1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * drivers/acpi/device_pm.c - ACPI device power management routines.
4 *
5 * Copyright (C) 2012, Intel Corp.
6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 *
8 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9 *
10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 */
12
13#include <linux/acpi.h>
14#include <linux/export.h>
15#include <linux/mutex.h>
16#include <linux/pm_qos.h>
17#include <linux/pm_domain.h>
18#include <linux/pm_runtime.h>
19#include <linux/suspend.h>
20
21#include "fan.h"
22#include "internal.h"
23
24#define _COMPONENT	ACPI_POWER_COMPONENT
25ACPI_MODULE_NAME("device_pm");
26
27/**
28 * acpi_power_state_string - String representation of ACPI device power state.
29 * @state: ACPI device power state to return the string representation of.
30 */
31const char *acpi_power_state_string(int state)
32{
33	switch (state) {
34	case ACPI_STATE_D0:
35		return "D0";
36	case ACPI_STATE_D1:
37		return "D1";
38	case ACPI_STATE_D2:
39		return "D2";
40	case ACPI_STATE_D3_HOT:
41		return "D3hot";
42	case ACPI_STATE_D3_COLD:
43		return "D3cold";
44	default:
45		return "(unknown)";
46	}
47}
48
49static int acpi_dev_pm_explicit_get(struct acpi_device *device, int *state)
50{
51	unsigned long long psc;
52	acpi_status status;
53
54	status = acpi_evaluate_integer(device->handle, "_PSC", NULL, &psc);
55	if (ACPI_FAILURE(status))
56		return -ENODEV;
57
58	*state = psc;
59	return 0;
60}
61
62/**
63 * acpi_device_get_power - Get power state of an ACPI device.
64 * @device: Device to get the power state of.
65 * @state: Place to store the power state of the device.
66 *
67 * This function does not update the device's power.state field, but it may
68 * update its parent's power.state field (when the parent's power state is
69 * unknown and the device's power state turns out to be D0).
70 *
71 * Also, it does not update power resource reference counters to ensure that
72 * the power state returned by it will be persistent and it may return a power
73 * state shallower than previously set by acpi_device_set_power() for @device
74 * (if that power state depends on any power resources).
75 */
76int acpi_device_get_power(struct acpi_device *device, int *state)
77{
78	int result = ACPI_STATE_UNKNOWN;
79	int error;
80
81	if (!device || !state)
82		return -EINVAL;
83
84	if (!device->flags.power_manageable) {
85		/* TBD: Non-recursive algorithm for walking up hierarchy. */
86		*state = device->parent ?
87			device->parent->power.state : ACPI_STATE_D0;
88		goto out;
89	}
90
91	/*
92	 * Get the device's power state from power resources settings and _PSC,
93	 * if available.
94	 */
95	if (device->power.flags.power_resources) {
96		error = acpi_power_get_inferred_state(device, &result);
97		if (error)
98			return error;
99	}
100	if (device->power.flags.explicit_get) {
101		int psc;
102
103		error = acpi_dev_pm_explicit_get(device, &psc);
104		if (error)
105			return error;
106
107		/*
108		 * The power resources settings may indicate a power state
109		 * shallower than the actual power state of the device, because
110		 * the same power resources may be referenced by other devices.
111		 *
112		 * For systems predating ACPI 4.0 we assume that D3hot is the
113		 * deepest state that can be supported.
114		 */
115		if (psc > result && psc < ACPI_STATE_D3_COLD)
116			result = psc;
117		else if (result == ACPI_STATE_UNKNOWN)
118			result = psc > ACPI_STATE_D2 ? ACPI_STATE_D3_HOT : psc;
119	}
120
121	/*
122	 * If we were unsure about the device parent's power state up to this
123	 * point, the fact that the device is in D0 implies that the parent has
124	 * to be in D0 too, except if ignore_parent is set.
125	 */
126	if (!device->power.flags.ignore_parent && device->parent
127	    && device->parent->power.state == ACPI_STATE_UNKNOWN
128	    && result == ACPI_STATE_D0)
129		device->parent->power.state = ACPI_STATE_D0;
130
131	*state = result;
132
133 out:
134	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] power state is %s\n",
135			  device->pnp.bus_id, acpi_power_state_string(*state)));
136
137	return 0;
138}
139
140static int acpi_dev_pm_explicit_set(struct acpi_device *adev, int state)
141{
142	if (adev->power.states[state].flags.explicit_set) {
143		char method[5] = { '_', 'P', 'S', '0' + state, '\0' };
144		acpi_status status;
145
146		status = acpi_evaluate_object(adev->handle, method, NULL, NULL);
147		if (ACPI_FAILURE(status))
148			return -ENODEV;
149	}
150	return 0;
151}
152
153/**
154 * acpi_device_set_power - Set power state of an ACPI device.
155 * @device: Device to set the power state of.
156 * @state: New power state to set.
157 *
158 * Callers must ensure that the device is power manageable before using this
159 * function.
160 */
161int acpi_device_set_power(struct acpi_device *device, int state)
162{
163	int target_state = state;
164	int result = 0;
165
166	if (!device || !device->flags.power_manageable
167	    || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
168		return -EINVAL;
169
170	acpi_handle_debug(device->handle, "Power state change: %s -> %s\n",
171			  acpi_power_state_string(device->power.state),
172			  acpi_power_state_string(state));
173
174	/* Make sure this is a valid target state */
175
176	/* There is a special case for D0 addressed below. */
177	if (state > ACPI_STATE_D0 && state == device->power.state) {
178		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] already in %s\n",
179				  device->pnp.bus_id,
180				  acpi_power_state_string(state)));
181		return 0;
182	}
183
184	if (state == ACPI_STATE_D3_COLD) {
185		/*
186		 * For transitions to D3cold we need to execute _PS3 and then
187		 * possibly drop references to the power resources in use.
188		 */
189		state = ACPI_STATE_D3_HOT;
190		/* If D3cold is not supported, use D3hot as the target state. */
191		if (!device->power.states[ACPI_STATE_D3_COLD].flags.valid)
192			target_state = state;
193	} else if (!device->power.states[state].flags.valid) {
194		dev_warn(&device->dev, "Power state %s not supported\n",
195			 acpi_power_state_string(state));
196		return -ENODEV;
197	}
198
199	if (!device->power.flags.ignore_parent &&
200	    device->parent && (state < device->parent->power.state)) {
201		dev_warn(&device->dev,
202			 "Cannot transition to power state %s for parent in %s\n",
203			 acpi_power_state_string(state),
204			 acpi_power_state_string(device->parent->power.state));
205		return -ENODEV;
206	}
207
208	/*
209	 * Transition Power
210	 * ----------------
211	 * In accordance with ACPI 6, _PSx is executed before manipulating power
212	 * resources, unless the target state is D0, in which case _PS0 is
213	 * supposed to be executed after turning the power resources on.
214	 */
215	if (state > ACPI_STATE_D0) {
216		/*
217		 * According to ACPI 6, devices cannot go from lower-power
218		 * (deeper) states to higher-power (shallower) states.
219		 */
220		if (state < device->power.state) {
221			dev_warn(&device->dev, "Cannot transition from %s to %s\n",
222				 acpi_power_state_string(device->power.state),
223				 acpi_power_state_string(state));
224			return -ENODEV;
225		}
226
227		/*
228		 * If the device goes from D3hot to D3cold, _PS3 has been
229		 * evaluated for it already, so skip it in that case.
230		 */
231		if (device->power.state < ACPI_STATE_D3_HOT) {
232			result = acpi_dev_pm_explicit_set(device, state);
233			if (result)
234				goto end;
235		}
236
237		if (device->power.flags.power_resources)
238			result = acpi_power_transition(device, target_state);
239	} else {
240		int cur_state = device->power.state;
241
242		if (device->power.flags.power_resources) {
243			result = acpi_power_transition(device, ACPI_STATE_D0);
244			if (result)
245				goto end;
246		}
247
248		if (cur_state == ACPI_STATE_D0) {
249			int psc;
250
251			/* Nothing to do here if _PSC is not present. */
252			if (!device->power.flags.explicit_get)
253				return 0;
254
255			/*
256			 * The power state of the device was set to D0 last
257			 * time, but that might have happened before a
258			 * system-wide transition involving the platform
259			 * firmware, so it may be necessary to evaluate _PS0
260			 * for the device here.  However, use extra care here
261			 * and evaluate _PSC to check the device's current power
262			 * state, and only invoke _PS0 if the evaluation of _PSC
263			 * is successful and it returns a power state different
264			 * from D0.
265			 */
266			result = acpi_dev_pm_explicit_get(device, &psc);
267			if (result || psc == ACPI_STATE_D0)
268				return 0;
269		}
270
271		result = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0);
272	}
273
274 end:
275	if (result) {
276		dev_warn(&device->dev, "Failed to change power state to %s\n",
277			 acpi_power_state_string(target_state));
278	} else {
279		device->power.state = target_state;
280		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
281				  "Device [%s] transitioned to %s\n",
282				  device->pnp.bus_id,
283				  acpi_power_state_string(target_state)));
284	}
285
286	return result;
287}
288EXPORT_SYMBOL(acpi_device_set_power);
289
290int acpi_bus_set_power(acpi_handle handle, int state)
291{
292	struct acpi_device *device;
293	int result;
294
295	result = acpi_bus_get_device(handle, &device);
296	if (result)
297		return result;
298
299	return acpi_device_set_power(device, state);
300}
301EXPORT_SYMBOL(acpi_bus_set_power);
302
303int acpi_bus_init_power(struct acpi_device *device)
304{
305	int state;
306	int result;
307
308	if (!device)
309		return -EINVAL;
310
311	device->power.state = ACPI_STATE_UNKNOWN;
312	if (!acpi_device_is_present(device)) {
313		device->flags.initialized = false;
314		return -ENXIO;
315	}
316
317	result = acpi_device_get_power(device, &state);
318	if (result)
319		return result;
320
321	if (state < ACPI_STATE_D3_COLD && device->power.flags.power_resources) {
322		/* Reference count the power resources. */
323		result = acpi_power_on_resources(device, state);
324		if (result)
325			return result;
326
327		if (state == ACPI_STATE_D0) {
328			/*
329			 * If _PSC is not present and the state inferred from
330			 * power resources appears to be D0, it still may be
331			 * necessary to execute _PS0 at this point, because
332			 * another device using the same power resources may
333			 * have been put into D0 previously and that's why we
334			 * see D0 here.
335			 */
336			result = acpi_dev_pm_explicit_set(device, state);
337			if (result)
338				return result;
339		}
340	} else if (state == ACPI_STATE_UNKNOWN) {
341		/*
342		 * No power resources and missing _PSC?  Cross fingers and make
343		 * it D0 in hope that this is what the BIOS put the device into.
344		 * [We tried to force D0 here by executing _PS0, but that broke
345		 * Toshiba P870-303 in a nasty way.]
346		 */
347		state = ACPI_STATE_D0;
348	}
349	device->power.state = state;
350	return 0;
351}
352
353/**
354 * acpi_device_fix_up_power - Force device with missing _PSC into D0.
355 * @device: Device object whose power state is to be fixed up.
356 *
357 * Devices without power resources and _PSC, but having _PS0 and _PS3 defined,
358 * are assumed to be put into D0 by the BIOS.  However, in some cases that may
359 * not be the case and this function should be used then.
360 */
361int acpi_device_fix_up_power(struct acpi_device *device)
362{
363	int ret = 0;
364
365	if (!device->power.flags.power_resources
366	    && !device->power.flags.explicit_get
367	    && device->power.state == ACPI_STATE_D0)
368		ret = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0);
369
370	return ret;
371}
372EXPORT_SYMBOL_GPL(acpi_device_fix_up_power);
373
374int acpi_device_update_power(struct acpi_device *device, int *state_p)
375{
376	int state;
377	int result;
378
379	if (device->power.state == ACPI_STATE_UNKNOWN) {
380		result = acpi_bus_init_power(device);
381		if (!result && state_p)
382			*state_p = device->power.state;
383
384		return result;
385	}
386
387	result = acpi_device_get_power(device, &state);
388	if (result)
389		return result;
390
391	if (state == ACPI_STATE_UNKNOWN) {
392		state = ACPI_STATE_D0;
393		result = acpi_device_set_power(device, state);
394		if (result)
395			return result;
396	} else {
397		if (device->power.flags.power_resources) {
398			/*
399			 * We don't need to really switch the state, bu we need
400			 * to update the power resources' reference counters.
401			 */
402			result = acpi_power_transition(device, state);
403			if (result)
404				return result;
405		}
406		device->power.state = state;
407	}
408	if (state_p)
409		*state_p = state;
410
411	return 0;
412}
413EXPORT_SYMBOL_GPL(acpi_device_update_power);
414
415int acpi_bus_update_power(acpi_handle handle, int *state_p)
416{
417	struct acpi_device *device;
418	int result;
419
420	result = acpi_bus_get_device(handle, &device);
421	return result ? result : acpi_device_update_power(device, state_p);
422}
423EXPORT_SYMBOL_GPL(acpi_bus_update_power);
424
425bool acpi_bus_power_manageable(acpi_handle handle)
426{
427	struct acpi_device *device;
428	int result;
429
430	result = acpi_bus_get_device(handle, &device);
431	return result ? false : device->flags.power_manageable;
432}
433EXPORT_SYMBOL(acpi_bus_power_manageable);
434
435#ifdef CONFIG_PM
436static DEFINE_MUTEX(acpi_pm_notifier_lock);
437static DEFINE_MUTEX(acpi_pm_notifier_install_lock);
438
439void acpi_pm_wakeup_event(struct device *dev)
440{
441	pm_wakeup_dev_event(dev, 0, acpi_s2idle_wakeup());
442}
443EXPORT_SYMBOL_GPL(acpi_pm_wakeup_event);
444
445static void acpi_pm_notify_handler(acpi_handle handle, u32 val, void *not_used)
446{
447	struct acpi_device *adev;
448
449	if (val != ACPI_NOTIFY_DEVICE_WAKE)
450		return;
451
452	acpi_handle_debug(handle, "Wake notify\n");
453
454	adev = acpi_bus_get_acpi_device(handle);
455	if (!adev)
456		return;
457
458	mutex_lock(&acpi_pm_notifier_lock);
459
460	if (adev->wakeup.flags.notifier_present) {
461		pm_wakeup_ws_event(adev->wakeup.ws, 0, acpi_s2idle_wakeup());
462		if (adev->wakeup.context.func) {
463			acpi_handle_debug(handle, "Running %pS for %s\n",
464					  adev->wakeup.context.func,
465					  dev_name(adev->wakeup.context.dev));
466			adev->wakeup.context.func(&adev->wakeup.context);
467		}
468	}
469
470	mutex_unlock(&acpi_pm_notifier_lock);
471
472	acpi_bus_put_acpi_device(adev);
473}
474
475/**
476 * acpi_add_pm_notifier - Register PM notify handler for given ACPI device.
477 * @adev: ACPI device to add the notify handler for.
478 * @dev: Device to generate a wakeup event for while handling the notification.
479 * @func: Work function to execute when handling the notification.
480 *
481 * NOTE: @adev need not be a run-wake or wakeup device to be a valid source of
482 * PM wakeup events.  For example, wakeup events may be generated for bridges
483 * if one of the devices below the bridge is signaling wakeup, even if the
484 * bridge itself doesn't have a wakeup GPE associated with it.
485 */
486acpi_status acpi_add_pm_notifier(struct acpi_device *adev, struct device *dev,
487			void (*func)(struct acpi_device_wakeup_context *context))
488{
489	acpi_status status = AE_ALREADY_EXISTS;
490
491	if (!dev && !func)
492		return AE_BAD_PARAMETER;
493
494	mutex_lock(&acpi_pm_notifier_install_lock);
495
496	if (adev->wakeup.flags.notifier_present)
497		goto out;
498
499	status = acpi_install_notify_handler(adev->handle, ACPI_SYSTEM_NOTIFY,
500					     acpi_pm_notify_handler, NULL);
501	if (ACPI_FAILURE(status))
502		goto out;
503
504	mutex_lock(&acpi_pm_notifier_lock);
505	adev->wakeup.ws = wakeup_source_register(&adev->dev,
506						 dev_name(&adev->dev));
507	adev->wakeup.context.dev = dev;
508	adev->wakeup.context.func = func;
509	adev->wakeup.flags.notifier_present = true;
510	mutex_unlock(&acpi_pm_notifier_lock);
511
512 out:
513	mutex_unlock(&acpi_pm_notifier_install_lock);
514	return status;
515}
516
517/**
518 * acpi_remove_pm_notifier - Unregister PM notifier from given ACPI device.
519 * @adev: ACPI device to remove the notifier from.
520 */
521acpi_status acpi_remove_pm_notifier(struct acpi_device *adev)
522{
523	acpi_status status = AE_BAD_PARAMETER;
524
525	mutex_lock(&acpi_pm_notifier_install_lock);
526
527	if (!adev->wakeup.flags.notifier_present)
528		goto out;
529
530	status = acpi_remove_notify_handler(adev->handle,
531					    ACPI_SYSTEM_NOTIFY,
532					    acpi_pm_notify_handler);
533	if (ACPI_FAILURE(status))
534		goto out;
535
536	mutex_lock(&acpi_pm_notifier_lock);
537	adev->wakeup.context.func = NULL;
538	adev->wakeup.context.dev = NULL;
539	wakeup_source_unregister(adev->wakeup.ws);
540	adev->wakeup.flags.notifier_present = false;
541	mutex_unlock(&acpi_pm_notifier_lock);
542
543 out:
544	mutex_unlock(&acpi_pm_notifier_install_lock);
545	return status;
546}
547
548bool acpi_bus_can_wakeup(acpi_handle handle)
549{
550	struct acpi_device *device;
551	int result;
552
553	result = acpi_bus_get_device(handle, &device);
554	return result ? false : device->wakeup.flags.valid;
555}
556EXPORT_SYMBOL(acpi_bus_can_wakeup);
557
558bool acpi_pm_device_can_wakeup(struct device *dev)
559{
560	struct acpi_device *adev = ACPI_COMPANION(dev);
561
562	return adev ? acpi_device_can_wakeup(adev) : false;
563}
564
565/**
566 * acpi_dev_pm_get_state - Get preferred power state of ACPI device.
567 * @dev: Device whose preferred target power state to return.
568 * @adev: ACPI device node corresponding to @dev.
569 * @target_state: System state to match the resultant device state.
570 * @d_min_p: Location to store the highest power state available to the device.
571 * @d_max_p: Location to store the lowest power state available to the device.
572 *
573 * Find the lowest power (highest number) and highest power (lowest number) ACPI
574 * device power states that the device can be in while the system is in the
575 * state represented by @target_state.  Store the integer numbers representing
576 * those stats in the memory locations pointed to by @d_max_p and @d_min_p,
577 * respectively.
578 *
579 * Callers must ensure that @dev and @adev are valid pointers and that @adev
580 * actually corresponds to @dev before using this function.
581 *
582 * Returns 0 on success or -ENODATA when one of the ACPI methods fails or
583 * returns a value that doesn't make sense.  The memory locations pointed to by
584 * @d_max_p and @d_min_p are only modified on success.
585 */
586static int acpi_dev_pm_get_state(struct device *dev, struct acpi_device *adev,
587				 u32 target_state, int *d_min_p, int *d_max_p)
588{
589	char method[] = { '_', 'S', '0' + target_state, 'D', '\0' };
590	acpi_handle handle = adev->handle;
591	unsigned long long ret;
592	int d_min, d_max;
593	bool wakeup = false;
594	bool has_sxd = false;
595	acpi_status status;
596
597	/*
598	 * If the system state is S0, the lowest power state the device can be
599	 * in is D3cold, unless the device has _S0W and is supposed to signal
600	 * wakeup, in which case the return value of _S0W has to be used as the
601	 * lowest power state available to the device.
602	 */
603	d_min = ACPI_STATE_D0;
604	d_max = ACPI_STATE_D3_COLD;
605
606	/*
607	 * If present, _SxD methods return the minimum D-state (highest power
608	 * state) we can use for the corresponding S-states.  Otherwise, the
609	 * minimum D-state is D0 (ACPI 3.x).
610	 */
611	if (target_state > ACPI_STATE_S0) {
612		/*
613		 * We rely on acpi_evaluate_integer() not clobbering the integer
614		 * provided if AE_NOT_FOUND is returned.
615		 */
616		ret = d_min;
617		status = acpi_evaluate_integer(handle, method, NULL, &ret);
618		if ((ACPI_FAILURE(status) && status != AE_NOT_FOUND)
619		    || ret > ACPI_STATE_D3_COLD)
620			return -ENODATA;
621
622		/*
623		 * We need to handle legacy systems where D3hot and D3cold are
624		 * the same and 3 is returned in both cases, so fall back to
625		 * D3cold if D3hot is not a valid state.
626		 */
627		if (!adev->power.states[ret].flags.valid) {
628			if (ret == ACPI_STATE_D3_HOT)
629				ret = ACPI_STATE_D3_COLD;
630			else
631				return -ENODATA;
632		}
633
634		if (status == AE_OK)
635			has_sxd = true;
636
637		d_min = ret;
638		wakeup = device_may_wakeup(dev) && adev->wakeup.flags.valid
639			&& adev->wakeup.sleep_state >= target_state;
640	} else {
641		wakeup = adev->wakeup.flags.valid;
642	}
643
644	/*
645	 * If _PRW says we can wake up the system from the target sleep state,
646	 * the D-state returned by _SxD is sufficient for that (we assume a
647	 * wakeup-aware driver if wake is set).  Still, if _SxW exists
648	 * (ACPI 3.x), it should return the maximum (lowest power) D-state that
649	 * can wake the system.  _S0W may be valid, too.
650	 */
651	if (wakeup) {
652		method[3] = 'W';
653		status = acpi_evaluate_integer(handle, method, NULL, &ret);
654		if (status == AE_NOT_FOUND) {
655			/* No _SxW. In this case, the ACPI spec says that we
656			 * must not go into any power state deeper than the
657			 * value returned from _SxD.
658			 */
659			if (has_sxd && target_state > ACPI_STATE_S0)
660				d_max = d_min;
661		} else if (ACPI_SUCCESS(status) && ret <= ACPI_STATE_D3_COLD) {
662			/* Fall back to D3cold if ret is not a valid state. */
663			if (!adev->power.states[ret].flags.valid)
664				ret = ACPI_STATE_D3_COLD;
665
666			d_max = ret > d_min ? ret : d_min;
667		} else {
668			return -ENODATA;
669		}
670	}
671
672	if (d_min_p)
673		*d_min_p = d_min;
674
675	if (d_max_p)
676		*d_max_p = d_max;
677
678	return 0;
679}
680
681/**
682 * acpi_pm_device_sleep_state - Get preferred power state of ACPI device.
683 * @dev: Device whose preferred target power state to return.
684 * @d_min_p: Location to store the upper limit of the allowed states range.
685 * @d_max_in: Deepest low-power state to take into consideration.
686 * Return value: Preferred power state of the device on success, -ENODEV
687 * if there's no 'struct acpi_device' for @dev, -EINVAL if @d_max_in is
688 * incorrect, or -ENODATA on ACPI method failure.
689 *
690 * The caller must ensure that @dev is valid before using this function.
691 */
692int acpi_pm_device_sleep_state(struct device *dev, int *d_min_p, int d_max_in)
693{
694	struct acpi_device *adev;
695	int ret, d_min, d_max;
696
697	if (d_max_in < ACPI_STATE_D0 || d_max_in > ACPI_STATE_D3_COLD)
698		return -EINVAL;
699
700	if (d_max_in > ACPI_STATE_D2) {
701		enum pm_qos_flags_status stat;
702
703		stat = dev_pm_qos_flags(dev, PM_QOS_FLAG_NO_POWER_OFF);
704		if (stat == PM_QOS_FLAGS_ALL)
705			d_max_in = ACPI_STATE_D2;
706	}
707
708	adev = ACPI_COMPANION(dev);
709	if (!adev) {
710		dev_dbg(dev, "ACPI companion missing in %s!\n", __func__);
711		return -ENODEV;
712	}
713
714	ret = acpi_dev_pm_get_state(dev, adev, acpi_target_system_state(),
715				    &d_min, &d_max);
716	if (ret)
717		return ret;
718
719	if (d_max_in < d_min)
720		return -EINVAL;
721
722	if (d_max > d_max_in) {
723		for (d_max = d_max_in; d_max > d_min; d_max--) {
724			if (adev->power.states[d_max].flags.valid)
725				break;
726		}
727	}
728
729	if (d_min_p)
730		*d_min_p = d_min;
731
732	return d_max;
733}
734EXPORT_SYMBOL(acpi_pm_device_sleep_state);
735
736/**
737 * acpi_pm_notify_work_func - ACPI devices wakeup notification work function.
738 * @context: Device wakeup context.
739 */
740static void acpi_pm_notify_work_func(struct acpi_device_wakeup_context *context)
741{
742	struct device *dev = context->dev;
743
744	if (dev) {
745		pm_wakeup_event(dev, 0);
746		pm_request_resume(dev);
747	}
748}
749
750static DEFINE_MUTEX(acpi_wakeup_lock);
751
752static int __acpi_device_wakeup_enable(struct acpi_device *adev,
753				       u32 target_state)
754{
755	struct acpi_device_wakeup *wakeup = &adev->wakeup;
756	acpi_status status;
757	int error = 0;
758
759	mutex_lock(&acpi_wakeup_lock);
760
761	if (wakeup->enable_count >= INT_MAX) {
762		acpi_handle_info(adev->handle, "Wakeup enable count out of bounds!\n");
763		goto out;
764	}
765	if (wakeup->enable_count > 0)
766		goto inc;
767
768	error = acpi_enable_wakeup_device_power(adev, target_state);
769	if (error)
770		goto out;
771
772	status = acpi_enable_gpe(wakeup->gpe_device, wakeup->gpe_number);
773	if (ACPI_FAILURE(status)) {
774		acpi_disable_wakeup_device_power(adev);
775		error = -EIO;
776		goto out;
777	}
778
779	acpi_handle_debug(adev->handle, "GPE%2X enabled for wakeup\n",
780			  (unsigned int)wakeup->gpe_number);
781
782inc:
783	wakeup->enable_count++;
784
785out:
786	mutex_unlock(&acpi_wakeup_lock);
787	return error;
788}
789
790/**
791 * acpi_device_wakeup_enable - Enable wakeup functionality for device.
792 * @adev: ACPI device to enable wakeup functionality for.
793 * @target_state: State the system is transitioning into.
794 *
795 * Enable the GPE associated with @adev so that it can generate wakeup signals
796 * for the device in response to external (remote) events and enable wakeup
797 * power for it.
798 *
799 * Callers must ensure that @adev is a valid ACPI device node before executing
800 * this function.
801 */
802static int acpi_device_wakeup_enable(struct acpi_device *adev, u32 target_state)
803{
804	return __acpi_device_wakeup_enable(adev, target_state);
805}
806
807/**
808 * acpi_device_wakeup_disable - Disable wakeup functionality for device.
809 * @adev: ACPI device to disable wakeup functionality for.
810 *
811 * Disable the GPE associated with @adev and disable wakeup power for it.
812 *
813 * Callers must ensure that @adev is a valid ACPI device node before executing
814 * this function.
815 */
816static void acpi_device_wakeup_disable(struct acpi_device *adev)
817{
818	struct acpi_device_wakeup *wakeup = &adev->wakeup;
819
820	mutex_lock(&acpi_wakeup_lock);
821
822	if (!wakeup->enable_count)
823		goto out;
824
825	acpi_disable_gpe(wakeup->gpe_device, wakeup->gpe_number);
826	acpi_disable_wakeup_device_power(adev);
827
828	wakeup->enable_count--;
829
830out:
831	mutex_unlock(&acpi_wakeup_lock);
832}
833
834/**
835 * acpi_pm_set_device_wakeup - Enable/disable remote wakeup for given device.
836 * @dev: Device to enable/disable to generate wakeup events.
837 * @enable: Whether to enable or disable the wakeup functionality.
838 */
839int acpi_pm_set_device_wakeup(struct device *dev, bool enable)
840{
841	struct acpi_device *adev;
842	int error;
843
844	adev = ACPI_COMPANION(dev);
845	if (!adev) {
846		dev_dbg(dev, "ACPI companion missing in %s!\n", __func__);
847		return -ENODEV;
848	}
849
850	if (!acpi_device_can_wakeup(adev))
851		return -EINVAL;
852
853	if (!enable) {
854		acpi_device_wakeup_disable(adev);
855		dev_dbg(dev, "Wakeup disabled by ACPI\n");
856		return 0;
857	}
858
859	error = __acpi_device_wakeup_enable(adev, acpi_target_system_state());
860	if (!error)
861		dev_dbg(dev, "Wakeup enabled by ACPI\n");
862
863	return error;
864}
865EXPORT_SYMBOL_GPL(acpi_pm_set_device_wakeup);
866
867/**
868 * acpi_dev_pm_low_power - Put ACPI device into a low-power state.
869 * @dev: Device to put into a low-power state.
870 * @adev: ACPI device node corresponding to @dev.
871 * @system_state: System state to choose the device state for.
872 */
873static int acpi_dev_pm_low_power(struct device *dev, struct acpi_device *adev,
874				 u32 system_state)
875{
876	int ret, state;
877
878	if (!acpi_device_power_manageable(adev))
879		return 0;
880
881	ret = acpi_dev_pm_get_state(dev, adev, system_state, NULL, &state);
882	return ret ? ret : acpi_device_set_power(adev, state);
883}
884
885/**
886 * acpi_dev_pm_full_power - Put ACPI device into the full-power state.
887 * @adev: ACPI device node to put into the full-power state.
888 */
889static int acpi_dev_pm_full_power(struct acpi_device *adev)
890{
891	return acpi_device_power_manageable(adev) ?
892		acpi_device_set_power(adev, ACPI_STATE_D0) : 0;
893}
894
895/**
896 * acpi_dev_suspend - Put device into a low-power state using ACPI.
897 * @dev: Device to put into a low-power state.
898 * @wakeup: Whether or not to enable wakeup for the device.
899 *
900 * Put the given device into a low-power state using the standard ACPI
901 * mechanism.  Set up remote wakeup if desired, choose the state to put the
902 * device into (this checks if remote wakeup is expected to work too), and set
903 * the power state of the device.
904 */
905int acpi_dev_suspend(struct device *dev, bool wakeup)
906{
907	struct acpi_device *adev = ACPI_COMPANION(dev);
908	u32 target_state = acpi_target_system_state();
909	int error;
910
911	if (!adev)
912		return 0;
913
914	if (wakeup && acpi_device_can_wakeup(adev)) {
915		error = acpi_device_wakeup_enable(adev, target_state);
916		if (error)
917			return -EAGAIN;
918	} else {
919		wakeup = false;
920	}
921
922	error = acpi_dev_pm_low_power(dev, adev, target_state);
923	if (error && wakeup)
924		acpi_device_wakeup_disable(adev);
925
926	return error;
927}
928EXPORT_SYMBOL_GPL(acpi_dev_suspend);
929
930/**
931 * acpi_dev_resume - Put device into the full-power state using ACPI.
932 * @dev: Device to put into the full-power state.
933 *
934 * Put the given device into the full-power state using the standard ACPI
935 * mechanism.  Set the power state of the device to ACPI D0 and disable wakeup.
936 */
937int acpi_dev_resume(struct device *dev)
938{
939	struct acpi_device *adev = ACPI_COMPANION(dev);
940	int error;
941
942	if (!adev)
943		return 0;
944
945	error = acpi_dev_pm_full_power(adev);
946	acpi_device_wakeup_disable(adev);
947	return error;
948}
949EXPORT_SYMBOL_GPL(acpi_dev_resume);
950
951/**
952 * acpi_subsys_runtime_suspend - Suspend device using ACPI.
953 * @dev: Device to suspend.
954 *
955 * Carry out the generic runtime suspend procedure for @dev and use ACPI to put
956 * it into a runtime low-power state.
957 */
958int acpi_subsys_runtime_suspend(struct device *dev)
959{
960	int ret = pm_generic_runtime_suspend(dev);
961	return ret ? ret : acpi_dev_suspend(dev, true);
962}
963EXPORT_SYMBOL_GPL(acpi_subsys_runtime_suspend);
964
965/**
966 * acpi_subsys_runtime_resume - Resume device using ACPI.
967 * @dev: Device to Resume.
968 *
969 * Use ACPI to put the given device into the full-power state and carry out the
970 * generic runtime resume procedure for it.
971 */
972int acpi_subsys_runtime_resume(struct device *dev)
973{
974	int ret = acpi_dev_resume(dev);
975	return ret ? ret : pm_generic_runtime_resume(dev);
976}
977EXPORT_SYMBOL_GPL(acpi_subsys_runtime_resume);
978
979#ifdef CONFIG_PM_SLEEP
980static bool acpi_dev_needs_resume(struct device *dev, struct acpi_device *adev)
981{
982	u32 sys_target = acpi_target_system_state();
983	int ret, state;
984
985	if (!pm_runtime_suspended(dev) || !adev || (adev->wakeup.flags.valid &&
986	    device_may_wakeup(dev) != !!adev->wakeup.prepare_count))
987		return true;
988
989	if (sys_target == ACPI_STATE_S0)
990		return false;
991
992	if (adev->power.flags.dsw_present)
993		return true;
994
995	ret = acpi_dev_pm_get_state(dev, adev, sys_target, NULL, &state);
996	if (ret)
997		return true;
998
999	return state != adev->power.state;
1000}
1001
1002/**
1003 * acpi_subsys_prepare - Prepare device for system transition to a sleep state.
1004 * @dev: Device to prepare.
1005 */
1006int acpi_subsys_prepare(struct device *dev)
1007{
1008	struct acpi_device *adev = ACPI_COMPANION(dev);
1009
1010	if (dev->driver && dev->driver->pm && dev->driver->pm->prepare) {
1011		int ret = dev->driver->pm->prepare(dev);
1012
1013		if (ret < 0)
1014			return ret;
1015
1016		if (!ret && dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_PREPARE))
1017			return 0;
1018	}
1019
1020	return !acpi_dev_needs_resume(dev, adev);
1021}
1022EXPORT_SYMBOL_GPL(acpi_subsys_prepare);
1023
1024/**
1025 * acpi_subsys_complete - Finalize device's resume during system resume.
1026 * @dev: Device to handle.
1027 */
1028void acpi_subsys_complete(struct device *dev)
1029{
1030	pm_generic_complete(dev);
1031	/*
1032	 * If the device had been runtime-suspended before the system went into
1033	 * the sleep state it is going out of and it has never been resumed till
1034	 * now, resume it in case the firmware powered it up.
1035	 */
1036	if (pm_runtime_suspended(dev) && pm_resume_via_firmware())
1037		pm_request_resume(dev);
1038}
1039EXPORT_SYMBOL_GPL(acpi_subsys_complete);
1040
1041/**
1042 * acpi_subsys_suspend - Run the device driver's suspend callback.
1043 * @dev: Device to handle.
1044 *
1045 * Follow PCI and resume devices from runtime suspend before running their
1046 * system suspend callbacks, unless the driver can cope with runtime-suspended
1047 * devices during system suspend and there are no ACPI-specific reasons for
1048 * resuming them.
1049 */
1050int acpi_subsys_suspend(struct device *dev)
1051{
1052	if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) ||
1053	    acpi_dev_needs_resume(dev, ACPI_COMPANION(dev)))
1054		pm_runtime_resume(dev);
1055
1056	return pm_generic_suspend(dev);
1057}
1058EXPORT_SYMBOL_GPL(acpi_subsys_suspend);
1059
1060/**
1061 * acpi_subsys_suspend_late - Suspend device using ACPI.
1062 * @dev: Device to suspend.
1063 *
1064 * Carry out the generic late suspend procedure for @dev and use ACPI to put
1065 * it into a low-power state during system transition into a sleep state.
1066 */
1067int acpi_subsys_suspend_late(struct device *dev)
1068{
1069	int ret;
1070
1071	if (dev_pm_skip_suspend(dev))
1072		return 0;
1073
1074	ret = pm_generic_suspend_late(dev);
1075	return ret ? ret : acpi_dev_suspend(dev, device_may_wakeup(dev));
1076}
1077EXPORT_SYMBOL_GPL(acpi_subsys_suspend_late);
1078
1079/**
1080 * acpi_subsys_suspend_noirq - Run the device driver's "noirq" suspend callback.
1081 * @dev: Device to suspend.
1082 */
1083int acpi_subsys_suspend_noirq(struct device *dev)
1084{
1085	int ret;
1086
1087	if (dev_pm_skip_suspend(dev))
1088		return 0;
1089
1090	ret = pm_generic_suspend_noirq(dev);
1091	if (ret)
1092		return ret;
1093
1094	/*
1095	 * If the target system sleep state is suspend-to-idle, it is sufficient
1096	 * to check whether or not the device's wakeup settings are good for
1097	 * runtime PM.  Otherwise, the pm_resume_via_firmware() check will cause
1098	 * acpi_subsys_complete() to take care of fixing up the device's state
1099	 * anyway, if need be.
1100	 */
1101	if (device_can_wakeup(dev) && !device_may_wakeup(dev))
1102		dev->power.may_skip_resume = false;
1103
1104	return 0;
1105}
1106EXPORT_SYMBOL_GPL(acpi_subsys_suspend_noirq);
1107
1108/**
1109 * acpi_subsys_resume_noirq - Run the device driver's "noirq" resume callback.
1110 * @dev: Device to handle.
1111 */
1112static int acpi_subsys_resume_noirq(struct device *dev)
1113{
1114	if (dev_pm_skip_resume(dev))
1115		return 0;
1116
1117	return pm_generic_resume_noirq(dev);
1118}
1119
1120/**
1121 * acpi_subsys_resume_early - Resume device using ACPI.
1122 * @dev: Device to Resume.
1123 *
1124 * Use ACPI to put the given device into the full-power state and carry out the
1125 * generic early resume procedure for it during system transition into the
1126 * working state.
1127 */
1128static int acpi_subsys_resume_early(struct device *dev)
1129{
1130	int ret;
1131
1132	if (dev_pm_skip_resume(dev))
1133		return 0;
1134
1135	ret = acpi_dev_resume(dev);
1136	return ret ? ret : pm_generic_resume_early(dev);
1137}
1138
1139/**
1140 * acpi_subsys_freeze - Run the device driver's freeze callback.
1141 * @dev: Device to handle.
1142 */
1143int acpi_subsys_freeze(struct device *dev)
1144{
1145	/*
1146	 * Resume all runtime-suspended devices before creating a snapshot
1147	 * image of system memory, because the restore kernel generally cannot
1148	 * be expected to always handle them consistently and they need to be
1149	 * put into the runtime-active metastate during system resume anyway,
1150	 * so it is better to ensure that the state saved in the image will be
1151	 * always consistent with that.
1152	 */
1153	pm_runtime_resume(dev);
1154
1155	return pm_generic_freeze(dev);
1156}
1157EXPORT_SYMBOL_GPL(acpi_subsys_freeze);
1158
1159/**
1160 * acpi_subsys_restore_early - Restore device using ACPI.
1161 * @dev: Device to restore.
1162 */
1163int acpi_subsys_restore_early(struct device *dev)
1164{
1165	int ret = acpi_dev_resume(dev);
1166	return ret ? ret : pm_generic_restore_early(dev);
1167}
1168EXPORT_SYMBOL_GPL(acpi_subsys_restore_early);
1169
1170/**
1171 * acpi_subsys_poweroff - Run the device driver's poweroff callback.
1172 * @dev: Device to handle.
1173 *
1174 * Follow PCI and resume devices from runtime suspend before running their
1175 * system poweroff callbacks, unless the driver can cope with runtime-suspended
1176 * devices during system suspend and there are no ACPI-specific reasons for
1177 * resuming them.
1178 */
1179int acpi_subsys_poweroff(struct device *dev)
1180{
1181	if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) ||
1182	    acpi_dev_needs_resume(dev, ACPI_COMPANION(dev)))
1183		pm_runtime_resume(dev);
1184
1185	return pm_generic_poweroff(dev);
1186}
1187EXPORT_SYMBOL_GPL(acpi_subsys_poweroff);
1188
1189/**
1190 * acpi_subsys_poweroff_late - Run the device driver's poweroff callback.
1191 * @dev: Device to handle.
1192 *
1193 * Carry out the generic late poweroff procedure for @dev and use ACPI to put
1194 * it into a low-power state during system transition into a sleep state.
1195 */
1196static int acpi_subsys_poweroff_late(struct device *dev)
1197{
1198	int ret;
1199
1200	if (dev_pm_skip_suspend(dev))
1201		return 0;
1202
1203	ret = pm_generic_poweroff_late(dev);
1204	if (ret)
1205		return ret;
1206
1207	return acpi_dev_suspend(dev, device_may_wakeup(dev));
1208}
1209
1210/**
1211 * acpi_subsys_poweroff_noirq - Run the driver's "noirq" poweroff callback.
1212 * @dev: Device to suspend.
1213 */
1214static int acpi_subsys_poweroff_noirq(struct device *dev)
1215{
1216	if (dev_pm_skip_suspend(dev))
1217		return 0;
1218
1219	return pm_generic_poweroff_noirq(dev);
1220}
1221#endif /* CONFIG_PM_SLEEP */
1222
1223static struct dev_pm_domain acpi_general_pm_domain = {
1224	.ops = {
1225		.runtime_suspend = acpi_subsys_runtime_suspend,
1226		.runtime_resume = acpi_subsys_runtime_resume,
1227#ifdef CONFIG_PM_SLEEP
1228		.prepare = acpi_subsys_prepare,
1229		.complete = acpi_subsys_complete,
1230		.suspend = acpi_subsys_suspend,
1231		.suspend_late = acpi_subsys_suspend_late,
1232		.suspend_noirq = acpi_subsys_suspend_noirq,
1233		.resume_noirq = acpi_subsys_resume_noirq,
1234		.resume_early = acpi_subsys_resume_early,
1235		.freeze = acpi_subsys_freeze,
1236		.poweroff = acpi_subsys_poweroff,
1237		.poweroff_late = acpi_subsys_poweroff_late,
1238		.poweroff_noirq = acpi_subsys_poweroff_noirq,
1239		.restore_early = acpi_subsys_restore_early,
1240#endif
1241	},
1242};
1243
1244/**
1245 * acpi_dev_pm_detach - Remove ACPI power management from the device.
1246 * @dev: Device to take care of.
1247 * @power_off: Whether or not to try to remove power from the device.
1248 *
1249 * Remove the device from the general ACPI PM domain and remove its wakeup
1250 * notifier.  If @power_off is set, additionally remove power from the device if
1251 * possible.
1252 *
1253 * Callers must ensure proper synchronization of this function with power
1254 * management callbacks.
1255 */
1256static void acpi_dev_pm_detach(struct device *dev, bool power_off)
1257{
1258	struct acpi_device *adev = ACPI_COMPANION(dev);
1259
1260	if (adev && dev->pm_domain == &acpi_general_pm_domain) {
1261		dev_pm_domain_set(dev, NULL);
1262		acpi_remove_pm_notifier(adev);
1263		if (power_off) {
1264			/*
1265			 * If the device's PM QoS resume latency limit or flags
1266			 * have been exposed to user space, they have to be
1267			 * hidden at this point, so that they don't affect the
1268			 * choice of the low-power state to put the device into.
1269			 */
1270			dev_pm_qos_hide_latency_limit(dev);
1271			dev_pm_qos_hide_flags(dev);
1272			acpi_device_wakeup_disable(adev);
1273			acpi_dev_pm_low_power(dev, adev, ACPI_STATE_S0);
1274		}
1275	}
1276}
1277
1278/**
1279 * acpi_dev_pm_attach - Prepare device for ACPI power management.
1280 * @dev: Device to prepare.
1281 * @power_on: Whether or not to power on the device.
1282 *
1283 * If @dev has a valid ACPI handle that has a valid struct acpi_device object
1284 * attached to it, install a wakeup notification handler for the device and
1285 * add it to the general ACPI PM domain.  If @power_on is set, the device will
1286 * be put into the ACPI D0 state before the function returns.
1287 *
1288 * This assumes that the @dev's bus type uses generic power management callbacks
1289 * (or doesn't use any power management callbacks at all).
1290 *
1291 * Callers must ensure proper synchronization of this function with power
1292 * management callbacks.
1293 */
1294int acpi_dev_pm_attach(struct device *dev, bool power_on)
1295{
1296	/*
1297	 * Skip devices whose ACPI companions match the device IDs below,
1298	 * because they require special power management handling incompatible
1299	 * with the generic ACPI PM domain.
1300	 */
1301	static const struct acpi_device_id special_pm_ids[] = {
1302		ACPI_FAN_DEVICE_IDS,
1303		{}
1304	};
1305	struct acpi_device *adev = ACPI_COMPANION(dev);
1306
1307	if (!adev || !acpi_match_device_ids(adev, special_pm_ids))
1308		return 0;
1309
1310	/*
1311	 * Only attach the power domain to the first device if the
1312	 * companion is shared by multiple. This is to prevent doing power
1313	 * management twice.
1314	 */
1315	if (!acpi_device_is_first_physical_node(adev, dev))
1316		return 0;
1317
1318	acpi_add_pm_notifier(adev, dev, acpi_pm_notify_work_func);
1319	dev_pm_domain_set(dev, &acpi_general_pm_domain);
1320	if (power_on) {
1321		acpi_dev_pm_full_power(adev);
1322		acpi_device_wakeup_disable(adev);
1323	}
1324
1325	dev->pm_domain->detach = acpi_dev_pm_detach;
1326	return 1;
1327}
1328EXPORT_SYMBOL_GPL(acpi_dev_pm_attach);
1329
1330/**
1331 * acpi_storage_d3 - Check if D3 should be used in the suspend path
1332 * @dev: Device to check
1333 *
1334 * Return %true if the platform firmware wants @dev to be programmed
1335 * into D3hot or D3cold (if supported) in the suspend path, or %false
1336 * when there is no specific preference. On some platforms, if this
1337 * hint is ignored, @dev may remain unresponsive after suspending the
1338 * platform as a whole.
1339 *
1340 * Although the property has storage in the name it actually is
1341 * applied to the PCIe slot and plugging in a non-storage device the
1342 * same platform restrictions will likely apply.
1343 */
1344bool acpi_storage_d3(struct device *dev)
1345{
1346	struct acpi_device *adev = ACPI_COMPANION(dev);
1347	u8 val;
1348
1349	if (!adev)
1350		return false;
1351	if (fwnode_property_read_u8(acpi_fwnode_handle(adev), "StorageD3Enable",
1352			&val))
1353		return false;
1354	return val == 1;
1355}
1356EXPORT_SYMBOL_GPL(acpi_storage_d3);
1357
1358#endif /* CONFIG_PM */
1359