set_spd(). 3006 * 3007 * If @spd_limit is non-zero, the speed is limited to equal to or 3008 * lower than @spd_limit if such speed is supported. If 3009 * @spd_limit is slower than any supported speed, only the lowest 3010 * supported speed is allowed. 3011 * 3012 * LOCKING: 3013 * Inherited from caller. 3014 * 3015 * RETURNS: 3016 * 0 on success, negative errno on failure 3017 */ 3018int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 3019{ 3020 u32 sstatus, spd, mask; 3021 int rc, bit; 3022 3023 if (!sata_scr_valid(link)) 3024 return -EOPNOTSUPP; 3025 3026 /* If SCR can be read, use it to determine the current SPD. 3027 * If not, use cached value in link->sata_spd. 3028 */ 3029 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 3030 if (rc == 0 && ata_sstatus_online(sstatus)) 3031 spd = (sstatus >> 4) & 0xf; 3032 else 3033 spd = link->sata_spd; 3034 3035 mask = link->sata_spd_limit; 3036 if (mask <= 1) 3037 return -EINVAL; 3038 3039 /* unconditionally mask off the highest bit */ 3040 bit = fls(mask) - 1; 3041 mask &= ~(1 << bit); 3042 3043 /* 3044 * Mask off all speeds higher than or equal to the current one. At 3045 * this point, if current SPD is not available and we previously 3046 * recorded the link speed from SStatus, the driver has already 3047 * masked off the highest bit so mask should already be 1 or 0. 3048 * Otherwise, we should not force 1.5Gbps on a link where we have 3049 * not previously recorded speed from SStatus. Just return in this 3050 * case. 3051 */ 3052 if (spd > 1) 3053 mask &= (1 << (spd - 1)) - 1; 3054 else if (link->sata_spd) 3055 return -EINVAL; 3056 3057 /* were we already at the bottom? */ 3058 if (!mask) 3059 return -EINVAL; 3060 3061 if (spd_limit) { 3062 if (mask & ((1 << spd_limit) - 1)) 3063 mask &= (1 << spd_limit) - 1; 3064 else { 3065 bit = ffs(mask) - 1; 3066 mask = 1 << bit; 3067 } 3068 } 3069 3070 link->sata_spd_limit = mask; 3071 3072 ata_link_warn(link, "limiting SATA link speed to %s\n", 3073 sata_spd_string(fls(mask))); 3074 3075 return 0; 3076} 3077 3078#ifdef CONFIG_ATA_ACPI 3079/** 3080 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3081 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3082 * @cycle: cycle duration in ns 3083 * 3084 * Return matching xfer mode for @cycle. The returned mode is of 3085 * the transfer type specified by @xfer_shift. If @cycle is too 3086 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3087 * than the fastest known mode, the fasted mode is returned. 3088 * 3089 * LOCKING: 3090 * None. 3091 * 3092 * RETURNS: 3093 * Matching xfer_mode, 0xff if no match found. 3094 */ 3095u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3096{ 3097 u8 base_mode = 0xff, last_mode = 0xff; 3098 const struct ata_xfer_ent *ent; 3099 const struct ata_timing *t; 3100 3101 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3102 if (ent->shift == xfer_shift) 3103 base_mode = ent->base; 3104 3105 for (t = ata_timing_find_mode(base_mode); 3106 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3107 unsigned short this_cycle; 3108 3109 switch (xfer_shift) { 3110 case ATA_SHIFT_PIO: 3111 case ATA_SHIFT_MWDMA: 3112 this_cycle = t->cycle; 3113 break; 3114 case ATA_SHIFT_UDMA: 3115 this_cycle = t->udma; 3116 break; 3117 default: 3118 return 0xff; 3119 } 3120 3121 if (cycle > this_cycle) 3122 break; 3123 3124 last_mode = t->mode; 3125 } 3126 3127 return last_mode; 3128} 3129#endif 3130 3131/** 3132 * ata_down_xfermask_limit - adjust dev xfer masks downward 3133 * @dev: Device to adjust xfer masks 3134 * @sel: ATA_DNXFER_* selector 3135 * 3136 * Adjust xfer masks of @dev downward. Note that this function 3137 * does not apply the change. Invoking ata_set_mode() afterwards 3138 * will apply the limit. 3139 * 3140 * LOCKING: 3141 * Inherited from caller. 3142 * 3143 * RETURNS: 3144 * 0 on success, negative errno on failure 3145 */ 3146int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3147{ 3148 char buf[32]; 3149 unsigned long orig_mask, xfer_mask; 3150 unsigned long pio_mask, mwdma_mask, udma_mask; 3151 int quiet, highbit; 3152 3153 quiet = !!(sel & ATA_DNXFER_QUIET); 3154 sel &= ~ATA_DNXFER_QUIET; 3155 3156 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3157 dev->mwdma_mask, 3158 dev->udma_mask); 3159 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3160 3161 switch (sel) { 3162 case ATA_DNXFER_PIO: 3163 highbit = fls(pio_mask) - 1; 3164 pio_mask &= ~(1 << highbit); 3165 break; 3166 3167 case ATA_DNXFER_DMA: 3168 if (udma_mask) { 3169 highbit = fls(udma_mask) - 1; 3170 udma_mask &= ~(1 << highbit); 3171 if (!udma_mask) 3172 return -ENOENT; 3173 } else if (mwdma_mask) { 3174 highbit = fls(mwdma_mask) - 1; 3175 mwdma_mask &= ~(1 << highbit); 3176 if (!mwdma_mask) 3177 return -ENOENT; 3178 } 3179 break; 3180 3181 case ATA_DNXFER_40C: 3182 udma_mask &= ATA_UDMA_MASK_40C; 3183 break; 3184 3185 case ATA_DNXFER_FORCE_PIO0: 3186 pio_mask &= 1; 3187 fallthrough; 3188 case ATA_DNXFER_FORCE_PIO: 3189 mwdma_mask = 0; 3190 udma_mask = 0; 3191 break; 3192 3193 default: 3194 BUG(); 3195 } 3196 3197 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3198 3199 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3200 return -ENOENT; 3201 3202 if (!quiet) { 3203 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3204 snprintf(buf, sizeof(buf), "%s:%s", 3205 ata_mode_string(xfer_mask), 3206 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3207 else 3208 snprintf(buf, sizeof(buf), "%s", 3209 ata_mode_string(xfer_mask)); 3210 3211 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3212 } 3213 3214 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3215 &dev->udma_mask); 3216 3217 return 0; 3218} 3219 3220static int ata_dev_set_mode(struct ata_device *dev) 3221{ 3222 struct ata_port *ap = dev->link->ap; 3223 struct ata_eh_context *ehc = &dev->link->eh_context; 3224 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3225 const char *dev_err_whine = ""; 3226 int ign_dev_err = 0; 3227 unsigned int err_mask = 0; 3228 int rc; 3229 3230 dev->flags &= ~ATA_DFLAG_PIO; 3231 if (dev->xfer_shift == ATA_SHIFT_PIO) 3232 dev->flags |= ATA_DFLAG_PIO; 3233 3234 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3235 dev_err_whine = " (SET_XFERMODE skipped)"; 3236 else { 3237 if (nosetxfer) 3238 ata_dev_warn(dev, 3239 "NOSETXFER but PATA detected - can't " 3240 "skip SETXFER, might malfunction\n"); 3241 err_mask = ata_dev_set_xfermode(dev); 3242 } 3243 3244 if (err_mask & ~AC_ERR_DEV) 3245 goto fail; 3246 3247 /* revalidate */ 3248 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3249 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3250 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3251 if (rc) 3252 return rc; 3253 3254 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3255 /* Old CFA may refuse this command, which is just fine */ 3256 if (ata_id_is_cfa(dev->id)) 3257 ign_dev_err = 1; 3258 /* Catch several broken garbage emulations plus some pre 3259 ATA devices */ 3260 if (ata_id_major_version(dev->id) == 0 && 3261 dev->pio_mode <= XFER_PIO_2) 3262 ign_dev_err = 1; 3263 /* Some very old devices and some bad newer ones fail 3264 any kind of SET_XFERMODE request but support PIO0-2 3265 timings and no IORDY */ 3266 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3267 ign_dev_err = 1; 3268 } 3269 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3270 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3271 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3272 dev->dma_mode == XFER_MW_DMA_0 && 3273 (dev->id[63] >> 8) & 1) 3274 ign_dev_err = 1; 3275 3276 /* if the device is actually configured correctly, ignore dev err */ 3277 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3278 ign_dev_err = 1; 3279 3280 if (err_mask & AC_ERR_DEV) { 3281 if (!ign_dev_err) 3282 goto fail; 3283 else 3284 dev_err_whine = " (device error ignored)"; 3285 } 3286 3287 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3288 dev->xfer_shift, (int)dev->xfer_mode); 3289 3290 if (!(ehc->i.flags & ATA_EHI_QUIET) || 3291 ehc->i.flags & ATA_EHI_DID_HARDRESET) 3292 ata_dev_info(dev, "configured for %s%s\n", 3293 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3294 dev_err_whine); 3295 3296 return 0; 3297 3298 fail: 3299 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3300 return -EIO; 3301} 3302 3303/** 3304 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3305 * @link: link on which timings will be programmed 3306 * @r_failed_dev: out parameter for failed device 3307 * 3308 * Standard implementation of the function used to tune and set 3309 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3310 * ata_dev_set_mode() fails, pointer to the failing device is 3311 * returned in @r_failed_dev. 3312 * 3313 * LOCKING: 3314 * PCI/etc. bus probe sem. 3315 * 3316 * RETURNS: 3317 * 0 on success, negative errno otherwise 3318 */ 3319 3320int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3321{ 3322 struct ata_port *ap = link->ap; 3323 struct ata_device *dev; 3324 int rc = 0, used_dma = 0, found = 0; 3325 3326 /* step 1: calculate xfer_mask */ 3327 ata_for_each_dev(dev, link, ENABLED) { 3328 unsigned long pio_mask, dma_mask; 3329 unsigned int mode_mask; 3330 3331 mode_mask = ATA_DMA_MASK_ATA; 3332 if (dev->class == ATA_DEV_ATAPI) 3333 mode_mask = ATA_DMA_MASK_ATAPI; 3334 else if (ata_id_is_cfa(dev->id)) 3335 mode_mask = ATA_DMA_MASK_CFA; 3336 3337 ata_dev_xfermask(dev); 3338 ata_force_xfermask(dev); 3339 3340 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3341 3342 if (libata_dma_mask & mode_mask) 3343 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3344 dev->udma_mask); 3345 else 3346 dma_mask = 0; 3347 3348 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3349 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3350 3351 found = 1; 3352 if (ata_dma_enabled(dev)) 3353 used_dma = 1; 3354 } 3355 if (!found) 3356 goto out; 3357 3358 /* step 2: always set host PIO timings */ 3359 ata_for_each_dev(dev, link, ENABLED) { 3360 if (dev->pio_mode == 0xff) { 3361 ata_dev_warn(dev, "no PIO support\n"); 3362 rc = -EINVAL; 3363 goto out; 3364 } 3365 3366 dev->xfer_mode = dev->pio_mode; 3367 dev->xfer_shift = ATA_SHIFT_PIO; 3368 if (ap->ops->set_piomode) 3369 ap->ops->set_piomode(ap, dev); 3370 } 3371 3372 /* step 3: set host DMA timings */ 3373 ata_for_each_dev(dev, link, ENABLED) { 3374 if (!ata_dma_enabled(dev)) 3375 continue; 3376 3377 dev->xfer_mode = dev->dma_mode; 3378 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3379 if (ap->ops->set_dmamode) 3380 ap->ops->set_dmamode(ap, dev); 3381 } 3382 3383 /* step 4: update devices' xfer mode */ 3384 ata_for_each_dev(dev, link, ENABLED) { 3385 rc = ata_dev_set_mode(dev); 3386 if (rc) 3387 goto out; 3388 } 3389 3390 /* Record simplex status. If we selected DMA then the other 3391 * host channels are not permitted to do so. 3392 */ 3393 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3394 ap->host->simplex_claimed = ap; 3395 3396 out: 3397 if (rc) 3398 *r_failed_dev = dev; 3399 return rc; 3400} 3401EXPORT_SYMBOL_GPL(ata_do_set_mode); 3402 3403/** 3404 * ata_wait_ready - wait for link to become ready 3405 * @link: link to be waited on 3406 * @deadline: deadline jiffies for the operation 3407 * @check_ready: callback to check link readiness 3408 * 3409 * Wait for @link to become ready. @check_ready should return 3410 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3411 * link doesn't seem to be occupied, other errno for other error 3412 * conditions. 3413 * 3414 * Transient -ENODEV conditions are allowed for 3415 * ATA_TMOUT_FF_WAIT. 3416 * 3417 * LOCKING: 3418 * EH context. 3419 * 3420 * RETURNS: 3421 * 0 if @link is ready before @deadline; otherwise, -errno. 3422 */ 3423int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3424 int (*check_ready)(struct ata_link *link)) 3425{ 3426 unsigned long start = jiffies; 3427 unsigned long nodev_deadline; 3428 int warned = 0; 3429 3430 /* choose which 0xff timeout to use, read comment in libata.h */ 3431 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3432 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3433 else 3434 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3435 3436 /* Slave readiness can't be tested separately from master. On 3437 * M/S emulation configuration, this function should be called 3438 * only on the master and it will handle both master and slave. 3439 */ 3440 WARN_ON(link == link->ap->slave_link); 3441 3442 if (time_after(nodev_deadline, deadline)) 3443 nodev_deadline = deadline; 3444 3445 while (1) { 3446 unsigned long now = jiffies; 3447 int ready, tmp; 3448 3449 ready = tmp = check_ready(link); 3450 if (ready > 0) 3451 return 0; 3452 3453 /* 3454 * -ENODEV could be transient. Ignore -ENODEV if link 3455 * is online. Also, some SATA devices take a long 3456 * time to clear 0xff after reset. Wait for 3457 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3458 * offline. 3459 * 3460 * Note that some PATA controllers (pata_ali) explode 3461 * if status register is read more than once when 3462 * there's no device attached. 3463 */ 3464 if (ready == -ENODEV) { 3465 if (ata_link_online(link)) 3466 ready = 0; 3467 else if ((link->ap->flags & ATA_FLAG_SATA) && 3468 !ata_link_offline(link) && 3469 time_before(now, nodev_deadline)) 3470 ready = 0; 3471 } 3472 3473 if (ready) 3474 return ready; 3475 if (time_after(now, deadline)) 3476 return -EBUSY; 3477 3478 if (!warned && time_after(now, start + 5 * HZ) && 3479 (deadline - now > 3 * HZ)) { 3480 ata_link_warn(link, 3481 "link is slow to respond, please be patient " 3482 "(ready=%d)\n", tmp); 3483 warned = 1; 3484 } 3485 3486 ata_msleep(link->ap, 50); 3487 } 3488} 3489 3490/** 3491 * ata_wait_after_reset - wait for link to become ready after reset 3492 * @link: link to be waited on 3493 * @deadline: deadline jiffies for the operation 3494 * @check_ready: callback to check link readiness 3495 * 3496 * Wait for @link to become ready after reset. 3497 * 3498 * LOCKING: 3499 * EH context. 3500 * 3501 * RETURNS: 3502 * 0 if @link is ready before @deadline; otherwise, -errno. 3503 */ 3504int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3505 int (*check_ready)(struct ata_link *link)) 3506{ 3507 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3508 3509 return ata_wait_ready(link, deadline, check_ready); 3510} 3511EXPORT_SYMBOL_GPL(ata_wait_after_reset); 3512 3513/** 3514 * ata_std_prereset - prepare for reset 3515 * @link: ATA link to be reset 3516 * @deadline: deadline jiffies for the operation 3517 * 3518 * @link is about to be reset. Initialize it. Failure from 3519 * prereset makes libata abort whole reset sequence and give up 3520 * that port, so prereset should be best-effort. It does its 3521 * best to prepare for reset sequence but if things go wrong, it 3522 * should just whine, not fail. 3523 * 3524 * LOCKING: 3525 * Kernel thread context (may sleep) 3526 * 3527 * RETURNS: 3528 * 0 on success, -errno otherwise. 3529 */ 3530int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3531{ 3532 struct ata_port *ap = link->ap; 3533 struct ata_eh_context *ehc = &link->eh_context; 3534 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3535 int rc; 3536 3537 /* if we're about to do hardreset, nothing more to do */ 3538 if (ehc->i.action & ATA_EH_HARDRESET) 3539 return 0; 3540 3541 /* if SATA, resume link */ 3542 if (ap->flags & ATA_FLAG_SATA) { 3543 rc = sata_link_resume(link, timing, deadline); 3544 /* whine about phy resume failure but proceed */ 3545 if (rc && rc != -EOPNOTSUPP) 3546 ata_link_warn(link, 3547 "failed to resume link for reset (errno=%d)\n", 3548 rc); 3549 } 3550 3551 /* no point in trying softreset on offline link */ 3552 if (ata_phys_link_offline(link)) 3553 ehc->i.action &= ~ATA_EH_SOFTRESET; 3554 3555 return 0; 3556} 3557EXPORT_SYMBOL_GPL(ata_std_prereset); 3558 3559/** 3560 * sata_std_hardreset - COMRESET w/o waiting or classification 3561 * @link: link to reset 3562 * @class: resulting class of attached device 3563 * @deadline: deadline jiffies for the operation 3564 * 3565 * Standard SATA COMRESET w/o waiting or classification. 3566 * 3567 * LOCKING: 3568 * Kernel thread context (may sleep) 3569 * 3570 * RETURNS: 3571 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3572 */ 3573int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3574 unsigned long deadline) 3575{ 3576 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3577 bool online; 3578 int rc; 3579 3580 /* do hardreset */ 3581 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3582 return online ? -EAGAIN : rc; 3583} 3584EXPORT_SYMBOL_GPL(sata_std_hardreset); 3585 3586/** 3587 * ata_std_postreset - standard postreset callback 3588 * @link: the target ata_link 3589 * @classes: classes of attached devices 3590 * 3591 * This function is invoked after a successful reset. Note that 3592 * the device might have been reset more than once using 3593 * different reset methods before postreset is invoked. 3594 * 3595 * LOCKING: 3596 * Kernel thread context (may sleep) 3597 */ 3598void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3599{ 3600 u32 serror; 3601 3602 DPRINTK("ENTER\n"); 3603 3604 /* reset complete, clear SError */ 3605 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3606 sata_scr_write(link, SCR_ERROR, serror); 3607 3608 /* print link status */ 3609 sata_print_link_status(link); 3610 3611 DPRINTK("EXIT\n"); 3612} 3613EXPORT_SYMBOL_GPL(ata_std_postreset); 3614 3615/** 3616 * ata_dev_same_device - Determine whether new ID matches configured device 3617 * @dev: device to compare against 3618 * @new_class: class of the new device 3619 * @new_id: IDENTIFY page of the new device 3620 * 3621 * Compare @new_class and @new_id against @dev and determine 3622 * whether @dev is the device indicated by @new_class and 3623 * @new_id. 3624 * 3625 * LOCKING: 3626 * None. 3627 * 3628 * RETURNS: 3629 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3630 */ 3631static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3632 const u16 *new_id) 3633{ 3634 const u16 *old_id = dev->id; 3635 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3636 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3637 3638 if (dev->class != new_class) { 3639 ata_dev_info(dev, "class mismatch %d != %d\n", 3640 dev->class, new_class); 3641 return 0; 3642 } 3643 3644 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3645 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3646 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3647 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3648 3649 if (strcmp(model[0], model[1])) { 3650 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 3651 model[0], model[1]); 3652 return 0; 3653 } 3654 3655 if (strcmp(serial[0], serial[1])) { 3656 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 3657 serial[0], serial[1]); 3658 return 0; 3659 } 3660 3661 return 1; 3662} 3663 3664/** 3665 * ata_dev_reread_id - Re-read IDENTIFY data 3666 * @dev: target ATA device 3667 * @readid_flags: read ID flags 3668 * 3669 * Re-read IDENTIFY page and make sure @dev is still attached to 3670 * the port. 3671 * 3672 * LOCKING: 3673 * Kernel thread context (may sleep) 3674 * 3675 * RETURNS: 3676 * 0 on success, negative errno otherwise 3677 */ 3678int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3679{ 3680 unsigned int class = dev->class; 3681 u16 *id = (void *)dev->link->ap->sector_buf; 3682 int rc; 3683 3684 /* read ID data */ 3685 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3686 if (rc) 3687 return rc; 3688 3689 /* is the device still there? */ 3690 if (!ata_dev_same_device(dev, class, id)) 3691 return -ENODEV; 3692 3693 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3694 return 0; 3695} 3696 3697/** 3698 * ata_dev_revalidate - Revalidate ATA device 3699 * @dev: device to revalidate 3700 * @new_class: new class code 3701 * @readid_flags: read ID flags 3702 * 3703 * Re-read IDENTIFY page, make sure @dev is still attached to the 3704 * port and reconfigure it according to the new IDENTIFY page. 3705 * 3706 * LOCKING: 3707 * Kernel thread context (may sleep) 3708 * 3709 * RETURNS: 3710 * 0 on success, negative errno otherwise 3711 */ 3712int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 3713 unsigned int readid_flags) 3714{ 3715 u64 n_sectors = dev->n_sectors; 3716 u64 n_native_sectors = dev->n_native_sectors; 3717 int rc; 3718 3719 if (!ata_dev_enabled(dev)) 3720 return -ENODEV; 3721 3722 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 3723 if (ata_class_enabled(new_class) && 3724 new_class != ATA_DEV_ATA && 3725 new_class != ATA_DEV_ATAPI && 3726 new_class != ATA_DEV_ZAC && 3727 new_class != ATA_DEV_SEMB) { 3728 ata_dev_info(dev, "class mismatch %u != %u\n", 3729 dev->class, new_class); 3730 rc = -ENODEV; 3731 goto fail; 3732 } 3733 3734 /* re-read ID */ 3735 rc = ata_dev_reread_id(dev, readid_flags); 3736 if (rc) 3737 goto fail; 3738 3739 /* configure device according to the new ID */ 3740 rc = ata_dev_configure(dev); 3741 if (rc) 3742 goto fail; 3743 3744 /* verify n_sectors hasn't changed */ 3745 if (dev->class != ATA_DEV_ATA || !n_sectors || 3746 dev->n_sectors == n_sectors) 3747 return 0; 3748 3749 /* n_sectors has changed */ 3750 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 3751 (unsigned long long)n_sectors, 3752 (unsigned long long)dev->n_sectors); 3753 3754 /* 3755 * Something could have caused HPA to be unlocked 3756 * involuntarily. If n_native_sectors hasn't changed and the 3757 * new size matches it, keep the device. 3758 */ 3759 if (dev->n_native_sectors == n_native_sectors && 3760 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 3761 ata_dev_warn(dev, 3762 "new n_sectors matches native, probably " 3763 "late HPA unlock, n_sectors updated\n"); 3764 /* use the larger n_sectors */ 3765 return 0; 3766 } 3767 3768 /* 3769 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 3770 * unlocking HPA in those cases. 3771 * 3772 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 3773 */ 3774 if (dev->n_native_sectors == n_native_sectors && 3775 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 3776 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 3777 ata_dev_warn(dev, 3778 "old n_sectors matches native, probably " 3779 "late HPA lock, will try to unlock HPA\n"); 3780 /* try unlocking HPA */ 3781 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 3782 rc = -EIO; 3783 } else 3784 rc = -ENODEV; 3785 3786 /* restore original n_[native_]sectors and fail */ 3787 dev->n_native_sectors = n_native_sectors; 3788 dev->n_sectors = n_sectors; 3789 fail: 3790 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 3791 return rc; 3792} 3793 3794struct ata_blacklist_entry { 3795 const char *model_num; 3796 const char *model_rev; 3797 unsigned long horkage; 3798}; 3799 3800static const struct ata_blacklist_entry ata_device_blacklist [] = { 3801 /* Devices with DMA related problems under Linux */ 3802 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 3803 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 3804 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 3805 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 3806 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 3807 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 3808 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 3809 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 3810 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 3811 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, 3812 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 3813 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 3814 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 3815 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 3816 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 3817 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, 3818 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 3819 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 3820 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 3821 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 3822 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 3823 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 3824 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 3825 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 3826 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 3827 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 3828 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 3829 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 3830 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA }, 3831 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA }, 3832 /* Odd clown on sil3726/4726 PMPs */ 3833 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 3834 /* Similar story with ASMedia 1092 */ 3835 { "ASMT109x- Config", NULL, ATA_HORKAGE_DISABLE }, 3836 3837 /* Weird ATAPI devices */ 3838 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 3839 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 3840 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 3841 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 3842 3843 /* 3844 * Causes silent data corruption with higher max sects. 3845 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com 3846 */ 3847 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 }, 3848 3849 /* 3850 * These devices time out with higher max sects. 3851 * https://bugzilla.kernel.org/show_bug.cgi?id=121671 3852 */ 3853 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 3854 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 3855 3856 /* Devices we expect to fail diagnostics */ 3857 3858 /* Devices where NCQ should be avoided */ 3859 /* NCQ is slow */ 3860 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 3861 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 3862 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 3863 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 3864 /* NCQ is broken */ 3865 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 3866 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 3867 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 3868 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 3869 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 3870 3871 /* Seagate NCQ + FLUSH CACHE firmware bug */ 3872 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3873 ATA_HORKAGE_FIRMWARE_WARN }, 3874 3875 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3876 ATA_HORKAGE_FIRMWARE_WARN }, 3877 3878 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3879 ATA_HORKAGE_FIRMWARE_WARN }, 3880 3881 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3882 ATA_HORKAGE_FIRMWARE_WARN }, 3883 3884 /* drives which fail FPDMA_AA activation (some may freeze afterwards) 3885 the ST disks also have LPM issues */ 3886 { "ST1000LM024 HN-M101MBB", NULL, ATA_HORKAGE_BROKEN_FPDMA_AA | 3887 ATA_HORKAGE_NOLPM, }, 3888 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA }, 3889 3890 /* Blacklist entries taken from Silicon Image 3124/3132 3891 Windows driver .inf file - also several Linux problem reports */ 3892 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 3893 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 3894 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 3895 3896 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 3897 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, }, 3898 3899 /* Sandisk SD7/8/9s lock up hard on large trims */ 3900 { "SanDisk SD[789]*", NULL, ATA_HORKAGE_MAX_TRIM_128M, }, 3901 3902 /* devices which puke on READ_NATIVE_MAX */ 3903 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 3904 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 3905 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 3906 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 3907 3908 /* this one allows HPA unlocking but fails IOs on the area */ 3909 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 3910 3911 /* Devices which report 1 sector over size HPA */ 3912 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 3913 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 3914 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 3915 3916 /* Devices which get the IVB wrong */ 3917 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 3918 /* Maybe we should just blacklist TSSTcorp... */ 3919 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, }, 3920 3921 /* Devices that do not need bridging limits applied */ 3922 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, 3923 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, }, 3924 3925 /* Devices which aren't very happy with higher link speeds */ 3926 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, }, 3927 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, }, 3928 3929 /* 3930 * Devices which choke on SETXFER. Applies only if both the 3931 * device and controller are SATA. 3932 */ 3933 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER }, 3934 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER }, 3935 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER }, 3936 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER }, 3937 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER }, 3938 3939 /* These specific Pioneer models have LPM issues */ 3940 { "PIONEER BD-RW BDR-207M", NULL, ATA_HORKAGE_NOLPM }, 3941 { "PIONEER BD-RW BDR-205", NULL, ATA_HORKAGE_NOLPM }, 3942 3943 /* Crucial BX100 SSD 500GB has broken LPM support */ 3944 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM }, 3945 3946 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */ 3947 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 3948 ATA_HORKAGE_ZERO_AFTER_TRIM | 3949 ATA_HORKAGE_NOLPM, }, 3950 /* 512GB MX100 with newer firmware has only LPM issues */ 3951 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM | 3952 ATA_HORKAGE_NOLPM, }, 3953 3954 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */ 3955 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 3956 ATA_HORKAGE_ZERO_AFTER_TRIM | 3957 ATA_HORKAGE_NOLPM, }, 3958 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 3959 ATA_HORKAGE_ZERO_AFTER_TRIM | 3960 ATA_HORKAGE_NOLPM, }, 3961 3962 /* These specific Samsung models/firmware-revs do not handle LPM well */ 3963 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM, }, 3964 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM, }, 3965 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_HORKAGE_NOLPM, }, 3966 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM, }, 3967 3968 /* devices that don't properly handle queued TRIM commands */ 3969 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 3970 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3971 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 3972 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3973 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 3974 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3975 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 3976 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3977 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 3978 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3979 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 3980 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3981 { "Samsung SSD 840 EVO*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 3982 ATA_HORKAGE_NO_DMA_LOG | 3983 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3984 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 3985 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3986 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 3987 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3988 { "Samsung SSD 860*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 3989 ATA_HORKAGE_ZERO_AFTER_TRIM | 3990 ATA_HORKAGE_NO_NCQ_ON_ATI, }, 3991 { "Samsung SSD 870*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 3992 ATA_HORKAGE_ZERO_AFTER_TRIM | 3993 ATA_HORKAGE_NO_NCQ_ON_ATI, }, 3994 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 3995 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3996 3997 /* devices that don't properly handle TRIM commands */ 3998 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, }, 3999 { "M88V29*", NULL, ATA_HORKAGE_NOTRIM, }, 4000 4001 /* 4002 * As defined, the DRAT (Deterministic Read After Trim) and RZAT 4003 * (Return Zero After Trim) flags in the ATA Command Set are 4004 * unreliable in the sense that they only define what happens if 4005 * the device successfully executed the DSM TRIM command. TRIM 4006 * is only advisory, however, and the device is free to silently 4007 * ignore all or parts of the request. 4008 * 4009 * Whitelist drives that are known to reliably return zeroes 4010 * after TRIM. 4011 */ 4012 4013 /* 4014 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude 4015 * that model before whitelisting all other intel SSDs. 4016 */ 4017 { "INTEL*SSDSC2MH*", NULL, 0, }, 4018 4019 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4020 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4021 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4022 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4023 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4024 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4025 { "SAMSUNG*MZ7KM*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4026 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4027 4028 /* 4029 * Some WD SATA-I drives spin up and down erratically when the link 4030 * is put into the slumber mode. We don't have full list of the 4031 * affected devices. Disable LPM if the device matches one of the 4032 * known prefixes and is SATA-1. As a side effect LPM partial is 4033 * lost too. 4034 * 4035 * https://bugzilla.kernel.org/show_bug.cgi?id=57211 4036 */ 4037 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4038 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4039 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4040 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4041 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4042 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4043 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4044 4045 /* End Marker */ 4046 { } 4047}; 4048 4049static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4050{ 4051 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4052 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4053 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4054 4055 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4056 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4057 4058 while (ad->model_num) { 4059 if (glob_match(ad->model_num, model_num)) { 4060 if (ad->model_rev == NULL) 4061 return ad->horkage; 4062 if (glob_match(ad->model_rev, model_rev)) 4063 return ad->horkage; 4064 } 4065 ad++; 4066 } 4067 return 0; 4068} 4069 4070static int ata_dma_blacklisted(const struct ata_device *dev) 4071{ 4072 /* We don't support polling DMA. 4073 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4074 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4075 */ 4076 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4077 (dev->flags & ATA_DFLAG_CDB_INTR)) 4078 return 1; 4079 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4080} 4081 4082/** 4083 * ata_is_40wire - check drive side detection 4084 * @dev: device 4085 * 4086 * Perform drive side detection decoding, allowing for device vendors 4087 * who can't follow the documentation. 4088 */ 4089 4090static int ata_is_40wire(struct ata_device *dev) 4091{ 4092 if (dev->horkage & ATA_HORKAGE_IVB) 4093 return ata_drive_40wire_relaxed(dev->id); 4094 return ata_drive_40wire(dev->id); 4095} 4096 4097/** 4098 * cable_is_40wire - 40/80/SATA decider 4099 * @ap: port to consider 4100 * 4101 * This function encapsulates the policy for speed management 4102 * in one place. At the moment we don't cache the result but 4103 * there is a good case for setting ap->cbl to the result when 4104 * we are called with unknown cables (and figuring out if it 4105 * impacts hotplug at all). 4106 * 4107 * Return 1 if the cable appears to be 40 wire. 4108 */ 4109 4110static int cable_is_40wire(struct ata_port *ap) 4111{ 4112 struct ata_link *link; 4113 struct ata_device *dev; 4114 4115 /* If the controller thinks we are 40 wire, we are. */ 4116 if (ap->cbl == ATA_CBL_PATA40) 4117 return 1; 4118 4119 /* If the controller thinks we are 80 wire, we are. */ 4120 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4121 return 0; 4122 4123 /* If the system is known to be 40 wire short cable (eg 4124 * laptop), then we allow 80 wire modes even if the drive 4125 * isn't sure. 4126 */ 4127 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4128 return 0; 4129 4130 /* If the controller doesn't know, we scan. 4131 * 4132 * Note: We look for all 40 wire detects at this point. Any 4133 * 80 wire detect is taken to be 80 wire cable because 4134 * - in many setups only the one drive (slave if present) will 4135 * give a valid detect 4136 * - if you have a non detect capable drive you don't want it 4137 * to colour the choice 4138 */ 4139 ata_for_each_link(link, ap, EDGE) { 4140 ata_for_each_dev(dev, link, ENABLED) { 4141 if (!ata_is_40wire(dev)) 4142 return 0; 4143 } 4144 } 4145 return 1; 4146} 4147 4148/** 4149 * ata_dev_xfermask - Compute supported xfermask of the given device 4150 * @dev: Device to compute xfermask for 4151 * 4152 * Compute supported xfermask of @dev and store it in 4153 * dev->*_mask. This function is responsible for applying all 4154 * known limits including host controller limits, device 4155 * blacklist, etc... 4156 * 4157 * LOCKING: 4158 * None. 4159 */ 4160static void ata_dev_xfermask(struct ata_device *dev) 4161{ 4162 struct ata_link *link = dev->link; 4163 struct ata_port *ap = link->ap; 4164 struct ata_host *host = ap->host; 4165 unsigned long xfer_mask; 4166 4167 /* controller modes available */ 4168 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4169 ap->mwdma_mask, ap->udma_mask); 4170 4171 /* drive modes available */ 4172 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4173 dev->mwdma_mask, dev->udma_mask); 4174 xfer_mask &= ata_id_xfermask(dev->id); 4175 4176 /* 4177 * CFA Advanced TrueIDE timings are not allowed on a shared 4178 * cable 4179 */ 4180 if (ata_dev_pair(dev)) { 4181 /* No PIO5 or PIO6 */ 4182 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4183 /* No MWDMA3 or MWDMA 4 */ 4184 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4185 } 4186 4187 if (ata_dma_blacklisted(dev)) { 4188 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4189 ata_dev_warn(dev, 4190 "device is on DMA blacklist, disabling DMA\n"); 4191 } 4192 4193 if ((host->flags & ATA_HOST_SIMPLEX) && 4194 host->simplex_claimed && host->simplex_claimed != ap) { 4195 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4196 ata_dev_warn(dev, 4197 "simplex DMA is claimed by other device, disabling DMA\n"); 4198 } 4199 4200 if (ap->flags & ATA_FLAG_NO_IORDY) 4201 xfer_mask &= ata_pio_mask_no_iordy(dev); 4202 4203 if (ap->ops->mode_filter) 4204 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4205 4206 /* Apply cable rule here. Don't apply it early because when 4207 * we handle hot plug the cable type can itself change. 4208 * Check this last so that we know if the transfer rate was 4209 * solely limited by the cable. 4210 * Unknown or 80 wire cables reported host side are checked 4211 * drive side as well. Cases where we know a 40wire cable 4212 * is used safely for 80 are not checked here. 4213 */ 4214 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4215 /* UDMA/44 or higher would be available */ 4216 if (cable_is_40wire(ap)) { 4217 ata_dev_warn(dev, 4218 "limited to UDMA/33 due to 40-wire cable\n"); 4219 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4220 } 4221 4222 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4223 &dev->mwdma_mask, &dev->udma_mask); 4224} 4225 4226/** 4227 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4228 * @dev: Device to which command will be sent 4229 * 4230 * Issue SET FEATURES - XFER MODE command to device @dev 4231 * on port @ap. 4232 * 4233 * LOCKING: 4234 * PCI/etc. bus probe sem. 4235 * 4236 * RETURNS: 4237 * 0 on success, AC_ERR_* mask otherwise. 4238 */ 4239 4240static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4241{ 4242 struct ata_taskfile tf; 4243 unsigned int err_mask; 4244 4245 /* set up set-features taskfile */ 4246 DPRINTK("set features - xfer mode\n"); 4247 4248 /* Some controllers and ATAPI devices show flaky interrupt 4249 * behavior after setting xfer mode. Use polling instead. 4250 */ 4251 ata_tf_init(dev, &tf); 4252 tf.command = ATA_CMD_SET_FEATURES; 4253 tf.feature = SETFEATURES_XFER; 4254 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4255 tf.protocol = ATA_PROT_NODATA; 4256 /* If we are using IORDY we must send the mode setting command */ 4257 if (ata_pio_need_iordy(dev)) 4258 tf.nsect = dev->xfer_mode; 4259 /* If the device has IORDY and the controller does not - turn it off */ 4260 else if (ata_id_has_iordy(dev->id)) 4261 tf.nsect = 0x01; 4262 else /* In the ancient relic department - skip all of this */ 4263 return 0; 4264 4265 /* On some disks, this command causes spin-up, so we need longer timeout */ 4266 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000); 4267 4268 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4269 return err_mask; 4270} 4271 4272/** 4273 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4274 * @dev: Device to which command will be sent 4275 * @enable: Whether to enable or disable the feature 4276 * @feature: The sector count represents the feature to set 4277 * 4278 * Issue SET FEATURES - SATA FEATURES command to device @dev 4279 * on port @ap with sector count 4280 * 4281 * LOCKING: 4282 * PCI/etc. bus probe sem. 4283 * 4284 * RETURNS: 4285 * 0 on success, AC_ERR_* mask otherwise. 4286 */ 4287unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature) 4288{ 4289 struct ata_taskfile tf; 4290 unsigned int err_mask; 4291 unsigned long timeout = 0; 4292 4293 /* set up set-features taskfile */ 4294 DPRINTK("set features - SATA features\n"); 4295 4296 ata_tf_init(dev, &tf); 4297 tf.command = ATA_CMD_SET_FEATURES; 4298 tf.feature = enable; 4299 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4300 tf.protocol = ATA_PROT_NODATA; 4301 tf.nsect = feature; 4302 4303 if (enable == SETFEATURES_SPINUP) 4304 timeout = ata_probe_timeout ? 4305 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT; 4306 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout); 4307 4308 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4309 return err_mask; 4310} 4311EXPORT_SYMBOL_GPL(ata_dev_set_feature); 4312 4313/** 4314 * ata_dev_init_params - Issue INIT DEV PARAMS command 4315 * @dev: Device to which command will be sent 4316 * @heads: Number of heads (taskfile parameter) 4317 * @sectors: Number of sectors (taskfile parameter) 4318 * 4319 * LOCKING: 4320 * Kernel thread context (may sleep) 4321 * 4322 * RETURNS: 4323 * 0 on success, AC_ERR_* mask otherwise. 4324 */ 4325static unsigned int ata_dev_init_params(struct ata_device *dev, 4326 u16 heads, u16 sectors) 4327{ 4328 struct ata_taskfile tf; 4329 unsigned int err_mask; 4330 4331 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4332 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4333 return AC_ERR_INVALID; 4334 4335 /* set up init dev params taskfile */ 4336 DPRINTK("init dev params \n"); 4337 4338 ata_tf_init(dev, &tf); 4339 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4340 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4341 tf.protocol = ATA_PROT_NODATA; 4342 tf.nsect = sectors; 4343 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4344 4345 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4346 /* A clean abort indicates an original or just out of spec drive 4347 and we should continue as we issue the setup based on the 4348 drive reported working geometry */ 4349 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4350 err_mask = 0; 4351 4352 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4353 return err_mask; 4354} 4355 4356/** 4357 * atapi_check_dma - Check whether ATAPI DMA can be supported 4358 * @qc: Metadata associated with taskfile to check 4359 * 4360 * Allow low-level driver to filter ATA PACKET commands, returning 4361 * a status indicating whether or not it is OK to use DMA for the 4362 * supplied PACKET command. 4363 * 4364 * LOCKING: 4365 * spin_lock_irqsave(host lock) 4366 * 4367 * RETURNS: 0 when ATAPI DMA can be used 4368 * nonzero otherwise 4369 */ 4370int atapi_check_dma(struct ata_queued_cmd *qc) 4371{ 4372 struct ata_port *ap = qc->ap; 4373 4374 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4375 * few ATAPI devices choke on such DMA requests. 4376 */ 4377 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4378 unlikely(qc->nbytes & 15)) 4379 return 1; 4380 4381 if (ap->ops->check_atapi_dma) 4382 return ap->ops->check_atapi_dma(qc); 4383 4384 return 0; 4385} 4386 4387/** 4388 * ata_std_qc_defer - Check whether a qc needs to be deferred 4389 * @qc: ATA command in question 4390 * 4391 * Non-NCQ commands cannot run with any other command, NCQ or 4392 * not. As upper layer only knows the queue depth, we are 4393 * responsible for maintaining exclusion. This function checks 4394 * whether a new command @qc can be issued. 4395 * 4396 * LOCKING: 4397 * spin_lock_irqsave(host lock) 4398 * 4399 * RETURNS: 4400 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4401 */ 4402int ata_std_qc_defer(struct ata_queued_cmd *qc) 4403{ 4404 struct ata_link *link = qc->dev->link; 4405 4406 if (ata_is_ncq(qc->tf.protocol)) { 4407 if (!ata_tag_valid(link->active_tag)) 4408 return 0; 4409 } else { 4410 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4411 return 0; 4412 } 4413 4414 return ATA_DEFER_LINK; 4415} 4416EXPORT_SYMBOL_GPL(ata_std_qc_defer); 4417 4418enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc) 4419{ 4420 return AC_ERR_OK; 4421} 4422EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 4423 4424/** 4425 * ata_sg_init - Associate command with scatter-gather table. 4426 * @qc: Command to be associated 4427 * @sg: Scatter-gather table. 4428 * @n_elem: Number of elements in s/g table. 4429 * 4430 * Initialize the data-related elements of queued_cmd @qc 4431 * to point to a scatter-gather table @sg, containing @n_elem 4432 * elements. 4433 * 4434 * LOCKING: 4435 * spin_lock_irqsave(host lock) 4436 */ 4437void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4438 unsigned int n_elem) 4439{ 4440 qc->sg = sg; 4441 qc->n_elem = n_elem; 4442 qc->cursg = qc->sg; 4443} 4444 4445#ifdef CONFIG_HAS_DMA 4446 4447/** 4448 * ata_sg_clean - Unmap DMA memory associated with command 4449 * @qc: Command containing DMA memory to be released 4450 * 4451 * Unmap all mapped DMA memory associated with this command. 4452 * 4453 * LOCKING: 4454 * spin_lock_irqsave(host lock) 4455 */ 4456static void ata_sg_clean(struct ata_queued_cmd *qc) 4457{ 4458 struct ata_port *ap = qc->ap; 4459 struct scatterlist *sg = qc->sg; 4460 int dir = qc->dma_dir; 4461 4462 WARN_ON_ONCE(sg == NULL); 4463 4464 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4465 4466 if (qc->n_elem) 4467 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4468 4469 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4470 qc->sg = NULL; 4471} 4472 4473/** 4474 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4475 * @qc: Command with scatter-gather table to be mapped. 4476 * 4477 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4478 * 4479 * LOCKING: 4480 * spin_lock_irqsave(host lock) 4481 * 4482 * RETURNS: 4483 * Zero on success, negative on error. 4484 * 4485 */ 4486static int ata_sg_setup(struct ata_queued_cmd *qc) 4487{ 4488 struct ata_port *ap = qc->ap; 4489 unsigned int n_elem; 4490 4491 VPRINTK("ENTER, ata%u\n", ap->print_id); 4492 4493 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4494 if (n_elem < 1) 4495 return -1; 4496 4497 VPRINTK("%d sg elements mapped\n", n_elem); 4498 qc->orig_n_elem = qc->n_elem; 4499 qc->n_elem = n_elem; 4500 qc->flags |= ATA_QCFLAG_DMAMAP; 4501 4502 return 0; 4503} 4504 4505#else /* !CONFIG_HAS_DMA */ 4506 4507static inline void ata_sg_clean(struct ata_queued_cmd *qc) {} 4508static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; } 4509 4510#endif /* !CONFIG_HAS_DMA */ 4511 4512/** 4513 * swap_buf_le16 - swap halves of 16-bit words in place 4514 * @buf: Buffer to swap 4515 * @buf_words: Number of 16-bit words in buffer. 4516 * 4517 * Swap halves of 16-bit words if needed to convert from 4518 * little-endian byte order to native cpu byte order, or 4519 * vice-versa. 4520 * 4521 * LOCKING: 4522 * Inherited from caller. 4523 */ 4524void swap_buf_le16(u16 *buf, unsigned int buf_words) 4525{ 4526#ifdef __BIG_ENDIAN 4527 unsigned int i; 4528 4529 for (i = 0; i < buf_words; i++) 4530 buf[i] = le16_to_cpu(buf[i]); 4531#endif /* __BIG_ENDIAN */ 4532} 4533 4534/** 4535 * ata_qc_new_init - Request an available ATA command, and initialize it 4536 * @dev: Device from whom we request an available command structure 4537 * @tag: tag 4538 * 4539 * LOCKING: 4540 * None. 4541 */ 4542 4543struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag) 4544{ 4545 struct ata_port *ap = dev->link->ap; 4546 struct ata_queued_cmd *qc; 4547 4548 /* no command while frozen */ 4549 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4550 return NULL; 4551 4552 /* libsas case */ 4553 if (ap->flags & ATA_FLAG_SAS_HOST) { 4554 tag = ata_sas_allocate_tag(ap); 4555 if (tag < 0) 4556 return NULL; 4557 } 4558 4559 qc = __ata_qc_from_tag(ap, tag); 4560 qc->tag = qc->hw_tag = tag; 4561 qc->scsicmd = NULL; 4562 qc->ap = ap; 4563 qc->dev = dev; 4564 4565 ata_qc_reinit(qc); 4566 4567 return qc; 4568} 4569 4570/** 4571 * ata_qc_free - free unused ata_queued_cmd 4572 * @qc: Command to complete 4573 * 4574 * Designed to free unused ata_queued_cmd object 4575 * in case something prevents using it. 4576 * 4577 * LOCKING: 4578 * spin_lock_irqsave(host lock) 4579 */ 4580void ata_qc_free(struct ata_queued_cmd *qc) 4581{ 4582 struct ata_port *ap; 4583 unsigned int tag; 4584 4585 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4586 ap = qc->ap; 4587 4588 qc->flags = 0; 4589 tag = qc->tag; 4590 if (ata_tag_valid(tag)) { 4591 qc->tag = ATA_TAG_POISON; 4592 if (ap->flags & ATA_FLAG_SAS_HOST) 4593 ata_sas_free_tag(tag, ap); 4594 } 4595} 4596 4597void __ata_qc_complete(struct ata_queued_cmd *qc) 4598{ 4599 struct ata_port *ap; 4600 struct ata_link *link; 4601 4602 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4603 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4604 ap = qc->ap; 4605 link = qc->dev->link; 4606 4607 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4608 ata_sg_clean(qc); 4609 4610 /* command should be marked inactive atomically with qc completion */ 4611 if (ata_is_ncq(qc->tf.protocol)) { 4612 link->sactive &= ~(1 << qc->hw_tag); 4613 if (!link->sactive) 4614 ap->nr_active_links--; 4615 } else { 4616 link->active_tag = ATA_TAG_POISON; 4617 ap->nr_active_links--; 4618 } 4619 4620 /* clear exclusive status */ 4621 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4622 ap->excl_link == link)) 4623 ap->excl_link = NULL; 4624 4625 /* atapi: mark qc as inactive to prevent the interrupt handler 4626 * from completing the command twice later, before the error handler 4627 * is called. (when rc != 0 and atapi request sense is needed) 4628 */ 4629 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4630 ap->qc_active &= ~(1ULL << qc->tag); 4631 4632 /* call completion callback */ 4633 qc->complete_fn(qc); 4634} 4635 4636static void fill_result_tf(struct ata_queued_cmd *qc) 4637{ 4638 struct ata_port *ap = qc->ap; 4639 4640 qc->result_tf.flags = qc->tf.flags; 4641 ap->ops->qc_fill_rtf(qc); 4642} 4643 4644static void ata_verify_xfer(struct ata_queued_cmd *qc) 4645{ 4646 struct ata_device *dev = qc->dev; 4647 4648 if (!ata_is_data(qc->tf.protocol)) 4649 return; 4650 4651 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4652 return; 4653 4654 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4655} 4656 4657/** 4658 * ata_qc_complete - Complete an active ATA command 4659 * @qc: Command to complete 4660 * 4661 * Indicate to the mid and upper layers that an ATA command has 4662 * completed, with either an ok or not-ok status. 4663 * 4664 * Refrain from calling this function multiple times when 4665 * successfully completing multiple NCQ commands. 4666 * ata_qc_complete_multiple() should be used instead, which will 4667 * properly update IRQ expect state. 4668 * 4669 * LOCKING: 4670 * spin_lock_irqsave(host lock) 4671 */ 4672void ata_qc_complete(struct ata_queued_cmd *qc) 4673{ 4674 struct ata_port *ap = qc->ap; 4675 4676 /* Trigger the LED (if available) */ 4677 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE)); 4678 4679 /* XXX: New EH and old EH use different mechanisms to 4680 * synchronize EH with regular execution path. 4681 * 4682 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4683 * Normal execution path is responsible for not accessing a 4684 * failed qc. libata core enforces the rule by returning NULL 4685 * from ata_qc_from_tag() for failed qcs. 4686 * 4687 * Old EH depends on ata_qc_complete() nullifying completion 4688 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4689 * not synchronize with interrupt handler. Only PIO task is 4690 * taken care of. 4691 */ 4692 if (ap->ops->error_handler) { 4693 struct ata_device *dev = qc->dev; 4694 struct ata_eh_info *ehi = &dev->link->eh_info; 4695 4696 if (unlikely(qc->err_mask)) 4697 qc->flags |= ATA_QCFLAG_FAILED; 4698 4699 /* 4700 * Finish internal commands without any further processing 4701 * and always with the result TF filled. 4702 */ 4703 if (unlikely(ata_tag_internal(qc->tag))) { 4704 fill_result_tf(qc); 4705 trace_ata_qc_complete_internal(qc); 4706 __ata_qc_complete(qc); 4707 return; 4708 } 4709 4710 /* 4711 * Non-internal qc has failed. Fill the result TF and 4712 * summon EH. 4713 */ 4714 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4715 fill_result_tf(qc); 4716 trace_ata_qc_complete_failed(qc); 4717 ata_qc_schedule_eh(qc); 4718 return; 4719 } 4720 4721 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); 4722 4723 /* read result TF if requested */ 4724 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4725 fill_result_tf(qc); 4726 4727 trace_ata_qc_complete_done(qc); 4728 /* Some commands need post-processing after successful 4729 * completion. 4730 */ 4731 switch (qc->tf.command) { 4732 case ATA_CMD_SET_FEATURES: 4733 if (qc->tf.feature != SETFEATURES_WC_ON && 4734 qc->tf.feature != SETFEATURES_WC_OFF && 4735 qc->tf.feature != SETFEATURES_RA_ON && 4736 qc->tf.feature != SETFEATURES_RA_OFF) 4737 break; 4738 fallthrough; 4739 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4740 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4741 /* revalidate device */ 4742 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4743 ata_port_schedule_eh(ap); 4744 break; 4745 4746 case ATA_CMD_SLEEP: 4747 dev->flags |= ATA_DFLAG_SLEEPING; 4748 break; 4749 } 4750 4751 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4752 ata_verify_xfer(qc); 4753 4754 __ata_qc_complete(qc); 4755 } else { 4756 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 4757 return; 4758 4759 /* read result TF if failed or requested */ 4760 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 4761 fill_result_tf(qc); 4762 4763 __ata_qc_complete(qc); 4764 } 4765} 4766EXPORT_SYMBOL_GPL(ata_qc_complete); 4767 4768/** 4769 * ata_qc_get_active - get bitmask of active qcs 4770 * @ap: port in question 4771 * 4772 * LOCKING: 4773 * spin_lock_irqsave(host lock) 4774 * 4775 * RETURNS: 4776 * Bitmask of active qcs 4777 */ 4778u64 ata_qc_get_active(struct ata_port *ap) 4779{ 4780 u64 qc_active = ap->qc_active; 4781 4782 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */ 4783 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) { 4784 qc_active |= (1 << 0); 4785 qc_active &= ~(1ULL << ATA_TAG_INTERNAL); 4786 } 4787 4788 return qc_active; 4789} 4790EXPORT_SYMBOL_GPL(ata_qc_get_active); 4791 4792/** 4793 * ata_qc_issue - issue taskfile to device 4794 * @qc: command to issue to device 4795 * 4796 * Prepare an ATA command to submission to device. 4797 * This includes mapping the data into a DMA-able 4798 * area, filling in the S/G table, and finally 4799 * writing the taskfile to hardware, starting the command. 4800 * 4801 * LOCKING: 4802 * spin_lock_irqsave(host lock) 4803 */ 4804void ata_qc_issue(struct ata_queued_cmd *qc) 4805{ 4806 struct ata_port *ap = qc->ap; 4807 struct ata_link *link = qc->dev->link; 4808 u8 prot = qc->tf.protocol; 4809 4810 /* Make sure only one non-NCQ command is outstanding. The 4811 * check is skipped for old EH because it reuses active qc to 4812 * request ATAPI sense. 4813 */ 4814 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 4815 4816 if (ata_is_ncq(prot)) { 4817 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag)); 4818 4819 if (!link->sactive) 4820 ap->nr_active_links++; 4821 link->sactive |= 1 << qc->hw_tag; 4822 } else { 4823 WARN_ON_ONCE(link->sactive); 4824 4825 ap->nr_active_links++; 4826 link->active_tag = qc->tag; 4827 } 4828 4829 qc->flags |= ATA_QCFLAG_ACTIVE; 4830 ap->qc_active |= 1ULL << qc->tag; 4831 4832 /* 4833 * We guarantee to LLDs that they will have at least one 4834 * non-zero sg if the command is a data command. 4835 */ 4836 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)) 4837 goto sys_err; 4838 4839 if (ata_is_dma(prot) || (ata_is_pio(prot) && 4840 (ap->flags & ATA_FLAG_PIO_DMA))) 4841 if (ata_sg_setup(qc)) 4842 goto sys_err; 4843 4844 /* if device is sleeping, schedule reset and abort the link */ 4845 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 4846 link->eh_info.action |= ATA_EH_RESET; 4847 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 4848 ata_link_abort(link); 4849 return; 4850 } 4851 4852 qc->err_mask |= ap->ops->qc_prep(qc); 4853 if (unlikely(qc->err_mask)) 4854 goto err; 4855 trace_ata_qc_issue(qc); 4856 qc->err_mask |= ap->ops->qc_issue(qc); 4857 if (unlikely(qc->err_mask)) 4858 goto err; 4859 return; 4860 4861sys_err: 4862 qc->err_mask |= AC_ERR_SYSTEM; 4863err: 4864 ata_qc_complete(qc); 4865} 4866 4867/** 4868 * ata_phys_link_online - test whether the given link is online 4869 * @link: ATA link to test 4870 * 4871 * Test whether @link is online. Note that this function returns 4872 * 0 if online status of @link cannot be obtained, so 4873 * ata_link_online(link) != !ata_link_offline(link). 4874 * 4875 * LOCKING: 4876 * None. 4877 * 4878 * RETURNS: 4879 * True if the port online status is available and online. 4880 */ 4881bool ata_phys_link_online(struct ata_link *link) 4882{ 4883 u32 sstatus; 4884 4885 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 4886 ata_sstatus_online(sstatus)) 4887 return true; 4888 return false; 4889} 4890 4891/** 4892 * ata_phys_link_offline - test whether the given link is offline 4893 * @link: ATA link to test 4894 * 4895 * Test whether @link is offline. Note that this function 4896 * returns 0 if offline status of @link cannot be obtained, so 4897 * ata_link_online(link) != !ata_link_offline(link). 4898 * 4899 * LOCKING: 4900 * None. 4901 * 4902 * RETURNS: 4903 * True if the port offline status is available and offline. 4904 */ 4905bool ata_phys_link_offline(struct ata_link *link) 4906{ 4907 u32 sstatus; 4908 4909 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 4910 !ata_sstatus_online(sstatus)) 4911 return true; 4912 return false; 4913} 4914 4915/** 4916 * ata_link_online - test whether the given link is online 4917 * @link: ATA link to test 4918 * 4919 * Test whether @link is online. This is identical to 4920 * ata_phys_link_online() when there's no slave link. When 4921 * there's a slave link, this function should only be called on 4922 * the master link and will return true if any of M/S links is 4923 * online. 4924 * 4925 * LOCKING: 4926 * None. 4927 * 4928 * RETURNS: 4929 * True if the port online status is available and online. 4930 */ 4931bool ata_link_online(struct ata_link *link) 4932{ 4933 struct ata_link *slave = link->ap->slave_link; 4934 4935 WARN_ON(link == slave); /* shouldn't be called on slave link */ 4936 4937 return ata_phys_link_online(link) || 4938 (slave && ata_phys_link_online(slave)); 4939} 4940EXPORT_SYMBOL_GPL(ata_link_online); 4941 4942/** 4943 * ata_link_offline - test whether the given link is offline 4944 * @link: ATA link to test 4945 * 4946 * Test whether @link is offline. This is identical to 4947 * ata_phys_link_offline() when there's no slave link. When 4948 * there's a slave link, this function should only be called on 4949 * the master link and will return true if both M/S links are 4950 * offline. 4951 * 4952 * LOCKING: 4953 * None. 4954 * 4955 * RETURNS: 4956 * True if the port offline status is available and offline. 4957 */ 4958bool ata_link_offline(struct ata_link *link) 4959{ 4960 struct ata_link *slave = link->ap->slave_link; 4961 4962 WARN_ON(link == slave); /* shouldn't be called on slave link */ 4963 4964 return ata_phys_link_offline(link) && 4965 (!slave || ata_phys_link_offline(slave)); 4966} 4967EXPORT_SYMBOL_GPL(ata_link_offline); 4968 4969#ifdef CONFIG_PM 4970static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 4971 unsigned int action, unsigned int ehi_flags, 4972 bool async) 4973{ 4974 struct ata_link *link; 4975 unsigned long flags; 4976 4977 spin_lock_irqsave(ap->lock, flags); 4978 4979 /* 4980 * A previous PM operation might still be in progress. Wait for 4981 * ATA_PFLAG_PM_PENDING to clear. 4982 */ 4983 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 4984 spin_unlock_irqrestore(ap->lock, flags); 4985 ata_port_wait_eh(ap); 4986 spin_lock_irqsave(ap->lock, flags); 4987 } 4988 4989 /* Request PM operation to EH */ 4990 ap->pm_mesg = mesg; 4991 ap->pflags |= ATA_PFLAG_PM_PENDING; 4992 ata_for_each_link(link, ap, HOST_FIRST) { 4993 link->eh_info.action |= action; 4994 link->eh_info.flags |= ehi_flags; 4995 } 4996 4997 ata_port_schedule_eh(ap); 4998 4999 spin_unlock_irqrestore(ap->lock, flags); 5000 5001 if (!async) 5002 ata_port_wait_eh(ap); 5003} 5004 5005/* 5006 * On some hardware, device fails to respond after spun down for suspend. As 5007 * the device won't be used before being resumed, we don't need to touch the 5008 * device. Ask EH to skip the usual stuff and proceed directly to suspend. 5009 * 5010 * http://thread.gmane.org/gmane.linux.ide/46764 5011 */ 5012static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET 5013 | ATA_EHI_NO_AUTOPSY 5014 | ATA_EHI_NO_RECOVERY; 5015 5016static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg) 5017{ 5018 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false); 5019} 5020 5021static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg) 5022{ 5023 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true); 5024} 5025 5026static int ata_port_pm_suspend(struct device *dev) 5027{ 5028 struct ata_port *ap = to_ata_port(dev); 5029 5030 if (pm_runtime_suspended(dev)) 5031 return 0; 5032 5033 ata_port_suspend(ap, PMSG_SUSPEND); 5034 return 0; 5035} 5036 5037static int ata_port_pm_freeze(struct device *dev) 5038{ 5039 struct ata_port *ap = to_ata_port(dev); 5040 5041 if (pm_runtime_suspended(dev)) 5042 return 0; 5043 5044 ata_port_suspend(ap, PMSG_FREEZE); 5045 return 0; 5046} 5047 5048static int ata_port_pm_poweroff(struct device *dev) 5049{ 5050 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE); 5051 return 0; 5052} 5053 5054static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY 5055 | ATA_EHI_QUIET; 5056 5057static void ata_port_resume(struct ata_port *ap, pm_message_t mesg) 5058{ 5059 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false); 5060} 5061 5062static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg) 5063{ 5064 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true); 5065} 5066 5067static int ata_port_pm_resume(struct device *dev) 5068{ 5069 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME); 5070 pm_runtime_disable(dev); 5071 pm_runtime_set_active(dev); 5072 pm_runtime_enable(dev); 5073 return 0; 5074} 5075 5076/* 5077 * For ODDs, the upper layer will poll for media change every few seconds, 5078 * which will make it enter and leave suspend state every few seconds. And 5079 * as each suspend will cause a hard/soft reset, the gain of runtime suspend 5080 * is very little and the ODD may malfunction after constantly being reset. 5081 * So the idle callback here will not proceed to suspend if a non-ZPODD capable 5082 * ODD is attached to the port. 5083 */ 5084static int ata_port_runtime_idle(struct device *dev) 5085{ 5086 struct ata_port *ap = to_ata_port(dev); 5087 struct ata_link *link; 5088 struct ata_device *adev; 5089 5090 ata_for_each_link(link, ap, HOST_FIRST) { 5091 ata_for_each_dev(adev, link, ENABLED) 5092 if (adev->class == ATA_DEV_ATAPI && 5093 !zpodd_dev_enabled(adev)) 5094 return -EBUSY; 5095 } 5096 5097 return 0; 5098} 5099 5100static int ata_port_runtime_suspend(struct device *dev) 5101{ 5102 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND); 5103 return 0; 5104} 5105 5106static int ata_port_runtime_resume(struct device *dev) 5107{ 5108 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME); 5109 return 0; 5110} 5111 5112static const struct dev_pm_ops ata_port_pm_ops = { 5113 .suspend = ata_port_pm_suspend, 5114 .resume = ata_port_pm_resume, 5115 .freeze = ata_port_pm_freeze, 5116 .thaw = ata_port_pm_resume, 5117 .poweroff = ata_port_pm_poweroff, 5118 .restore = ata_port_pm_resume, 5119 5120 .runtime_suspend = ata_port_runtime_suspend, 5121 .runtime_resume = ata_port_runtime_resume, 5122 .runtime_idle = ata_port_runtime_idle, 5123}; 5124 5125/* sas ports don't participate in pm runtime management of ata_ports, 5126 * and need to resume ata devices at the domain level, not the per-port 5127 * level. sas suspend/resume is async to allow parallel port recovery 5128 * since sas has multiple ata_port instances per Scsi_Host. 5129 */ 5130void ata_sas_port_suspend(struct ata_port *ap) 5131{ 5132 ata_port_suspend_async(ap, PMSG_SUSPEND); 5133} 5134EXPORT_SYMBOL_GPL(ata_sas_port_suspend); 5135 5136void ata_sas_port_resume(struct ata_port *ap) 5137{ 5138 ata_port_resume_async(ap, PMSG_RESUME); 5139} 5140EXPORT_SYMBOL_GPL(ata_sas_port_resume); 5141 5142/** 5143 * ata_host_suspend - suspend host 5144 * @host: host to suspend 5145 * @mesg: PM message 5146 * 5147 * Suspend @host. Actual operation is performed by port suspend. 5148 */ 5149int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5150{ 5151 host->dev->power.power_state = mesg; 5152 return 0; 5153} 5154EXPORT_SYMBOL_GPL(ata_host_suspend); 5155 5156/** 5157 * ata_host_resume - resume host 5158 * @host: host to resume 5159 * 5160 * Resume @host. Actual operation is performed by port resume. 5161 */ 5162void ata_host_resume(struct ata_host *host) 5163{ 5164 host->dev->power.power_state = PMSG_ON; 5165} 5166EXPORT_SYMBOL_GPL(ata_host_resume); 5167#endif 5168 5169const struct device_type ata_port_type = { 5170 .name = ATA_PORT_TYPE_NAME, 5171#ifdef CONFIG_PM 5172 .pm = &ata_port_pm_ops, 5173#endif 5174}; 5175 5176/** 5177 * ata_dev_init - Initialize an ata_device structure 5178 * @dev: Device structure to initialize 5179 * 5180 * Initialize @dev in preparation for probing. 5181 * 5182 * LOCKING: 5183 * Inherited from caller. 5184 */ 5185void ata_dev_init(struct ata_device *dev) 5186{ 5187 struct ata_link *link = ata_dev_phys_link(dev); 5188 struct ata_port *ap = link->ap; 5189 unsigned long flags; 5190 5191 /* SATA spd limit is bound to the attached device, reset together */ 5192 link->sata_spd_limit = link->hw_sata_spd_limit; 5193 link->sata_spd = 0; 5194 5195 /* High bits of dev->flags are used to record warm plug 5196 * requests which occur asynchronously. Synchronize using 5197 * host lock. 5198 */ 5199 spin_lock_irqsave(ap->lock, flags); 5200 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5201 dev->horkage = 0; 5202 spin_unlock_irqrestore(ap->lock, flags); 5203 5204 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5205 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5206 dev->pio_mask = UINT_MAX; 5207 dev->mwdma_mask = UINT_MAX; 5208 dev->udma_mask = UINT_MAX; 5209} 5210 5211/** 5212 * ata_link_init - Initialize an ata_link structure 5213 * @ap: ATA port link is attached to 5214 * @link: Link structure to initialize 5215 * @pmp: Port multiplier port number 5216 * 5217 * Initialize @link. 5218 * 5219 * LOCKING: 5220 * Kernel thread context (may sleep) 5221 */ 5222void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5223{ 5224 int i; 5225 5226 /* clear everything except for devices */ 5227 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5228 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5229 5230 link->ap = ap; 5231 link->pmp = pmp; 5232 link->active_tag = ATA_TAG_POISON; 5233 link->hw_sata_spd_limit = UINT_MAX; 5234 5235 /* can't use iterator, ap isn't initialized yet */ 5236 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5237 struct ata_device *dev = &link->device[i]; 5238 5239 dev->link = link; 5240 dev->devno = dev - link->device; 5241#ifdef CONFIG_ATA_ACPI 5242 dev->gtf_filter = ata_acpi_gtf_filter; 5243#endif 5244 ata_dev_init(dev); 5245 } 5246} 5247 5248/** 5249 * sata_link_init_spd - Initialize link->sata_spd_limit 5250 * @link: Link to configure sata_spd_limit for 5251 * 5252 * Initialize ``link->[hw_]sata_spd_limit`` to the currently 5253 * configured value. 5254 * 5255 * LOCKING: 5256 * Kernel thread context (may sleep). 5257 * 5258 * RETURNS: 5259 * 0 on success, -errno on failure. 5260 */ 5261int sata_link_init_spd(struct ata_link *link) 5262{ 5263 u8 spd; 5264 int rc; 5265 5266 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5267 if (rc) 5268 return rc; 5269 5270 spd = (link->saved_scontrol >> 4) & 0xf; 5271 if (spd) 5272 link->hw_sata_spd_limit &= (1 << spd) - 1; 5273 5274 ata_force_link_limits(link); 5275 5276 link->sata_spd_limit = link->hw_sata_spd_limit; 5277 5278 return 0; 5279} 5280 5281/** 5282 * ata_port_alloc - allocate and initialize basic ATA port resources 5283 * @host: ATA host this allocated port belongs to 5284 * 5285 * Allocate and initialize basic ATA port resources. 5286 * 5287 * RETURNS: 5288 * Allocate ATA port on success, NULL on failure. 5289 * 5290 * LOCKING: 5291 * Inherited from calling layer (may sleep). 5292 */ 5293struct ata_port *ata_port_alloc(struct ata_host *host) 5294{ 5295 struct ata_port *ap; 5296 5297 DPRINTK("ENTER\n"); 5298 5299 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5300 if (!ap) 5301 return NULL; 5302 5303 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5304 ap->lock = &host->lock; 5305 ap->print_id = -1; 5306 ap->local_port_no = -1; 5307 ap->host = host; 5308 ap->dev = host->dev; 5309 5310#if defined(ATA_VERBOSE_DEBUG) 5311 /* turn on all debugging levels */ 5312 ap->msg_enable = 0x00FF; 5313#elif defined(ATA_DEBUG) 5314 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5315#else 5316 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5317#endif 5318 5319 mutex_init(&ap->scsi_scan_mutex); 5320 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5321 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5322 INIT_LIST_HEAD(&ap->eh_done_q); 5323 init_waitqueue_head(&ap->eh_wait_q); 5324 init_completion(&ap->park_req_pending); 5325 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn, 5326 TIMER_DEFERRABLE); 5327 5328 ap->cbl = ATA_CBL_NONE; 5329 5330 ata_link_init(ap, &ap->link, 0); 5331 5332#ifdef ATA_IRQ_TRAP 5333 ap->stats.unhandled_irq = 1; 5334 ap->stats.idle_irq = 1; 5335#endif 5336 ata_sff_port_init(ap); 5337 5338 return ap; 5339} 5340 5341static void ata_devres_release(struct device *gendev, void *res) 5342{ 5343 struct ata_host *host = dev_get_drvdata(gendev); 5344 int i; 5345 5346 for (i = 0; i < host->n_ports; i++) { 5347 struct ata_port *ap = host->ports[i]; 5348 5349 if (!ap) 5350 continue; 5351 5352 if (ap->scsi_host) 5353 scsi_host_put(ap->scsi_host); 5354 5355 } 5356 5357 dev_set_drvdata(gendev, NULL); 5358 ata_host_put(host); 5359} 5360 5361static void ata_host_release(struct kref *kref) 5362{ 5363 struct ata_host *host = container_of(kref, struct ata_host, kref); 5364 int i; 5365 5366 for (i = 0; i < host->n_ports; i++) { 5367 struct ata_port *ap = host->ports[i]; 5368 5369 if (!ap) 5370 continue; 5371 5372 kfree(ap->pmp_link); 5373 kfree(ap->slave_link); 5374 kfree(ap); 5375 host->ports[i] = NULL; 5376 } 5377 kfree(host); 5378} 5379 5380void ata_host_get(struct ata_host *host) 5381{ 5382 kref_get(&host->kref); 5383} 5384 5385void ata_host_put(struct ata_host *host) 5386{ 5387 kref_put(&host->kref, ata_host_release); 5388} 5389EXPORT_SYMBOL_GPL(ata_host_put); 5390 5391/** 5392 * ata_host_alloc - allocate and init basic ATA host resources 5393 * @dev: generic device this host is associated with 5394 * @max_ports: maximum number of ATA ports associated with this host 5395 * 5396 * Allocate and initialize basic ATA host resources. LLD calls 5397 * this function to allocate a host, initializes it fully and 5398 * attaches it using ata_host_register(). 5399 * 5400 * @max_ports ports are allocated and host->n_ports is 5401 * initialized to @max_ports. The caller is allowed to decrease 5402 * host->n_ports before calling ata_host_register(). The unused 5403 * ports will be automatically freed on registration. 5404 * 5405 * RETURNS: 5406 * Allocate ATA host on success, NULL on failure. 5407 * 5408 * LOCKING: 5409 * Inherited from calling layer (may sleep). 5410 */ 5411struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5412{ 5413 struct ata_host *host; 5414 size_t sz; 5415 int i; 5416 void *dr; 5417 5418 DPRINTK("ENTER\n"); 5419 5420 /* alloc a container for our list of ATA ports (buses) */ 5421 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5422 host = kzalloc(sz, GFP_KERNEL); 5423 if (!host) 5424 return NULL; 5425 5426 if (!devres_open_group(dev, NULL, GFP_KERNEL)) { 5427 kfree(host); 5428 return NULL; 5429 } 5430 5431 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL); 5432 if (!dr) 5433 goto err_out; 5434 5435 devres_add(dev, dr); 5436 dev_set_drvdata(dev, host); 5437 5438 spin_lock_init(&host->lock); 5439 mutex_init(&host->eh_mutex); 5440 host->dev = dev; 5441 host->n_ports = max_ports; 5442 kref_init(&host->kref); 5443 5444 /* allocate ports bound to this host */ 5445 for (i = 0; i < max_ports; i++) { 5446 struct ata_port *ap; 5447 5448 ap = ata_port_alloc(host); 5449 if (!ap) 5450 goto err_out; 5451 5452 ap->port_no = i; 5453 host->ports[i] = ap; 5454 } 5455 5456 devres_remove_group(dev, NULL); 5457 return host; 5458 5459 err_out: 5460 devres_release_group(dev, NULL); 5461 return NULL; 5462} 5463EXPORT_SYMBOL_GPL(ata_host_alloc); 5464 5465/** 5466 * ata_host_alloc_pinfo - alloc host and init with port_info array 5467 * @dev: generic device this host is associated with 5468 * @ppi: array of ATA port_info to initialize host with 5469 * @n_ports: number of ATA ports attached to this host 5470 * 5471 * Allocate ATA host and initialize with info from @ppi. If NULL 5472 * terminated, @ppi may contain fewer entries than @n_ports. The 5473 * last entry will be used for the remaining ports. 5474 * 5475 * RETURNS: 5476 * Allocate ATA host on success, NULL on failure. 5477 * 5478 * LOCKING: 5479 * Inherited from calling layer (may sleep). 5480 */ 5481struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5482 const struct ata_port_info * const * ppi, 5483 int n_ports) 5484{ 5485 const struct ata_port_info *pi = &ata_dummy_port_info; 5486 struct ata_host *host; 5487 int i, j; 5488 5489 host = ata_host_alloc(dev, n_ports); 5490 if (!host) 5491 return NULL; 5492 5493 for (i = 0, j = 0; i < host->n_ports; i++) { 5494 struct ata_port *ap = host->ports[i]; 5495 5496 if (ppi[j]) 5497 pi = ppi[j++]; 5498 5499 ap->pio_mask = pi->pio_mask; 5500 ap->mwdma_mask = pi->mwdma_mask; 5501 ap->udma_mask = pi->udma_mask; 5502 ap->flags |= pi->flags; 5503 ap->link.flags |= pi->link_flags; 5504 ap->ops = pi->port_ops; 5505 5506 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5507 host->ops = pi->port_ops; 5508 } 5509 5510 return host; 5511} 5512EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 5513 5514static void ata_host_stop(struct device *gendev, void *res) 5515{ 5516 struct ata_host *host = dev_get_drvdata(gendev); 5517 int i; 5518 5519 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5520 5521 for (i = 0; i < host->n_ports; i++) { 5522 struct ata_port *ap = host->ports[i]; 5523 5524 if (ap->ops->port_stop) 5525 ap->ops->port_stop(ap); 5526 } 5527 5528 if (host->ops->host_stop) 5529 host->ops->host_stop(host); 5530} 5531 5532/** 5533 * ata_finalize_port_ops - finalize ata_port_operations 5534 * @ops: ata_port_operations to finalize 5535 * 5536 * An ata_port_operations can inherit from another ops and that 5537 * ops can again inherit from another. This can go on as many 5538 * times as necessary as long as there is no loop in the 5539 * inheritance chain. 5540 * 5541 * Ops tables are finalized when the host is started. NULL or 5542 * unspecified entries are inherited from the closet ancestor 5543 * which has the method and the entry is populated with it. 5544 * After finalization, the ops table directly points to all the 5545 * methods and ->inherits is no longer necessary and cleared. 5546 * 5547 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5548 * 5549 * LOCKING: 5550 * None. 5551 */ 5552static void ata_finalize_port_ops(struct ata_port_operations *ops) 5553{ 5554 static DEFINE_SPINLOCK(lock); 5555 const struct ata_port_operations *cur; 5556 void **begin = (void **)ops; 5557 void **end = (void **)&ops->inherits; 5558 void **pp; 5559 5560 if (!ops || !ops->inherits) 5561 return; 5562 5563 spin_lock(&lock); 5564 5565 for (cur = ops->inherits; cur; cur = cur->inherits) { 5566 void **inherit = (void **)cur; 5567 5568 for (pp = begin; pp < end; pp++, inherit++) 5569 if (!*pp) 5570 *pp = *inherit; 5571 } 5572 5573 for (pp = begin; pp < end; pp++) 5574 if (IS_ERR(*pp)) 5575 *pp = NULL; 5576 5577 ops->inherits = NULL; 5578 5579 spin_unlock(&lock); 5580} 5581 5582/** 5583 * ata_host_start - start and freeze ports of an ATA host 5584 * @host: ATA host to start ports for 5585 * 5586 * Start and then freeze ports of @host. Started status is 5587 * recorded in host->flags, so this function can be called 5588 * multiple times. Ports are guaranteed to get started only 5589 * once. If host->ops isn't initialized yet, its set to the 5590 * first non-dummy port ops. 5591 * 5592 * LOCKING: 5593 * Inherited from calling layer (may sleep). 5594 * 5595 * RETURNS: 5596 * 0 if all ports are started successfully, -errno otherwise. 5597 */ 5598int ata_host_start(struct ata_host *host) 5599{ 5600 int have_stop = 0; 5601 void *start_dr = NULL; 5602 int i, rc; 5603 5604 if (host->flags & ATA_HOST_STARTED) 5605 return 0; 5606 5607 ata_finalize_port_ops(host->ops); 5608 5609 for (i = 0; i < host->n_ports; i++) { 5610 struct ata_port *ap = host->ports[i]; 5611 5612 ata_finalize_port_ops(ap->ops); 5613 5614 if (!host->ops && !ata_port_is_dummy(ap)) 5615 host->ops = ap->ops; 5616 5617 if (ap->ops->port_stop) 5618 have_stop = 1; 5619 } 5620 5621 if (host->ops && host->ops->host_stop) 5622 have_stop = 1; 5623 5624 if (have_stop) { 5625 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5626 if (!start_dr) 5627 return -ENOMEM; 5628 } 5629 5630 for (i = 0; i < host->n_ports; i++) { 5631 struct ata_port *ap = host->ports[i]; 5632 5633 if (ap->ops->port_start) { 5634 rc = ap->ops->port_start(ap); 5635 if (rc) { 5636 if (rc != -ENODEV) 5637 dev_err(host->dev, 5638 "failed to start port %d (errno=%d)\n", 5639 i, rc); 5640 goto err_out; 5641 } 5642 } 5643 ata_eh_freeze_port(ap); 5644 } 5645 5646 if (start_dr) 5647 devres_add(host->dev, start_dr); 5648 host->flags |= ATA_HOST_STARTED; 5649 return 0; 5650 5651 err_out: 5652 while (--i >= 0) { 5653 struct ata_port *ap = host->ports[i]; 5654 5655 if (ap->ops->port_stop) 5656 ap->ops->port_stop(ap); 5657 } 5658 devres_free(start_dr); 5659 return rc; 5660} 5661EXPORT_SYMBOL_GPL(ata_host_start); 5662 5663/** 5664 * ata_host_init - Initialize a host struct for sas (ipr, libsas) 5665 * @host: host to initialize 5666 * @dev: device host is attached to 5667 * @ops: port_ops 5668 * 5669 */ 5670void ata_host_init(struct ata_host *host, struct device *dev, 5671 struct ata_port_operations *ops) 5672{ 5673 spin_lock_init(&host->lock); 5674 mutex_init(&host->eh_mutex); 5675 host->n_tags = ATA_MAX_QUEUE; 5676 host->dev = dev; 5677 host->ops = ops; 5678 kref_init(&host->kref); 5679} 5680EXPORT_SYMBOL_GPL(ata_host_init); 5681 5682void __ata_port_probe(struct ata_port *ap) 5683{ 5684 struct ata_eh_info *ehi = &ap->link.eh_info; 5685 unsigned long flags; 5686 5687 /* kick EH for boot probing */ 5688 spin_lock_irqsave(ap->lock, flags); 5689 5690 ehi->probe_mask |= ATA_ALL_DEVICES; 5691 ehi->action |= ATA_EH_RESET; 5692 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 5693 5694 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 5695 ap->pflags |= ATA_PFLAG_LOADING; 5696 ata_port_schedule_eh(ap); 5697 5698 spin_unlock_irqrestore(ap->lock, flags); 5699} 5700 5701int ata_port_probe(struct ata_port *ap) 5702{ 5703 int rc = 0; 5704 5705 if (ap->ops->error_handler) { 5706 __ata_port_probe(ap); 5707 ata_port_wait_eh(ap); 5708 } else { 5709 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 5710 rc = ata_bus_probe(ap); 5711 DPRINTK("ata%u: bus probe end\n", ap->print_id); 5712 } 5713 return rc; 5714} 5715 5716 5717static void async_port_probe(void *data, async_cookie_t cookie) 5718{ 5719 struct ata_port *ap = data; 5720 5721 /* 5722 * If we're not allowed to scan this host in parallel, 5723 * we need to wait until all previous scans have completed 5724 * before going further. 5725 * Jeff Garzik says this is only within a controller, so we 5726 * don't need to wait for port 0, only for later ports. 5727 */ 5728 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 5729 async_synchronize_cookie(cookie); 5730 5731 (void)ata_port_probe(ap); 5732 5733 /* in order to keep device order, we need to synchronize at this point */ 5734 async_synchronize_cookie(cookie); 5735 5736 ata_scsi_scan_host(ap, 1); 5737} 5738 5739/** 5740 * ata_host_register - register initialized ATA host 5741 * @host: ATA host to register 5742 * @sht: template for SCSI host 5743 * 5744 * Register initialized ATA host. @host is allocated using 5745 * ata_host_alloc() and fully initialized by LLD. This function 5746 * starts ports, registers @host with ATA and SCSI layers and 5747 * probe registered devices. 5748 * 5749 * LOCKING: 5750 * Inherited from calling layer (may sleep). 5751 * 5752 * RETURNS: 5753 * 0 on success, -errno otherwise. 5754 */ 5755int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 5756{ 5757 int i, rc; 5758 5759 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE); 5760 5761 /* host must have been started */ 5762 if (!(host->flags & ATA_HOST_STARTED)) { 5763 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 5764 WARN_ON(1); 5765 return -EINVAL; 5766 } 5767 5768 /* Blow away unused ports. This happens when LLD can't 5769 * determine the exact number of ports to allocate at 5770 * allocation time. 5771 */ 5772 for (i = host->n_ports; host->ports[i]; i++) 5773 kfree(host->ports[i]); 5774 5775 /* give ports names and add SCSI hosts */ 5776 for (i = 0; i < host->n_ports; i++) { 5777 host->ports[i]->print_id = atomic_inc_return(&ata_print_id); 5778 host->ports[i]->local_port_no = i + 1; 5779 } 5780 5781 /* Create associated sysfs transport objects */ 5782 for (i = 0; i < host->n_ports; i++) { 5783 rc = ata_tport_add(host->dev,host->ports[i]); 5784 if (rc) { 5785 goto err_tadd; 5786 } 5787 } 5788 5789 rc = ata_scsi_add_hosts(host, sht); 5790 if (rc) 5791 goto err_tadd; 5792 5793 /* set cable, sata_spd_limit and report */ 5794 for (i = 0; i < host->n_ports; i++) { 5795 struct ata_port *ap = host->ports[i]; 5796 unsigned long xfer_mask; 5797 5798 /* set SATA cable type if still unset */ 5799 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 5800 ap->cbl = ATA_CBL_SATA; 5801 5802 /* init sata_spd_limit to the current value */ 5803 sata_link_init_spd(&ap->link); 5804 if (ap->slave_link) 5805 sata_link_init_spd(ap->slave_link); 5806 5807 /* print per-port info to dmesg */ 5808 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 5809 ap->udma_mask); 5810 5811 if (!ata_port_is_dummy(ap)) { 5812 ata_port_info(ap, "%cATA max %s %s\n", 5813 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 5814 ata_mode_string(xfer_mask), 5815 ap->link.eh_info.desc); 5816 ata_ehi_clear_desc(&ap->link.eh_info); 5817 } else 5818 ata_port_info(ap, "DUMMY\n"); 5819 } 5820 5821 /* perform each probe asynchronously */ 5822 for (i = 0; i < host->n_ports; i++) { 5823 struct ata_port *ap = host->ports[i]; 5824 ap->cookie = async_schedule(async_port_probe, ap); 5825 } 5826 5827 return 0; 5828 5829 err_tadd: 5830 while (--i >= 0) { 5831 ata_tport_delete(host->ports[i]); 5832 } 5833 return rc; 5834 5835} 5836EXPORT_SYMBOL_GPL(ata_host_register); 5837 5838/** 5839 * ata_host_activate - start host, request IRQ and register it 5840 * @host: target ATA host 5841 * @irq: IRQ to request 5842 * @irq_handler: irq_handler used when requesting IRQ 5843 * @irq_flags: irq_flags used when requesting IRQ 5844 * @sht: scsi_host_template to use when registering the host 5845 * 5846 * After allocating an ATA host and initializing it, most libata 5847 * LLDs perform three steps to activate the host - start host, 5848 * request IRQ and register it. This helper takes necessary 5849 * arguments and performs the three steps in one go. 5850 * 5851 * An invalid IRQ skips the IRQ registration and expects the host to 5852 * have set polling mode on the port. In this case, @irq_handler 5853 * should be NULL. 5854 * 5855 * LOCKING: 5856 * Inherited from calling layer (may sleep). 5857 * 5858 * RETURNS: 5859 * 0 on success, -errno otherwise. 5860 */ 5861int ata_host_activate(struct ata_host *host, int irq, 5862 irq_handler_t irq_handler, unsigned long irq_flags, 5863 struct scsi_host_template *sht) 5864{ 5865 int i, rc; 5866 char *irq_desc; 5867 5868 rc = ata_host_start(host); 5869 if (rc) 5870 return rc; 5871 5872 /* Special case for polling mode */ 5873 if (!irq) { 5874 WARN_ON(irq_handler); 5875 return ata_host_register(host, sht); 5876 } 5877 5878 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]", 5879 dev_driver_string(host->dev), 5880 dev_name(host->dev)); 5881 if (!irq_desc) 5882 return -ENOMEM; 5883 5884 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 5885 irq_desc, host); 5886 if (rc) 5887 return rc; 5888 5889 for (i = 0; i < host->n_ports; i++) 5890 ata_port_desc(host->ports[i], "irq %d", irq); 5891 5892 rc = ata_host_register(host, sht); 5893 /* if failed, just free the IRQ and leave ports alone */ 5894 if (rc) 5895 devm_free_irq(host->dev, irq, host); 5896 5897 return rc; 5898} 5899EXPORT_SYMBOL_GPL(ata_host_activate); 5900 5901/** 5902 * ata_port_detach - Detach ATA port in preparation of device removal 5903 * @ap: ATA port to be detached 5904 * 5905 * Detach all ATA devices and the associated SCSI devices of @ap; 5906 * then, remove the associated SCSI host. @ap is guaranteed to 5907 * be quiescent on return from this function. 5908 * 5909 * LOCKING: 5910 * Kernel thread context (may sleep). 5911 */ 5912static void ata_port_detach(struct ata_port *ap) 5913{ 5914 unsigned long flags; 5915 struct ata_link *link; 5916 struct ata_device *dev; 5917 5918 if (!ap->ops->error_handler) 5919 goto skip_eh; 5920 5921 /* Wait for any ongoing EH */ 5922 ata_port_wait_eh(ap); 5923 5924 mutex_lock(&ap->scsi_scan_mutex); 5925 spin_lock_irqsave(ap->lock, flags); 5926 5927 /* Remove scsi devices */ 5928 ata_for_each_link(link, ap, HOST_FIRST) { 5929 ata_for_each_dev(dev, link, ALL) { 5930 if (dev->sdev) { 5931 spin_unlock_irqrestore(ap->lock, flags); 5932 scsi_remove_device(dev->sdev); 5933 spin_lock_irqsave(ap->lock, flags); 5934 dev->sdev = NULL; 5935 } 5936 } 5937 } 5938 5939 /* Tell EH to disable all devices */ 5940 ap->pflags |= ATA_PFLAG_UNLOADING; 5941 ata_port_schedule_eh(ap); 5942 5943 spin_unlock_irqrestore(ap->lock, flags); 5944 mutex_unlock(&ap->scsi_scan_mutex); 5945 5946 /* wait till EH commits suicide */ 5947 ata_port_wait_eh(ap); 5948 5949 /* it better be dead now */ 5950 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 5951 5952 cancel_delayed_work_sync(&ap->hotplug_task); 5953 5954 skip_eh: 5955 /* clean up zpodd on port removal */ 5956 ata_for_each_link(link, ap, HOST_FIRST) { 5957 ata_for_each_dev(dev, link, ALL) { 5958 if (zpodd_dev_enabled(dev)) 5959 zpodd_exit(dev); 5960 } 5961 } 5962 if (ap->pmp_link) { 5963 int i; 5964 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 5965 ata_tlink_delete(&ap->pmp_link[i]); 5966 } 5967 /* remove the associated SCSI host */ 5968 scsi_remove_host(ap->scsi_host); 5969 ata_tport_delete(ap); 5970} 5971 5972/** 5973 * ata_host_detach - Detach all ports of an ATA host 5974 * @host: Host to detach 5975 * 5976 * Detach all ports of @host. 5977 * 5978 * LOCKING: 5979 * Kernel thread context (may sleep). 5980 */ 5981void ata_host_detach(struct ata_host *host) 5982{ 5983 int i; 5984 5985 for (i = 0; i < host->n_ports; i++) { 5986 /* Ensure ata_port probe has completed */ 5987 async_synchronize_cookie(host->ports[i]->cookie + 1); 5988 ata_port_detach(host->ports[i]); 5989 } 5990 5991 /* the host is dead now, dissociate ACPI */ 5992 ata_acpi_dissociate(host); 5993} 5994EXPORT_SYMBOL_GPL(ata_host_detach); 5995 5996#ifdef CONFIG_PCI 5997 5998/** 5999 * ata_pci_remove_one - PCI layer callback for device removal 6000 * @pdev: PCI device that was removed 6001 * 6002 * PCI layer indicates to libata via this hook that hot-unplug or 6003 * module unload event has occurred. Detach all ports. Resource 6004 * release is handled via devres. 6005 * 6006 * LOCKING: 6007 * Inherited from PCI layer (may sleep). 6008 */ 6009void ata_pci_remove_one(struct pci_dev *pdev) 6010{ 6011 struct ata_host *host = pci_get_drvdata(pdev); 6012 6013 ata_host_detach(host); 6014} 6015EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6016 6017void ata_pci_shutdown_one(struct pci_dev *pdev) 6018{ 6019 struct ata_host *host = pci_get_drvdata(pdev); 6020 int i; 6021 6022 for (i = 0; i < host->n_ports; i++) { 6023 struct ata_port *ap = host->ports[i]; 6024 6025 ap->pflags |= ATA_PFLAG_FROZEN; 6026 6027 /* Disable port interrupts */ 6028 if (ap->ops->freeze) 6029 ap->ops->freeze(ap); 6030 6031 /* Stop the port DMA engines */ 6032 if (ap->ops->port_stop) 6033 ap->ops->port_stop(ap); 6034 } 6035} 6036EXPORT_SYMBOL_GPL(ata_pci_shutdown_one); 6037 6038/* move to PCI subsystem */ 6039int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6040{ 6041 unsigned long tmp = 0; 6042 6043 switch (bits->width) { 6044 case 1: { 6045 u8 tmp8 = 0; 6046 pci_read_config_byte(pdev, bits->reg, &tmp8); 6047 tmp = tmp8; 6048 break; 6049 } 6050 case 2: { 6051 u16 tmp16 = 0; 6052 pci_read_config_word(pdev, bits->reg, &tmp16); 6053 tmp = tmp16; 6054 break; 6055 } 6056 case 4: { 6057 u32 tmp32 = 0; 6058 pci_read_config_dword(pdev, bits->reg, &tmp32); 6059 tmp = tmp32; 6060 break; 6061 } 6062 6063 default: 6064 return -EINVAL; 6065 } 6066 6067 tmp &= bits->mask; 6068 6069 return (tmp == bits->val) ? 1 : 0; 6070} 6071EXPORT_SYMBOL_GPL(pci_test_config_bits); 6072 6073#ifdef CONFIG_PM 6074void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6075{ 6076 pci_save_state(pdev); 6077 pci_disable_device(pdev); 6078 6079 if (mesg.event & PM_EVENT_SLEEP) 6080 pci_set_power_state(pdev, PCI_D3hot); 6081} 6082EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6083 6084int ata_pci_device_do_resume(struct pci_dev *pdev) 6085{ 6086 int rc; 6087 6088 pci_set_power_state(pdev, PCI_D0); 6089 pci_restore_state(pdev); 6090 6091 rc = pcim_enable_device(pdev); 6092 if (rc) { 6093 dev_err(&pdev->dev, 6094 "failed to enable device after resume (%d)\n", rc); 6095 return rc; 6096 } 6097 6098 pci_set_master(pdev); 6099 return 0; 6100} 6101EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6102 6103int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6104{ 6105 struct ata_host *host = pci_get_drvdata(pdev); 6106 int rc = 0; 6107 6108 rc = ata_host_suspend(host, mesg); 6109 if (rc) 6110 return rc; 6111 6112 ata_pci_device_do_suspend(pdev, mesg); 6113 6114 return 0; 6115} 6116EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6117 6118int ata_pci_device_resume(struct pci_dev *pdev) 6119{ 6120 struct ata_host *host = pci_get_drvdata(pdev); 6121 int rc; 6122 6123 rc = ata_pci_device_do_resume(pdev); 6124 if (rc == 0) 6125 ata_host_resume(host); 6126 return rc; 6127} 6128EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6129#endif /* CONFIG_PM */ 6130#endif /* CONFIG_PCI */ 6131 6132/** 6133 * ata_platform_remove_one - Platform layer callback for device removal 6134 * @pdev: Platform device that was removed 6135 * 6136 * Platform layer indicates to libata via this hook that hot-unplug or 6137 * module unload event has occurred. Detach all ports. Resource 6138 * release is handled via devres. 6139 * 6140 * LOCKING: 6141 * Inherited from platform layer (may sleep). 6142 */ 6143int ata_platform_remove_one(struct platform_device *pdev) 6144{ 6145 struct ata_host *host = platform_get_drvdata(pdev); 6146 6147 ata_host_detach(host); 6148 6149 return 0; 6150} 6151EXPORT_SYMBOL_GPL(ata_platform_remove_one); 6152 6153#ifdef CONFIG_ATA_FORCE 6154static int __init ata_parse_force_one(char **cur, 6155 struct ata_force_ent *force_ent, 6156 const char **reason) 6157{ 6158 static const struct ata_force_param force_tbl[] __initconst = { 6159 { "40c", .cbl = ATA_CBL_PATA40 }, 6160 { "80c", .cbl = ATA_CBL_PATA80 }, 6161 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6162 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6163 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6164 { "sata", .cbl = ATA_CBL_SATA }, 6165 { "1.5Gbps", .spd_limit = 1 }, 6166 { "3.0Gbps", .spd_limit = 2 }, 6167 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6168 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6169 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM }, 6170 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM }, 6171 { "noncqati", .horkage_on = ATA_HORKAGE_NO_NCQ_ON_ATI }, 6172 { "ncqati", .horkage_off = ATA_HORKAGE_NO_NCQ_ON_ATI }, 6173 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID }, 6174 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6175 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6176 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6177 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6178 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6179 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6180 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6181 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6182 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6183 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6184 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6185 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6186 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6187 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6188 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6189 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6190 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6191 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6192 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6193 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6194 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6195 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6196 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6197 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6198 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6199 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6200 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6201 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6202 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6203 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6204 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6205 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6206 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6207 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6208 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6209 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6210 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6211 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE }, 6212 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR }, 6213 { "disable", .horkage_on = ATA_HORKAGE_DISABLE }, 6214 }; 6215 char *start = *cur, *p = *cur; 6216 char *id, *val, *endp; 6217 const struct ata_force_param *match_fp = NULL; 6218 int nr_matches = 0, i; 6219 6220 /* find where this param ends and update *cur */ 6221 while (*p != '\0' && *p != ',') 6222 p++; 6223 6224 if (*p == '\0') 6225 *cur = p; 6226 else 6227 *cur = p + 1; 6228 6229 *p = '\0'; 6230 6231 /* parse */ 6232 p = strchr(start, ':'); 6233 if (!p) { 6234 val = strstrip(start); 6235 goto parse_val; 6236 } 6237 *p = '\0'; 6238 6239 id = strstrip(start); 6240 val = strstrip(p + 1); 6241 6242 /* parse id */ 6243 p = strchr(id, '.'); 6244 if (p) { 6245 *p++ = '\0'; 6246 force_ent->device = simple_strtoul(p, &endp, 10); 6247 if (p == endp || *endp != '\0') { 6248 *reason = "invalid device"; 6249 return -EINVAL; 6250 } 6251 } 6252 6253 force_ent->port = simple_strtoul(id, &endp, 10); 6254 if (id == endp || *endp != '\0') { 6255 *reason = "invalid port/link"; 6256 return -EINVAL; 6257 } 6258 6259 parse_val: 6260 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6261 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6262 const struct ata_force_param *fp = &force_tbl[i]; 6263 6264 if (strncasecmp(val, fp->name, strlen(val))) 6265 continue; 6266 6267 nr_matches++; 6268 match_fp = fp; 6269 6270 if (strcasecmp(val, fp->name) == 0) { 6271 nr_matches = 1; 6272 break; 6273 } 6274 } 6275 6276 if (!nr_matches) { 6277 *reason = "unknown value"; 6278 return -EINVAL; 6279 } 6280 if (nr_matches > 1) { 6281 *reason = "ambiguous value"; 6282 return -EINVAL; 6283 } 6284 6285 force_ent->param = *match_fp; 6286 6287 return 0; 6288} 6289 6290static void __init ata_parse_force_param(void) 6291{ 6292 int idx = 0, size = 1; 6293 int last_port = -1, last_device = -1; 6294 char *p, *cur, *next; 6295 6296 /* calculate maximum number of params and allocate force_tbl */ 6297 for (p = ata_force_param_buf; *p; p++) 6298 if (*p == ',') 6299 size++; 6300 6301 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL); 6302 if (!ata_force_tbl) { 6303 printk(KERN_WARNING "ata: failed to extend force table, " 6304 "libata.force ignored\n"); 6305 return; 6306 } 6307 6308 /* parse and populate the table */ 6309 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6310 const char *reason = ""; 6311 struct ata_force_ent te = { .port = -1, .device = -1 }; 6312 6313 next = cur; 6314 if (ata_parse_force_one(&next, &te, &reason)) { 6315 printk(KERN_WARNING "ata: failed to parse force " 6316 "parameter \"%s\" (%s)\n", 6317 cur, reason); 6318 continue; 6319 } 6320 6321 if (te.port == -1) { 6322 te.port = last_port; 6323 te.device = last_device; 6324 } 6325 6326 ata_force_tbl[idx++] = te; 6327 6328 last_port = te.port; 6329 last_device = te.device; 6330 } 6331 6332 ata_force_tbl_size = idx; 6333} 6334 6335static void ata_free_force_param(void) 6336{ 6337 kfree(ata_force_tbl); 6338} 6339#else 6340static inline void ata_parse_force_param(void) { } 6341static inline void ata_free_force_param(void) { } 6342#endif 6343 6344static int __init ata_init(void) 6345{ 6346 int rc; 6347 6348 ata_parse_force_param(); 6349 6350 rc = ata_sff_init(); 6351 if (rc) { 6352 ata_free_force_param(); 6353 return rc; 6354 } 6355 6356 libata_transport_init(); 6357 ata_scsi_transport_template = ata_attach_transport(); 6358 if (!ata_scsi_transport_template) { 6359 ata_sff_exit(); 6360 rc = -ENOMEM; 6361 goto err_out; 6362 } 6363 6364 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6365 return 0; 6366 6367err_out: 6368 return rc; 6369} 6370 6371static void __exit ata_exit(void) 6372{ 6373 ata_release_transport(ata_scsi_transport_template); 6374 libata_transport_exit(); 6375 ata_sff_exit(); 6376 ata_free_force_param(); 6377} 6378 6379subsys_initcall(ata_init); 6380module_exit(ata_exit); 6381 6382static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6383 6384int ata_ratelimit(void) 6385{ 6386 return __ratelimit(&ratelimit); 6387} 6388EXPORT_SYMBOL_GPL(ata_ratelimit); 6389 6390/** 6391 * ata_msleep - ATA EH owner aware msleep 6392 * @ap: ATA port to attribute the sleep to 6393 * @msecs: duration to sleep in milliseconds 6394 * 6395 * Sleeps @msecs. If the current task is owner of @ap's EH, the 6396 * ownership is released before going to sleep and reacquired 6397 * after the sleep is complete. IOW, other ports sharing the 6398 * @ap->host will be allowed to own the EH while this task is 6399 * sleeping. 6400 * 6401 * LOCKING: 6402 * Might sleep. 6403 */ 6404void ata_msleep(struct ata_port *ap, unsigned int msecs) 6405{ 6406 bool owns_eh = ap && ap->host->eh_owner == current; 6407 6408 if (owns_eh) 6409 ata_eh_release(ap); 6410 6411 if (msecs < 20) { 6412 unsigned long usecs = msecs * USEC_PER_MSEC; 6413 usleep_range(usecs, usecs + 50); 6414 } else { 6415 msleep(msecs); 6416 } 6417 6418 if (owns_eh) 6419 ata_eh_acquire(ap); 6420} 6421EXPORT_SYMBOL_GPL(ata_msleep); 6422 6423/** 6424 * ata_wait_register - wait until register value changes 6425 * @ap: ATA port to wait register for, can be NULL 6426 * @reg: IO-mapped register 6427 * @mask: Mask to apply to read register value 6428 * @val: Wait condition 6429 * @interval: polling interval in milliseconds 6430 * @timeout: timeout in milliseconds 6431 * 6432 * Waiting for some bits of register to change is a common 6433 * operation for ATA controllers. This function reads 32bit LE 6434 * IO-mapped register @reg and tests for the following condition. 6435 * 6436 * (*@reg & mask) != val 6437 * 6438 * If the condition is met, it returns; otherwise, the process is 6439 * repeated after @interval_msec until timeout. 6440 * 6441 * LOCKING: 6442 * Kernel thread context (may sleep) 6443 * 6444 * RETURNS: 6445 * The final register value. 6446 */ 6447u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 6448 unsigned long interval, unsigned long timeout) 6449{ 6450 unsigned long deadline; 6451 u32 tmp; 6452 6453 tmp = ioread32(reg); 6454 6455 /* Calculate timeout _after_ the first read to make sure 6456 * preceding writes reach the controller before starting to 6457 * eat away the timeout. 6458 */ 6459 deadline = ata_deadline(jiffies, timeout); 6460 6461 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6462 ata_msleep(ap, interval); 6463 tmp = ioread32(reg); 6464 } 6465 6466 return tmp; 6467} 6468EXPORT_SYMBOL_GPL(ata_wait_register); 6469 6470/* 6471 * Dummy port_ops 6472 */ 6473static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6474{ 6475 return AC_ERR_SYSTEM; 6476} 6477 6478static void ata_dummy_error_handler(struct ata_port *ap) 6479{ 6480 /* truly dummy */ 6481} 6482 6483struct ata_port_operations ata_dummy_port_ops = { 6484 .qc_prep = ata_noop_qc_prep, 6485 .qc_issue = ata_dummy_qc_issue, 6486 .error_handler = ata_dummy_error_handler, 6487 .sched_eh = ata_std_sched_eh, 6488 .end_eh = ata_std_end_eh, 6489}; 6490EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6491 6492const struct ata_port_info ata_dummy_port_info = { 6493 .port_ops = &ata_dummy_port_ops, 6494}; 6495EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6496 6497/* 6498 * Utility print functions 6499 */ 6500void ata_port_printk(const struct ata_port *ap, const char *level, 6501 const char *fmt, ...) 6502{ 6503 struct va_format vaf; 6504 va_list args; 6505 6506 va_start(args, fmt); 6507 6508 vaf.fmt = fmt; 6509 vaf.va = &args; 6510 6511 printk("%sata%u: %pV", level, ap->print_id, &vaf); 6512 6513 va_end(args); 6514} 6515EXPORT_SYMBOL(ata_port_printk); 6516 6517void ata_link_printk(const struct ata_link *link, const char *level, 6518 const char *fmt, ...) 6519{ 6520 struct va_format vaf; 6521 va_list args; 6522 6523 va_start(args, fmt); 6524 6525 vaf.fmt = fmt; 6526 vaf.va = &args; 6527 6528 if (sata_pmp_attached(link->ap) || link->ap->slave_link) 6529 printk("%sata%u.%02u: %pV", 6530 level, link->ap->print_id, link->pmp, &vaf); 6531 else 6532 printk("%sata%u: %pV", 6533 level, link->ap->print_id, &vaf); 6534 6535 va_end(args); 6536} 6537EXPORT_SYMBOL(ata_link_printk); 6538 6539void ata_dev_printk(const struct ata_device *dev, const char *level, 6540 const char *fmt, ...) 6541{ 6542 struct va_format vaf; 6543 va_list args; 6544 6545 va_start(args, fmt); 6546 6547 vaf.fmt = fmt; 6548 vaf.va = &args; 6549 6550 printk("%sata%u.%02u: %pV", 6551 level, dev->link->ap->print_id, dev->link->pmp + dev->devno, 6552 &vaf); 6553 6554 va_end(args); 6555} 6556EXPORT_SYMBOL(ata_dev_printk); 6557 6558void ata_print_version(const struct device *dev, const char *version) 6559{ 6560 dev_printk(KERN_DEBUG, dev, "version %s\n", version); 6561} 6562EXPORT_SYMBOL(ata_print_version); 6563